VRLA Battery Separator: Polymer Production

Group 10
Ryan Amos
Lindsey Bergman
Gina Bunster
Travis Giebler
Ben Pyle

April 28, 2010
Current Technology: AGM separator

Project Objective: Replace AGM with polymer separator
- Forecasted 2012 Production Volume: 1.75 MM m² separator mat
- Chosen Polymer System:
 0.6 wt % maleated polypropylene (PP-MAH)

Two Processes Considered Simultaneously
- PP Plant (20,000 kg/hr)
- MAH Grafting of PP (34 kg/hr)

Recommendation:
Buy PP-MAH pellets from an outside supplier
SPHERIPOL POLYPROPYLENE PRODUCTION

- Specific PP production: 400 kg/hr-m³
- Prepolymerization (R-100)
 - 20 °C, 4 MPa, 0.5 m³
- Bulk polymerization (R-101)
 - 70 °C, 4 MPa, 49.5 m³
- L/D_i = 160
- Recycle ratio = 30
 - Re = 6.2×10⁶
- Low-alloy steel

\[V = 0.25\pi D_i^2 L \]
\[Q = \dot{m}\Delta H_{rxn} = UA\Delta T_m \]
\[A = 0.80\pi L(D_i + 2t_s) \]
\[U = 1.745 \text{ kJ} / m^2 \cdot K \cdot s \]
POLYPROPYLENE PURIFICATION

- Heater (E-100)
- Flash (V-100)
- Adjunct Heater (E-101)
- Cooler (E-102)
- Pneumatic Conveyor (LPS)
- Direct-Heat Rotary Dryer (E-7)

For $3<L/D<5$:

\[
(u_V)_{\text{max}} = K_V \sqrt{\frac{\rho_l - \rho_v}{\rho_v}}
\]

\[
A_{\text{cross, min}} = \frac{Q_v}{(u_V)_{\text{max}}}
\]

Maleation of Polypropylene

- Three Segments
 - Melting/Preheating
 - First DBHA injection (0.001 M)
 - Second DBHA injection (0.001 M)

\[
\frac{-d[M]}{dt} = \frac{k_g}{1 + f} \sqrt{\frac{2k_d (1 + k_d t) e^{-k_d t} [I_0]}{k_t} \frac{[M]_0}{[M]}}
\]

- Each segment 0.6 m in length
- L/D = 42
- Extruder operates at 180 °C
- Overall MAH conversion: 13%
- 10 kW heating provided by electricity
SEPARATIONS

- Devolatizer
 - Modeled products as tert-Butanol and MAH only
 - Operate at 190 °C

- Distillation Case
 - Vacuum pump (P-200)
 - Cooler (E-200) – condense vapor
 - Pump (P-201) – raise pressure to 101 kPa
 - Column (T-200) – separate tert-Butanol and MAH
 - MAH is recycled to extruder

- Alternative Separation Schemes
 - Flash separation
 - Strictly waste disposal
SAFETY & ENVIRONMENTAL CONSIDERATIONS

Process Hazards
- Exothermic polymerization
- High pressures (BLEVE & VCE)
- High temperatures

<table>
<thead>
<tr>
<th>Material</th>
<th>Health</th>
<th>Flammability</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MAH</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DBHA</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>tert-Butanol</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
ECONOMIC ANALYSIS OF SPHERIPOL PROCESS

- **PP Production**
 - C_{TCI}: 41 MM
 - Working Capital: 73%
 - Annual Sales: 276 MM

- **Annual Production Cost:** 245 MM
 - 3.5 operators per shift
 - Feedstocks: 83%

- **Annual Royalties:** 8.3 MM
- **IRR:** 93%
- **Payback Period:** ~0.5 years

Capital Costs
- Loop Reactors
- Flash Drum
- Working Capital
- Royalties
- Other

Annual Costs
- Feedstocks
- Utilities
- Operations
- Annual Royalties
- Other
Economic Analysis of Grafting

- **Grafting**
 - C_{TCI}: 1.01 MM
 - No storage
 - Extruders: 48%
 - Annual Sales: 1.40 MM

- **Annual Production Cost:** 1.27 MM
 - 0.5 operators per shift
 - Operations: 20%

- **IRR:** 30%
- **Payback Period:** ~6 years
Economic Analysis of Grafting

- **PP-MAH purchase**
 - C_{TCI}: 0.353 MM
 - Storage Tank: 37%
 - Working Capital: 49%
 - Annual Sales: 1.40 MM

- **Annual Production Cost**: 1.15 MM
 - 0.5 operators per shift
 - Feedstock costs comparable

- **IRR**: 80%

- **Payback Period**: ~2 years
PRICE SENSITIVITY

IRR as a function of...

- PP-MAH Purchase Price

PP production profitability is too sensitive to price fluctuations.

- PP Selling Price
- Polypropylene Price
- Propylene Purchase Price

PP-MAH profitability can withstand price changes.
SUMMARY & RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(C_\text{TCl}) ($MM)</th>
<th>Annual Production Cost ($MM/yr)</th>
<th>(\text{Maximum Net Earnings}) ($MM/yr)</th>
<th>IRR (%/yr)</th>
<th>Approximate Payback Period (yr)</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spheripol + Grafting</td>
<td>41.7</td>
<td>245</td>
<td>19.6</td>
<td>93</td>
<td>0.5</td>
<td>High</td>
</tr>
<tr>
<td>Grafting Only</td>
<td>1.01</td>
<td>1.27</td>
<td>0.123</td>
<td>30</td>
<td>6</td>
<td>Low</td>
</tr>
<tr>
<td>PP-MAH Purchase</td>
<td>0.35</td>
<td>1.15</td>
<td>0.164</td>
<td>80</td>
<td>2</td>
<td>Low</td>
</tr>
</tbody>
</table>

Option 1
- Manufacture PP
- Graft with MAH

Option 2
- Purchase PP from Distributor
- Graft with MAH

Option 3
- Purchase PP-MAH from Distributor
QUESTIONS

- Thank you to Exide Technologies for sponsoring this project.