Georgia Tech Research in Support of CDA at LAX

John-Paul Clarke
Associate Professor, School of Aerospace Engineering
Director, Air Transportation Laboratory
Georgia Institute of Technology

18 April 2006
Georgia Tech CDA Research Team

- Senior Research Scientist
 - James Brooks

- Research Engineers
 - Terran Melconian (MIT)
 - Sean Nolan

- Graduate Research Assistants
 - Liling Ren (MIT)
 - Heinrich Souza
 - Colin Whittaker (MIT)

- Undergraduate Research Assistants
 - Alexander Acierto
 - Stephanie Bills
 - Evan McClain
 - Gaurav Nagle
 - Rajiv Shenoy
 - Clayton Tino
 - Jebulan Watson
Design Methodology

• Determine lateral profile

• Build wind model
 – Develop separate model for each definable subset of wind conditions

• Use TASAT to determine:
 – Range of crossing altitudes (at each waypoint) for each aircraft type in unrestricted descent from cruise
 – Required separation at (or near) top-of-descent and at transition altitude for each pair of aircraft types in unrestricted descent from cruise
Design Methodology (cont’d)

• Develop (if airspace is constrained) set of scenarios with different transition altitudes and waypoint (altitude and speed) restrictions

• Use TASAT to determine:
 – Required separation at (or near) top-of-descent and at transition altitude for each pair of aircraft types

• Determine “best” transition altitude, waypoint restrictions and required separations given:
 – Trade-off (if any) between noise, emissions, fuel burn and throughput
Wind Model

Mode decomposition and Auto-Regression modeling
• Monte Carlo Simulation-based Tool for the Analysis of Separation and Throughput (TASAT) where aircraft trajectory…
 – Lateral position
 – Altitude
 – Speed
 – Thrust setting
 – Speed brake setting
 – Flap setting
 – Landing gear position

• Computed versus time with uncertainties in…
 – Wind
 – Aircraft weight
 – Pilot behavior
TASAT

- Aircraft / Flap Schedule
- Procedure Definition
- Pilot Response
- Weight Distribution
- Local Wind Variation
- Monte-Carlo Engine
- Fast-Time Simulator
- Trajectories
- Convolution
- Target Separation & Expected Throughput
Throughput Analysis Methodology

- **Required separation at runway**
- **Expected “buffer” at runway**
- **Target separation at transition point**
- **Range of separations at runway with given target separation at transition point**
Separation Analysis Methodology

- **Required separation at runway**
- **Target separation at transition point**
- **Range of separations (at transition point) that can result in required separation at runway**
- **Desired confidence** e.g. 90th percentile
Benefit of Segmentation

Probability Density

Separation (nm)

Target Separation S
Benefit of Segmentation (cont’d)

Required separation at runway

Expected “buffer” at runway

Probability Density

Separation (nm)
Benefit of Segmentation (cont’d)

Target Separation S_{AB}
(Type A – Type B)

Target Separation S_{BA}
(Type B – Type A)

Separation (nm)

Probability Density
Benefit of Segmentation (cont’d)

Required separation at runway

Expected “buffer” at runway

Probability Density

Separation (nm)
CIVET Arrival

CIVET FIVE ARRIVAL
8/8/2005

Aircraft to proceed via RWY 25L unless otherwise instructed by ATC

NOTE: DME or RADAR required.
NOTE: Chart not to scale.
CIVET Analysis

• Transition point assumed to be GRAMM
 – Waypoint where Los Angeles Center “handoffs” aircraft to Southern California TRACON

• Wind model developed using ACARS data from LAX arrivals
 – Wind data separated into bins based on the magnitude and sign of the wind component along the runway axis
 – Separate model built for each 20 knot bin between -110 and +110 knots
Separation & Throughput

Separation Required at Threshold (nm)

Instrument Flight Rules (IFR)

<table>
<thead>
<tr>
<th></th>
<th>Leading Aircraft</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trailing Aircraft</td>
<td>L</td>
<td>757</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>2.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>2.5</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Separation & Throughput

• Determined target separation at GRAMM as a function of
 – Desired confidence
 • Three confidence levels: 70%, 80%, 90%
 • Given: no wind, no restrictions and under IFR
 – Wind speeds
 • Three wind speeds: -100 (±10) knots, 0 (±10) knots, +60 (±10) knots
 • Given: 70% confidence, no restrictions and under IFR
Separation & Throughput (cont’d)
no wind, no restrictions, under IFR

Separation Required at GRAMM (nm) to be 70% Confident that Separation at Runway Greater Than Required Separation

<table>
<thead>
<tr>
<th>Leading Aircraft</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>8.5</td>
<td>14.25</td>
</tr>
<tr>
<td>H</td>
<td>9.5</td>
<td>12.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>L</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>8.5</td>
<td>14.25</td>
<td>15.5</td>
</tr>
<tr>
<td>H</td>
<td>9.5</td>
<td>12.75</td>
<td>14</td>
</tr>
</tbody>
</table>
Separation & Throughput (cont’d)

no wind, no restrictions, under IFR

Separation Required at GRAMM (nm)
to be 80% Confident that Separation at Runway Greater Than Required Separation

Leading Aircraft

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>L</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>9</td>
<td>14.5</td>
<td>15.75</td>
</tr>
<tr>
<td>H</td>
<td>9.75</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Separation & Throughput (cont’d)

Separation Required at GRAMM (nm) to be 90% Confident that Separation at Runway Greater Than Required Separation

Leading Aircraft

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>L</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>9.25</td>
<td>14.75</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>13.25</td>
<td>14.5</td>
</tr>
</tbody>
</table>
Separation & Throughput

• Determined target separation at GRAMM as a function of
 – Desired confidence
 • Three confidence levels: 70%, 80%, 90%
 • Given: no wind, no restrictions and under IFR
 – Wind speeds
 • Three wind speeds: -100 (±10) knots, 0 (±10) knots, +60 (±10) knots
 • Given: 70% confidence, no restrictions and under IFR
70% confidence, no restrictions, under IFR

Separation Required at GRAMM (nm)
when wind at 30,000 ft is \(-100 \pm 10\) knots

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>Leading Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
Separation & Throughput (cont’d)

70% confidence, no restrictions, under IFR

Separation Required at GRAMM (nm)
when wind at 30,000 ft is 0 (±10) knots

Leading Aircraft

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>L</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>8.5</td>
<td>14.25</td>
<td>15.5</td>
</tr>
<tr>
<td>H</td>
<td>9.5</td>
<td>12.75</td>
<td>14</td>
</tr>
</tbody>
</table>
Separation & Throughput (cont’d)

70% confidence, no restrictions, under IFR

Separation Required at GRAMM (nm)
when wind at 30,000 ft is +60 (±10) knots

<table>
<thead>
<tr>
<th>Trailing Aircraft</th>
<th>L</th>
<th>757</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>9.25</td>
<td>15.50</td>
<td>17.50</td>
</tr>
<tr>
<td>H</td>
<td>9.75</td>
<td>13.50</td>
<td>15.25</td>
</tr>
</tbody>
</table>
Conclusions

• Required separations are similar in distance to current separations…
 – Currently aircraft are approximately 10 miles-in-trail at GRAMM until SCT begins to get overloaded and then 15 miles-in-trail thereafter

• Except that we apply separation on the basis of the pairing of the aircraft classes