Development of a Database for VOC Emission Prediction in Kraft Mills Using Headspace Gas Chromatography

J.Y. Zhu, X.-S. Chai, and B. Dhasmana

October 1997

Submitted to
1997 AIChE Annual Meeting
Los Angeles, California
November 16–21, 1997
The Institute of Paper Science and Technology is a unique organization whose charitable, educational, and scientific purpose evolves from the singular relationship between the Institute and the pulp and paper industry which has existed since 1929. The purpose of the Institute is fulfilled through three missions, which are:

- to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of excellence recognized by the national academic community and which enables them to perform to their maximum potential in a society with a technological base; and

- to sustain an international position of leadership in dynamic scientific research which is participated in by both students and faculty and which is focused on areas of significance to the pulp and paper industry; and

- to contribute to the economic and technical well-being of the nation through innovative educational, informational, and technical services.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Development of a Database for VOC Emission Prediction in Kraft Mills Using Headspace Gas Chromatography

Junyong Zhu, Xin-Sheng Chai, and Bindu Dhasmana

Institute of Paper Science and Technology
500 10th Street, N.W.
Atlanta, GA 30318, USA
(404) 894-5310 (404) 894-4778 (Fax)

ABSTRACT

VOC emission in kraft mills has been an environmental concern. The VOC content and the vapor-liquid phase equilibrium are the two factors that dictate VOC emission. The present study reports the development of analytical methods and a protocol to develop a database that describes the contents and the VLE behaviors of VOC’s in various kraft mill streams using commercial headspace gas chromatography. The methods are indirect, rapid, automated, and do not require modification of the sample matrix. Validation experiments with VOC-water mixtures indicate that the methods are accurate. Preliminary results of various mill streams are also obtained using the developed protocol.
INTRODUCTION

The new toxic and permit provisions of the 1990 clean air amendments require information on emissions of volatile organic compounds (VOC's) from pulp and paper mill sources. Many VOC's are now on the list of hazardous air pollutants. Several studies on VOC emissions at kraft mills have been conducted. Venketesh et al. [1] reported a millwide VOC prediction using a process simulation technique. The National Council of the Paper Industry for Air and Stream Improvement (NCASI) conducted a series of studies on VOC emissions at kraft mills. NCASI's studies [2] indicated that the VOC content and the thermodynamic vapor-liquid phase equilibrium behavior of VOC's are two of the key factors that affect the release of VOC's during mill operations. Therefore, a database that quantifies the contents and the VLE behaviors of VOC's in kraft mill streams is very important for understanding VOC emissions and emission predictions using computer simulation models [3]. Unfortunately, limited experimental techniques are available for the determination of the contents and VLE behaviors of VOC's in kraft mill streams due to their corrosive nature.

Recently, Gunshefki and Cloutier [4] developed a method for measuring methanol contents in black liquor. However, the method involves a series of sample pretreatment. It is, therefore, very complicated, time-consuming, and less accurate. There are many methods available to study vapor-liquid phase equilibrium [5-7]; however, most available methods are complicated to implement and involve calibration. Much research on vapor-liquid phase equilibrium has been conducted using headspace (HS) GC systems [8-12] that provide direct vapor phase analysis. However, traditional HSGC methods require the direct analysis of solute content in the sample stream, not suitable for mill stream VLE studies. Furthermore, most of the existing indirect HSGC methods have either practical difficulties to implement or complicated calibration procedures.

In this study, we report on the development of indirect methods for rapid, automated, and precise determination of the contents and the vapor-liquid phase equilibrium partitioning of VOC's in kraft mill streams using a commercial headspace gas
chromatography system. The detail protocols for these measurements and the applications for the mill samples are also presented.

METHODOLOGY

Quantification of VOC Contents [13].

The method is schematically described in Fig. 1. We use two sample vials filled with the same volume of sample solution. We then add a small amount of concentrated solution of known concentration into one of the vials. After a phase equilibrium is established within each vial, we conduct headspace GC analysis for each sample vial. Because of a very low concentration, the solute VLE partitioning coefficients in these two vials agree with Henry’s Law, i.e.,

\[H_e = \frac{C_g}{C_1} = \frac{C_g^i}{C_2} \]

(1)

where \(C_i \) and \(C_g^i \) are the solute concentrations in the liquid and vapor phases at equilibrium in vial \(i \), respectively.

The amount of solutes in the vapor phase at equilibrium state in these two vials can be described as:

\[C_g^i V_i^0 = C_0 V_i^0 - C_1 V_i^0 , \]

(2)

and

\[C_g^2 V_g^0 = C_0 V_i^0 + C_s V_s - C_2 V_i^0 , \]

(3)

where \(C_0 \) and \(C_s \) are the concentrations of the solute in the sample and in the standard solution, respectively. The \(V_i^0 \), \(V_s \), and \(V_g^0 \) are the volumes of the sample, standard solution, and headspace, respectively.
Fig. 1. Schematic diagram describing the present indirect HSGC method for VOC content measurements.

We can derive the initial solute concentration in the sample solution from Eqns. (2) and (3),

\[
C_0 = \frac{C_y V_s}{(C_g^2 / C_g^1 - 1)V_l^0},
\]

where we assume that the total volume of the solution in the vials remains the same because of \(V_l^0 \gg V_s\).

The ratio of the solute concentration in the vapor, \(C_g^2 / C_g^1\), is proportional to the ratio of the peak areas, \(A_2\) and \(A_1\), measured from GC analysis. Thus, we can rewrite Eqn. (4) as,

\[
C_0 = \frac{C_y V_s}{(A_2 / A_1 - 1)V_l^0}.
\]

Determination of VOC Henry's Constant [14].

The indirect HSGC method for measuring VLE Henry's constant is schematically shown in Fig. 2. We used two vials filled with the same sample solution but significant
volume difference. We then conducted headspace GC analysis for each vial when the phase equilibrium was established within the vials. Because the two vials contain the same dilute solution, the solute VLE partitioning coefficients in these two vials agree with Henry’s Law as shown in Eqn. (1). We can express the total moles, M, of the solute in these two vials as follows,

$$M_1 = C_i^0V_i^1 = C_i^1V_i^1 + C_g^1V_g = C_g^1\left[V_i^1 / H_c\right] + V_g^1, \quad (6)$$

and

$$M_2 = C_i^0V_i^2 = C_i^2V_i^2 + C_g^2V_g = C_g^2\left[V_i^2 / H_c\right] + V_g^2, \quad (7)$$

where C_g is the concentration of solute in the vapor phase, and V_g is the vapor volume in the vial.

![Diagram](image)

Fig. 2. Schematic diagram describing the present indirect HSGC method for VLE partitioning Henry’s constant measurements.

We can derive the dimensionless Henry’s constant H_c from Eqns. (6) and (7),

$$H_c = \frac{V_g^1\left[1 - C_i^1 / C_g\right]}{C_g^1 / C_g^2\left(V_i - V_i^1\right) - V_i^1 / V_i^2\left(V_i - V_i^2\right)} = \frac{V_g^1\left[1 - A_1 / A_2\right]}{A_1 / A_2\left(V_i - V_i^1\right) - V_i^1 / V_i^2\left(V_i - V_i^2\right)} \quad (8)$$
MEASUREMENT PROTOCOLS

I. Liquid VOC Content Measurement.

This measurement protocol is used to simultaneously determine liquid contents of methanol, MEK, and acetone in sample solution.

Apparatus

1. A gas chromatograph, HP 6890 (Hewlett-Packard) equipped with a single or dual column instrument with flame ionization detector (FID). A HP-5 capillary column (Hewlett-Packard) operated at 30°C with an injection port temperature of 250°C and a detector temperature of 250°C is used for species separation. GC conditions: helium carrier gas flow rate: 3.8 ml/min, and hydrogen gas and compress air flow rates for the FID: 35 and 400 ml/min, respectively.

2. An automatic Headspace Sampler, HP-7694 (Hewlett-Packard). Headspace conditions: thermo equilibration time 25 min with gentle shaking, injection time: 1.0 min, vial pressurization time: 0.3-0.5 min, and sample loop fill time: 0.2 min. In headspace sampling, the solid, liquid, or gaseous sample is placed in a vial and sealed by a septum with a crimper. The sampling operation is controlled by a personal computer and automated.

Reagents

Standard mix solvent of methanol, acetone, and MEK. Preparation: Add about 9 ml of methanol into a 10-ml dried volumetric flask. Pipette 0.1 ml of MEK and 0.1 ml of Acetone into the volumetric flask, respectively, then fill methanol to the mark of 10 ml of the flask. The volume of the headspace in the volumetric flask should be as small as possible to avoid the vaporization of the solutes from the solvent. The concentrations of methanol, acetone, and MEK are 24.5, 0.135, and 0.111 mole/L, respectively.

Procedure

1. Pipette 10 ml of sample solution into three 20-ml vials, then close the vials.
2. Pipette 10 ml of sample solution into another three 20-ml vials. Add 10 μl of standard solvent by microsyringe into each vial, then close the vial.
3. Put the vials into the headspace Sampler for equilibration and then measure by the GC.
4. Triplicate run the samples in step 1, determine the peak areas at retention times of 2.24, 2.50, and 3.23 min for methanol, acetone, and MEK, respectively. Then calculate the average peak areas $\overline{A}_{1,\text{MeOH}}$, $\overline{A}_{1,\text{acetone}}$, and $\overline{A}_{1,\text{MEK}}$.

5. Triplicate run the samples in step 2, determine the peak areas at retention times of 2.24, 2.50, and 3.23 min for methanol, acetone, and MEK, respectively. Then calculate the average peak areas $\overline{A}_{2,\text{MeOH}}$, $\overline{A}_{2,\text{acetone}}$ and $\overline{A}_{2,\text{MEK}}$.

Calculation

Use the following equation to calculate the concentrations:

$$C_{0,i} = \frac{C_{i,j}V_s}{(\overline{A}_{2,i} / \overline{A}_{1,i} - 1)V_1^0}$$

where $C_{0,i}$, $C_{i,j}$ and V_1^0, V_s are i component concentrations and the volumes of the original testing sample and the standard solution in mole/L, respectively; $\overline{A}_{1,i}$ and $\overline{A}_{2,i}$ are the averaged GC peak areas of component i in the vapor phase measured before and after standard addition, respectively.

II. VLE Measurement.

This protocol is used to determine Henry’s constant of VOC’s in the sample solution.

Apparatus

The system and operating conditions of gas chromatography are the same as that mentioned in Protocol I. The operating conditions of the headspace Sampler are also the same as above, except the time of equilibration will be determined by the sample volume used in the experiment. The suggested sample volumes (a and b) and equilibrium time in the headspace Sampler are listed in Table I.

Procedure

1. Pipette a ml of sample solution into three 20-ml vials, then close the vials.
2. Pipette b ml of sample solution into another three 20-ml vials, then close the vials.
3. Put the vials into the Headspace Sampler for equilibration and then measure by the GC.
4. Triplicate run the samples in step 1, determine the peak area at the retention time of the solute as indicated in Protocol I. Then calculate the average peak areas $\bar{A}_{1,i}$.

5. Triplicate run the samples in step 2, determine the peak areas at the retention time of the solute. Then calculate the average peak areas $\bar{A}_{2,i}$.

Table I. Suggested sample volumes and equilibration time in headspace sampler.

<table>
<thead>
<tr>
<th>Henry's constant</th>
<th>V_1, ml</th>
<th>V_2, ml</th>
<th>Equilibration time*, min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
<td>5</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
<td>0.1</td>
<td>15</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

*For the samples with humic matters or particles, HSGC analysis should be conducted immediately after adding sample solution into the vial.

Calculation

Use the following equation to calculate results:

$$H_c = \frac{V_1 \left(1 - \frac{\bar{A}_{1,i}}{\bar{A}_{2,i}}\right)}{\frac{\bar{A}_{1,i}}{\bar{A}_{2,i}} \left(V_1 - V_1\right) - V_1 / V_2 \left(V_1 - V_2\right)}$$

where H_c is the Henry's law constant (dimensionless). $\bar{A}_{1,i}$, $\bar{A}_{2,i}$ and V_1, V_2 are the average GC peak area of the i component measured and the sample volume (in ml) in vial 1 and 2, respectively.

APPLICATIONS

Measurement of Liquid VOC Contents in Mill Streams.

Methanol, acetone, and MEK are the major VOC species with lower boiling points in most mill streams. Traditional methods to measure these VOC's use organic solvents to extract them from the aqueous phase. These methods are time-consuming and less accurate due to a low concentration of these species in mill streams. With the present method (Protocol I), we can measure methanol, acetone, and MEK in various mill streams.
simultaneously. The measurements are rapid, automated, and accurate as demonstrated in a previous study [13]. Some results of VOC contents in various streams of a kraft mill are shown in Table II.

Measurement of Methanol Henry’s Constant in Black Liquors.

It is known that 90% of VOC’s in mill streams is methanol. It is therefore important to understand methanol’s thermodynamic behavior in these mill streams. The measurement of methanol Henry’s constant in mill streams is also very difficult because it is very small. We can use the present method (Protocols II) to measure the Henry’s constant of methanol in mill streams with a reasonable accuracy.

Both softwood and hardwood black liquor samples from a mill were used in this study. Fig. 3 shows the effect of temperature on the methanol Henry’s constant in black liquors along with the data obtained in the methanol-water mixture. The results indicate that the logarithm of Henry’s constant in the two black liquor samples decreases linearly with the inverse of temperature. The variation in the measured Henry’s constant among these three types of samples is very significant. We believe that the significant variations in the composition, ionic strength, solid contents, etc., among these samples, may cause the large variation in the Henry’s constant. We will conduct a detailed study to understand the effect of various parameters on the Henry’s constant in the future.

CONCLUSIONS

The present study reported on the methods and protocols to measure the contents and the vapor-liquid phase equilibrium partitioning coefficients of VOC’s in mill streams using a commercial headspace gas chromatography system. Both methods are rapid, automated, accurate, and do not require calibration and modification of the sample matrix and can also be easily applied to various industrial and environmental streams. Preliminary measurements of VOC content and Henry’s constant of methanol in kraft mill streams using the methods developed were conducted.
Table II. VOC contents measured in various streams from a pulp mill.

<table>
<thead>
<tr>
<th>Sample Location Description</th>
<th>Label</th>
<th>MeOH (ppm)</th>
<th>Acetone (ppb)</th>
<th>MEK (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> stage showers, 2<sup>nd</sup> stage filtrate</td>
<td>No. 1 Washer</td>
<td>209.5</td>
<td>494</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>No. 2 Washer</td>
<td>275.0</td>
<td>484</td>
<td>394</td>
</tr>
<tr>
<td>2<sup>nd</sup> stage showers, 1<sup>st</sup> stage filtrate</td>
<td>No. 1 Washer</td>
<td>149.8</td>
<td>980</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>No. 2 Washer</td>
<td>312.7</td>
<td>852</td>
<td>511</td>
</tr>
<tr>
<td>3<sup>rd</sup> stage showers</td>
<td>No. 1 Washer</td>
<td>122.6</td>
<td>683</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>No. 2 Washer</td>
<td>203.8</td>
<td>715</td>
<td>526</td>
</tr>
<tr>
<td>side combined condensate (blow recovery)</td>
<td>No. 1 Washer</td>
<td>178.6</td>
<td>1327</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>No. 2 Washer</td>
<td>382.6</td>
<td>1113</td>
<td>774</td>
</tr>
<tr>
<td>1<sup>st</sup> stage filtrate</td>
<td>No. 2 Washer</td>
<td>349.0</td>
<td>520</td>
<td>270</td>
</tr>
<tr>
<td>3<sup>rd</sup> stage filtrate</td>
<td>No. 1 Washer</td>
<td>332.2</td>
<td>930</td>
<td>564</td>
</tr>
<tr>
<td>combined weak black liquor to recovery</td>
<td>No. 2 (M24-0542)</td>
<td>93.1</td>
<td>670</td>
<td>315</td>
</tr>
<tr>
<td>evaporator seal tank condensate</td>
<td>No. 2 (24-0529)</td>
<td>673.1</td>
<td>4138</td>
<td>425</td>
</tr>
<tr>
<td>evaporator clean condensate</td>
<td>No. 3</td>
<td>2.0</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>No. 3 (24-0509)</td>
<td>1.7</td>
<td>-</td>
<td>231</td>
</tr>
<tr>
<td>evaporator</td>
<td>No. 2</td>
<td>27.1</td>
<td>-</td>
<td>218</td>
</tr>
<tr>
<td>evaporator seal tank</td>
<td>No. 1 (M24-0027)</td>
<td>3954.4</td>
<td>11</td>
<td>2706</td>
</tr>
<tr>
<td>combined condensate of hotwell</td>
<td>No. 3</td>
<td>659.1</td>
<td>16067</td>
<td>7826</td>
</tr>
<tr>
<td>paper-machine condensate</td>
<td>No. 1</td>
<td>3.3</td>
<td>-</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>No. 2 & No. 3</td>
<td>3.5</td>
<td>-</td>
<td>124</td>
</tr>
<tr>
<td>top headbox</td>
<td>No. 1</td>
<td>57.4</td>
<td>323</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>55.3</td>
<td>260</td>
<td>129</td>
</tr>
<tr>
<td>base headbox</td>
<td>No. 1</td>
<td>88.8</td>
<td>433</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>64.9</td>
<td>315</td>
<td>158</td>
</tr>
<tr>
<td>headbox</td>
<td>No. 3</td>
<td>46.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wire pit</td>
<td>No. 1</td>
<td>86.5</td>
<td>375</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>91.8</td>
<td>508</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>No. 3</td>
<td>90.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>water reclaim sump</td>
<td>No. 1</td>
<td>13.0</td>
<td>192</td>
<td>62</td>
</tr>
<tr>
<td>vacuum dump</td>
<td>No. 2</td>
<td>20.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>side hill screen drain off</td>
<td>No. 3</td>
<td>65.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 3. Measured methanol Henry’s constant in two black liquor samples.

ACKNOWLEDGEMENT

This research was supported by the United States Department of Energy (Grant No. DE-FC07-96ID13438) and the State of Georgia (Grant No. PP97-EN5).
REFERENCES

