Title: PARALLEL COMPUTER ARCHITECTURES FOR ROBUST PHASED ARRAY RADAR SYSTEMS
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 01/28/91

Project No. E-21-T18 Center No. R6583-T18

Project Director JOY E B School/Lab ELEC ENGR

Sponsor AIR FORCE/GRIFFISS AFB, NY

Contract/Grant No. F30602-88-D-0025-0018 Contract Entity GTRC

Prime Contract No.

Title PARALLEL COMPUTER ARCHITECTURES FOR ROBUST PHASED ARRAY RADAR SYSTEMS

Effective Completion Date 900831 (Performance) 900930 (Reports)

<table>
<thead>
<tr>
<th>Closeout Actions Required</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Invoice or Copy of Final Invoice</td>
<td>Y/N</td>
</tr>
<tr>
<td>Final Report of Inventions and/or Subcontracts</td>
<td>Y</td>
</tr>
<tr>
<td>Government Property Inventory & Related Certificate</td>
<td>Y</td>
</tr>
<tr>
<td>Classified Material Certificate</td>
<td>Y</td>
</tr>
<tr>
<td>Release and Assignment</td>
<td>Y</td>
</tr>
<tr>
<td>Other</td>
<td>N</td>
</tr>
</tbody>
</table>

Comments

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Director</td>
<td>Y</td>
</tr>
<tr>
<td>Administrative Network Representative</td>
<td>Y</td>
</tr>
<tr>
<td>GTRI Accounting/Grants and Contracts</td>
<td>Y</td>
</tr>
<tr>
<td>Procurement/Supply Services</td>
<td>Y</td>
</tr>
<tr>
<td>Research Property Management</td>
<td>Y</td>
</tr>
<tr>
<td>Research Security Services</td>
<td>Y</td>
</tr>
<tr>
<td>Reports Coordinator (OCA)</td>
<td>Y</td>
</tr>
<tr>
<td>GTRC</td>
<td>Y</td>
</tr>
<tr>
<td>Project File</td>
<td>Y</td>
</tr>
<tr>
<td>Other</td>
<td>N</td>
</tr>
</tbody>
</table>

NOTE: Final Patent Questionnaire sent to PDPI.
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: MAY-JUN '88

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT QUARTER FUNDING</td>
<td>$0.00</td>
</tr>
<tr>
<td>CURRENT QUARTER EXPENDITURES</td>
<td>$0.00</td>
</tr>
<tr>
<td>CONTRACT CEILING</td>
<td>$4,200,000.00</td>
</tr>
<tr>
<td>FUNDING TO DATE</td>
<td>$0.00</td>
</tr>
<tr>
<td>PENDING COMMITMENTS</td>
<td>$766,000.00</td>
</tr>
<tr>
<td>AVAILABLE FUNDING</td>
<td>$3,434,000.00</td>
</tr>
<tr>
<td>FUNDING TO DATE</td>
<td>$0.00</td>
</tr>
<tr>
<td>YTD EXPENDITURES</td>
<td>$0.00</td>
</tr>
<tr>
<td>OUTSTANDING EXPENDITURES</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

* C-8-2120 WESTINGHOUSE/BEAUDET $56,000.00
C-8-2129 RENSSELAER/DAS $100,000.00
E-8-7066 UNIV OF PENN/STEINBERG $100,000.00
E-8-7124 BOSTON COLLEGE/McFADDEN $35,000.00
E-8-7125 BRANDEIS UNIV/HENCHMAN $23,000.00
E-8-7126 PENN STATE/CASTLEMAN $22,000.00
A-8-1631 UNIV OF PENN/STEINBERG $100,000.00
B-8-3617 GA WASHINGTON UNIV/MELTZER $100,000.00
B-8-3618 GA WASHINGTON UNIV/BERKOVICEH $100,000.00
C-8-2492 GA TECH/SMITH $50,000.00
A-8-1203 GA TECH/HUGHES $80,000.00

TOTAL PENDING $766,000.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: JUL-SEPT '88

CURRENT QUARTER FUNDING $698,034.00

DO # 0001 $56,000
0002 $95,141
0003 $78,854
0004 $230,000
0005 $45,561
0006 $25,000
0007 $20,000
0008 $98,374
0009 $29,403
0010 $19,701

$698,034

CURRENT QUARTER EXPENDITURES $0.00

CONTRACT CEILING $4,200,000.00
FUNDING TO DATE - $698,034.00
* PENDING COMMITMENTS - $426,563.00

AVAILABLE FUNDING $3,075,403.00

FUNDING TO DATE $698,034.00
YTD EXPENDITURES - $0.00

OUTSTANDING EXPENDITURES $698,034.00

* DO # 0001 INCREMENTAL FUNDING $90,729.00
0002 INCREMENTAL FUNDING $66,680.00
0003 INCREMENTAL FUNDING $54,154.00
0004 INCREMENTAL FUNDING $20,000.00
C-8-2400 STATE UNIV OF NY/FAM $95,000.00
C-8-2402 RENSSELAER/SAULNER $100,000.00

TOTAL PENDING $426,563.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: OCT-DEC ’88

<table>
<thead>
<tr>
<th>CURRENT QUARTER FUNDING</th>
<th>$120,834.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO # 0004</td>
<td>$66,680</td>
</tr>
<tr>
<td>0006</td>
<td>$54,154</td>
</tr>
<tr>
<td>---------</td>
<td>120,834</td>
</tr>
</tbody>
</table>

| CURRENT QUARTER EXPENDITURES | $28,740.82 |

CONTRACT CEILING	$4,200,000.00
FUNDING TO DATE	$818,868.00
* PENDING COMMITMENTS	$784,729.00

AVAILABLE FUNDING

| FUNDING TO DATE | $818,868.00 |
| YTD EXPENDITURES | $28,740.82 |

OUTSTANDING EXPENDITURES

* DO # 0001 INCREMENTAL FUNDING	$90,729.00
0007 INCREMENTAL FUNDING	$20,000.00
C-8-2400 STATE UNIV OF NY/FAM	$95,000.00
C-8-2402 RENSSELAER/SAULNER	$100,000.00
B-9-3592 UNIV OF CA/DAVIS/LEVITT	$60,000.00
N-9-5514 SOHAR INC./HECHT	$50,000.00
C-9-2015 NCS/O’NEAL	$100,000.00
A-9-1120 HITEC, INC./KAZAKOS	$75,000.00
E-9-7057 UNIV OF TX/ARLINGTON/FUNG	$40,000.00
E-9-7093 MONTANA STATE/JOHNSON	$34,000.00
S-9-7552 ALFRED UNIV/SYNDER	$20,000.00
C-9-2404 STANFORD UNIV/WIDROW	$100,000.00

TOTAL PENDING

$784,729.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: JAN-MAR '89

CURRENT QUARTER FUNDING

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>$90,729</td>
</tr>
<tr>
<td>0011</td>
<td>$75,000</td>
</tr>
<tr>
<td>0012</td>
<td>$75,000</td>
</tr>
<tr>
<td>0013</td>
<td>$59,989</td>
</tr>
<tr>
<td>0014</td>
<td>$49,989</td>
</tr>
<tr>
<td>0015</td>
<td>$70,000</td>
</tr>
<tr>
<td>0016</td>
<td>$43,750</td>
</tr>
<tr>
<td>0017</td>
<td>$30,000</td>
</tr>
<tr>
<td>0018</td>
<td>$22,000</td>
</tr>
<tr>
<td>0019</td>
<td>$38,000</td>
</tr>
<tr>
<td>0020</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

Total Current Quarter Funding: $574,457.00

CURRENT QUARTER EXPENDITURES

Total Current Quarter Expenditures: $86,324.15

<table>
<thead>
<tr>
<th>CONTRACT CEILING</th>
<th>FUNDING TO DATE</th>
<th>- $1,393,325.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDING COMMITMENTS</td>
<td>- $594,651.00</td>
<td></td>
</tr>
</tbody>
</table>

Available Funding: $2,212,024.00

<table>
<thead>
<tr>
<th>FUNDING TO DATE</th>
<th>YTD EXPENDITURES</th>
<th>- $115,064.97</th>
</tr>
</thead>
</table>

Outstanding Expenditures: $1,278,260.03

<table>
<thead>
<tr>
<th>* DO # 0007</th>
<th>Incremental Funding</th>
<th>$20,000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>Incremental Funding</td>
<td>$19,568.00</td>
</tr>
<tr>
<td>0012</td>
<td>Incremental Funding</td>
<td>$24,700.00</td>
</tr>
<tr>
<td>0015</td>
<td>Incremental Funding</td>
<td>$29,783.00</td>
</tr>
<tr>
<td>0016</td>
<td>Incremental Funding</td>
<td>$31,250.00</td>
</tr>
<tr>
<td>0017</td>
<td>Incremental Funding</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>0018</td>
<td>Incremental Funding</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>0019</td>
<td>Incremental Funding</td>
<td>$12,000.00</td>
</tr>
</tbody>
</table>

C-8-2404 STANFORD UNIV/WIDROW	$100,000.00
N-9-5732 GRIFFIN	$25,000.00
A-9-1476 BOWDOIN COLLEGE/CHONACKY	$20,350.00
E-9-7110 UNIV OF LOWELL/SALES	$50,000.00
S-9-7559 UNIV OF MICHIGAN/ROBINSON	$20,000.00
B-9-3621 SRI/LUNT	$20,000.00
N-9-5308 KAMAN SCIENCES	$100,000.00
E-9-7119 DARTMOUTH COLLEGE/CRANE	$100,000.00

Total Pending: $594,651.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)

CONTRACT NUMBER F30602-88-D-0025

QUARTER: APR-JUN '89

CURRENT QUARTER FUNDING

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0021</td>
<td>$25,000</td>
</tr>
<tr>
<td>0022</td>
<td>$45,000</td>
</tr>
<tr>
<td>0023</td>
<td>$20,350</td>
</tr>
<tr>
<td>0024</td>
<td>$50,000</td>
</tr>
<tr>
<td>0025</td>
<td>$20,000</td>
</tr>
<tr>
<td></td>
<td>$160,350.00</td>
</tr>
</tbody>
</table>

CURRENT QUARTER EXPENDITURES

$318,963.82

CONTRACT CEILING

$4,200,000.00

FUNDING TO DATE

- $1,553,675.00

* PENDING COMMITMENTS

- $718,994.00

AVAILABLE FUNDING

$1,927,331.00

FUNDING TO DATE

- $1,553,675.00

YTD EXPENDITURES

- $434,028.79

OUTSTANDING EXPENDITURES

$1,119,646.21

* DO # 0007 INCREMENTAL FUNDING

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>$19,568.00</td>
</tr>
<tr>
<td>0012</td>
<td>$24,700.00</td>
</tr>
<tr>
<td>0015</td>
<td>$29,783.00</td>
</tr>
<tr>
<td>0016</td>
<td>$31,250.00</td>
</tr>
<tr>
<td>0017</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>0018</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>0019</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>0022</td>
<td>$54,693.00</td>
</tr>
<tr>
<td>B-9-3621</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>N-9-5308</td>
<td>KAMAN SCIENCES</td>
</tr>
<tr>
<td>E-9-7119</td>
<td>DARTMOUTH COLLEGE/CRANE</td>
</tr>
<tr>
<td>N-9-5740</td>
<td>CHRISTIANSON</td>
</tr>
<tr>
<td>N-9-5317</td>
<td>UNIV OF CO/NORGARD</td>
</tr>
<tr>
<td>S-9-7625</td>
<td>UNIV OF CA/DAVIS/KOWELL</td>
</tr>
<tr>
<td>N-9-5314</td>
<td>KAMAN SCIENCES</td>
</tr>
<tr>
<td>N-9-5315</td>
<td>KAMAN SCIENCES</td>
</tr>
</tbody>
</table>

TOTAL PENDING

$718,994.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: JUL-SEP '89

CURRENT QUARTER FUNDING $476,000.00

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0017</td>
<td>$10,000</td>
</tr>
<tr>
<td>0026</td>
<td>$15,000</td>
</tr>
<tr>
<td>0027</td>
<td>$20,000</td>
</tr>
<tr>
<td>0028</td>
<td>$50,000</td>
</tr>
<tr>
<td>0029</td>
<td>$40,000</td>
</tr>
<tr>
<td>0030</td>
<td>$30,000</td>
</tr>
<tr>
<td>0031</td>
<td>$20,000</td>
</tr>
<tr>
<td>0032</td>
<td>$66,000</td>
</tr>
<tr>
<td>0033</td>
<td>$70,000</td>
</tr>
<tr>
<td>0034</td>
<td>$85,000</td>
</tr>
<tr>
<td>0035</td>
<td>$70,000</td>
</tr>
</tbody>
</table>

CURRENT QUARTER EXPENDITURES $415,422.69

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Ceiling</td>
<td>$4,200,000.00</td>
</tr>
<tr>
<td>Funding To Date</td>
<td>$2,029,675.00</td>
</tr>
<tr>
<td>* Pending Commitments</td>
<td>$253,994.00</td>
</tr>
</tbody>
</table>

AVAILABLE FUNDING $1,916,331.00

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding To Date</td>
<td>$2,029,675.00</td>
</tr>
<tr>
<td>YTD Expenditures</td>
<td>$849,451.48</td>
</tr>
</tbody>
</table>

OUTSTANDING EXPENDITURES $1,180,223.52

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Do # 0007 Incremental Funding</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>0011 Incremental Funding</td>
<td>$19,568.00</td>
</tr>
<tr>
<td>0012 Incremental Funding</td>
<td>$24,700.00</td>
</tr>
<tr>
<td>0015 Incremental Funding</td>
<td>$29,783.00</td>
</tr>
<tr>
<td>0016 Incremental Funding</td>
<td>$31,250.00</td>
</tr>
<tr>
<td>0018 Incremental Funding</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>0019 Incremental Funding</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>0022 Incremental Funding</td>
<td>$54,693.00</td>
</tr>
<tr>
<td>N-0-5703 Univ of Southern Fla/Wilson</td>
<td>$50,000.00</td>
</tr>
</tbody>
</table>

TOTAL PENDING $253,994.00
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: OCT-DEC ’89

CURRENT QUARTER FUNDING

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
<th>Contract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>$9,000</td>
<td>C-8-2129</td>
</tr>
<tr>
<td>0011</td>
<td>$19,568</td>
<td>C-8-2400</td>
</tr>
<tr>
<td>0012</td>
<td>$24,700</td>
<td>C-8-2402</td>
</tr>
<tr>
<td>0015</td>
<td>$29,783</td>
<td>C-9-2015</td>
</tr>
<tr>
<td>0016</td>
<td>$31,250</td>
<td>A-9-1120</td>
</tr>
<tr>
<td>0018</td>
<td>$12,000</td>
<td>E-9-7093</td>
</tr>
<tr>
<td>0019</td>
<td>$62,000</td>
<td>C-9-2109</td>
</tr>
<tr>
<td>0022</td>
<td>$54,693</td>
<td>C-9-2404</td>
</tr>
<tr>
<td>0028</td>
<td>$50,000</td>
<td>N-9-5308</td>
</tr>
</tbody>
</table>

$292,994.00

CURRENT QUARTER EXPENDITURES

$286,691.16

CONTRACT CEILING

$4,200,000.00

FUNDING TO DATE

$2,322,669.00

PENDING COMMITMENTS

$595,000.00

AVAILABLE FUNDING

$1,282,331.00

FUNDING TO DATE

$2,322,669.00

YTD EXPENDITURES

$1,136,142.64

OUTSTANDING EXPENDITURES

$1,186,526.36

INCREMENTAL FUNDING

<table>
<thead>
<tr>
<th>DO #</th>
<th>Amount</th>
<th>Contract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0007</td>
<td>$20,000.00</td>
<td>S-8-7592</td>
</tr>
<tr>
<td>0029</td>
<td>$60,000.00</td>
<td>E-9-7119</td>
</tr>
<tr>
<td>0030</td>
<td>$20,000.00</td>
<td>N-9-5317</td>
</tr>
<tr>
<td>0034</td>
<td>$15,000.00</td>
<td>N-9-5314</td>
</tr>
<tr>
<td>0016</td>
<td>$30,000.00</td>
<td>N-9-5315</td>
</tr>
<tr>
<td>N-0-5703</td>
<td>$50,000.00</td>
<td>UNIV OF SOUTHERN FLA/WILSON</td>
</tr>
<tr>
<td>A-0-1102</td>
<td>$100,000.00</td>
<td>UNIV OF CA/SMOOT, BARBER, GT</td>
</tr>
<tr>
<td>P-0-6011</td>
<td>$100,000.00</td>
<td>NCSU/VANDERLUGT</td>
</tr>
<tr>
<td>C-0-2456</td>
<td>$100,000.00</td>
<td>NEW JERSEY INST/BAR-NESS</td>
</tr>
<tr>
<td>P-0-6014</td>
<td>$100,000.00</td>
<td>STEVENS INST/ZMUDA</td>
</tr>
</tbody>
</table>

TOTAL PENDING

$595,000.00

WAITING FOR PROPOSALS:

- P-0-6018 UAH/CAULFIELD
- P-0-6021 GT/SUMNERS
- P-0-6022 CORNELL UNIV/TANG
- B-0-3353 ROCHESTER INST/LASKY
CONTRACT FUNDS STATUS REPORT (DD FORM 1586)
CONTRACT NUMBER F30602-88-D-0025
QUARTER: JAN-MAR '90

CURRENT QUARTER FUNDING

<table>
<thead>
<tr>
<th>DD #</th>
<th>Amount</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>0007</td>
<td>$9,000</td>
<td>S-8-7592</td>
</tr>
<tr>
<td>0029</td>
<td>$19,568</td>
<td>E-9-7119</td>
</tr>
<tr>
<td>0030</td>
<td>$24,700</td>
<td>N-9-5317</td>
</tr>
<tr>
<td>0036</td>
<td>$29,783</td>
<td>P-0-6014</td>
</tr>
<tr>
<td>0037</td>
<td>$31,250</td>
<td>P-0-6011</td>
</tr>
</tbody>
</table>

$114,301.00

CURRENT QUARTER EXPENDITURES

$376,743.62

CONTRACT CEILING

$4,200,000.00

FUNDING TO DATE

$2,436,970.00

* PENDING COMMITMENTS

$532,800.00

AVAILABLE FUNDING

$1,230,230.00

FUNDING TO DATE

$2,436,970.00

YTD EXPENDITURES

$1,512,886.26

OUTSTANDING EXPENDITURES

$924,083.74

* DD# 0034 N-9-5314 INCREMENTAL FUNDING

$15,000.00

0035 N-9-5315 INCREMENTAL FUNDING

$30,000.00

0037 P-0-6011 INCREMENTAL FUNDING

$10,000.00

N-0-5703 UNIV OF SOUTHERN FLA/WILSON

$50,000.00

A-0-1402 UNIV OF CA/SHOCT, BARBER, GT

$100,000.00

C-0-2456 NEW JERSEY INST/BAR-NESS

$100,000.00

P-0-6021 GT/SUMNERS

$100,000.00

P-0-6022 CORNELL UNIV/TANG

$30,800.00

B-0-3353 ROCHESTER INST/LASKY

$20,000.00

P-0-6018 UAH/CAULFIELD

$77,000.00

TOTAL PENDING

$532,800.00

WAITING FOR PROPOSALS:

P-0-6018 UAH/CAULFIELD
P-0-6021 GT/SUMNERS
P-0-6022 CORNELL UNIV/TANG
B-0-3353 ROCHESTER INST/LASKY
TASK NUMBER: E-9-7073

TITLE: Analysis of Parallel Computer Architecture Algorithms for Robust Analog Radar Systems

PRINCIPAL INVESTIGATOR: Roy Johnson

INSTITUTION: Dept. of Elect. Engr., Montana State University

OTHER PARTICIPANTS AND TITLES:

Mr. David Wicag - graduate student

A. TECHNICAL PROGRESS ACHIEVED ON EFFORT:

1) Literature has been reviewed

2) Griffith Algorithm for Pattern Recognition has been programmed.

3) Effects of element failures on resulting pattern have been simulated and evaluated quantitatively.

4) Griffith Algorithm has been modified to satisfy prior constraints imposed by failures and new performance simulated.

B. TRAVEL: None

C. PRESENTATIONS AND PUBLICATIONS:

Major Report “An Adaptive Algorithm for Weight Adjustment Due To Random Element Failure” has been forwarded to Robert A. Shaw for review.

D. LEVEL OF EFFORT BY EACH CONTRIBUTOR (IN MAN-MONTHS OR MAN-HOURS)

Roy Johnson: 75 hours
David Vioz: 375 hours
A Reduced Order Generalized Sidelobe Canceller Algorithm
For Random Element Failure Compensation

Final Technical Progress Report

by

David Virag and Roy Johnson
Department of Electrical Engineering
Montana State University
Bozeman, MT 59717-0007
(406)-994-4271

Project:
Analysis of Parallel Computer Architecture Algorithms
For Robust Phased Array Radar Systems

ERL REPORT 290151-1

Contract: F30602-88-D-0025
Georgia Institute of Technology
Subcontract No.: E-21-T18-S1
Department of Electrical Engineering
Montana State University
A Research Project Sponsored by
United States Department of the Airforce
Rome Air Development Center
Griffiss Air Force Base
New York 13441-5700
A Reduced Order Generalized Sidelobe Canceller Algorithm
For Random Element Failure Compensation

D. E. Virag
Montana State University

ABSTRACT
This paper demonstrates a method of reducing an adaptive array algorithm to accommodate for random catastrophic element failures in an equally spaced linear narrow-band adaptive array. The Generalized Sidelobe Canceller (GSC) algorithm is reduced by the number of failed elements in the array. The reduced Generalized Sidelobe Canceller algorithm is shown to satisfy desired constraints when the number of active elements is greater than the total number of constraints. Several examples are presented showing improvement of the modified GSC algorithm over the original algorithm when failures are present. Computational considerations are discussed when the reduced GSC algorithm is used. Several suggestions are given for logical research extension relative to the reduced GSC algorithm.

INTRODUCTION
Adaptive array algorithms have been studied extensively over the past 30 years [1]-[4]. Several techniques have been shown to be effective for narrowband spatial filtering in the presence of noise and interference signals. While the general adaptive array problem is well formulated, little work has been done on array adaptation in the face of catastrophic element failure. Element failure effectively transforms a linear equally-spaced array into an unequally-spaced array. Typical research approaches have been directed at using search techniques to optimize randomly spaced arrays. A methodical process for optimizing the weight vector given the known information of the array structure should be available since a linear array with element failures...
demonstrates some regularity. The Generalized Sidelobe Canceller, derived by Griffiths et al. [5]-[7], provides a vehicle for dealing with these element failures when the failed element positions are known a priori.

OPTIMUM ARRAY PROCESSING

Fig. 1 describes the block diagram of the typical array processing system. Given the general signal environment statistics, determine the optimal set of weights W_o so that the output $y(n)$ is optimal in some sense to the desired input $d(n)$ in the presence of both uncorrelated white noise and jamming signals.

![Block diagram of the typical array processing system](image)

Figure 1.

The actual signal measured at the array is $x(t) = d(t) + n(t) + i(t)$, where $d(t)$ is the actual desired signal, $n(t)$ is the noise present which is assumed to be Gaussian and $i(t)$ is a signal associated with jamming interference. All of the second order statistics are assumed to be stationary. The three input signals are assumed to be uncorrelated with respect to each other, therefore $R_{xx}(t) = R_{dd}(t) + R_{nn}(t) + R_{ii}(t)$, where
\[
R_{dd} = \begin{bmatrix}
E[d(1)d(1)] & E[d(1)d(2)] & \cdots & E[d(1)d(n)] \\
E[d(2)d(1)] & E[d(2)d(2)] & \cdots & E[d(2)d(n)] \\
\vdots & \vdots & \ddots & \vdots \\
E[d(n)d(1)] & \cdots & \cdots & E[d(n)d(n)]
\end{bmatrix} = \begin{bmatrix}
\sigma_{d}^{2}e^{j(1-1)} & \sigma_{d}^{2}e^{j(2-1)} & \cdots & \sigma_{d}^{2}e^{j(n-1)} \\
\sigma_{d}^{2}e^{j(1-2)} & \sigma_{d}^{2}e^{j(2-2)} & \cdots & \sigma_{d}^{2}e^{j(n-2)} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{d}^{2}e^{j(n-1)} & \sigma_{d}^{2}e^{j(n-2)} & \cdots & \sigma_{d}^{2}e^{j(n-n)}
\end{bmatrix}
\]

\[
R_{nn} = \begin{bmatrix}
E[n(1)n(1)] & E[n(1)n(2)] & \cdots & E[n(1)n(n)] \\
E[n(2)n(1)] & E[n(2)n(2)] & \cdots & E[n(2)n(n)] \\
\vdots & \vdots & \ddots & \vdots \\
E[n(n)n(1)] & \cdots & \cdots & E[n(n)n(n)]
\end{bmatrix} = \begin{bmatrix}
\sigma_{n}^{2} & 0 & 0 & \cdots & 0 \\
0 & \sigma_{n}^{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \sigma_{n}^{2}
\end{bmatrix}
\]

\[
R_{ii} = \begin{bmatrix}
E[i(1)i(1)] & E[i(1)i(2)] & \cdots & E[i(1)i(n)] \\
E[i(2)i(1)] & E[i(2)i(2)] & \cdots & E[i(2)i(n)] \\
\vdots & \vdots & \ddots & \vdots \\
E[i(n)i(1)] & \cdots & \cdots & E[i(n)i(n)]
\end{bmatrix} = \begin{bmatrix}
\sigma_{i}^{2}e^{j(1-1)\alpha} & \sigma_{i}^{2}e^{j(2-1)\alpha} & \cdots & \sigma_{i}^{2}e^{j(n-1)\alpha} \\
\sigma_{i}^{2}e^{j(1-2)\alpha} & \sigma_{i}^{2}e^{j(2-2)\alpha} & \cdots & \sigma_{i}^{2}e^{j(n-2)\alpha} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{i}^{2}e^{j(n-1)\alpha} & \sigma_{i}^{2}e^{j(n-2)\alpha} & \cdots & \sigma_{i}^{2}e^{j(n-n)\alpha}
\end{bmatrix}
\]

where:
\[
\alpha = 2\pi d \sin(\theta)
\]

\(d\) is the fractional wavelength distance between elements at the desired frequency, and \(\sigma_{i}^{2}\) is the variance of the \(i\)th signal. The matrix formulation for \(R_{dd}\) assumes the desired signal is broadside to the array while matrix form \(R_{ii}\) assumes interference from angle \(\theta\) measured from broadside to the array.

If minimum output power is the desired optimization condition, we have,
\[
\min_{W} \{E[(XW)^{H}XW]\} = \min_{W} \{W^{H}R_{xx}W\}
\]

(1)

which has the solution
\[
W_{opt} = R_{xx}^{-1}r_{xd}
\]

(2)
where:

\[
\mathbf{r}_{sd} = \begin{bmatrix}
E[x(1)d(1)] \\
E[x(2)d(2)] \\
\vdots \\
E[x(n)d(n)]
\end{bmatrix}
\]

This solution for the optimal weight vector is effective when the signal to noise ratio (SNR) is low. If the desired signal power is large compared to the interference and noise, this algorithm will penalize the signal by minimizing the overall power, therefore reducing the SNR.

CONSTRANGED ARRAY PROCESSING

The inclusion of constraints in the formulation of the optimization problem leads to more control over desired beam patterns in addition to the ability to null out known interference signals. The constraint equations are formulated as:

\[
C^H W = f
\]

where:

\[
C \leftrightarrow \text{Constraint Matrix}
\]

\[
f \leftrightarrow \text{Forcing Vector}
\]

If the desired signal is broadside to the array and is required to have 0 dB gain, and L interference signals from L directions are to be nulled out, the C matrix will take the form

\[
C = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
1 & e^{j\alpha_1} & \ldots & e^{j\alpha_L} \\
\vdots & \vdots & \ddots & \vdots \\
1 & e^{j(\alpha - 1)\lambda} & \ldots & e^{j(\alpha - 1)\lambda_L}
\end{bmatrix}
\]
where \(\alpha_i = 2\pi d \sin(\theta_i) \) and \(\theta_i \) is the direction of the \(i \)th interference signal.

\[C \] is an \(N \times L \) matrix, where \(N \) is the number of elements and \(L \) is the number of desired constraints.

The response vector \(f \) is

\[f = [1 \ 0 \ 0 \ \ldots \ 0]^T \]

(6)

where the 1 represents 0db gain at broadside and the zeros correspond to 0 gain at the desired null angles.

The constrained optimal weight vector is now that which is closest to the unconstrained vector and satisfies the constraints given. The performance measure to minimize can be given from (2) as

\[\text{Min}_w \{ R_{xx}W - r_{ad} \} \]

(7a)

subject to:

\[C^H W = f \]

(7b)

which has the solution

\[W_{opt} = R_{xx}^{-1}C(C^HR_{xx}^{-1}C)^{-1}f \]

(8)

GENERALIZED SIDELOBE CANCELLER

An equivalent representation of the constrained array problem was derived by Griffiths. The Generalized Sidelobe Canceller (GSC) is a transformation of the general constrained optimization problem into a deterministic weight equation and an unconstrained optimal weight equation. This topology is more convenient for implementation due to its reduced number of computations. Fig. 2 shows a block diagram for the basic GSC.
The parallel paths of the GSC represent the quiescent weights and adaptive weights. The quiescent weights W_q represent the general solution to the adaptive array problem with constraints and will give the desired pattern given only noise on the input elements. The constraints include array pattern, array sidelobe specifications, and spatial nulling. The lower path contains the data dependant adaptive weights, W_a, which are statistically determined for a mean squared error (MSE) approximation (neglecting constraints) to the upper quiescent weights.

The weight vector from the general constrained array problem can be decomposed into two orthogonal spaces which span the range and null space of C [8]. Any desired weight vector can be represented as the sum of the two orthogonal vectors, one vector spanning the range space of C, the other spanning the null space of C. The weight vector in the null space of the constraint matrix will have no effect on the desired constraints and can be optimized accordingly.

Let $W = W_q - V$ where W_q is in the range of C and V is in the null space of C. From Fig. 2, $V = W_b W_a$, also $W_q = C(C^H C)^{-1} f$ to satisfy the constraint equations. Therefore, to minimize total output power, we get

$$\text{Min}_{W_a}\{ (W_q - W_b W_a) R_x (W_q - W_b W_a)^H \}$$

(9)
The optimal \(W_a \) can be solved using classical optimization techniques. Define the performance measure \(J \) as

\[
J = [W_q - W_b W_a]^H R_{xx} [W_q - W_b W_a] \tag{10a}
\]

\[
= W_q^H R_{xx} W_q - W_q^H R_{xx} W_b W_a - W_a^H W_b^H R_{xx} W_q + W_a^H W_b^H R_{xx} W_b W_a \tag{10b}
\]

The second and third terms of (10b) are scalars and can be combined since the transpose of a scalar is unaffected. Taking the gradient of \(J \) with respect to \(W_a \) gives

\[
\nabla_{W_a} J = 0 = -2W_q^H R_{xx} W_b + 2W_b^H R_{xx} W_b W_a \tag{11}
\]

Solving (11) for \(W_a \) we find the optimal weight vector as

\[
W_a^{opt} = (W_b^H R_{xx} W_b)^{-1} W_b^H R_{xx} W_q \tag{12}
\]

An equivalent expression for the optimal weight vector is

\[
W_a^{opt} = R_{ff}^{-1} P_{ff} \tag{13}
\]

(13) can easily be obtained from (12) since \(R_{ff} = W_b^H R_{xx} W_b \) and \(P_{ff} = W_b^H R_{xx} W_q \).

While the quiescent weight vector \(W_q = C (C^H C)^{-1} f \) is the solution for the general deterministic constraint problem, it is not necessarily the best due to large sidelobes close to the main lobe. If a weighting vector such as a Chebyshev pattern is desired [9], the quiescent weights must be modified.

Consider the desired Chebyshev weight vector \(W_{cheb} \). Clearly \(W_{cheb} \) will not satisfy the constraint
equation (4). A weight vector is required which satisfies the constraints of (4) and is close to the desired vector \(W_{\text{cheb}} \). This is mathematically equivalent to

\[
\text{Min}_{\overline{W}_q} \left[(\overline{W}_q - W_{\text{cheb}})^H (\overline{W}_q - W_{\text{cheb}}) \right]
\]

Subject to:

\[
C^H \overline{W}_q = f
\]

where \(\overline{W}_q \) is the modified weight vector to be determined. The performance measure \(J \) can be formed as

\[
J = (\overline{W}_q - W_{\text{cheb}})^H (\overline{W}_q - W_{\text{cheb}}) + \lambda (f - C^H \overline{W}_q)
\]

\[
= W_q^H \overline{W}_q - W_{\text{cheb}}^H W_{\text{cheb}} W_q^H W_{\text{cheb}} - \lambda f - \lambda C^H \overline{W}_q
\]

The gradient of \(J \) with respect to \(\overline{W}_q \) is given by

\[
\nabla_{\overline{W}_q} J = 0 = 2 \overline{W}_q - 2 W_{\text{cheb}} - (\lambda C^H)^H
\]

Solving (16) for \(\overline{W}_q^{\text{opt}} \)

\[
\overline{W}_q^{\text{opt}} = W_{\text{cheb}} + \frac{1}{\lambda} C \lambda^H
\]

Using (4) and (17)

\[
\lambda^H = 2(C^H C)^{-1} f - 2(C^H C)^{-1} C^H W_{\text{cheb}}
\]

Substituting (18) back into (17) gives the optimal modified weight vector
The modification of W_q alone will not change the overall quiescent pattern until an appropriate change is also made to the constraint matrix. This can be seen by the fact that $\overline{W_q}$ now contains components in the range space of C and in the null space of C. The addition of the component in the null space of C must be included in the constraint equations so that those components will be effectively canceled by the blocking matrix W_b. This modification adds one more column to C so that

$$\overline{C} = [C, W_s] \quad (20)$$

$$\tilde{f}^H = [f^H, \overline{W_q}^H \overline{W_q}] \quad (21)$$

where:

$$W_s = \overline{W_q} - W_q \quad (22)$$

The new constraint matrix \overline{C} is now $N \times M$ and \tilde{f} is an M vector where $M=L+1$.

The $N \times (N-M)$ blocking matrix W_b eliminates the constraint equations so that an unconstrained optimization can take place. The requirements of the W_b matrix are that:

1.) The columns of W_b are linearly independent

2.) W_b is orthogonal to C

A number of different blocking matrices will be adequate for any given problem. Gram-Schmidt orthogonalization procedures can be used to ensure that the matrices are orthogonal. For simulation purposes, one particular algorithm for determining the W_b matrix is:
\[a_{i,j} = 1; \quad \{i = 1, j; \quad j = 1, N - M\} \]

\[a_{i,j} = \text{unknown coefficient}; \quad \{i = j + 1, j + N - M; \quad j = 1, N - M\} \]

\[a_{i,j} = 0; \quad \text{otherwise.} \]

This matrix will structurally take the form

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & a_{3,M} & \ldots & a_{N-M,1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{N-M,M}
\end{bmatrix}
\]

where the \(a_{i,j}\)'s are unknown complex elements to be solved through the linear equation

\[
[C]^H W_b = 0
\]

EXAMPLE

Consider an 8 element array in which 2 pattern null constraints, 0 db gain at broadside, and a Chebyshev pattern are desired. The total number of constraints is 4. The constraint matrix and response vector will take the form
The \(C_{ij} \)'s are found from (5) and the \(W_{ei} \)'s represent the weight vectors given in (22). The appropriate blocking matrix will take the form

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[W_b = \begin{bmatrix}
1 & 0 & 0 & 0 \\
a_{1,1} & 1 & 0 & 0 \\
a_{1,2} & a_{2,1} & 1 & 0 \\
a_{1,3} & a_{2,2} & a_{3,1} & 1 \\
a_{1,4} & a_{2,3} & a_{3,2} & a_{4,1} \\
0 & a_{2,4} & a_{3,3} & a_{4,2} \\
0 & 0 & a_{3,4} & a_{4,3} \\
0 & 0 & 0 & a_{4,4} \\
\end{bmatrix}
\] (27)

Since \(W_b \) will be orthogonal to \(\overline{C} \), we can solve (24) and get the resulting matrix equation.
Performing the corresponding matrix multiplication and solving for the unknown $a_{i,j}$ coefficients,

\[
\begin{bmatrix}
C_{1,1} & C_{2,1} & C_{3,1} & C_{4,1} & C_{5,1} & C_{6,1} & C_{7,1} & C_{8,1}
\end{bmatrix} \begin{bmatrix}
a_{1,1} \\
a_{1,2} \\
a_{1,3} \\
a_{1,4} \\
w_{c1} \\
w_{c2} \\
w_{c3} \\
w_{c4}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
a_{2,1} \\
a_{2,2} \\
a_{2,3} \\
a_{2,4} \\
w_{c5} \\
w_{c6} \\
w_{c7}
\end{bmatrix} = 0
\]

(28)

\[
\begin{bmatrix}
C_{1,2} & C_{2,2} & C_{3,2} & C_{4,2} & C_{5,2} & C_{6,2} & C_{7,2} & C_{8,2}
\end{bmatrix} \begin{bmatrix}
a_{2,1} \\
a_{2,2} \\
a_{2,3} \\
a_{2,4} \\
w_{c2} \\
w_{c3} \\
w_{c4} \\
w_{c5}
\end{bmatrix} = \begin{bmatrix}
-C_{1,2} \\
-C_{1,3} \\
-C_{1,4} \\
-W_{c2}
\end{bmatrix}
\]

(29)

Identical operations can be done to solve for the remaining $a_{i,j}$ coefficients.
EFFECTS OF ELEMENT FAILURES ON GSC PATTERNS

When one or more of the N array elements fail, the overall pattern deteriorates substantially. Figures 3 illustrates a 32 element array with a Dolph-Chebyshev pattern with pattern nulls constrained at 12°, 14°, 16°, and 18° and an actual interference signal at 22° with 20 dB power relative to the desired signal. The sidelobes were specified to be at least 35 dB under the main lobe. Figure 4 demonstrates the same array with a single element failure (element # 3). When several elements fail, the pattern deterioration is catastrophic. The need for weight adaptation in the face of array element failure is very apparent.

A REDUCED ORDER GENERALIZED SIDELOBE CANCELLER

Search techniques are typically used in reconfiguring the elements of an array in which one or more array elements have failed. In general, such techniques can be computationally intensive and are not guaranteed to find the globally optimal solution. A more direct approach to restructuring the array weights is to reduce the order of the active array under the same constraints as the original array. This results in optimal array weights under the given constraints and conditions.

Consider the transformation of the original array into the following system

\[W' = TW \] \hspace{1cm} (30)

where \(T \) is an N x N permutation matrix defining the condition of the array system. Ideally, if all elements are active, \(T \) will be equal to \(I_N \), the N x N identity matrix. If a single element fails in the \(k \)th position, \(T \) is defined by
In general, if \(r \) element failures exist, the matrix \(T \) is formed by moving each of the \(r \) rows corresponding to the failed elements to the top \(r \) rows of the \(T \) permutation matrix.

The transformed quiescent vector, constraint matrix and blocking matrix are given by

\[
W' = TW_q \\
C' = TC \\
W'_b = TW_b
\]

The transformed system now contains all weights associated with the \(r \) failed elements as the first \(r \) rows in the weight vectors which can be partitioned into subarrays representing the failed system elements and the remaining active elements.

\[
W'_q = \begin{bmatrix} W'_q & \cdot \end{bmatrix} \\
W'_{\cdot q}
\]

\[
W'_b = \begin{bmatrix} W'_{b\cdot} & \cdot \end{bmatrix} \\
W'_{\cdot b}
\]

\[
C' = \begin{bmatrix} C'_1 & \cdot \\ C'_2 \end{bmatrix}
\]
The partitions W'_f, W'_a, and C'_1

in (33) correspond to the failed elements and the remaining partitions relate to the active elements.

The constraint equation (4) can now be written in terms of the transformed system as

$$C'^TW' = f$$ \hspace{1cm} (34)

$$[C'_1 | C'_2]^{-1}W'_a = f$$ \hspace{1cm} (35)

or

$$C'_1W'_a + C'_2W'_a = f$$ \hspace{1cm} (36)

Because the elements associated with the weight set W'_a are failed, these weights will have no effect on the constraint equation (36) and there is no loss of information if the C'_1 matrix is set to zero. The resulting equation gives

$$C'_2W'_a = f$$ \hspace{1cm} (37)

where the unconstrained estimator solution is given by

$$W'^{\text{un}}_a = C'_2(C'^a_2C'_2)^{-1}f$$ \hspace{1cm} (38)

If the Chebyshev weight constraints are included in the desired solutions the W'_v vector must be modified as before to minimize the distance from the desired Chebyshev weight vector. The performance minimization is given by
\[
\text{Min}_{W'} \left\{ \left(\begin{bmatrix} W'_{\phi a} \\ - \\ W'_{\phi b} \end{bmatrix} - W'_{\text{cheb}} \right) W' \left(\begin{bmatrix} W'_{\phi a} \\ - \\ W'_{\phi b} \end{bmatrix} - W'_{\text{cheb}} \right) \right\}
\]

subject to:

\[C'_{2} W'_{\phi} = f \]

where

\[W'_{\text{cheb}} = \begin{bmatrix} W'_{ca} \\ - \\ W'_{cb} \end{bmatrix} = TW_{\text{cheb}} \]

The expanded performance equation is equivalent to

\[
\text{Min}\{ (W'_{\phi 1} - W'_{ca})^2 + (W'_{\phi 2} - W'_{ca})^2 + \ldots + (W'_{\phi n} - W'_{ca})^2 + \\
(W'_{\phi 1} - W'_{cb})^2 + \ldots + (W'_{\phi_{n-r}} - W'_{cb_{n-r}})^2 \}
\]

From the above equation, the minimization clearly takes place when the elements of \(W'_{\phi} = W'_{ca} \)

where \(W'_{ca} \) are the transformed Chebyshev weights corresponding to the failed elements. The remainder of the minimization is reduced in order to a \(N-r \) order minimization where the optimal quiescent solution for \(W_{\phi} \) is identical to (14)-(19) and is given by

\[\overline{W'}_{\phi} = \left(I - C'_{2} \left(C'^{\prime \prime}_{2} C'_{2} \right)^{-1} C'^{\prime \prime}_{2} \right) W'_{\text{cheb}} + W'_{\phi} \]

The constraint equations can be augmented to reflect the additional Chebyshev constraint as in (20) and (21). In this case the partitioned constraint matrix will be
\[C'_1' = \begin{bmatrix} 0_{m_1} \\ -W'_{ab} \end{bmatrix} \]
\[(43a) \]

\[C'_2' = \begin{bmatrix} C'_2 \\ -W'_{ab} \end{bmatrix} \]
\[(43b) \]

where

\[W' = \begin{bmatrix} W'_{aa} \\ -W'_{ab} \end{bmatrix} = TW' \]
\[(44) \]

The reduction of the active weights will also reduce the required dimensions of the blocking matrix \(W_b \).

Applying condition 2 of the blocking matrix on the transformed system results in

\[[C'_1 \mid C'_2] \begin{bmatrix} W'_{ba} \\ W'_{bb} \end{bmatrix} = C'_1W'_{ba} + C'_2W'_{bb} = 0 \]
\[(45) \]

Since \(C'_2 = 0 \), the blocking condition reduces to

\[C'_2W_{bb} = 0 \]
\[(46) \]

The reduced blocking matrix can take the form of (23) with reduced dimensions of \((N-r) \times (N-r-M)\). When the Chebyshev constraints are included as a desired constraint, the augment constraint matrix \(\overline{C}' \) is used in (45). In this case, \(\overline{C}'_1 \neq 0 \) because of the augmentation, however, since the submatrix \(W'_{ba} \) is associated with the failed elements, the coefficients of \(W'_{ba} \) can be set to zero reducing the equation to (46).
The structure of the W'_{ab} submatrix ensures that the total blocking matrix W_* is linearly independent thus satisfying blocking matrix condition 1.

Because of the reduction in the size of the blocking matrix, the adaptive weights W_* are reduced in number from $N-M$ to $N-M-r$. The minimization of the weight distance in the two paths of the GSC structure determines the adaptive weights. From equation (9) we have

$$\min_{w_\star} \left\{ \left[\begin{array}{c} W'_\star \\ W'_{ab} \end{array} \right] - \left[\begin{array}{c} W'_\star \\ W'_{ab} \end{array} \right] W_\star \right\} R_\star' \left[\begin{array}{c} W'_\star \\ W'_{ab} \end{array} \right] - \left[\begin{array}{c} W'_\star \\ W'_{ab} \end{array} \right] W_\star \right\}^H$$

where

$$R_\star' = T^H R_\star T$$

The upper partition of the minimization can be removed because $W'_{ab} = 0$. The lower partition determines the optimal weight values W_\star. The optimal weights are given by

$$W'_\star = W'_\star (W'^H_{ab} R_\star W'_\star)^{-1} W'^H_{ab} R'_\star W'_\star$$

The original system can be recovered through the inverse transformation

$$W_\star = T^{-1} \hat{W}_\star$$

$$W_b = T^{-1} \hat{W}_b$$

SIMULATION ISSUES

The original GSC algorithm was programmed on a microVAX 3600 in FORTRAN [10]. Appropriate modifications have been made to accommodate the reduced order algorithm. The initial condition inputs include the total number of elements, the number of failed elements and position of the failed elements in the array, signal to noise level, desired pattern nulls, interference
signal strength and directions, and desired mainlobe to sidelobe ratio for a Dolph-Chebyshev array pattern. Pattern nulls represent anticipated directions of interference signals. The anticipated nulls are programmed into the initial quiescent array. The actual jamming signal will modify the signal statistics and will be compensated for in the adaptive weights, producing a null in the direction of the actual interference. The noise variance σ_i^2 was set equal to 1.0 for reference.

Element failure effects are modeled by modifying the correlation matrices for the interference and desired signals, and adjusting the input at the array element as a signal is swept between -90° and 90°. The correlation matrices are modified by setting the jth row and column to 0 (except the diagonal component equals σ_i^2) for a element failure in the jth position. This assumes the noise in the failed element will be uncorrelated with any other element signal.

The input to a failed element is simulated as 0. Although several cases are possible for a failed element (i.e. signal grounded, +5Vdc, etc.) it is assumed that the known failed element can always be forced to ground state. The only signal processed through the failed element will be Gaussian noise with a variance of 1.0.

Figure 3 represents a 32 element array pattern with SNR=0.0, four desired pattern nulls at $12^\circ, 14^\circ, 16^\circ$, and 18°, a 35 dB Dolph-Chebyshev pattern, and a single interference signal located at 22° with a 20dB gain relative to the desired signal. Figure 4 shows the same example after element # 3 has failed. The pattern effectiveness has been reduced significantly with a single failure. Figure 5 shows the pattern obtained from the reduced order GSC algorithm.

If multiple element failures occur, the desired pattern is distorted accordingly. Figure 6 and figure 7 display the failure pattern and compensated pattern respectively for the previous
example with elements 2, 5, 15, 17, and 30 failed. The pattern corresponding to the failed array is unrecognizable whereas that of the compensated array matches all the desired constraints at the cost of the pattern floor raising.

If the event that array end elements fail, the array can be compensated for with the element failure algorithm, or as an alternative, the array can be reconfigured as a smaller array. Figure 8 demonstrates the above example with elements 1-6 failed in the 32 element array. Figure 9 shows the same desired pattern with an unfailed 26 element array. Both configurations meet the desired pattern null and adaptive null constraints. The reconfigured 26 element array matches the Dolph-Chebyshev pattern better than the failure compensated array. The 3dB main beam width is slightly smaller in the 32 element array even though 6 elements are failed.

Figures 10-16 demonstrate a 64 element array example. A 45 dB Dolph-Chebyshev pattern is desired with an anticipated signal at 8° and 2 actual jamming signals appear at 12° and 19° with 40 dB gain. The SNR is 0. Figures 10-12 represent a full array, failed uncompensated array, and failed array using the reduced GSC respectively. In this example, 15 simultaneous element failures were simulated (elements 29-43). The failed uncompensated array does not match the desired constraints of 0 dB gain at broadside and pattern null at 8°. The compensated array matches these constraints at the expense of slightly higher sidelobes. Figures 13 and 14 show the quiescent weight vector magnitude for the full array and fail compensated array respectively. The reconfigured weights tend to reflect the same Chebyshev pattern as the original weights with a slightly higher gain to compensate for the gain lost due to the failed elements. The failed element gains are set to the original weight vector gains. These values, although meaningless because of the failed elements, are necessary for the other weights to adjust accordingly. Figures 15 and 16 show the quiescent weight phase for the full array and compensated array. These figures reflect the increase in phase variations needed to match the desired constraints.
COMPUTATIONAL REQUIREMENTS FOR THE FAILURE COMPENSATED GSC

Upon determination of a failed element or elements, the GSC routine must be modified to compensate for the failure. The major recalculations include updating the blocking matrix W_b, and the two weight vectors W_q and W_o. These calculations may be done either on-line, pre-calculated off-line and stored in memory, or some combination of these.

Off-line Calculation and Storage

Off-line pre-computation and storage requires that every possible combination of failed elements be determined and weight vectors and blocking matrix calculated for each scenario. The possible number of combinations of failed elements, assuming parameters such as pattern nulls and desired pattern sidelobe strength are constant, become massively large. As an example, if $N=32$, there are approximately 1.28 billion total combinations of failures of 1 element to 14 elements. If 32 weights are stored, each weight requiring 4 bytes, the total memory required is 164 GBytes. These figures do not include memory required to store the blocking matrix coefficients. From these results, it is obvious that 100% data storage is not possible given the current storage devices available.

On-line Computation

The recalculation of the GSC weights consists of determining the correct transformation matrix, T, recomputing the blocking matrix elements, and calculating the weight vectors W_q and W_o. Recalculation of the blocking matrix coefficients requires that $(N-M-r)$ matrix inverses of size $M \times M$ be calculated. If M is large, these matrix inverses may take considerable time, depending on the hardware used for the GSC algorithm. The weight vector W_o requires a single $(N-M-r) \times (N-M-r)$ matrix inverse and five $(N-M-r) \times (N-M-r)$ matrix multiplications using the direct solution method (i.e. R_x known a priori). The quiescent weight vector calculation requires one $(N-r) \times (N-r)$ matrix inverse. The advantage to the reduced order GSC is that the total number of computations required to determine new weights when elements fail decreases with increasing
numbers of element failures. Table 1 shows various calculation times on a microVAX 3600 for computing T, W_h, W_q, and W_e under several conditions of element failures for a system with 6 total desired constraints.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Failures</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>0</td>
<td>137.85</td>
</tr>
<tr>
<td>96</td>
<td>48</td>
<td>90.89</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>43.4</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
<td>26.5</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>7.26</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>4.98</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table 1.

FUTURE RESEARCH DIRECTIONS

Extended research on the modified GSC and element failures can be applied in several directions. Some of the more important questions to be answered include:

1. Using the direct form of calculation for computing $W_{opt} = R^{-1}r$ involves an $N \times N$ matrix inversion. If high sampling rates are required, this is computationally very difficult. Also, assuming stationarity, $N(N+3)/2$ correlation measurements may be required before R and r are statistically accurate, whereas, in real practice, the statistical environment is usually changing. An adaptive algorithm must be incorporated to estimate the statistical environment more efficiently with fewer calculations.

2. Element failure can show up in various forms, including partial element failure (degradation of element gain). The algorithm for failure correction may be expanded to include
modification for partial element failure.

3. A method of on-line modification of the GSC for element failure must be found to gracefully modify the predefined constraint matrix and blocking matrix structures so adaptation time is minimized. Methods of augmenting a small off-line database with minimal on-line calculations must be studied to truly optimize the total reconfiguration time.

4. Parallel processing structures must be studied to determine the optimal computational distribution so the GSC and corresponding failure routines can be performed on-line in a real-time environment.

5. Array output sensitivity to the weight vector must be studied for large numbers of element failures. The off-line storage requirements may be reduced considerably if the output is robust with respect to weight values when large numbers of element failures are present.

6. Multi-array modes should be studied as an option for restructuring the array in the event of element failure. For example, in special cases, the array may be divided into equally spaced sub-arrays where the GSC is applied and the total array output is weighted sums of the sub-array outputs.

7. Methods for determining on-line element characterization must be found so that failed elements can be identified. For example, a near-field test could be conducted periodically which correlates the array output with a pre-stored pattern to determine if failed or deteriorated elements exist.

8. The comparison of the original weight vectors with the reconfigured weight vectors after element failures suggest that predictions may be made to the relative importance of array elements in the overall pattern robustness. In certain cases, total weight reconfiguration may not be necessary.

CONCLUSIONS
This paper demonstrates a technique for adapting to random element failures in a linear narrow band array. A reduced order Generalized Sidelobe Canceller algorithm was shown to
include constraints associated with the failed elements. Simulation results show an improvement in main beam isolation when using the corrector algorithm of greater than 30dB over that of an uncorrected array with a single element failure. An added feature of the reduced order algorithm is that the computational requirements for recomputing array weights reduces as the number of element failures increase. Multiple element failure examples show the reduced order algorithm matches the linear constraint conditions and the general shape of the desired beam pattern at the expense of a decrease in the overall mainlobe to sidelobe isolation.
Figure 3.

Figure 4.
Figure 5.

32 Element Array

Figure 6.
Figure 7.

32 Element Array

Correction (25, 15, 17, 30)

Figure 8.

32 Element Array

Failed Elements 1-6 Corrected
26 Element Array

Figure 9.

64 Element Array

Figure 10.
64 Element Array

15 Failures, Uncompensated

Figure 11.

Figure 12.
Figure 13.

Quiescent Weights -- 64 Element Array

Figure 14.
Figure 15.

Quiescent Weights -- 64 Element Array

Figure 16.
References

APPENDIX

NOTATION

W_q Quiescent Weight Vector
W'_q Transformed quiescent weight vector
\bar{W}_q Quiescent Weight Vector modified with Chebyshev constraint
W_b Blocking Matrix
W'_b Transformed Blocking Matrix
W'_{ba} Failed partition of transformed blocking matrix
W'_{bb} Remaining partition of transformed blocking matrix
W_a Adaptive Weight Vector
W'_a Transformed adaptive weight vector
W'_{qa} Failed partition of quiescent weight vector
W'_{qb} Remaining partition of quiescent weight vector
W_{cheb} Chebyshev weight vector
C Constraint Matrix
\overline{C} Augmented Constraint Matrix (includes Chebyshev constraint)
C'_1 Failed partition of transformed constraint matrix
C'_2 Remaining partition of transformed constraint matrix
C' Transformed constraint matrix
L Number of gain constraints
M Number of total constraints
r Number of failed elements
T Failure Transformation Matrix
R_{ee} Element Correlation Matrix
R'_{ee} Element Correlation Matrix for Active Elements
APPENDIX

Fortran Code Program Listing
This program forms an adaptive array pattern using the generalized sidelobe canceller (GSC). The following array data is input:

NEL = number of elements,
DIS = element spacing in terms of wavelength,
RATIO = mainlobe-to-sidelobe ratio (used to form the Chebyshev weights),
NANUL = number of anticipatory nulls,
ANUL(I) = anticipatory null locations.

Subroutine QUIESCENT.FOR is used to form matrix WS and vector WQ. The following environment information is input:

SNR = signal-to-noise ratio,
NAJ = number of interference signals,
THETA(I) = location of interference signals,
JNR(I) = interference signal strength.

The following is output in data file PATTERN.DAT:
The quiet state gain versus look angle (degrees).
The adaptive gain versus look angle (degrees).

The following is output to weights:
"NDIM";
"MDIM";
"WQH" - vector of dimension 1 x NDIM,
where WQH is the Hermitian of WQ;
"WSH" - matrix with dimension MDIM x NDIM,
where WSH is the Hermitian of WS; and
"WAH" - vector of dimension 1 x NDIM, W
here WAH is the Hermitian of WA.

Modified to do failure simulations --- dev 8-7-89

**

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 JNR
REAL T1, TEL
COMPLEX*16 WQH, WSH, WS, R, P, TEM, QH, WA, DET, RX, CSIMUL, T
COMPLEX*16 RX, RKB, RXD, TINV, WQT, WSTA, WQTB
COMPLEX*16 WQTH, WSTB, WSTBH, WSTA
INTEGER NEL, NANUL, MCON, NEL, nfel
CHARACTER fail
DIMENSION
ANUL(20), WSH(100,100), WS(100,100), WQ(100), R(100,100),
APJ(10), THETA(10), JNR(10), T(100,100), TINV(100,100),
RX(100,100), RKB(100,100), RXD(100,100), RXC(100,100),
RX(100,100), WST(100,100), WQT(100,100), WQTB(100,100),
WSTB(100,100), WSTBH(100,100), WSTA(100,100),
WQ(100), WQTB(100,100), WSTA(100,100), WAP(100)
COMMON NEL, RATIO, DIS, NANUL, ANUL, MCON, nfel
OPEN (17, FILE = 'WEIGHTS.DAT', STATUS = 'NEW')
OPEN (18, FILE = 'STATS.DAT', STATUS = 'NEW')
OPEN (19, FILE = 'WA.DAT', STATUS = 'NEW')
DATA PI / 3.141592654 /

C--input the array data, i.e., quiet state information:

print*, 'Is this failure simulation?'
read(*, 340) fail
write(*, 210)
read*, NEL
if (fail.eq.'y') then
 print*, 'Number of Failed Elements'

**
read*, nfel
do 15, i=1,nfel
print*, 'Failed Element #' read*, fel(i)
15 continue
else
fel(1)=-1
endif
WRITE(*,220)
WRITE(*,230)
READ*,DIS
WRITE(*,235)
READ*,RATIO
WRITE(*,240)
READ*,NANUL
IF (NANUL.EQ.0) GOTO 10
WRITE(*,250)
WRITE(*,260)
READ*, (ANUL(I), I=1,NANUL)
C Start a Timer to determine calculation time
T1=secnds(0.0)
C DETERMINE THE TRANSFORMATION MATRIX T
DO 5, I=1,nfel
DO 4, J=1,NEL
T(I,J)=(0.0,0.0)
IF (J.EQ.fel(I)) T(I,J)=(1.0,0.0)
4 CONTINUE
5 CONTINUE
DO 7, I=1,NEL-nfel
J=I
DO 6, K=1,nfel
IF (I+JO.EQ.fel(K)) JO=JO+1
6 CONTINUE
DO 8,K=1,NEL
IF (K.EQ.J+JO) THEN
T(I+nfel,K)=(1.0,0.0)
ELSE
T(I+nfel,K)=(0.0,0.0)
ENDIF
8 CONTINUE
7 CONTINUE
C*********** DETERMINE THE INVERSE TRANSFORM TINV **************
DO 11, I=1,NEL
DO 11, J=1,NEL
TINV(I,J)=T(J,I)
11 CONTINUE
CSEND THE ARRAY INFORMATION TO THE QUIESCENT WEIGHT SUBROUTINE (CONTR.FOR).
CCONTR.FOR RETURNS WITH THE VECTOR WQT AND THE MATRIX WST, THE TRANSPOSED
CSYSTEM BLOCKING MATRIX AND QUIESCIENT WEIGHTS.
10 CALL QUIESCENT(T, WST, WQT)
DELTAS=SECNDS(T1)
print*,delta
C************* SPLIT WST AND WQT INTO WST(A&B), AND WQT(A&B) **********
DO 13, I=1,nfel
WQTA(I)=WQT(I)
DO 14, J=1,NEL-MCON-nfel
WSTA(I,J)=WST(I,J)
14 CONTINUE

13 CONTINUE

DO 17, I=nfel+1,NEL
WQTB(I-nfel)=WQT(I)
DO 16, J=1,NEL-MCON-nfel
WSTE(I-nfel,J)=WST(I,J)
16 CONTINUE
17 CONTINUE

C INPUT THE SIGNAL ENVIRONMENT:
WRITE(*,270)
READ*,SNR
WRITE(*,280)
READ*,NAJ
IF (NAJ .EQ. 0) GOTO 60
WRITE(*,290)
WRITE(*,300)
READ*, (THETA(I), I=1,NAJ)
WRITE(*,310)
WRITE(*,320)
READ*, (JNR(I), I=1,NAJ)
VARDS = (1.0**((SNR/20.0))**2.0
C CONVERT INTERFERENCE SIGNAL INFORMATION TO RADIANS AND RATIO AMPLITUDE:
print*, 'convert to radians and ratio'
DO 20 I=1,NAJ
THETA(I) = THETA(I)*PI*2.0/360.0
20 APJ(I) = 10.0**(JNR(I)/20.0)
C INPUT THE INTERFERENCE INTO THE COVARIANCE MATRIX RX:
print*, 'Input into covariance matrix rx'
write(18,*),'Rii'
DR = 2.0*PI*DIS
DO 51 I=1,NEL
DO 50 J=1,NEL
IF (I .EQ. J) THEN
X = 0.0
DO 30 K=1,NAJ
X = X + APJ(K)**2.0
RX(I,J) = DCMPLX(X,0.0D0)
ELSE
X = 0.0D0
Y = 0.0D0
DO 40 K=1,NAJ
PHI = DR*SIN(THETA(K))
X = X + APJ(K)**2.0*COS((J-I)*PHI)
Y = Y + APJ(K)**2.0*SIN((J-I)*PHI)
RX(I,J) = DCMPLX(X,Y)
40 CONTINUE
50 CONTINUE
write(18,330) (dreal(rx(i,j1)),dimag(rx(i,j1)),j1=1,NEL)
51 CONTINUE
C ADD THE DESIRED SIGNAL AND WHITE GAUSSIAN NOISE TO THE COVARIANCE MATRIX RX:
print*, 'add desired signal and noise'
write(18,*),'Rxx=Rss+Rdd+Rii'
DO 71 I=1,NEL
DO 70 J=1,NEL
IF (I .EQ. J) THEN
RX(I,J) = RX(I,J) + DCMPLX(1.0D0,0.0D0)
ELSE
 RX(I,J) = RX(I,J) + DCMPLX(VARDS,0.0D0)
ENDIF

DO 61, I=1, N
 IF (FAIL.EQ.'Y'.AND.J.EQ.NEL) THEN
 RX(I,J) = (0.,0.)
 ENDIF
 IF (FAIL.EQ.'Y'.AND.I.EQ.NEL) THEN
 RX(I,J) = (0.,0.)
 ENDIF
 IF (FAIL.EQ.'Y'.AND.J.EQ.I.AND.I.EQ.NEL) THEN
 RX(I,J) = (1.,0.)
 ENDIF

61 CONTINUE

70 CONTINUE

WRITE(18,330) (DREAL(RX(I,J)),DIMAG(RX(I,J)), J=1, N)

C************* Calculate the transformed Covariance matrix RXT *************
C************* RXT= T * RX * T' *************************

CALL MATMUL(T, N, N, 100, 100, RX, N, 100, 100, TEM, 100, 100)
CALL MATMUL(TEM, N, N, 100, 100, TINV, N, 100, 100, RXT, 100, 100)

C************ PARTITION RXT INTO RXA, RXB, RXC, AND RXD MATRICES ************

DO 73, I=1, N
 DO 73, J=1, N
 RXA(I,J) = RXT(I,J)
 CONTINUE
73 CONTINUE

DO 75, I=1, N
 DO 75, J=N+1, N
 RXB(I,J-N) = RXT(I,J)
 CONTINUE
75 CONTINUE

DO 77, I=N+1, N
 DO 77, J=1, N
 RXC(I-N,J) = RXT(I,J)
 CONTINUE
77 CONTINUE

DO 79, I-N+1, N
 DO 79, J-N+1, N
 RXD(I-N,J-N) = RXT(I,J)
 CONTINUE
79 CONTINUE

WRITE*, 'calculating the hermatian of ws and wk'
DO 80 I=1, NCON-N
 DO 80 J=1, NCON-N
 WSTBH(I,J) = DCONJG(WSTB(J,I))
 CONTINUE
80 CONTINUE

DO 90 I=1, NCON-N
 DO 90 J=1, NCON-N
 WQTBH(I) = DCONJG(MOTB(I))
 CONTINUE
90 CONTINUE

C CALCULATE THE COVARIANCE MATRIX R AND THE VECTOR P:
WRITE*, 'calculating covariance matrix r and vector p'
CALL MATMUL(WSTBH, NCON-N, NCON-N, 100, 100, RXD, NCON-N, 100, 100, TEM, 100, 100)
CALL MATMUL(TEM, NCON-N, NCON-N, 100, 100, WSTB, NCON-N, 100, 100, WSTB, NCON-N, 100, 100, TEM, 100, 100)
CALL MTVTMUL(TEM, NEL-MCON-nfel, NEL-nfel, 100, 100, WQTB, 100, P, 100)

C SOLVE WA = R**-1 * P USING THE SUBROUTINE GAUSS:

print*, 'solve wa=r**-1*p'

CALL GAUSS(R, P, WA, NEL-MCON-nfel, 100)

delta=secnds(t1)

print*, delta

C********** TRANSFORM SYSTEM WEIGHTS BACK INTO ORIGINAL SYSTEM ********

CALL MTVTMUL(TINV, NEL, NEL, 100,100, WQT, 100, WQ, 100)

CALL MATMUL(TINV, NEL, NEL, 100,100, WST, NEL-MCON-nfel, 100, 100, 100)

C******** CALCULATE THE HERMITIANS OF WS AND WQ ************

DO 110, I=1,NEL

WQH(I)=DCONJG(WQ(I))

110 CONTINUE

DO 115, I=1,NEL-MCON-nfel

WSH(J,I)=DCONJG(WB(I,J))

115 CONTINUE

C Output NEL, NEL-MCON, WQH, WSH, and WAH to 'WEIGHTS.DAT.'

DO 117, I=1,NEL

WQM(I)=DSQRT(DREAL(WQ(I))*DREAL(WQ(I)))+DIMAG(WQ(I))*DIMAG(WQ(I)))

WQP(I)=(180/3.1415)*DATAN2(DIMAG(WQ(I)),DREAL(WQ(I)))

print*, i, wqm(i), wqp(i)

117 CONTINUE

DO 119, I=1,NEL-MCON-NFEL

WAM(I)=DSQRT(DREAL(WA(I))*DREAL(WA(I)))+DIMAG(WA(I))*DIMAG(WA(I)))

WAP(I)=(180/3.1415)*DATAN2(DIMAG(WA(I)),DREAL(WA(I)))

119 CONTINUE

J = NEL-MCON-nfel

WRITE(17,*), 'NEL=',NEL, 'J=',J

WRITE(19,*), 'NEL=',NEL

WRITE(17,*), 'WQ Vector'

WRITE(19,*), 'WQ Vector'

WRITE(17,*), ' 2'

WRITE(19,*), ' 2'

DO 118, I=1,NEL

WRITE(17,350) I, WQM(I), WQP(I)

118 CONTINUE

DO 120, I=1,NEL-MCON

WRITE(19,350) I, WAM(I), WAP(I)

120 CONTINUE

WRITE(17,*), 'WS MATRIX'

WRITE(17,*), 'WS MATRIX'

WRITE(17,*), (RS(I,J), J=1,NEL-MCON-nfel)

WRITE(17,*), (RS(I,J), J=1,NEL-MCON-nfel)

WRITE(17,*), 'WA Vector'

WRITE(17,*), 'WA Vector'

WRITE(17,*), ' 2'

WRITE(17,*), ' 2'

CALL PATTERN(NEL, NEL-MCON, DIS, WQH, WSH, WA, fel, nfel)

C FORMAT STATEMENTS:

210 FORMAT(/,' INPUT THE NUMBER OF ELEMENTS IN THE ARRAY: ',$)

220 FORMAT(/,' INPUT THE DISTANCE BETWEEN THE ELEMENTS IN THE ARRAY')

230 FORMAT(/' IN TERMS OF THE WAVELENGTH: ',$)

235 FORMAT(/' INPUT THE DESIRED MAINLOBE-TO-SIDELOBE RATIO FOR THE',$)

237 FORMAT(/' CHEBYSHEV WEIGHTS IN POSITIVE DB:',$)

240 FORMAT(/,' INPUT THE NUMBER OF ANTICIPATORY NULLS DESIRED: ',$)
FORMAT(/,' INPUT THE LOCATION OF THESE NULLS IN DEGREES,')
FORMAT('/' WHERE THE BROADSIDE VIEW IS ZERO DEGREES): ',$
FORMAT(/,' INPUT THE DESIRED SIGNAL TO NOISE RATIO IN DB: ',$
FORMAT(/,' INPUT THE NUMBER OF INTERFERENCE SIGNALS: ',$
FORMAT(/,' INPUT THE LOCATION OF THESE INTERFERENCE SIGNALS')
FORMAT(' IN DEGREES: ',$
FORMAT(/,' INPUT THE STRENGTH OF THESE INTERFERENCE SIGNALS')
FORMAT(' WITH RESPECT TO THE NOISE, IN DECIBALS: ',$
format(f8.1,f8.1,3x,f8.1,f8.1,3x,f8.1,f8.1,3x,f8.1,f8.1)
format(a1)
FORMAT(I4,3X,F10.4,3X,F10.4)
3 FORMAT(8(2(F3.0,X))X)

WRITE(*,*) ' THE ARRAY PATTERN IS IN THE DATA FILE PATTERN.DAT.'
STOP
END
This program contains a subroutine that calculates the quiescent weights of a generalized sidelobe cancelor (GSC).

The following are input to the subroutine:
- NEL - number of elements in the array,
- NANUL - the number of anticipatory nulls,
- DIS - the distance between the elements,
- ANUL - the location of the anticipatory nulls.

Returns
- WS - The blocking matrix
- WQ - The quiescent weight vector

SUBROUTINE QUIESCENT(T,WST,WQT)
 implicit REAL*8 (A-H,O-Z)
 COMPLEX*16 CON, CONH, CON2, WS, WQ, A, B, XY, WCHEB, FCON, CSIMUL
 COMPLEX*16 CT, C1, C2, C2X, T, WCHEBT, WQA, WQB, WSA, WSB, WST, C2H, WQT
 COMPLEX*16 WCHEBTB
 dimension ANUL(20), WCHEB(100), CON(100,100), CONH(100,100), CON2(100,100),
 & WS(100,100), FCON(100), WQ(100), A(100,100), B(100), T(100,100)
 & dimension CT(100,100), C2(100,100), C1(100,100), WCHEBT(100),
 & C2X(100,100), WSA(100,100), WSB(100,100), WST(100,100)
 & dimension WQA(100), WQB(100), WCHEBTB(100),
 & C2H(100,100), WQT(100)
 common NEL, RATIO, DIS, NANUL, ANUL, MCON, nfel
 integer nfel, fel(20)
 data PI / 3.141592654 /
 open(5, file='MATRIX.DAT', status='new, recl=5000')

C call the subroutine CHEBYSHEV.for to obtain the Chebyshev weights.
C The mainlobe sidelobe ratio (RATIO), and the number of elements are
C passed; the Chebyshev weights (WCHEB) are returned.
2 format(2x,f6.3,'+y',f6.3,2x)
call CHEBYSHEV(NEL,DIS,RATIO,WCHEB)
c write(5,'(a)') 'WCHEB'
c do 20, i=1, NEL
c write(5,2) WCHEB(I)
c20 continue

C Form the constraint matrix (CON) and the f vector (FCON) using
C two steps:

NCON = NANUL + 1
DR = 2.0D0*PI*DIS

C***** Step (1) Form the look direction (0 DB at 0 degrees) constraint;

do 400 i = 1, NEL
con(i,1) = (1.0D0,0.0D0)
400 continue
fcon(1) = (1.0D0,0.0D0)

C***** Step (2) Form the anticipatory null constraints;

if (NANUL .EQ. 0) go to 605
print*, 'Anticipatory null constraint matrix'
do 600 i = 1, NANUL
k = i + 1
theta = ANUL(I)*2.0D0*PI/360.0D0
DO 500 J = 1,NEL
 XJ = J
 X = (1.0D0-XJ)*DR*DSIN(THETA)
 CON(J,K) = DCMPLX(DCOS(X),DSIN(X))
500 CONTINUE
 FCON(K) = (0.0D0,0.0D0)
600 CONTINUE

CXXXXXXXXX PRINTOUT FOR C XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C WRITE(5,*) 'C MATRIX'
C DO 602,I=1,NEL
C WRITE(5,1),(CON(I,J), J=1,NCON)
C602 CONTINUE
1 FORMAT(16(2X F6.3,'+',F6.3,'*i',2X))
CXXXXXXXXX PRINTOUT FOR CT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C CALL MATMUL(T,NEL,NEL,100,100,CON,NCON,100,100,CT,100,100)

C***** STEP (3) COMPUTE THE TRANSFORMED MATRICES CT
C
C***** STEP (4) DETERMINE THE PARTITIONED MATRICES C1 AND C2 ****
C WRITE(5,*) 'PARTITIONED C1 MATRIX'
DO 610, I=1,nfel
 DO 611, J=1,NCON
 C1(I,J)=CT(I,J)
611 CONTINUE
C WRITE(5,1) (C1(I,J),J=1,NCON)
610 CONTINUE
C***** DETERMINE THE TRANSFORMED CHEBYSHEV-- WCHEBT ***
C CALL MVTMUL(T,NEL,NEL,100,100,NCHES,100,NCHEBT,100)

C***** WQA=WCHEBT FOR THE FAILED ELEMENTS ***********
DO 620, I=1,nfel
 WQA(I)=WCHEBT(I)
620 CONTINUE
C***** FORM WCHEBTB = WCHEBT FOR THE UNFAILED ELEMENTS *****
C WRITE(5,*) 'WCHEBT PARTITION B'
DO 630, I=nfel+1,NEL
 WCHEBTB(I-nfel)=WCHEBT(I)
630 CONTINUE
C***** WQB=(I-C2*(C2H*C2)**-1*C2H*WCHEBTB + WQ ************
C CALCULATE THE WEIGHTS WQ = B + C2* (C2H*C2)**-1 * FCON.
C B = (I - C2 * (C2H*C2)**-1 * C2H) * WCHEBTB (WHERE C2H IS THE
C HERMATION OF C2):
C***** STEP (1) CALCULATE C2X = C2 * (C2H * C2)**-1;
605 DO 640, I = 1,NCON
DO 640, J = 1, NEL-nfel
 C2H(I, J) = DCONJG(C2(J, I))
 C2H(I, J) = DCONJG(C2(J, I))
640 CONTINUE
WRITE(5,*) 'C2 HERMITIAN ==> C2H'
DO 641, I=1, NCON
WRITE(5,1) (C2H(I, J), J=1, NEL-nfel)
CONTINUE
!
CALL MATMUL(C2H, NCON, NEL-nfel, 100, 100, C2, NCON, 100, 100, A, 100, 100)
WRITE(5,*) 'C2H*C2'
!
DO 643, I=1, NCON
WRITE(5,1) (A(I, J), J=1, NCON)
CONTINUE
!
IF (NCON .EQ. 1) THEN
 A(1,1) = 1.0D0/A(1,1)
ELSE
 XY = CSIMUL(NCON, A, B, 1E-14, -1, 100)
 IF (XY .EQ. (0.0D0, 0.0D0)) THEN
 PRINT*, 'AN ERROR HAS RESULTED WHEN CALCULATING'
 PRINT*, 'THE (C2H * C2)**-1 MATRIX.'
 STOP
 ENDIF
ENDIF
!
CALL MATMUL(C2, NEL-nfel, NCON, 100, 100, A, NCON, 100, 100, C2X, 100, 100)
WRITE(5,*) 'C2X=C2*C2H*C2)**-1'
!
DO 645, I=1, NEL-nfel
WRITE(5,1) (C2X(I, J), J=1, NCON)
CONTINUE
!
C***** STEP (2) CALCULATE WQB = C2 * (C2H * C2)**-1 * FCON, AND
WQB = (I - C2 * (C2H*C2)**-1 *C2H) * WCHEBTB + WQB;
!
CALL MTVMUL(C2X, NEL-nfel, NCON, 100, 100, FCON, 100, WQB, 100)
!
WRITE(5,*) 'WQB=C2*C2H*C2)**-1 * FCON'
!
DO 646, I=1, NEL-nfel
WRITE(5,2) WQB(I)
CONTINUE
!
CALL MATMUL(C2X, NEL-nfel, NCON, 100, 100, C2H, NEL-nfel, 100, 100, A, 100, 100)
!
DO 650 J=1, NEL-nfel
 DO 650 I=1, NEL-nfel
 IF (I .EQ. J) THEN
 C2X(I, J) = (1.0D0, 0.0D0) - A(I, J)
 ELSE
 C2X(I, J) = -A(I, J)
 ENDIF
CONTINUE
!
WRITE(5,*) '(I-C2*C2H*C2)**-1*C2H'
!
DO 647, I=1, NEL-nfel
WRITE(5,1) (C2X(I, J), J=1, NEL-nfel)
CONTINUE
!
DO 648, I=1, NEL-nfel
WRITE(5,2) WCHEBTB(I)
CONTINUE

PRINT*, 'MULTIPLY C2X AND WCHEBTB'
CALL MTVMUL(C2X, NEL-nfel, NEL-nfel, 100, 100, WCHEBTB, 100, B, 100)
WRITE(5,*) 'B(I) = (1-C2*INV(C2H*C2)*C2H)*WCHEBB'
DO 660 I = 1, NEL-nfel
 WRITE(5, 2) B(I)
 WQB(I) = B(I) + WQB(I)
660 CONTINUE

********** FORMULATE THE COMPLETE WQ VECTOR **************
DO 670, I = 1, nfel
 WQT(I) = WQA(I)
670 CONTINUE
DO 680, I = nfel + 1, NEL
 WQT(I) = WQB(I - nfel)
680 CONTINUE
WRITE(5,*) 'WQ TRANSPOSE'
DO 685, I = 1, NEL
 WRITE(5, 2) NQT(I)
685 CONTINUE

C*********** FORM WS SO THAT ALL ITS COLUMNS ARE LINEARLY INDEPENDENT AND
C IT SATISFIES C2H*WSB = 0:

C*****STEP (1) MODIFY CONSTRAINTS TO INCLUDE THE CHEBY PATTERN;
MCON = MCON + 1
DO 700 I = 1, NEL-nfel
 C2H(I, MCON) = DCONJG(B(I))
700 CONTINUE
WRITE(5,*) 'C2H APPENDED'
DO 701, I = 1, MCON
 WRITE(5, 1) (C2H(I, J), J = 1, NEL-nfel)
701 CONTINUE

C***** STEP (2) SET UP WSB INTO THE DESIRED FORM (TO ASSURE
C THE COLUMNS ARE LINEARLY INDEPENDENT);
DO 705 I = 1, NEL-nfel
 DO 705 J = 1, NEL-MCON-nfel
 WSB(I, J) = (0.0, 0.0)
705 CONTINUE
DO 710 I = J + 1, J + MCON
 DO 710 J = 1, NEL-MCON-nfel
 WSB(I, J) = (3.0D0, 0.0D0)
710 CONTINUE
MW(J, J) = (1.0D0, 0.0D0)

DO 801 I = 1, NEL-nfel
 DO 801 J = 1, NEL-MCON-nfel
 PRINT*, I, J, WSB(I, J)
801 CONTINUE

C***** STEP (3) DETERMINE THE REMAINING WS TERMS FROM CH*WS = 0;
DO 900 J = 1, NEL-MCON-nfel
 PRINT*, 'ROW', J
 K = 1
 DO 880 L = 1, MCON
 IF (WSB(I, J) .EQ. (1.0D0, 0.0D0)) THEN
 DO 850 L = 1, MCON
 A(L, MCON + 1) = -C2H(L, I)
850 CONTINUE
 ELSEIF (WSB(I, J) .EQ. (3.0D0, 0.0D0)) THEN
 DO 850 L = 1, MCON
 A(L, MCON + 1) = -C2H(L, I)
850 CONTINUE
 ELSE
 DO 850 L = 1, MCON
 A(L, MCON + 1) = -C2H(L, I)
850 CONTINUE
 END IF
900 CONTINUE

ccc I am Here cccccc I am Here cccccccc I am Here cccccccccccc
DO 875 L=1,MCON
 A(L,K) = C2H(L,I)
 875 CONTINUE

C DO 799, ia=1,MCON
C PRINT*,ia,k,a(ia,k)
C 799 CONTINUE

K = K + 1
ENDIF

880 CONTINUE
 XY = CSIMUL(MCON, A, 1.0E-18, 1, 100)
C PRINT*,"xy",xy
 IF (XY .EQ. (0.0D0,0.0D0)) THEN
 PRINT*,'AN ERROR HAS RESULTED IN THE WS MATRIX,'
 PRINT*,'Column ',j
 PRINT*,'CANNOT CONTINUE!'
 STOP
 ENDIF

L = 1
DO 890 I = 1,NEL-nfel
 IF (WSB(I,J) .EQ. (3.000,0.0D0)) THEN
 WSB(I,J) = B(L)
 L = L+1
 ENDIF
 890 CONTINUE
 900 CONTINUE
C SEND WS, AND WQ BACK TO MAIN4.FOR

DO 910, I=1,nfel
 DO 910, J-1,NEL-MCON-nfel
 WSA(I,J)=0.000
 WST(I,J)=WSA(I,J)
 910 CONTINUE

DO 920, I=1,NEL-nfel
 DO 920, J-1,NEL-MCON-nfel
 WST(l+nfel,J)=WSB(I,J)
 920 CONTINUE
RETURN
END
* THIS PROGRAM CONTAINS A SUBROUTINE TO COMPUTE THE DOLPH-CHEBYSHEV
* WEIGHTS FOR AN ARRAY WITH EQUALLY SPACED ELEMENTS. THE NUMBER OF
* WEIGHTS MUST BE ODD. THE SIGNAL IS AT THE BROADSIDE VIEW. THE
* ALGORITHM USED IS FROM C.J. DRANE, JR., "DOLPH-CHEBYSHEV EXCITATION
* COEFFICIENT APPROXIMATION," IEEE TRANS. ON ANT. AND PROP,
* VOL. AP-12, NUM. 6, NOV. 1964.
*

SUBROUTINE CHEBYSHEV(NEL,DIS,R,W)
implicit real*8 (a-h,o-z)
real*8 delta
COMPLEX*16 W
DIMENSION 11(100)
DATA PI / 3.14159265 /
R 10.0**(R/20.0)

C---DETERMINE IF THE NUMBER OF ELEMENTS IS ODD OR EVEN:
print*,'subroutine chebyshev'
EVOD NEL/2 - FLOAT(NEL)/2.0
IF ((lod .EQ. 0.0) THEN
 N NEL/2
ELSE
 N (NEL - 1)/2
ENDIF

C---SOLVE FOR THE DOLPH-CHEBYSHEV WEIGHTS:
DELTA PI*(1.-2.0d0*DIS)
Z DCOSH(DLOG(R + DSQRT(R*R - 1.0D0))/N)
ALPHA DACOS((3.0D0 - Z)/(1.0D0 + Z))
W(1) ((Z+1.0D0)/(1.0DO+DCOS(DELTA)))**N
DO 20 I-2,N
 XX - DSQRT(DFLOAT(N*N - 1 - I)**2))
 W(I) N*ALPHA*BESSELf(XX*ALPHA)/XX
 & + N*(-1)**(2*N-I+1)*
 & DELTA*BESSELf(XX*DELTA)/XX
20 continue
IF (EVOD .NE. 0.0) THEN
C CALL BESSEL(N*ALPHA,X1)
C CALL BESSEL(N*DELTA,Y1)
W(N+1) ALPHA*BESSELF(N*ALPHA) + DELTA*BESSELF(N*DELTA)
ENDIF
DO 30 I=1,N
 W(NEL-I+1) = DCONJG(W(I))
30 C---SCALE THE WEIGHTS SO THEY ADD UP TO ONE:
SUM 0.0
DO 40 I=1,NEL
 SUM = SUM + CDABS(W(I))
DO 50 I=1,NEL
 W(I) = W(I)/SUM
Cprint*,w(i)
50 Continue
print*,'Exit chebyshev'
RETURN
END

C---THE FOLLOWING FUNCTION (BESSEL) FINDS THE MODIFIED BESSEL FUNCTION
C OF THE FIRST KIND AND FIRST ORDER:

Real*8 FUNCTION BESSELF(X)
real*8 x
T = X/3.75
IF (X .GT. -3.75 .AND. X .LT. 3.75) THEN
 XI = 0.5 + 0.87890594*T**2. + 0.51498869*T**4.+}
 & 0.15084934*T**6. + 0.02658733*T**8. +
 & 0.00301532*T**10.0 + 0.00032411*T**12.
 XI = XI*X
ELSE IF (X .GE. 3.75) THEN
 XI = 0.39894228 - 0.03988024*T**(-1.)-
 & 0.00362018*T**(-2.) + 0.00163801*T**(-3.)-
 & 0.01031555*T**(-4.) + 0.02282967*T**(-5.)-
 & 0.02895312*T**(-6.) + 0.01787654*T**(-7.)-
 & 0.00420059*T*(-8.)
 XI = XI*X**(-0.5D0)*DEXP(X)
ELSE
 PRINT*, ' BESSEL ERROR'
 STOP
ENDIF
BESSELF = XI
RETURN
END
THIS SUBROUTINE USES THE GSC TO FORM THE ARRAY PATTERN.
THE OUTPUT DATA FILE (PATTERN.DAT) CONTAINS THE ARRAY PATTERN.
Note: This file was modified from the original pattern.for program
and will be used to separate the individual outputs into their
own files named que.dat and adapt.dat. (Without headers so
they are readily accessible by pplot.)
8-7-89 dev
Note: Another file was added 'fail.dat' to store the information from
the failed element.

SUBROUTINE PATTERN(KANT, NDIM, DIS, WQH, WSH, WAH, fel, nfel)

IMPLICIT REAL*8 (A-H, O-Z)

COMPLEX*16 WQH, WSH, WAH, E, OUT, U, Y, YQ, YA, efail(100), yqf

integer fel(100), nfel

DIMENSION E(100), WQH(100), WSH(100,100), WAH(100), U(100)

OPEN(10,FILE = 'QUE.DAT', STATUS = 'NEW')

open(11,file = 'ADAPT.DAT', Status = 'NEW')

open(12,file= 'REAL.DAT',status='new')

OPEN(13,FILE = 'IMAG.DAT', STATUS = 'NEW')

WRITE(10,*)' THE FOLLOWING IS THE PATTERN FOR THE GSC.'

WRITE(10,*)' LOOK ANGLE (DEGREES), QUIESCENT GAIN,

ADAPTIVE GAIN'

if(fel(1).gt.0) then

do 30,i=1,nfel

print*,'Failed Element!!! #',fel(i)

30 continue

else

print*, 'Elements OK'

endif

PI = 3.141592654

E(1) = (1.0D0, 0.0D0)

DO 1000 I=1,1801

XI = I-1.0D0

THET=90.0D0-(XI*180.0D0/1800.0D0)

THETA = THET*2.0DO*PI/360.0D0

CALCULATE INCOMING SIGNAL:

DO 90 J=2,KANT

XJ = J

PHI = (1.0D0-XJ)*2.0DO*DIS*PI*DSIN(THETA)

E(J) = DCMPLX(DCOS(PHI),DSIN(PHI))

90 CONTINUE

if(fel(1).gt.0) then

do 35 if=1,nfel

efail(if)=e(fel(if))

e(fel(if))=(0.0D0,0.0D0)

35 continue

endif

CALCULATE OUTPUT (Y = YQ - YA):

YQ = (0.0D0,0.0D0)

DO 95 J=1,KANT

yqf=0.0D0

do 94,if=1,nfel

if(j.eq.fel(if)) then

yqf=yqf+wqh(j)*efail(if)

94 continue

95 enddo
endif
continue
YQ = YQ + WQH(J) * E(J)

CALL MTVMUL(WSH,NDIM,KANT,100,100,E,100,U,100)

YA = (0.0D0, 0.0D0)
DO 100 J=1,NDIM
100 YA = YA + WAH(J) * U(J)

Y = YQ - YA
yqfout = CDABS(yqf)
write(12,110) thet, DREAL(yq), DREAL(yqf)
write(13,110) thet, DIMAG(yq), DIMAG(yqf)

yqfout = 20.0D0*DLOG10(yqfout)
YQOUT = CDABS(YQ)
YQOUT = 20.0D0*DLOG10(YQOUT)
YAOUT = CDABS(YA)
YAOUT = 20.0D0*DLOG10(YAOUT)
AOUT = CDABS(Y)
AOUT = 20.0D0*DLOG10(AOUT)

WRITE(10,110) THET, YQOUT, YAOUT
write(11,120) thet, YAOUT
WRITE (14,120) THET, AOUT
110 FORMAT(2X,F15.8, 6X,F15.8, 6X,F15.8)
120 format(2x,f15.8,6x,f15.8)
130 format(2x,f15.8,2x,f15.8,2x,f15.8,2x,f15.8,2x,f15.8,2x,f15.8)
1000 CONTINUE
RETURN
END
FUNCTION CSIMUL(N,CMAT,CX,EPS,INDIC,NRC)

CSIMUL IS A COMPLEX (DOUBLE PRECISION) MATRIX INVERSION ROUTINE

USE:

WHEN INDIC IS NEGATIVE, CSIMUL COMPUTES THE INVERSE OF THE N BY N COMPLEX MATRIX CMAT IN PLACE. WHEN INDIC IS ZERO, CSIMUL COMPUTES THE N SOLUTIONS CX(1)...CX(N) CORRESPONDING TO THE SET OF LINEAR EQUATIONS WITH AUGMENTED MATRIX OF COEFFICIENTS IN THE N BY N+1 ARRAY CMAT AND IN ADDITION COMPUTES THE INVERSE OF THE COEFFICIENT MATRIX IN PLACE AS ABOVE. IF INDIC IS POSITIVE, THE SET OF LINEAR EQUATIONS IS SOLVED BUT THE INVERSE IS NOT COMPUTED IN PLACE. THE GAUSS-JORDAN COMPLETE ELIMINATION METHOD IS EMPLOYED WITH THE MAXIMUM PIVOT STRATEGY. THE RESULTING VALUE IN LOCATION CSIMUL IS THE COMPLEX DETERMINANT OF THE SYSTEM.

IMPLICIT COMPLEX*16 (A-H, O-Z)
REAL*8 EPS
COMPLEX*16 CMAT, CX, Y, DETER, PIVOT, CIJCK, CSIMUL
DIMENSION IR(100), JC(100), JORD(100), Y(100), CMAT(NRC,NRC+1)
DIMENSION CX(NRC)
MAX=N

IF (INDIC.GE.0) MAX=N+1
IF (N.GT.NRC-1) THEN
 WRITE (5, 200)
 CSIMUL=DCMPLX(0.0d0, 0.0d0)
 RETURN
END IF
DETER=DCMPLX(1.0d0, 0.0d0)
DO 18 K=1,N
 KM=K-1
 PIVOT=DCMPLX(0.0d0, 0.0d0)
 DO 11 I=1,N
 DO 11 J=1,N
 IF (I.EQ.IR(K)) GO TO 11
 IF (J.EQ.JC(K)) GO TO 11
 IF (CDABS(CMAT(I,J)).LE.CDABS(PIVOT)) GO TO 11
 PIVOT=CMAT(I, J)
 IR(K)=I
 JC(K)=J
 END DO
 11 CONTINUE
 IF (CDABS(PIVOT).GT.EPS) GO TO 13
 print*, 'pivot', PIVOT
 CSIMUL=DCMPLX(0.0d0, 0.0d0)
 RETURN
13 DETER=DETER*PIVOT
DO 14 J=1,MAX
 CMAT(IR(K), J)=CMAT(IR(K), J)/PIVOT
 CMAT(IR(K), J)=1.0d0/PIVOT
DO 18 I=1,N
 CIJCK=CMAT(I, JC(K))
 IF (I.EQ.IR(K)) GO TO 18
 CMAT(I, JC(K))=CIJCK/PIVOT
DO 17 J=1,MAX
IF (J .NE. JC(K)) CMAT(I, J) = CMAT(I, J) - CIJCX * CMAT(IR(K), J)

CONTINUE
DO 20 I = 1, N
JORD(IR(I)) = JC(I)

IF (INDIC .GE. 0) CX(JC(I)) = CMAT(IR(I), MAX)
INTCH = 0
NM = N - 1
DO 22 I = 1, NM
IP = I + 1
DO 22 J = IP, N
IF (JORD(J) .GE. JORD(I)) GO TO 22

JT = JORD(J)
JORD(J) = JORD(I)
JORD(I) = JT
INTCH = INTCH + 1

CONTINUE
IF (((INTCH/2) * 2 .NE. INTCH) DETER = - DETER

DO 24 J = 1, N
DO 27 I = 1, N

Y(JC(I)) = CMAT(IR(I), J)

DO 28 I = 1, N
DO 29 J = 1, N

Y(IR(J)) = CMAT(I, JC(J))

CMAT(I, J) = Y(J)
CSIMUL = DETER
RETURN

C IF INDIC IS NEGATIVE OR ZERO, UNSCRAMBLE THE INVERSE
DO 26 J = 1, N
DO 27 I = 1, N

Y(JC(I)) = CMAT(IR(I), J)

DO 28 I = 1, N
DO 29 J = 1, N

CMAT(I, J) = Y(J)
CSIMUL = DETER
RETURN

200 FORMAT (13H N IS TOO BIG)
END

**
* THIS SUBROUTINE USES GAUSS ELIMINATION WITH NO PIVOTING TO SOLVE
* THE MATRIX EQUATION Ax = b, WHERE A IS AN N BY N COMPLEX MATRIX,
* X IS AN N BY 1 UNKNOWN COMPLEX VECTOR, AND b IS AN N BY 1 KNOWN VECTOR.
* IT IS A WELL KNOWN FACT THAT GAUSS ELIMINATION WITH NO PIVOTING IS
* EQUIVALENT TO LU-DECOMPOSITION.
SUBROUTINE GAUSS(A, B, X, N, NRC)
COMPLEX*16 A, B, X, Q
DIMENSION A(NRC, NRC), B(NRC), X(NRC)

C AUGMENTE THE MATRIX A TO INCLUDE B:
DO 10 I = 1, N
A(I, N+1) = B(I)

C CHECK THE DIAGONAL OF A TO DETERMINE IF THERE IS AN 0,0 ELEMENT:
DO 20 I = 1, N
IF (A(I, I) .EQ. (0.0D0, 0.0D0)) THEN
WRITE(*) ' AN ERROR HAS OCCURED IN THE GAUSS SUBROUTINE.'
STOP
ENDIF
CONTINUE
C ZERO ENTRIES (I+1, I), (I+2, I), ..., (N, I) IN THE AUGMENTED MATRIX:
DO 30 I = 1, N-1
DO 30 K = I+1, N
Q = -A(K, I) / A(I, I)
A(K, I) = (0.0D0, 0.0D0)
DO 30 J=1+1, N+1
A(K, J) = Q*A(I, J) + A(K, J)
30 CONTINUE

C BACKSOLVE TO OBTAIN A SOLUTION TO AX = B:
X(N) = A(N, N+1) / A(N, N)
DO 40 K=1, N-1
Q=0.0
DO 35 J=1, K
Q=Q+A(N-K, N+1-J)*X(N+1-J)
X(N-K) = (A(N-K, N+1)-Q) / A(N-K, N-K)
35 CONTINUE
40 CONTINUE
RETURN
END

**
* C THE FOLLOWING THREE SUBROUTINES ARE USED TO MULTIPLY: TWO COMPLEX
C MATRICES, A VECTOR AND A MATRIX, AND A MATRIX AND VECTOR.
C *
C IN THE FIRST SUBROUTINE, TWO MATRICES ARE MULTIPLIED. THE FOLLOWING
C IS INPUT: MATRICES A AND B, THE DIMENSION OF MATRIX A (K x L),
C THE DIMENSION OF MATRIX B (M x N), AND THE DIMENSION OF THE ARRAYS.
C C = A * B IS CALCULATED.
COMPLEX*16 A, B, C
DIMENSION A(KM, LM), B(MM, NM), C(IM, JM)
DO 10 I=1, K
DO 10 J=1, N
C(I, J) = (0.0, 0.)
DO 10 LPP=1, L
C(I, J) = C(I, J) + A(I, LPP)*B(LPP, J)
10 CONTINUE
RETURN
END

C THE FOLLOWING SUBROUTINE IS USED TO MULTIPLY A VECTOR BY A MATRIX
C C = A * B IS SOLVED, WHERE THE VECTOR A IS 1 x L, THE MATRIX B IS
C L x N, AND THE VECTOR C IS 1 x N.
SUBROUTINE VTMTMUL (A, L, IM, B, N, MM, NM, C, JM)
COMPLEX*16 A, B, C
DIMENSION A(IM, LM), B(MM, NM), C(JM)
DO 20 I=1, N
C(I) = (0.0, 0.)
DO 20 J=1, L
C(I) = C(I) + A(J)*B(J, I)
20 CONTINUE
RETURN
END

C THE FOLLOWING SUBROUTINE IS USED TO MULTIPLY A MATRIX BY A VECTOR.
C C = A*B IS SOLVED, WHERE THE MATRIX A IS L x N, THE VECTOR B IS M x 1,
C AND THE VECTOR C IS L x 1.
SUBROUTINE MTVTMUL (A, L, N, LM, MM, B, JM, C, IM)
COMPLEX*16 A, B, C
DIMENSION A(IM, LM), B(JM, NM), C(IM)
DO 10 I=1,L
 C(I) = (0.,0.)
 DO 10 J=1,M
 C(I) = C(I) + A(I,J) * B(J)
CONTINUE
RETURN
END