The Influence of Negative Heels on Plantar Foot Pressures during Treadmill Walking

Taavy Miller, BS
Geza Kogler PhD, CO

Clinical Biomechanics Laboratory, School of Applied Physiology, Georgia Institute of Technology
Introduction:

• Plantar foot pressures reflect general loading patterns of the foot (Cavanagh et. al. 1992)

• Deviation from a flat surface
 – yields a different pressure pattern
 – therapeutic value
Purpose

• To evaluate the influence of a negative heel on plantar foot pressures during walking in healthy subjects

• Observe the mechanics of how the foot responds with regard to loading
Pressures Measurements

• Factors play a role in plantar pressures (Burnfield et al 2003)
 – velocity
 – footwear

• Pressure is important when evaluating the effect a device (Neumann 2002)
Hypothesis

• A **negative heel** on a shoe’s sole will **decrease** forefoot plantar pressures and **increase** rearfoot (heel) **plantar pressures** during treadmill walking.
Foot Structure & Function

- **3 sections** (Neumann 2002)
 - **Rearfoot** – absorbs and transfers large loads
 - **Midfoot** – transfers loads and helps to lock/unlock the foot
 - **Forefoot** – leverage & balance
- Metatarsal heads (MTH)
The Negative Heel

• Negative heel position: the heel lower than forefoot when entire foot is on the ground
• Negative Heel = a wedge
 – elevates the entire forefoot
The High Heel

• **Increased pressures at the forefoot** - correlates with heel height (Witana et al. 2009, Ramanathan et al. 2008)
 – Logically a negative heel opposite effect?

• **Plausible issues**
 – Foot not designed to fully weight bear on forefoot
 – Western culture - shod society (shoe) that elevates the heel
Why a “Negative Heel”

• An increased popularity that claims “fitness” benefit
 – No evidence of effect on plantar pressures
 – Address the basic mechanics & loading

• One popular brand states a 3.7° negative heel wedge
Methods:

- **Subjects:**
 - 10 asymptomatic healthy volunteer subjects
 - 6 Female, 4 male
 - Each took survey, having no known neurological or orthopedic pathology = healthy
 - Ages: 19 to 27 years (mean = 23)
 - Capable of walking on a treadmill unaided
 - Ankle range of motion fell within normal limits while knee extended according to AAOS standards
Methods

- 3 conditions
 - Control (flat with no wedge)
 - 2° inclined wedge
 - 4° inclined wedge

- Velocity
 - 1.3 m/s
 - Average self selected walking speed adults (Perry, 1992)

- Order of conditions were randomized

- Approved IRB
Plantar Measurement Tools
Materials

• Negative heel wedges:
 – Standard shoe soling material (SoleTech Salem MA)
 – Material properties- hardness (Shore A Durometer of 70 to 75) (i.e., firm)
Analysis Method:

• Peak pressures averaged over range of 8 to 10 steps per subject
 – Only 3 or more steps required to establish reliable peak pressures (Hughes 1991)

• Compared all subjects across conditions and each region of the foot
Data Analysis:

- 9 regions (Cavanagh 1992)
- Repeated measures ANOVA was performed in SPSS
 - Compared differences across all conditions
- Boneferroni Post-hoc
 - Significance p-value ≤ 0.05
Results
Mid-Forefoot (2-3 MTHs)

* $p \leq 0.05$
Results
Lateral Toes

* $p \leq 0.05$
Results
Lateral Forefoot (4-5 MTHs)

* No significance
Discussion

• A **negative heel** on a shoe’s sole will **decrease** forefoot **plantar pressure** and **increase** rearfoot (heel) **plantar pressures** during treadmill walking.

 — Partially supported
 — Peak pressures decreased at the forefoot (MTH 2-3) \(p \leq 0.05 \)
 — **Peak pressures at the heel were not significantly changed compared to the control**
Discussion

- **Peak Pressures on Forefoot decreased** – forefoot loading pattern changed ($p < 0.05$)
- The medial and lateral heel appear to bear a greater portion of the load compared to the control (no forefoot elevation)
- Pressure pattern adopts a **Posterior Shift** in plantar foot loading with regard to peak pressures
Discussion

• When the foot interacts with a negative heel interface, the loads shift from
 - mid forefoot, 2-3 MTH significantly (p < 0.05)
 - Lateral toes significantly (p < 0.05)
 - Lateral forefoot (lesser degree) 4-5 MTH
Discussion

• Polymodus Support – Multiple Load Transmission Strategies
 – The load transmission path of the foot will modulate as it adapts to a surface change through the use of different structural support mechanisms (Kogler et al., 1999)
• Polymodus support
 – The mode that appears to be adopted is one that shifts loads away from the lateral MTH and increases loading to the heel
 – Results from this study support that theory
Discussion

• This study demonstrates the considerable differences in load redistribution on the plantar surface based on the design of the sole of the shoe.

• This observation is also noted by other investigators who have shown that with elevation of the heel (i.e., high heeled shoes), where pressure increased at forefoot (Mandato & Nester, 1999).
Conclusion

• A negative heel results in a decrease in peak pressures at the 2nd - 3rd MTH and lateral toes compared to a planar level surface without a negative heel during treadmill walking.
Clinical Relevance

• Notable decreases in PP at the 2-3 MTH with a negative heel may be of value when targeted pressure redistribution is a clinical objective

• Examples:
 – Relieve foot pain (e.g., metatarsalgia)

• This information may be important to (Janisse & Janisse 2008):
 – orthotic prescription formulation
 – shoe recommendations
Limitations & Future Studies:

• Only evaluated healthy, relatively young adults
 – future research should look at populations of different ages and those with different foot pathologies

• Structural stiffness of the foot was not controlled

• Kinematic and muscle activity measures (EMG) – other metrics to collect
Take Home Message

• The foot responds mechanically when the shoe is altered which can be evaluated quantitatively by plantar pressures
 – A negative heel may aid in reducing overall forefoot pressure
• Hopefully you have another “nugget” of knowledge to add to your clinical toolbox
References:

Acknowledgements

Thanks to:

• Geza Kogler, PhD, CO
• Theresa Snow, PhD
• Maria Pasquelle, MS
• All of my subjects

• Thanks to all of my classmates, friends & family!!
QUESTIONS??
Conditions
• Results are consistent in the literature that load bearing (PP) shift towards the heel when the forefoot is elevated with a rocker bottom type intervention (Praet and Louwerens 2003)
• Static loading on forefoot increases with increasing heel height (Snow and Williams 1994 & Witana et al. 2009)
• A study by Witana et al 2009 found that pressures
 – not exceeding 255 kPa no pain clinically
 – Assuming pain pressure thresholds from the hand