Sponsor Amount: $68,012 (second year funding only)
Cost Sharing: $3,401 (second year funding only)

Type Agreement: Amendment No. 1 to Grant MEA-8022366
Award Period: From 2/1/82 To 7/31/83 (Performance)
Sponsor: National Science Foundation; Washington, D. C.

Title: Pressure Velocity Correlation in Reacting Turbulent Flows

ADMINISTRATIVE DATA

1) Sponsor Technical Contact:
 George K. Lea
 National Science Foundation
 Fluid Mechanics Program
 Mechanical & Engineering Group
 Civil & Mechanical Engineering
 Washington, D. C. 20550
 202-357-9542

2) Sponsor Admin/Contractual Matters:
 Al Rice
 National Science Foundation
 Division of Grants & Contracts
 Section 1 AAEO/ENG Branch
 Washington, D. C. 20550
 202-357-0626

Defense Priority Rating: N/A
Security Classification: N/A

RESTRICTIONS

See Attached NSF Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval – Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with GIT

COMMENTS:
Continuation of E-16-602
Date 8/9/85

Project No. E-16-696

School/AE

Includes Subproject No(s)

Project Director(s) Warren C. Strahle

GTRC / GT

Sponsor National Science Foundation

Title Pressure Velocity Correlation in Reacting Turbulent Flows

Effective Completion Date: 7/31/84 (Performance) 7/31/84 (Reports)

Grant/Contract Closeout Actions Remaining:

☑ None
☐ Final Invoice or Final Fiscal Report
☐ Closing Documents
☑ Patent Questionnaire
☐ Govt. Property Inventory & Related Certificate
☐ Classified Material Certificate
☐ Other

Continues Project No. E-16-602

Continued by Project No.

OPIES TO:

Library
GTRC
Research Communications (2)
Project File
Other A. Jones; M. Heyser

OPR OCA 69.265
PROPOSAL TO THE NATIONAL SCIENCE FOUNDATION
Cover Page

FOR CONSIDERATION BY NSF ORGANIZATIONAL UNIT
(Indicate the most specific unit known, i.e. program, division, etc.)
Fluid Mechanics Program
Mechanical Science & Engineering Group
Civil & Mechanical Engineering

IS THIS PROPOSAL BEING SUBMITTED TO ANOTHER FEDERAL AGENCY? Yes No X
ACRONYM(S):

PROGRAM ANNOUNCEMENT/SOLICITATION NO.: None
CLOSING DATE (IF ANY): None

NAME OF SUBMITTING ORGANIZATION TO WHICH AWARD SHOULD BE MADE (INCLUDE BRANCH/CAMPUS/OTHER COMPONENTS)
Georgia Tech Research Institute
ADDRESS OF ORGANIZATION (INCLUDE ZIP CODE)
Administration Building
Georgia Institute of Technology
Atlanta, GA 30332

TITLE OF PROPOSED PROJECT
Pressure Velocity Correlation in Reacting Turbulent Flows

REQUESTED AMOUNT PROPOSED DURATION DESIRED STARTING DATE
$ 75,858 1 yr. 1 February 1983

PI/PD DEPARTMENT PI/PD ORGANIZATION PI/PD PHONE NO.
School of Aerospace Engineering Georgia Institute of Technology (404) 894-3032

PI/PD NAME SOCIAL SECURITY NO.* DEGREE OF HIGHEST DEGREE ACHIEVED MALE* FEMALE*
Warren C. Strahle 558 48 0808 2/64 X

ADDITIONAL PI/PD

ADDITIONAL PI/PD

ADDITIONAL PI/PD

ADDITIONAL PI/PD

FOR RENEWAL OR CONTINUING AWARD REQUEST, LIST PREVIOUS AWARD NO.: MEA-8022366
IF SUBMITTING ORGANIZATION IS A SMALL BUSINESS CONCERN, CHECK HERE (See CFR Title 13, Part 121 for Definitions)

* Submission of SSN and other personal data is voluntary and will not affect the organization's eligibility for an award. However, they are an integral part of the NSF information system and assist in processing proposals. SSN solicited under NSF Act of 1950, as amended.

CHECK APPROPRIATE BOXES IF THIS PROPOSAL INCLUDES ANY OF THE ITEMS LISTED BELOW:

- Animal Welfare - Human Subjects - National Environmental Policy Act
- Endangered Species - Marine Mammal Protection - Research Involving Recombinant DNA Molecules
- Historical Sites - Pollution Control - Proprietary and Privileged Information

PRINCIPAL INVESTIGATOR/ PROJECT DIRECTOR AUTHORIZED ORGANIZATIONAL REP. OTHER ENDORSEMENT (optional)

NAME NAME
Warren C. Strahle G. D. Hutchison

SIGNATURE SIGNATURE

TITLE TITLE
Regents' Professor Contracting Officer

DATE DATE
10/15/82 10/18/82
School of Aerospace Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

Warren C. Strahle Turbulent Reacting Flows

Pressure Velocity Correlation in Reacting Turbulent Flows

Technical abstract

Continuation funding is proposed for theoretical and experimental investigation of the problem of correlation between velocity fluctuations and pressure gradient in reacting turbulent flows. Work in the past year and three quarters has produced measurements, theory and theoretical-experimental comparisons which show the great importance of the subject correlation in turbulent stress production. Current work is moving toward non-intrusive LDV and laser Rayleigh scattering techniques to remove objections to intrusive diagnostics.
REQUEST

This proposal is to request the third increment of funding for program CME-8022366, "Pressure Velocity Correlation in Reacting Turbulent Flows". Substantial progress has been made in the past year on both the analytical and experimental fronts, and the work has been widely recognized. The dollar amount requested is in line with prior estimates.
PROGRESS REPORT

The program, as of this writing, has been underway for 21 months. Significant progress in theoretical and experimental work is as follows:

1. The first known measurement of the $p'v'$ correlation in a reactive turbulent flow has been accomplished by intrusive measurements on a premixed jet flame. Simultaneous stagnation pressure, temperature, and heat transfer (velocity) measurements were performed in a small measurement volume at various stations along the flame axis.

2. The correlation is large and produces a contribution as mechanical work in the turbulent stress equations which cannot be ignored.

3. After several initial developments for simple flames, a fully three dimensional model for the $v''_{k} \frac{\partial p}{\partial x_{i}}$ correlation has been developed. It has been checked in the constant density limit for some classical flows and been found reasonable. It has been applied to a turbulent jet diffusion flame and found to bring excellent agreement between theory and experiment.

4. The theoretical model predicts an intense source of turbulence in premixed, one-dimensional flames, in accordance with experimental expectations.

The three dimensional model for $v''_{k} \frac{\partial p}{\partial x_{i}}$, which is the correlation which directly appears in turbulence stress equations, represents a marked departure from past practice. This model is currently under peer review, but is bound to stir up some controversy. Its success, however, in the diffusion flame and premixed flame problems attest to its usefulness. Direct measurement of this quantity has proved elusive, however, because a gradient is involved. The derivative taxes intrusive measurement methods. In order to counter this limitation a new experimental rig has been constructed and is currently under checkout. In this rig, LDV will be employed for velocity measurements, and it is hoped that laser Rayleigh scattering may be used for density determination. The pressure measurement, as always, will have to be made intrusively.
The following publications and presentations have resulted from this grant:

Refereed Publications

Other Publications

Verbal presentations have been made of papers 1 and 3 under Refereed Publications above, where # 3 was an invited paper at the 19th Combustion Symposium in Haifa, Israel. Paper 2 under Other Publications will be presented at the 21st Aerospace Sciences Meeting. The senior author received his Ph.D under this program.
Third Year SUMMARY

ORGANIZATION
School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, Ga. 30332

PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR
Dr. Warren C. Strahle

PROPOSAL BUDGET

<table>
<thead>
<tr>
<th>Proposal No.</th>
<th>Duration (Months)</th>
<th>NSF Funded Person Mos</th>
<th>Funds Requested by Proposer</th>
<th>Funds Granted by NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cal. Acad. sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Others (List Individually on Budget Explanation Page) | 3 | $19,259 | 3 |

| Total Senior Personnel (1-5) | 3 | $19,259 |

| Post Doctoral Associates | 6 | 9,000 |

| Other Professionals (Technician, Programmer, etc.) | 1 | 2,923 |

| Graduate Students | 1/3 time | 7,400 |

| Undergraduate Students | 1/12 time | 1,197 |

| Technical Shop | 1/24 time each | 2,900 |

Total Salaries and Wages (A+B)

42,679

FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)

21% of A6, B2, B5, & B6; 9% of B1

Total Salaries, Wages and Fringe Benefits (A+B+C)

49,008

PERMANENT EQUIPMENT (List item and dollar amount for each item exceeding $1,000; Items over $10,000 require certification)

Total Permanent Equipment

750

TRAVEL

1. Domestic (Incl. Canada and U.S. Possessions)

750

2. Foreign

PARTICIPANT SUPPORT COSTS

1. Stipends

2. Travel

3. Subsistence

4. Other

Total Participant Costs

2,923

OTHER DIRECT COSTS

1. Materials and Supplies

Propane, Elec., Supplies, Mag. Tape, Instrument

926

2. Publication Costs/Page Charges

10 pp @ $85/page

850

3. Consultant Services

4. Computer (ADPE) Services

Departmental computers used

0

5. Subcontracts

6. Other

Total Other Direct Costs

1,776

Total Direct Costs (A Through G)

51,534

INDIRECT COSTS (Specify)

47.2% of H

Total Indirect Costs

24,324

Total Direct and Indirect Costs (H + I)

75,858

Residual Funds (If for Further Support of Current Projects GPM 252 and 253)

$75,858

Amount of this Request (J) or (J minus K)

Date

10/15/82

PD Typed Name & Signature

Dr. Warren C. Strahle

Date

10/15/82

ST. REP. Typed Name & Signature

G. D. Hutchison

Date

10/18/82

Indirect Cost Rate Verification

Program
Current and Pending Support

Dr. Warren C. Strahle

<table>
<thead>
<tr>
<th>Supporting Agency</th>
<th>Project Title</th>
<th>Annual Rate</th>
<th>Period Covered</th>
<th>% of Effort</th>
<th>Location where Research Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Current Support</td>
<td>NSF</td>
<td>Pressure Velocity Correlation in Reacting Turbulent Flows</td>
<td>$68,012</td>
<td>2/82-1/83</td>
<td>25% 25%</td>
</tr>
<tr>
<td></td>
<td>AOR</td>
<td>Acoustic Signature from Flames as a Combustion Diagnostic Tool</td>
<td>$49,594</td>
<td>6/82-5/83</td>
<td>15% 15%</td>
</tr>
<tr>
<td></td>
<td>AFOSR</td>
<td>Rocket Research at Georgia Tech</td>
<td>$285,000</td>
<td>10/82-9/83</td>
<td>25% 25%</td>
</tr>
<tr>
<td>B. Proposals Pending</td>
<td>NSF</td>
<td>Renewal Proposal</td>
<td></td>
<td>2/83-1/84</td>
<td>25% 25%</td>
</tr>
</tbody>
</table>
FINAL PROJECT REPORT

PART I—PROJECT IDENTIFICATION INFORMATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Institution and Address</td>
<td>School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332</td>
</tr>
<tr>
<td>2. NSF Program</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>3. NSF Award Number</td>
<td>MEA 8022366</td>
</tr>
<tr>
<td>4. Award Period</td>
<td>From 2/1/81 to 7/31/84</td>
</tr>
<tr>
<td>5. Cumulative Award Amount</td>
<td>$211,114</td>
</tr>
</tbody>
</table>

6. Project Title

Pressure-Velocity Correlation in Reactive Turbulent Flows

PART II—SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE)

A combined experimental-analytical program was conducted to investigate the importance of correlation between velocity and pressure fluctuations in turbulent reactive flows. Models were constructed for the pressure-velocity correlation, valid in flows with high mean strain rate and away from walls, and they showed a clear source of turbulence in premixed flames. When applied to data for an H₂ - air diffusion flame, interesting features were explained which were not previously explainable. Two experimental configurations using propane-air premixed turbulent flames were used. Simultaneous sensing of temperature, static pressure and velocity was required and was accomplished with various combinations of heat flux, pitot and thermocouple probes along with laser velocimetry and Rayleigh molecular scattering. The fundamental conclusion was that correlation between pressure and velocity plays an important role in both premixed and non-premixed reacting turbulent flows. A necessary next step is the measurement of the correlation between velocity and pressure gradient, requiring a two-point measurement.

PART III—TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES)

<table>
<thead>
<tr>
<th>Item (Check appropriate blocks)</th>
<th>NONE</th>
<th>ATTACHED</th>
<th>PREVIOUSLY FURNISHED</th>
<th>TO BE FURNISHED SEPARATELY TO PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Abstracts of Theses</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Publication Citations</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c. Data on Scientific Collaborators</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>d. Information on Inventions</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>e. Technical Description of Project and Results</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Other (specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Principal Investigator/Project Director Name (Typed)

Warren C. Strahle

3. Principal Investigator/Project Director Signature

4. Date
The pressure-velocity correlation has long posed a major obstacle to the modeling of turbulent flows, due to difficulties in measuring fluctuating pressure and velocity simultaneously in a flow-field. Measurements in hot reacting flows encountered in propulsion devices require a new approach.

Static pressure fluctuations and the pressure-velocity correlation are derived from simultaneous measurements of total pressure, heat transfer and temperature. A microphone Pitot probe has been developed and tested for this application. Hot-film and cooled-film anemometer probes have been used to measure heat transfer. Coated platinum-rhodium fine-wire thermocouples have been used to measure temperature.

Voltage signals from the probes, recorded simultaneously, are analyzed using a Fourier Analyzer System. The probe systems are treated as constant-parameter linear systems, and statistical time series analysis is employed to get power- and cross-spectra and the required correlations. Methods for digital frequency-response compensation of the signals are described.

The response of the microphone probe is determined by dynamic calibration, while that of the thermocouples is derived from cross-spectral analysis of the raw data. Cooled-film response is computed from an
analytical model. Velocity spectra are extracted from cooled-film spectra by cross-spectral analysis with a thermocouple signal.

The simpler case of fully developed cold turbulent pipe flow was first studied. Reacting flow studies were then conducted using a premixed turbulent propane-air jet flame. Results obtained in both flows show that the pressure fluctuation is broad-band, and is of the order of the product of density, velocity, and r.m.s. velocity fluctuation. The pressure-velocity correlation is negative and the correlation coefficient is near unity. The correlation is of the same order as other terms in the turbulent kinetic energy equation.

Analysis of Pressure Gradient-Correlation in Reactive Turbulent Flows
Subhash B. S. Chandran
May, 1984

The correlation of pressure and velocity as it occurs in the turbulent stress equations is often neglected in the analysis of turbulent reacting flows. This is mainly because of the difficulties in modelling these correlations and the problems in determining these correlations experimentally. Modelling of the pressure-velocity correlations is made difficult due to the heat release and the ensuing dilatation. These same problems contribute to the difficulties in measuring pressure in reacting flows. An analytical study of planar premixed flames using models for the
pressure correlations and an experimental determination of these correlations in a premixed flame are done here.

The models are developed by expressing pressure in terms of the velocity field. This is done by obtaining a Poisson equation for a variable which depends on pressure and by solving the equation. Using this solution, the pressure-velocity correlation can be expressed in terms of velocity correlations. This model is used in the prediction of the flow field in a planar, turbulent, premixed flame. Both gradient and nongradient models are used in closing the governing equations. In both cases the pressure gradient-velocity correlation is a source of turbulent kinetic energy and for values of the parameter, which controls the size of the model, of order unity the correlation overcomes the dilatation term and increases the turbulent kinetic energy through the flame.

The experimental determination of the pressure-velocity correlation is carried out in an axysymmetric, premixed flame. Pressure is measured using a cooled pitot probe. A microphone sensor in the probe converts the total pressure fluctuations to voltage fluctuations. Since the total pressure fluctuations are dependent on velocity and temperature, they have to be obtained simultaneously with the pressure probe signals. Velocity is measured by a laser Doppler velocimeter and temperature by thermocouples. The pressure probe is calibrated for its response at different temperatures. All the signals are sampled and spectra are obtained by fast Fourier transform techniques. The correlation coefficient is obtained by the inverse transform of these spectra.
The mean and rms velocities demonstrate local maxima in the flame zone. Near the flame, the turbulent flux of energy and momentum show existence of countergradient diffusion. The pressure gradient velocity correlations obtained from measurement are of the same order as the other source terms in the equations for turbulent stress.
Publication Citations

Technical Summary

A combined experimental-analytical program was conducted to investigate the importance of correlation between velocity and pressure fluctuations in turbulent reactive flows. Models were constructed for the pressure-velocity correlation, valid in flows with high mean strain rate and away from walls, and they showed a clear source of turbulence in premixed flames. When applied to data for an H$_2$ - air diffusion flame, interesting features were explained which were not previously explainable. Two experimental configurations using propane-air premixed turbulent flames were used. Simultaneous sensing of temperature, static pressure and velocity was required and was accomplished with various combinations of heat flux, pitot and thermocouple probes along with laser velocimetry and Rayleigh molecular scattering. The fundamental conclusion was that correlation between pressure and velocity plays an important role in both premixed and non-premixed reacting turbulent flows. A necessary next step is the measurement of the correlation between velocity and pressure gradient, requiring a two-point measurement.