Cortical Activation During Tool Pantomime with Upper Extremity Prostheses

Nikta Pirouz; Chris Mizelle PhD; Robert Kistenberg MPH, C/LP, FAAOP; and Lewis Wheaton PhD

Cognitive Motor Control Lab
Applied Physiology, Georgia Institute of Technology
Introduction and Background

- This study explores:
 - Upper extremity amputees
 - Cortical activity during motor planning
 - Praxis is action:
 - Initiation
 - Organization
 - Performance
 - Tool use
 - Comparing brain activation
 - Sound vs. affected side
 - Simple movements vs. tool pantomime gestures
Introduction and Background

• Why expect differences?
 – Amputees lose muscles, nerves and skin
 – The normal pathway between muscles, nerves and the brain is disrupted.
 – Effects motor output and sensory input
 – This peripheral, external loss can lead to reorganization in the brain (Schwenkreis, 2001)
Introduction and Background

• Why expect differences?
 – Prosthesis vs anatomic arm/hand
 – Mechanism of device movement
 • Expect to see cortical changes in motor planning and execution
• Feedback
Introduction and Background

• Normal tool use control requires activation of widespread cortical areas

• **Left Temporal areas:** tool familiarity (Vingerhoets, 2008)

• **Left Frontal areas:** how to grasp objects (Buxbaum, 2006)

• **Left Posterior Parietal Cortex:** representation of tool characteristics (Vingerhoets, 2008; Tsuda, 2009)

• Together, these areas make up the “neural tool network”
Introduction and Background: Why is this study important?

- 588 new upper extremity amputees in 2007 (http://hcupnet.ahrq.gov)
- Only about 50% use prostheses. (Alley, 2004)
- Lack of prosthesis use has been attributed
 - Lack of education about options and care
 - Lack of training
 - Discomfort
 - Poor cosmesis
 - Cost (Nielson, 1991; Melendez 1988)
- Adapting to one-handed life
Aim

• To determine if there are differences in brain activity during prosthetic and sound side movements
 – Better understand how prostheses are processed
 – Guide prosthesis design and training paradigms
Hypotheses:

1. During **simple gestures with their prostheses**, amputees will show more activation in the posterior parietal cortex and other **neural tool network areas** than during movements of their sound side.

 1. Prostheses are used as tools.
 2. Dissociation between prosthesis and anatomy

2. During **tool use pantomime** with their prostheses, amputees will exhibit **additive activation of the neural tool network** relative to their sound side.
Methods

• **Measurement:**
 • Electroencephalography (EEG)
 • Measure cortical activity
 • Electromyography (EMG)
 • Measure muscle activity to have objective recording of motion onset
 • Anterior and Posterior Deltoid were monitored

• **Tasks:**
 • 2 tasks with their sound limb and their affected limb with the prosthesis donned:
 1. Reach out and rotate forearm (Rotation)
 2. Watched a video of screwdriver use
 3. Pantomime using a screwdriver (Tool Pantomime)
 4. Each movement was performed about every 10 seconds for about 12 minutes
Methods

- Rotation with Sound Side
- Rotation with Prosthetic Side
- Watch a video of screwdriver use
- “Tool Pantomime” with Sound Side
- “Tool Pantomime” with Prosthetic Side

Watch a video of screwdriver use.
Participants

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Level</th>
<th>Side</th>
<th>Time Since Amputation</th>
<th>Time Until 1st Prosthesis</th>
<th>Type of Prosthesis</th>
<th>Dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 M, 1 F</td>
<td>24-68yrs. (Mean 41.7, SD 16.7)</td>
<td>5 TR 1TH 1PH</td>
<td>3L 4R</td>
<td>2-38 yrs (Mean 9.1, SD 12.9)</td>
<td>0-24 mo (Mean 10.29, SD 10.79)</td>
<td>4BP, 3Myo</td>
<td>7 Right</td>
</tr>
</tbody>
</table>
Data Analysis

• Data was marked to reflect movement onset (based on EMG)
 • Each trial started 4500ms before movement onset and ended 1500 ms after movement onset
 • We are interested in movement planning as well as execution
Data Analysis

• Examined event related desynchronization (ERD)
 – Metric used to measure brain activity
 – Measure oscillations of neuronal activity within a frequency
 – Increased ERD within a frequency is correlated with increased brain activity. (Pfurtscheller, 1999)

• Data was filtered in upper beta frequency (18-22 Hz)
Average: All Participants

Sound Side

Prosthetic Side

Simple Rotation

Tool Pantomime
Average: Dominant Arm (Right)

Moving Intact Right Arm

Simple Rotation

Moving Amputated Right Arm

Tool Pantomime
Average: Non Dominant Arm (Left)

Moving Intact Left Arm

Simple Rotation

Moving Amputated Left Arm

Tool Pantomime
Discussion

• Sound side rotation
 • Contralateral motor activation during motor execution
 • Consistent with performing a simple movement.

• Sound side Pantomime
 • Left lateralized parietofrontal activity during planning and execution
 • Consistent with a tool pantomime task.
• **Prosthetic side rotation**
 • Posterior parietal activation
 • Displayed *regardless of dominance* of prosthetic side
 • Movement of the prosthesis involves *tool related* processing.

• **Prosthetic side Pantomime**
 • Right lateralized activation.
 • Displayed *regardless of dominance* of prosthetic side
 • Indicates *visuospatial* processing
Discussion

• Right parietal activation has been measured during tasks requiring visuospatial processing (Chaminade, 2005; Hermsdörfer, 2001)
 – Imitation of a gesture
 – Finger gestures
• Prosthetic arms offer no feedback and require visual monitoring
Discussion

Hypothesis 1: During simple gestures with their prostheses, amputees will show more activation in the posterior parietal cortex than during movements of their sound side indicating that their prostheses are used as tools.

- **Supported**, the amputated side showed more posterior parietal cortex activation during simple movements.
Discussion

Hypothesis 2: During tool use pantomime with their prostheses, amputees will exhibit additive activation of the posterior parietal cortex

- **Refuted**, Amputees access a separate right lateralized visuospatial network during the prosthetic pantomime task

- Raises the question: How should the prosthesis be used?
 - Similar to gait evaluation in lower limb prosthetics
Limitations and Future studies

- Limitations
 - Variability in participants

- Future Studies
 - Limits of visuospatial effect. Do all tasks show this kind of right lateralization?
 - Effects of device type (Body powered vs. externally powered), training duration and type, amputation level, cause of amputation
 - Effects of hand transplantation on motor control
Limitations and Future studies

• Limitations
 – Variability in participants

• Future Studies
 – Limits of visuospatial effect. Do all tasks show this kind of right lateralization?
 – Effects of device type (Body powered vs. externally powered), training duration and type, amputation level, cause of amputation
 – Effects of hand transplantation on motor control
Acknowledgements

• Dr. Chris Mizelle for his patience and guidance through the dark underworld of MATLAB
• Dr. Lewis Wheaton for his mentorship and support
• Rob Kistenberg for his help in subject recruitment
• My classmates for their support
• All of the participants

Thanks!

Questions?
All Participants

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>Reason For Amputation</th>
<th>Time Since Amputation</th>
<th>Time Since First Px</th>
<th>Time Using Current Px</th>
<th>Side</th>
<th>Level</th>
<th>Device Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>F</td>
<td>Trauma</td>
<td>4 years</td>
<td>2 years</td>
<td>2 years</td>
<td>R</td>
<td>TR</td>
<td>Body powered</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>M</td>
<td>Congenital</td>
<td>50 years</td>
<td>50 years</td>
<td>6 years</td>
<td>B</td>
<td>TH</td>
<td>Myo</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>M</td>
<td>Trauma</td>
<td>2 years</td>
<td>1 year</td>
<td>1 year</td>
<td>R</td>
<td>TH</td>
<td>Body powered</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>M</td>
<td>Trauma</td>
<td>4 years</td>
<td>unknown</td>
<td>unknown</td>
<td>L</td>
<td>TH</td>
<td>Body powered</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>M</td>
<td>Trauma</td>
<td>2 years</td>
<td>1 year</td>
<td>1 year</td>
<td>L</td>
<td>PH</td>
<td>Prodigits</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>M</td>
<td>Trauma</td>
<td>7 years</td>
<td>5 years</td>
<td>2 years</td>
<td>R</td>
<td>TR</td>
<td>iLimb</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>M</td>
<td>Trauma</td>
<td>5 years</td>
<td>5 years</td>
<td>2 years</td>
<td>R</td>
<td>TR</td>
<td>Body powered</td>
</tr>
<tr>
<td>8</td>
<td>68</td>
<td>M</td>
<td>Trauma</td>
<td>6 years</td>
<td>6 years</td>
<td>1.5 years</td>
<td>L</td>
<td>TR</td>
<td>Myo</td>
</tr>
<tr>
<td>9</td>
<td>61</td>
<td>M</td>
<td>Trauma</td>
<td>38 years</td>
<td>38 years</td>
<td>5 years</td>
<td>L</td>
<td>TR</td>
<td>Body powered (VC)</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>F</td>
<td>Trauma</td>
<td>3 years</td>
<td>3 years</td>
<td>3 years</td>
<td>R</td>
<td>TH</td>
<td>Myo</td>
</tr>
</tbody>
</table>