ACADEMICS
After many months of searching for its seventh president, Georgia Tech finally found a warm personable man who was well liked by both the faculty and students — Dr. Arthur G. Hansen, seventh president of the Georgia Institute of Technology. The selection was greeted by the campus community with both enthusiasm and delight.

Before coming to Georgia Tech as Dean of the Engineering College, Dr. Hansen was the chairman of the Mechanical Engineering Department at the University of Michigan. Dr. Hansen, a nationally known educator and researcher, is a native of Wis-
consin. He received his BS and MS degrees from Purdue University and his doctorate from Case Institute of Technology.

Dr. Hansen's appointment was well received by everyone. Being Dean of the Engineering college, he certainly was well aware of the Tech situation and its community. With his enthusiastic personality he has improved student-faculty-institution relationships to a point that students feel more open about expressing their ideas without demonstration or violence. His successful "Issues and Answers" program has been only one step in this direction. As one of the greatest assets to the Tech community, we welcome Dr. Arthur G. Hansen as seventh president of the Georgia Institute of Technology hoping that he will continue in becoming one of the most successful presidents that Georgia Tech has seen.
RIGHT: Dr. Vernon Crawford, Vice President for Academic Affairs.
BELOW LEFT: Dr. William H. Eberhardt, Acting Dean of General College.
BELOW: Dr. Walter Bloom, Associate Vice President for Academic Affairs.
BOTTOM: Mr. Jamie R. Anthony, Vice President for Institutional Services.
ADMINISTRATION

ABOVE LEFT: Dr. Benjamin J. Dasher, Associate Dean of Engineering College.
ABOVE: Dr. Walter O. Carlson, Acting Dean of Engineering.
LEFT: Mr. Joe W. Guthridge, Vice President for Development.
RIGHT TOP: Dr. Rocker T. Staton Jr., Dean of Undergraduate Division.
ABOVE: Dr. Sam C. Webb, Dean of the Division of Graduate Studies and Research.
ABOVE RIGHT: Dr. Dale C. Ray, Associate Dean of Graduate Division.
RIGHT: Dr. Sherman F. Dallas, Dean of the College of Industrial Management.
ADMINISTRATION

ABOVE LEFT: Dr. Maurice W. Long, Director of the Engineering Extension Division. ABOVE: Mr. L. V. Johnson, Engineering Extension Division. LEFT: Dr. Samuel C. Barnett, Assistant Dean of Undergraduate Division.
ADMINISTRATION

ABOVE: Jerry D. Purser, Assistant Dean of Students. ABOVE RIGHT: Wm. Miller Templeton, Assistant Dean of Students. RIGHT: James E. Dull, Dean of Students.
TOP: Gary M. Bledsoe, Assistant Dean of Students. ABOVE: W. Eugene Nichols, Associate Dean of Students. RIGHT: Judith E. Priddy, Assistant Dean of Students.
TOP RIGHT: Mr. Ewell I. Barnes, Controller. ABOVE: Mr. Tim F. Mitchell, Director of the Student Center. RIGHT: Mr. Robert B. Wallace, Jr., Director of Information Services and Publications.
TOP: Mrs. J. H. Crosland, Director of Libraries. TOP RIGHT: Mr. W. Roone Beard, Director of Alumni Affairs. ABOVE: Dr. James A. Strickland, Director of Guidance and Testing. RIGHT: Mr. Frank E. Roper, Jr., Registrar.
RESEARCH:
UNLOCKING NATURE’S SECRETS AND SOLVING MAN’S PROBLEMS
With the advent of the 70's, scientific research takes on new meanings for our society. For years many basic human problems have been politely kept out of view by a progressing society. Now pollution of the air and water are approaching critical levels, over population is becoming a monstrous threat, and disease and hunger are forcing their reality on today's society. Research, whether it is theoretical or applied, has as its goal the solution of a problem. The solution to these down to earth problems as well as the continued work in the developmental areas such as global communications, thin film and LSI experimentation, biomedical electronics, and space exploration are the goals of research in the 1970's.

Here at Georgia Tech we share in this research. Tech's research is carried out in two areas. Each department carries out research in its area of academic interest. Usually this is in conjunction with the departments master's and doctorate degrees. The Engineering Experiment Station is responsible for initiating and conducting research and service projects which are not primarily academic in nature, but which contribute to the fulfillment of the Institute's commitments to the state, region, and nation.

To accomplish its purpose, the Engineering Experiment Station operates seven divi-

FAR LEFT: Crystal mount is used for x-ray diffraction studies. TOP LEFT: Varian electromagnet is used in nuclear magnetic resonance studies. ABOVE LEFT: Digital readout enables the researcher to tabulate data. LEFT: Pressure chamber is used for low vacuum studies.
sions. Many of the programs of the Chemical Sciences and Materials Division have a direct bearing on the social and economic welfare of the state of Georgia. The Division is engaged in mineral resource identification, preservation of water purity, highway safety, waste disposal problems, and air pollution. Within the Electronics Division efforts are focused on advancements in the broad areas of communicating, radar, and advanced measurement and analysis techniques. The High Temperature Materials Division has made contributions to such fields as heat transfer, fluid flow, electronics, nuclear energy, statistics, computer analysis,
LEFT: Cone is used for running Microwave tests. ABOVE: A low pressure vacuum chamber enables one to obtain a vacuum of 10^{-8} mm of mercury.
ABOVE: Constant Temperature and pressure apparatus enables research project to study bacterial effects under these conditions. ABOVE RIGHT: Laser Technology has become a major interest in most areas of research today. FAR RIGHT: Just think how little it takes to undo all of man’s marvelous technology.
design with brittle materials, high temperature chemistry, and ablation and impact mechanics. The Industrial Development Division conducts the most comprehensive program of industrial and economic development of any university affiliated group of its kind in the United States. The Division operates under a broad program involving four interrelated fields of industrial and economic development activity: research, service, information, and training. The Nuclear and Biological Sciences Division's current research covers an aerobiology program relating to pollution, medical engineering and microbiological work associated with the marine environment, and the Georgia Tech Research Reactor. The Physical Sciences Division is involved with the structural, physical, and electronic properties of solid state materials. Special research units include a metallurgy group, industrial technology group, and a theoretical physics group. The seventh division is the Rich Electronic Computer Center. The center's purpose is that of providing computing machine service and programming and research support to all elements of the Georgia Institute of Technology.
A.E. INCREASES
STUDENT PARTICIPATION

During the past year the quality of the instructional and research programs of the School of Aerospace Engineering have been enhanced appreciably by the addition of the following laboratories: low-speed aerodynamics (VTOL aircraft), rarefied gas dynamics flow facility, magnetohydrodynamic plasma tunnel, static and dynamic structural test facilities, a low-turbulence wind tunnel, and aeroelasticity facilities. These labs are supplemented by a modern machine shop and an excellent instrumentation laboratory.

The course offerings at the undergraduate and graduate levels are in the process of being redesigned to include active student participation in the use and understanding of experimental facilities.

Classroom teaching of theory which is complemented by carefully designed experiments using modern equipment and facilities assures the graduates of having received outstanding preparation for a career in the technology of flight vehicles.

TOP: The output from a pre-programed experiment is displayed on a dual trace oscilloscope. ABOVE: Students are being shown how to operate a metal lathe in the school's machine shop.
ABOVE: A model of the C130 is tested in the School's wind tunnel. LEFT: A.E. Director, Dr. Arnold Ducoffe.
ARCHITECTURE'S GOAL: CREATIVE ARTISANS

The School of Architecture, in response to the broad scope encompassed by the field of Architecture, offers three courses of study in the undergraduate degree program. The first is a five-year program with options in Architectural Design and Structural Design. The second is a four-year curriculum in Building Construction and the third is a four-year program in Industrial Design.

In addition to the undergraduate degrees, the School offers Master degrees in Architecture and the new and fast growing field of City Planning.

In moulding the student into a skilled artisan, the School endeavors to instill not only the fundamentals of the profession; but also the creative ability to be tuned into the beauty of the world and the human need around him.
BOTTOM: The pencil becomes the means of expression.
BELOW: An industrial design project takes shape.
RIGHT: The architect's projects first take shape on the proverbial drawing board.
BIOLOGY PLACES NEW EMPHASIS ON BIO-ENGINEERING

The interest in Biological Sciences is constantly increasing. To meet the arising demands, this group of Ga. Tech faculty is involved in programs of current importance. Research is basically oriented toward bio-medical and bio-engineering aspects. Topics of concern also include the subjects of varied genetic organisms and heredity. With the use of Tech's recently acquired scanning electron microscope, projects in the study of radiation such as "effects of radiation on food products" and "radiation effects on genetic material" are being exploited. Results and observations from this research prove that radiation cannot only sterilize but also affect protein synthesis and metabolism. Research in the fields of air pollution and spread of infection further show that the biology department is participating actively in the research phase of Ga. Tech.
Georgia Tech Ceramic Engineers are in the forefront of material development all over the country and indeed throughout the world. Graduates of this school are leaders in the development of components for space craft, nuclear reactors, exotic electronic circuits, computers and in the field of materials and structural units and various consumer items. The modification of commonplace material into products through high temperature processing is the challenge being met by these engineers. Thus Ceramic Engineers, already, in short supply are in great demand.

Georgia Tech's School of Ceramic Engineering offers a Bachelor of Ceramic Engineering and Master of Science in Ceramic Engineering degree. A Ph.D. program is being prepared. Research work includes investigation of clay products, mineral usage and preparation, crystal growth, bioceramics, and fundamental atom, ion and molecular behavior. The experience gained in research as well as academic exposure makes the Ceramic Engineer a much sought after employee.
CHE OFFERS COMPLETE FACILITIES

The School of Chemical Engineering was founded in 1901 as the Department of Engineering Chemistry. In 1935 it became the Chemical Engineering Division of a combined department of Chemistry and Chemical Engineering. In 1941, the Department of Chemical Engineering was established. The continuing growth of the Department soon outstripped the available facilities and in January, 1965, the Department transferred to its present location, the Bunge-Henry Building.

This location has many new facilities, including labs for cryogenics and cryochemistry, fine particle study, x-ray characterization, metallurgical research, unit operations and bench-scale testing. There is also a pilot plant for fertilizer research and service facilities such as two electron microscopes, computer terminals, and machine shop.
LEFT: The Department's fertilizer plant. BELOW: Dr. G. Bridger, director of the School of Chemical Engineering. BOTTOM LEFT: A graduate student uses one of the School's electron microscopes. BOTTOM RIGHT: Instructor immerses a sample in liquid nitrogen.
The most exciting news in the School of Chemistry is that phase one of its new five million dollar building is approaching completion and should be occupied before next September. Unfortunately phase one will house only the work above the freshmen level; for present the freshman labs will remain in the old building.

A revised curriculum went into effect this year. This curriculum reduces the number of hours required for graduation from 206 to 200 but its more important feature is a greater number of elective courses at the senior level. In general, the Chemistry B.S. graduates divide into three groups in terms of the future: many who plan to attend graduate school, others plan to go to medical school and still others plan to go directly into industry. This new curriculum allows for each student to satisfy his or her particular needs.
CIVIL ENGINEERING INVESTIGATES RAPID TRANSIT

The Civil Engineering Department moved into their attractive new building this fall and now located itself among other modern additions of Tech on Atlantic Drive. An increase in size of faculty, revamping the curriculum for a fewer number of hours, and more selection on graduate level are topics of discussion this year. In the areas of research, work continues to expand in the area of severe vehicular accidents in the Atlanta area. In fact, one of the nation’s major automobile manufacturers called back 180,000 school buses due to the findings of this group of Tech engineers.

In the civil engineering lab, technicians have invented a new kind of pump which allows the passage of capsules through the mechanism. Originally thought to be a method of waste removal, the invention of the pump has lead the way to the possibility of human transportation and other methods of rapid transit.

OPPOSITE PAGE, TOP: Surveying courses provide for the well rounded CE. ABOVE LEFT: Students and professor observe lift and drag apparatus. FAR LEFT: The new CE building facilities include drawing labs such as this one. LEFT: Dr. W. M. Songster, Director.
The School of Electrical Engineering is the largest of the schools in the Engineering College, having an enrollment in excess of 1,000 undergraduates. Dr. Demetrius Paris has taken over the administration of the School and has instituted many changes.

There are five main themes running throughout the Electrical Engineering curriculum: circuits, electromagnetics, electronics, controls and communications. These basic sequences are followed by a series of elective courses that allow the undergraduate to continue work in these areas or to specialize in such diverse areas as digital and analog computation or design, lasers, antennas, physical electronics and many other areas.
ABOVE: A high vacuum physical electronics experiment begins to take shape. LEFT: Dr. Demetrius Paris, director.
The Tech freshman first begins his preparation for a career in engineering, science, or management with his classes in engineering graphics. Basic to these and other professions, engineering graphics at Tech continues to show leadership among institutions attempting to combine graphics and creative design.

A four-year program in the design area is now approaching readiness in proposal form. A design stem has been built upon and around the Institute's "engineering core" integrating engineering-oriented liberal subjects with direct industrial involvement.
The primary objective of the newly-revised curriculum of the School of Engineering Science and Mechanics, is to prepare students for careers in research and development in the engineering field. With this in mind, the program emphasizes fundamental principles and techniques in mathematics and the engineering sciences — solid mechanics, fluid mechanics, materials science, electrical sciences, heat transfer, and thermodynamics.

Graduates from the School of Engineering Science and Mechanics undergraduate program find employment in a wide variety of areas — aircraft, automotive, electrical and electronic industries, industrial and governmental research laboratories. However, it is anticipated that the majority of the graduates will pursue graduate degrees, and to this end, they receive a broad education in the fundamentals of several engineering fields.
The English Department is as old as Georgia Tech, and throughout its existence it has aimed at giving the student skill in writing and growth in understanding and perception through the required study of literature in each quarter of the first two years. It is also one of the largest departments with 38 full-time faculty teaching an average of 3,400 students or more each quarter.

The English Department courses, required in the first two years, resemble those in better colleges throughout the country. The first year aims at perceptive and sympathetic understanding of men and women as revealed in the short story, drama and poetry. Tech students respond especially well to poetry, perhaps because it is closest to mathematics.

The sophomore years bring the student in contact with the great literature and ideas of the western world, beginning with the Greeks, continuing through Dante and the Renaissance, and ending with literature since Shakespeare. The scope is broad, but the outline is there and any student can fill in the gaps for himself if and when he wishes.

TOP: Dr. David B. Comer, Director. ABOVE: A class learns the history behind Shakespeare's writing. TOP RIGHT: A closed circuit TV system is used in the speech classes. RIGHT: As in all other courses, one can ride along doing nothing only until the next quiz.
ENGLISH DEPARTMENT GETS NEW DIRECTOR
IE BECOMES INDUSTRIAL
AND SYSTEMS ENGINEERING
Industrial Engineering programs have been offered at Georgia Tech since 1924, first as an option in Mechanical Engineering and as a designated program since the School was established in 1945. Systems Engineering offerings date from 1963, initially coordinated by a cross-campus committee and then administratively placed within the School. The School name was changed to Industrial and Systems Engineering in 1969.

Present degree offerings are BIE, MSIE, and Ph.D. Undergraduate programs provide for emphasis in Information and Control Systems Design, Operations and Facilities Design, and Systems Engineering. The Systems Engineering program also serves as an elective option for majors in other programs on campus.

Graduate and Research programs tend to emphasize Operational Science and Systems Theory (including Operations Research, Management Sciences, and Systems Engineering) and Complex Systems Analysis. Research and project emphasis in health and medical care systems are available as a complement to the academic programs through cooperation with the Health Systems Research Center.

A substantial curriculum revision is presently under consideration, with an anticipated implementation date of September 1970. The new curriculum will provide for a reduction in credit hour requirements and considerable flexibility in elective courses to the extent that students can tailor their own programs relative to their educational and career objectives.
INDUSTRIAL MANAGEMENT BECOMES A COLLEGE

LEFT: An IM student uses a desk calculator to help analyse some data. ABOVE: Director, Dr. Sherman Dallas.
As of July 1, 1969, the Industrial Management program was elevated to College status. With this organizational change and its steady growth and enrollment, much faculty attention was directed to the development of new programs at the undergraduate and graduate levels. To support its increasing responsibilities to students and to public service and research, six faculty members were added in key areas.

Outstanding publications from faculty members of the College included books and publications of proceedings of conferences on the employment of the hard-core unemployed with significant public policy implications. Research activity was highlighted by a grant for a research and design work on a system for the "checkless society."

ABOVE: IM temporarily closes its doors to transfer between schools. LEFT: A computer terminal is used in conjunction with several courses to familiarize the management student with computer operations.
One of Tech's newest, but largest graduate departments, the School of Information Science, has for several years offered one of the nation's most comprehensive graduate programs in the information and computer systems sciences. Last year, the School began to develop an integrated, non-degree option for Tech undergraduates — thus opening this important discipline of study to all students at Tech.

Staffed predominantly by senior faculty, the School places an ever-increasing emphasis on interdisciplinary research and research training in such areas as information and computer systems engineering, cybernetics, semiotics, man-machine communications, and computing applications. To assist its research program, the School maintains its own versatile and well-equipped computer laboratory, dedicated to experimentation and innovation in the processing of any form of symbolic information in both analog and digital form.

I.S. STRESSES MAN-MACHINE COMMUNICATIONS
The maintenance of a program of instruction under which a student can acquire, for use as a tool of research, the language(s) studied, has traditionally been the principal interest of the Department of Modern Languages. In recent years, however, the admission of the progressively better prepared student to Georgia Tech and the emergence of a more promotive official environment at the institution, have enabled the department to provide courses which are greater in depth and broader in scope than are those comprised by the traditional program — specifically, a full compliment of upper divisional courses in the bellettristic literatures of the three most commonly taught languages, French, German, Spanish, and in the science of linguistics. The department takes the position that these developments constitute much of its opportunity for further progress on the behalf of the students and is taking full advantage of this opportunity with the support of current institutional trends.
TOP: The department's course offerings cover the gamut of mathematics as these texts indicate. BOTTOM: Desk calculators cut down on the time involved in the solution of problems.
MATH DEPARTMENT UPDATES
CURRICULUM

Work in the Math department this year, has led toward constructive changes throughout a large part of its curriculum. For the I.M. students, an emphasis on applications of Math at the social managerial level went into effect summer before last. A major revision in the Math degree program is in the idea stage and a change in the first thirty hours of math courses required for engineering students is in a core-curriculum discussion. The new Calculus book for freshmen this year was the first step in this direction. The Math Department remains actively involved in the Joint Enrollment Program for High Schools and continues to show its active part in the Tech academic role.
The School of Mechanical Engineering has established a rather versatile curriculum for the undergraduate program of study. The curriculum offers studies in such areas as design, dynamics, fluid mechanics, heat transfer, kinematics, materials for engineering, philosophy of design, thermodynamics and energy conversion.

Extensive use is now being made of the large lecture rooms in the SSTC Building No. 3. These lecture halls are equipped with visual-aid devices such as movie projectors, slide projectors, and closed circuit television and their use is aimed to implement and increase the effectiveness of teaching.

A rapidly expanding graduate program has also been established which encompasses advanced studies in the areas of automatic controls, bioengineering, combustion, complex system design, dynamics and vibration, fluidics and fluid power, high temperature design, magnetogasdynamics, power and propulsion, transport processes and two-phase flows.
ABOVE LEFT: A high voltage research project is conducted in one of the School's pressure vessels. ABOVE: Director, Dr. Stath P. Kezias. LEFT: A fluid controls experiment is carried out in the laboratory.
Many of the challenges awaiting today's college students such as providing adequate electric power, fresh water and transportation, reducing pollution and raising health standards, may be solved, or at least ameliorated by applications of nuclear technology. The School of Nuclear Engineering prepares its graduate students for technically exciting and personally satisfying careers directed toward the solution of these problems. Projects which continued through the year included development of a gaseous core nuclear rocket, medical neutron radiography and analysis of large, central station nuclear power plants.

The nuclear engineers share with the staff and students of many other departments Tech's unexcelled nuclear research facilities, including the 5,000 kilowatt research reactor. In addition, the School recently acquired its own small training reactor which is used extensively by undergraduates.

N.E. APPLIES ITS TECHNOLOGY TO TODAY'S PROBLEMS
The P.T. Department, following the old adage "All work and no play makes Jack a dull boy" strives to even out the average Techman's busy academic schedule with a well-rounded physical program. Freshman courses include swimming, track, and gym while the Sophomore enjoys the more recreational sports of tennis, football, and basketball. Also, the department offers a supplementary course for Juniors and Seniors who have completed the requirements of the basic courses. This course involves exercising once a week for students who are interested in keeping fit.

P.T. PROGRAM: WORK ON THE WHOLE TECH MAN

ABOVE: Physical Training Department Director, Mr. John McKenna. LEFT: Soccer is a favorite winter sport for sophomores. ABOVE RIGHT: Volleyball is offered year round.
PHYSICS DOES R.N.A. RESEARCH

The Physics Department has rapidly expanded its undergraduate and graduate programs. Current areas of faculty research specialization include theoretical studies in elementary particle physics, nuclear structure, many body problems, magnetics, transport properties of ions in gases, collision ionization and excitation, ultrasonics, health physics, molecular spectroscopy, x-ray and neutron defraction.

An important piece of research being carried out this year in the Physics Department is Dr. Stanford’s study of RNA in white rats as a method of memory transfer. In the experiment, Dr. Stanford trains a rat to perform a task or respond to a stimulus. The R.N.A. is then removed from this rat’s brain and is injected into another rat. The result sought is to have this second rat perform the same task or respond to the same stimulus without training thus indicating transfer of memory.

ABOVE: Physics Department director, Dr. James R. Stevenson. RIGHT: An air track used in lab for mechanics experiments.
LEFT: A student analyzes a bubble chamber particle trace. BELOW: A Physics 208 class uses an oscilloscope in lab. BOTTOM: One of the rats used in the R.N.A. experimentation.
Trying to exceed its reputation as the smallest school on campus, the Psychology Department offers a degree in Applied Psychology. After a rigorous curricula of mathematics, chemistry, physics and biology, the department tries to emphasize statistics applied to psychological investigations, experimental method and learning theory to mention only a few of its aspects.

After taking over the basement floor of the old physics building, the department has been able to expand its research facilities into a larger area as well as a larger scope.
The Department of Social Sciences offers extensive course work in four disciplines: History, Philosophy and History of Science, Political Science, and Sociology. Each of the four disciplines has a dual function in the academic community of Georgia Tech. On the one hand, they perform their vital traditional roles of helping the student to cultivate a critical awareness and perspective on the perennial evaluative issues that confront man, as an individual and as a member of a complex social order. On the other hand, they reflect upon and contribute to, the resolution of the scientific and technological issues that are Tech's special province.
RIGHT: Dr. James C. Taylor, Director. BELOW: A fibrograph operator measures the length and uniformity of various test fibers.
TEXTILE DEPARTMENT KEEPS UP WITH GROWTH IN FIBERS INDUSTRY

The image with which the textile and fiber industries confront the young person seeking a challenging career presents a profile of expanding and ever diversifying opportunity. The textile engineer, textile chemist, and textile manager today encounter such new problems and opportunities.

Basic research and development is encountered in the fields of new equipment, new fiber production and marketing. These opportunities and problems demand that current textile education must be alert to the ever present needs and ready to study problems unheard of several years ago.

TOP: A textile student prepares loom for material run.
LEFT: Georgia Tech emblem is woven into material that will be used for toweling.
ARMY REDESIGNS ENTIRE PROGRAM

The primary emphasis of Army ROTC during this year was the radical reorganization of "drill." Long recognized to be a weak spot in the program, the decision was made last July to aim the entire cadet brigade and its training to the legitimate objective of drill — to enable cadets to acquire leadership expertise by carefully evaluated practice. To achieve this, cadets were formed into freshman, sophomore, and junior companies, each led by selected seniors; leadership was begun during the first quarter of the freshman year and continued on increasingly sophisticated bases throughout the entire ROTC program. This allowed replacing repetitive close order drill, the "mickey mouse" of previous years, by a wide range of new subjects each designed to optimize actual leadership performance. A week-end field training exercise at a military base during April climaxed this new process and served to eliminate even more of the on-campus drill. This functional emphasis on leadership performance was further reflected in curriculum changes which increased the student seminar-type participation in all four years of the program.
N.R.O.T.C. PREPARES FOR NUCLEAR NAVY
The N.R.O.T.C. Unit Georgia Tech, one of the original Units commissioned in 1926, is the fourth largest of fifty-four Units established throughout the country. The mission of the Naval Reserve Officers Training Corps is to provide a source from which qualified officers may be obtained for the Navy, the Marine Corps, the Naval Reserve, and the Marine Corps Reserve. Particularly desired in this nuclear age are candidates for Nuclear Power School, with subsequent assignment to nuclear surface ships and submarines.

ABOVE LEFT: Commanding Officer — N.R.O.T.C., Captain Forrester C. Auman. ABOVE: Drill is a part of Naval Science program. LEFT: Navy offers a varied curriculum. FAR LEFT TOP: Classroom instruction is offered at all levels of the program. FAR LEFT BOTTOM: The Navy Drill Team executes maneuver.
A.F.R.O.T.C. PRODUCES QUALIFIED OFFICERS
The department of Air Force Aerospace Studies is in the General College of Georgia Tech. Over four hundred qualified and selected students are in the cadet program with an opportunity while they are pursuing their chosen academic degrees to include AFROTC in their schedules and earn a commission in the United States Air Force upon graduation. An Air Force ROTC cadet spends his first two college years in the General Military Training Course, which gives the cadet a broad outlook and overview of the military instrument in international relation. The second two years of the program are the Professional Officer Course, which prepares the cadet for his future responsibilities as a commissioned officer.

The Air Force offers advanced cadets in the flying category a chance to earn a civilian pilot's license through its Flight Instruction Program.