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Program Objectives 

The objectives of this program were: 

1. To exploit recent advances in synchrotron radiation imaging 

for detailed characterization of defects in high quality III-V and 

II-VI crystals, 

2. To perform detailed characterization of grain boundaries and 

other crystallographic defects in mercuric iodide, 

3. To correlate specific device performance difficulties with 

observed growth and processing defects and 

4. To use the knowledge gained to improve crystal growth, 

processing and device performance. 

Development of this fundamental knowledge was to assist U.S. 

industrial/technological competiveness in the area of 

microelectronics. 



Program Accomplishments 

The program was originally intended to span two years, but 

priorities at the funding agency dictated that the project be 

funded for only one year. Additional funding for three months for 

a related task and a no-cost extension made the program duration 

4/1/88 - 9/30/89. The impact of these changes dictates that the 

program's accomplishments are somewhat different from those listed 

above. 

Participation in imaging experiments of Dr. Kuriyama's group 

was more limited than originally intended. Dr. Gartstein made 

three trips to NSLS and Dr. Stock made one trip. In part this was 

due to relatively long stretches without beamtime and in part due 

to the unanticipated unavailability of Dr. Stock due to personal 

reasons. Dr. Gartstein's participation was also limited since it 

was decided early on that he could make a more significant 

contribution on the theoretical rather than the experimental side. 

Considerable sample characterization was undertaken, however, 

in preparation for the trips of others to NSLS. The 

characterization work was precise orientation of samples with the 

back-reflection Laue technique. Considerable effort was devoted 

to computer simulation programs for interpreting complex x-ray 

topographic images. A paper based on this work has been submitted 

for publication by Dr. Gartstein and is entitled - Multiple-Beam 

Calculation of the Intensity Distribution for an Imperfect Crystal 

in Laue Geometry." A copy of this manuscript is attached as an 

Appendix. 



Dr. Gartstein also wrote a report for Dr. L. Schwartz which 

covered the options for diffraction imaging of materials using 

synchrotron radiation. Of particular interest was the use of 

microdiffraction from small crystals or from single grains in 

polycrystalline metals and ceramics. 

The one trip to NSLS for Dr. Stock to collaborate with Dr. 

Kuriyama's group was very successful. Use of the monochromatic 

radiation for imaging break-down regions in In-alloyed GaAs 

produced some very interesting results on a crystal from Hewlett-

Packard. Videotape images of diffracted intensity as a function 

of sample orientation revealed the origin of blank regions 

previously seen in white beam topographs of the same crystal: 

these relatively small volumes diffract at a significantly 

different angle. This is persuasive, but not conclusive evidence, 

that these cells (and perhaps others) are bounded by subgrain 

walls. If the angles are small and if the misorientation axes are 

randomly oriented, it is not surprising that only a few cells will 

be out of contrast for a given set of diffraction planes and sample 

orientation. Dr. Stock also made an important contribution to the 

analysis of a GaAs crystal obtained by Dr. Kuriyama's group: he 

correctly identified the presence of twins in one of their samples 

from surface features and from the diffraction contrast. 



Recommendations 

The author was very impressed by the NIST diffraction imaging 

activity headed by Dr. Kuriyama. This group is by far the most 

advanced in monochromatic diffraction imaging in the U.S. and is 

on par with any in the world. The European Community and Japan are 

currently supporting efforts far in excess of those supported in 

the U.S., and it is important to our industrial competiveness to 

maintain parity in this technologically important branch of x-ray 

diffraction. The role of the NIST diffraction imaging group 

certainly fits the mission of NIST. Therefore, the author urges 

that the strongest possible support be given Dr. Kuriyama's group. 

This recommendation holds regardless of whether the Georgia Tech 

group continues to collaborate with Dr. Kuriyama's group. 



MULTIBEAM CALCULATION of the INTENSITY DISTRIBUTION for an 

IMPERFECT CRYSTAL in LAUE GEOMETRY. 

National Institute of Science and Technology, Ceramics Division, Gaithersburg 

MD 20899 

A scattering matrix formalism of the multibeam dynamical X-ray theory is ap-

plied to calculate the intensity distribution for an imperfect crystal in Laue ge-

ometry. The computational procedure for the solution of this problem is presented. 

Simulation performed for a particular imperfect structure suggests that this method 

can be useful for detailed structure modelling. 

1. Introduction. 

Depending on the degree of imperfection of the crystals the kinematical or dy-

namical X-ray theories have to be employed to determine their structure. In the ki-

nematical theory the single scattering process of an X-ray photon is justified as 

long as the coherent regions are very small, such as in the mosaic crystals. On the 

other extreme, - perfect crystals representing a single coherent region where mul-

tiple scattering occurs the dynamical theory based on two-wave approximation pro-

vides an adequate solution to the diffraction problem. Then there is a wide range 

of imperfect materials, espessially the ones used in the semiconductor industry, 

with spatially coherent regions large enough for a multiple scattering to occur. It 

was suggested by Kuriyama [1] that a multibeam dynamical theory should be used to 

treat such materials. This follows from the fact that for an imperfect crystals the 



reflection in reciprocal space will no longer be a point but will have a certain 

shape depending on the intrinsic structure. In this case the Ewald sphere will have 

numerous intersections with the reflection and the corresponding number of the 

beams will be excited in the crystal. 

In electron diffraction where the multiple scattering effects are strong the multi-

beam dynamical theory was given an extensive treatment [2,3]. For the Laue-case elec-

tron diffraction Fujimoto [4] developed scattering matrix formalism. Kuriyama [5] in-

troduced the concept of scattering matrix for the Laue-case in X-ray diffraction. The 

solution of the multibeam dynamical theory requires numerical computations and this 

will be discussed in section 2. 

In many instances the derivation of the structure by using Fourier transform tech-

niques can not be done as the phase of the scattering amplitudes is not easily obtain-

able. Another method would be to compare the measured intensity patterns with the si-

mulated ones based on various model structures. The commonly used simulation procedure 

is the calculation of the rocking curves by solving Takagi-Taupin equations in two 

beam approximation [6,7,8]. But as it was mentioned above the correct dynamical theory 

has to consider multibeam interaction of the X-ray photon inside the crystal. An 

example of such simulation will be given in section 3. 

The reported in the literature calculations of the multibeam X-rays diffraction 

were mostly limited to the cases of simultaneous fundamental reflections in perfect 

crystal. The purpose of this paper is to demonstrate the applicability of the multi-

beam dynamical theory for the treatment of imperfect crystals. 

3. Theory and computational procedure. 

Here we shall consider the beam incident on the plane-parallel crystal to be a mo-

nochromatic plane wave linearly polarized perpendicular to the scattering plane. Such 

condition can be achieved with a collimated synchrotron radiation by using an asymmetric 



diffraction from a monochromator crystal. We shall assume that a total of N waves are 

excited inside the crystal corresponding to the number of the reciprocal lattice points 

lying on the Ewald sphere. This scattering geometry is shown in Fig. 1. The '0'-point 

designates the ray in the direction of the incident beam and the 'H'-point is in the 

direction of the ray scattered at 2E38  angle. MO  is the number of rays which are due to 

the intersection of the 0-reflection with the Ewald sphere and MN is the corresponding 

number due to the H-reflection. The multiple scattering of the X-ray photon in the cry-

stal will produce energy flow in different directions inside the crystal. Another MOH 

points lying on the Ewald sphere were chosen between '0' and 'H'-points to account for 

this effect 

The incident ray '0' in the crystal defines the origin of the reciprocal space and the 

wavevectors of the excited waves are related by: 

(1 ) 

where i is the index of the rays in the crystal corresponding to the reciprocal lattice 

vector Hi as it is shown in the Fig. 1. We shall assume that with a detector of an ideal 

resolution we can measure the intensity of any ray i deviating from '0' or 'H'-directions 

by an angle 	The angular settings of the detector and crystal define the reciprocal 

lattice vectors Hi. 

The total wavefield in the crystal can be expressed as a superposition of the excited 

plane waves. This wavefield is described by the fundamental set of equations in the dy-

namical theory [9] as: 

= 0 ( 2 ) 

where k-297XL A is the wavelength of X-rays in the vacuum, K i is the wavevector asso- 

ciated with the HI reciprocal lattice point, J E is the electric field amplitude and is 



associated with the same reciprocal lattice point and 	is the Fourier component of 

the polarizability per init volume for the reflection Hi -j . For N excited waves there 

are N equations for the amplitudes EJ . This can be written in a matrix form as: 

WE=0 	 (3). 

The simultaneous solution for the amplitudes EJ will be nontrivial only if the determinant 

Iwko 	 (4) 

The relation (4) describes the dispersion surface which is the origin of the wavevectors 

in the reciprocal space as a function of the angular orientation of the crystal. Due to 

the boundary conditions of the continuity of the tangential components of the wavevectors 

at the entrance surface the relations between K i and k are: 

170-17-kgri 	 and 	171 =17+171 -kqr1 
	

(5) 

where n is the unit vector normal to the crystal surface and inwardly directed, q deter- 
gima• 	 %WM, 

mines the distance between the origin points of the vectors k and Ko. Introduction of 

the first order approximation that 1K01-lk I allows to linearize the set of equations (3) 

by replacing: 

Ki2  h2  
*2 = )c.10-29.6• +.21-1)PAesm2es 

where do z(8-61k,v8  is the wavevector of the incident wave exactly fullfilling the Bragg 

condition, 6( -(1784-1-1). -ii/k. The third term in the right hand side of Eq.(6) relates the 

position of the tie point of the excited wave with wavevector Ki on the dispersion sur-

face to the angular deviation 40 of the incident beam k0 from the Bragg angle. Parame-

ter p can be even or odd depending on the following conditions. if 11.76470 <1-kolthen p 

(6) 



is odd when AO >0; if ITTHi l >li.01 then p is odd when 119(0. The vector equation (2) can 
.11■■ 

be written as a scalar equation because the field amplitudes Ej are normal to the excited 

wavevectors lying in the scattering plane. It is convinient to redefine the field ampli-

tudes as: 

Ai if 	 (7). 

After substitution of the Eqs.(6),(7) into Eq.(3) it can be rewritten as: 

MA-qA 	 (8) 

where the elements of the matrix M are: 

(y 
0 2 ,17-7 7j  (9) 

is the Kronecker delta function and 4.1 -2. (-1) P4e sin2es. The relation (8) repre-

sents an eigenvalue-eigenvector problem. M is a general complex matrix for a non-sym-

metric structure with a non-neglegible absorbtion. Thus the eigenvalues and the eigen-

vectors are also comlex. The eigenvalues q determine the modes of the wavefields in 

crystal. The real part (qh)t  is related to the phase and the imaginary part is rela- 

ted to the absorption of fl-th wavefield. We shall note here that in the pro- 

cess of linearization half of the modes are removed from the original problem. This is 

justified because they would correspond to waves of negligible intensity. But this is 

not the case for a very asymmetrical scattering geometry when the incident or diffrac- 

ted beam makes an angle less than 1 0-2
0 
 with the corresponding surface [9]. The norma- 

n 
lized eigenvector A n  has components Akii  ,-ANA 	The amplitude of the Hi -wave 

belonging to the n-th wavefield is then uniii 	,where Ph  is some proportionality 



coefficient Using relation (5) the wavefunction for the Hi-reflection can be written 

as: 

Urtil exp(icint)(exp(iITHI) ) 	 (10) 

where t is the thickness of the crystal and k Ili is the wavevector of the Hi -reflection 

in the vacuum. Fujimoto [4] showed how to determine the coefficient yh  by using the 

boundary condition at the entrance surface for the Laue-case and the orthonormalization 

property of the eigenvectors. Using his result the wavefunction for the Hi-reflection on 

the exit surface given in Eq.(10) can be written as: 

-Fg—)[ex (1* ' x 	71] tti ari 	PI  JO e  Pi  fij 

The scattering matrix is given by: 

S-exp(itM) 	 (12) 

The subscript j0 in Eq.(12) corresponds to the element of the scattering matrix in 

the j-th row and O-th column where 0 is the number identifying the incident ray in 

the crystal. As follows from Eq.(11) this matrix element represents the amplitude of 

the Hi-reflection wave in the crystal. Kuriyama [5] suggested that the calculation 

of the scattering matrix S can be done by performing spectral decomposition of the 

matrix M, as 

M-DMD -I 
	

(13) 
r- 

where M is the diagonalized matrix whose elements M are the eigenvalues, D is the or-

thogonal transformation matrix whose elements are the eigenvectors and D -1  is the inverse 



matrix. The eigenvalue-eigenvector decomposition of a general complex matrix can be 

performed by a OR-decomposition procedure [10]. Use of the relation (14) results in an 

amplitude for the Hi-reflection given as: 

At — 	)6, 
EH =FliD

HI)  Dn 

 0 exp(itClhn )]lo 

dli nzi  

(14) 

where E0  is the amplitude of the incident beam in the vacuum. The reflectivity of the 

difracted beam is calculated as: 

IEH1 1 . 4 
TU.  do 

3. Discussion and conclusions. 

To perform the calculation according to the procedure outlined above one has to relate 

the polarizability term 7i_3 in Eq.(9) to the structure of the crystal. It is not simple 

to describe the structure or polarizability for a general case of an imperfect crystal. 

The treatment of this problem has been discussed by Kuriyama [11]. Here we shall consider 

GaAs crystal which is assumed to have a domain structure with the antiphase domain boun-

daries (APB) perpendicular to <100> directions. Such structure was discussed by Holt [12] 

and experimentally observed by Cho et al [13]. When APB is on {100} planes all the bonds 

across the interface can be only of one type, i.e. Ga-Ga or As-As. The shift vector at 

the boundary is 111-94.<111> where a is the parameter of the unit cell. We shall conceive 

the structure to be made up of two subcells or domains with the size Dia and (14.11-D1)a 

along the <100> direction. Here MLa is the period of modulation which describes the 

size of the supercell. The total structure factor is the product of the structure fac-

tor of the unit cell with the Laue modulation function. For one dimensional case the 

Laue function for an H(hkl)-reflection is given as 

R
h 

 (15) 



2-{exP[icir(D;-1)hrSMIT*1.4)+ exP[191(M• • -D- -1)h] Sih6r(Mi.17)1141  

- 	
Skerh) 	1,   ex p[2ji,i. H. 7-71Si] 	(16) 

For a non-symmetric absorbing crystal the comlex structure factor FH  is not equal to 5.7- 
But any of the atomic species can be chosen as the origin of the unit cell because 

only relative phase information is important. For a reflection with h+k+l =4n in 

zinc-blende structure the phase factor in expression (16) is the same for any shift 

vector R The simulation was performed for a symmetric (022) reflection for a cry- 

stal with a surface normal [100], thickness t=0.05cm and with ML-2 -10
3

a and Di=1.103 a. 

The total number of 198 waves were chosen for this calculation. Around each of the 

'0' and 'H'-beams 69 positions were chosen for the detector with an angular step of 

30 arcsec. Another 60 positions were taken between '0' and 'H" beams. The intensity 

distribution as a function of the sample offset angle iA8 and detector offset angle 

,.p is shown in Fig.2a and Fig.3a around 'H' and '0' beams, respectively. In the 

assumed model there is no lattice mismatch across APB or the strain associated with 

it So only satellites from the modulated structure can be expected. The intensity 

modulation can be seen in Fig.2a. The rocking curves for the 'H'- beam calculated 

with an angular step of 0.5 arcsec. and 5 arcsec. are shown in Fig.2b and Fig.2c, 

respectively. These rocking curves look different The fine structure of the 

peak with the first order satellites observed in Fig.2b are not present in 

Fig.2c where the main peak is broadened and higher order satellites appear in 

the pattern. The simulation can be done with any desired resolution but the 

comparison with the experimental data will require convolution with the in-

strumental resolution function. The intensity modulation is even more pro-

nounced around '0' beam as can be seen in Fig.3a and fig.3b. This can explain 

why the section topographs obtained from the directly scattered '0' beam show 

better contrast then the ones obtained in 'H' beam diffraction. 



In this example the polarizability was expressed in terms of Fourier series. The 

same approach can be extended to more complicated structures. De Fountain [14] showed 

how to express the modulation functions for the scattering power and for the positional 

parameters by a Fourier series. He also considered a quasi periodic modulated structure. 

Thus the described approach for multibeam dynamical calculations can be extended to va-

rious imperfect structures. These simulations can be performed in a reasonable amount of 

time with modern computers. The intensity distribution patterns around the directly scat-

tered 'O'-beam and Bragg diffracted 'H'-beam are produced simultaneously and they can be 

compared for example with the intensity distributions mapped in a high resolution triple-

crystal X-ray difractometer [15]. 
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Figure Captions. 

1. The multibeam scattering geometry employed in the model. 

2a. The intensity distribution around 'H'-beam as a function 

of sample and detector offset angles for the symmetric (022) 

Laue reflection. The intensity scale is in arbitrary units 

and the angles are in arcseconds. 

2b. The rocking curve for the "H'-reflection calculated with an 

angular step of 0.5 arcsec. 

2c. The rocking curve for the "H'-reflection calculated with an 

angular step of 5 arcsec. 

3a. The intensity distribution around 'O'-beam as a function 

of sample and detector offset angles for the symmetric (022) 

Laue reflection. The,intensity scale is in arbitrary units 

and the angles are in arcseconds. 

3b. The rocking curve for the "a-reflection calculated with an 

angular step of 5 arcsec. 
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