Controller Managed Spacing Study

Everett Palmer, Todd Callantine, Tom Prevot, Joey Mercer
NASA Ames Research Center

Dave Williams
NASA Langley Research Center

John-Paul Clarke
Georgia Institute of Technology

EWG Operations Standing Committee Meeting

Georgia Tech

November 17 & 18, 2008
Controller Managed Spacing Study

Objective

• Determine through fast-time and human-in-the-loop simulations how well controllers with and without an enhanced display based on nominal 4D trajectories can cope with disturbances and manage spacing of arrival aircraft on RNAV RNP routes with Optimized Profile Descents (i.e. Continuous Descent Arrivals - CDAs).
Controller Managed Spacing Study

Motivation

Enable quiet, fuel efficient Optimized Profile Descent operations with high throughput.
Road Map

• Airborne Merging and Spacing … DAG-CE-11
• Trajectory Oriented Operations With Limited Delegation
• Continuous Descent Arrival (CDA) analysis (TASAT) and field studies
• This series of studies focuses on controller procedures, displays and tools for managing spacing of arrival aircraft in a mid-term time frame
• Future studies will focus on super-density operations with controller tools and a proportion of aircraft equipped for airborne Required Time of Arrival, Flight Deck Merging and Spacing and/or Close Spaced Parallel Approaches
Background

- TIMER and FASA
- FAST … speed and heading advisories
- CTAS / FMS … uplink of a FAST computed path
- DAG CE-11 … flight deck merging and spacing & history circles
- Ghosting displays … CRDA, RPI, …
- CDA … TASAT design tool and operational trials at SDF, ATL & LAX
- TRUST … speed advisories on RNAV procedures
- TOOWiLD … RNAV procedures, CDAs & FDMS
- SPACR
Operational Concept for Controlling Arrival Aircraft on RNAV RNP / CDA routes

Time-based metering provides runway arrival schedule and time constraint for inbound aircraft.

En route speed assignments delivers aircraft so they are correctly spaced for descending on the RNAV RNP/CDA route.

Flight crews fly VNAV descents along RNAV RNP route – largely without controller intervention.

Aircraft are assumed to be FMS equipped but generally not equipped with data communications for clearance delivery.

The concept is compatible with aircraft equipped for RTA and/or Flight Deck Merging and Spacing.

Residual spacing errors are assumed to be less than ~30 seconds.

Focus of this study:

TRACON controllers correct residual spacing errors and cope with disturbances using a display aid based on nominal 4D trajectories.
RNAV RNP / CDA Design Goals and Issues
(CDA = Optimized Profile Descent)

• Altitude and speed restrictions to regularize the vertical profiles of arriving aircraft … like the LAX RIIVR ONE
• Non-idle profile sections to allow speed control for adjusting spacing
• Airspace provided to allow lateral path adjustments
• Video map markers and/or range rings to aid controllers in no tools conditions … like the LAX RIIVR ONE

Collaborating with the ASDO Flight Management System (FMS) tasks (Dave Williams) and FAA CDA ATL 2.0 Field Trials (John-Paul Clarke) on RNAV RNP / CDA procedure design.
NOTRE1 and DIRTY1 RNAV Procedures (Based on the RNAV procedures proposed for ATL 2.0 CDA Study)

The altitude restrictions at NOFIV & BYRDS provide descent angles to HAVAD of -2.24 & -2.46 degrees.

ELLLA is 4.7nm east of BALLI and positioned so that it is aligned with HAVAD.
NOTRE1 and DIRTY1 RNAV Procedures
(With track data from Atlanta Center)
MACS FMS Vertical Profiles as Depicted in TRAC

Run: 20080215B
File: BOS01_SFO01_20080212.jpg
Human-in-the-Loop Simulation
Multi-Aircraft Control System (MACS)

Pilot stations with FMS and advanced CDTI, ASAS and data link

Controller stations emulating current and advanced surveillance, automation, and data link capabilities

FMS procedures

Single Aircraft Stations

Multi Aircraft Stations

Standard voice com., DataCom, ADS-B, Trajectory requests
MACS Emulated TRACON STARS Display

MACS screen snap showing Controller Display with Simulated Aircraft on the NOTRE1 and DIRTY1 RNAV Arrivals
Controller Display with Slot Markers

Enhanced controller display showing a mockup of slot markers of desired aircraft position based on each aircraft’s nominal 4D trajectory.

The slot markers show where the aircraft should be if it flies the nominal RNAV arrival procedure through the estimated wind field and arrives at the runway threshold on schedule correctly spaced behind the aircraft ahead of it.

The display provides a reference that allows the controller to assess each aircraft’s progress and intervene as necessary to deliver the aircraft on schedule.

The radius of the slot marker circle is 10 seconds.
Slot Marker Calculations

- Calculate ETAs for the schedule point (the runway)
- Calculate STAs for the schedule point (the runway)
- Calculate nominal 4D trajectory for the aircraft that will arrive at the schedule point at the STA
- Display the “now” position for the aircraft’s nominal 4D trajectory on the controller’s display

Why this concept:
- Compatible with OPD / CDA concept
- Minimize uncertainties due to trajectory prediction errors
- History spacing circles did not support merging task
- Compatible with monitoring self-spacing or RTA aircraft.
Multi-Pilot Station
Study Design

- Run each team for 4 days
- 4 30 minute scenarios per half day
- Data runs: 4 … 8… 8… 4
- 3 experimental conditions \(\Rightarrow\) 8 different conditions
 - Display / Tool … 2 levels
 - Wind uncertainty … 2 levels
 - Control method … 2 levels
- 3 replications per condition \(\Rightarrow\) 24 runs per team
- 4 teams
Preliminary Results

Histogram of aircraft spacing error at the outer marker (AJAAY)
Distance from aircraft to the slot marker vs. altitude

tool ON Team A tool ON Team B tool ON Team C tool ON Team D

tool OFF Team A tool OFF Team B tool OFF Team B tool OFF Team B
RMS of distance from aircraft to the slot marker vs. altitude

RMS Distance from Circle vs. Altitude

- toolOFF
- toolON
Plans

• Follow up study with slot markers and training on control strategies

• Fast-time simulation and control power / delay buffering analysis of routes for next study

• Study with path and speed advisory tools in June 2009

• Study with some aircraft equipped for Flight Deck Merging & Spacing in June 2010
Questions!