Date: 3/4/81

Project Title: Measurement of Lung Function using the Magnetometer System

Project No: E-23-655

Project Director: Dr. Donald L. Vawter

Sponsor: Office of Naval Research, Arlington, VA

Agreement Period: From 1/1/81 Until 2/23/82 (Rpts.)

Type Agreement: Short Form Research Contract (SFRC) No. N00014-81-K-0126

Amount: $44,942 (E-23-655) ONR
$35,452 (E-23-344) GIT
$80,394 TOTAL

Reports Required: Final Technical

Sponsor Contact Person(s):

Technical Matters

Commanding Officer (Code 10)
Naval Medical Research & Development Command
NNMC, Bldg. 142
Bethesda, MD 20014

Contractual Matters

(thru OCA)

Mr. Thomas A. Bryant
Office of Naval Research
Resident Representative
'206 O'Keefe Building
Georgia Institute of Technology
Atlanta, Georgia 30332

Defense Priority Rating: N/A

Assigned to: Engineering Science & Mechanics (School/Factory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director-EES
Accounting Office
Procurement Office
Security Coordinator (OCA)

v2

Library, Technical Reports Section
EES Information Office
EES Reports & Procedures
Project Files (OCA)
Project Code (GTRI)
Other OCA Research Property Coordinator
Project Code (OCA)
SPONSORED PROJECT TERMINATION SHEET

Date 8/16/83

Project Title: Measurement of Lung Function using the Magnetometer System
Project No: E-23-655
Project Director: Dr. Donald L. Vawter
Sponsor: Office of Naval Research, Arlington, VA

Effective Termination Date: 6/30/82

Clearance of Accounting Charges: 6/30/82 (perf.)

8/31/82 (rpt.)

Grant/Contract Closeout Actions Remaining:

- Final Invoice and Closing Documents
- Final Fiscal Report
- Final Report of Inventions
- [X] Govt. Property Inventory & Related Certificate
- [] Classified Material Certificate
- [] Other ____________________________

Assigned to: ESM (School/Laboratory)

COPIES TO:

Administrative Coordinator
Research Property Management
Accounting
Procurement/EES Supply Services

Research Security Services

Reports Coordinator (OCA)
Legal Services (OCA)

Library

EES Public Relations (2)
Computer Input
Project File
Other ____________________________

FORM OCA 10:781
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Attention: Code 441, Physiology Program

Subject: Contract No. N00014-81-K-0126
"Measurement of Lung Function Using the Magnetometer System"

Gentlemen:

The GEORGIA TECH RESEARCH INSTITUTE is pleased to submit for your consideration the enclosed proposal for continuation of the research currently being conducted under the subject contract.

We trust you will find the proposal complete; however, if additional information is needed, please let us know. Questions concerning the technical program, personnel, facilities, or related experience may be discussed with Dr. D. L. Vawter, 404/894-2764. Financial and contractual matters will be handled by the writer, 404/894-4815. In this connection, it is requested that the proposed additional work be authorized by a modification to Contract No. N00014-81-K-0126.

We appreciate the opportunity of submitting this proposal for your consideration and look forward to the possibility of continuing our work with you on this research program.

Very truly yours,

Milton W. Bennett
GEORGIA TECH RESEARCH INSTITUTE

MWB/arj

Addressee: Four (4) copies
Enclosures: Proposal - four (4) copies
DD Form 633 - four (4) copies

cc: Capt. K. Greene
Naval Medical R&D Command

ONR Resident Representative
Georgia Institute of Technology
Measurement of Lung Function
Using the Magnetometer System

Office of Naval Research Contract
No. N00014-81-K-0126

Continuation Request
1-1-82 to 12-31-82

Capt. K. Greene
Naval Medical Research and Development Command
NNMC Building 142
Bethesda, Maryland 20014
Office of Naval Research
Physiology Code 441
Arlington, Virginia 22217
We are requesting a continuation of our research contract entitled "Measurement of Lung Function Using the Magnetometer System". Our research goals are unaltered and are appended to this report. In spite of delays in the arrival of the data acquisition computer we are nearly on schedule with our proposed timetable.

Progress has been made in three areas:

1) Repair of the magnetometer system and construction of calibration equipment.

2) Establishment of and software development for the data acquisition system.

3) Preliminary determination of optimal magnetometer placement.

I. Repair of the magnetometer system and construction of the calibration equipment.

The magnetometer system, on loan from the Naval Medical Research Institute, arrived badly damaged with broken circuit boards and a twisted chassis. We have repaired the equipment and replaced the broken circuit boards. The system was subsequently tested and found reliable.

A calibration device was designed and fabricated which allows the magnetometer pairs to be calibrated for not only separation, but also rotation about the vertical axis. The system is made of plexiglass and can also be used for underwater calibration.

II. Establishment of and software development for the data acquisition system

This task took the bulk of our time during the 7½ months the contract has been in effect. Although we have access to the programs developed by NMRI these are too specialized to be utilized in our studies. These programs were
developed for a unique placement of the magnetometers and for one particular mathematical model. Since we were interested in optimization of magnetometer placement and a variety of models, it was necessary to develop much of our own software.

Four distinct programs were developed:

1) Collect and display a single channel of data from either the magnetometers or the spirometer. The output is displayed on the terminal screen in a strip chart mode. The program is used for calibration and for positioning the magnetometers. Since the display is in real time, the program can be used to "zero" the magnetometers or to select the position least sensitive to angular rotation. Using the strip chart mode one can easily visualize whether movements of the chest or abdomen are significant during quiet breathing.

2) Collect and store on diskette magnetometer outputs and spirometer outputs. The data is then displayed on the terminal screen for visual analysis. The data collected at this time is archived and can be used in later analyses. By making the collection of data separate from analysis we have much greater flexibility to try many models with limited data.

3) Generate a high resolution display of the breath by breath data and produce a hard copy. This step is quite involved since the Minc computer does not have a graphics printer. We have an Apple printer in our laboratory and we were able to interface the two machines. Since the Minc terminal display has twice the resolution of the Apple, considerable modifications were necessary to display the full resolution on the Apple printer. This has been done and the
conversion to a strip chart mode is nearly complete.

4) Determine the correlation coefficient between spirometer output (volume) and each magnetometer output. The program also calculates the correlation coefficient between pairs of magnetometer outputs. This program is used for determining optimal magnetometer placement. Preliminary results are given in the next section.

IV. Magnetometer Placement

In order to determine optimal magnetometer placement we have used the software program described above. Our initial studies have been to determine optimal placement of the magnetometers in the A-P position. We placed the magnetometers midway between the clavicle and sternum junction and the nipples (channel 1), at the nipple level (channel 2), midway between the nipple and navel levels (channel 3), and at the navel level. Typical breath to breath measurements are shown below for deep breathing. One notices that there appears to be good correlation between all measurements and this is confirmed by the correlation measurements shown below.
Proposed Work

The second year budget necessary to continue the project is enclosed. The budget is within $500 of the estimated budget submitted with the original proposal. For a detailed description of the proposed work, please see the original proposal, which is appended.
For tidal breathing the coefficients vary widely and are dependent on breathing habits. For instance, for one abdominal breath the correlation for channels 3 and 4 (abdomen) and volume averaged 0.908 while the chest measurements (channels 1 and 2) had an average coefficient of 0.594. For a chest breather the coefficients were 0.788 and 0.908 respectively.

Although we have not collected enough data to be sure of any conclusions, it appears that because of variations of breathing patterns both abdominal and chest measurements are necessary.

Conclusions as to optimal placement within the chest and abdomen await further measurements. Studies on laterally placed magnetometer have not been studied as yet.
Computing Estimate Worksheet

<table>
<thead>
<tr>
<th>Resource</th>
<th>Billing Unit</th>
<th>Multiplier - Relationship to 1 SHU</th>
<th>Quantity</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Resource</td>
<td>E-SMU</td>
<td>1.0</td>
<td>152.8</td>
<td>19.58</td>
<td>2991.82</td>
</tr>
<tr>
<td>Card Reading</td>
<td>K Cards</td>
<td>0.001</td>
<td>0.75</td>
<td>4.16</td>
<td>3.12</td>
</tr>
<tr>
<td>Printing</td>
<td>L Lines</td>
<td>0.01</td>
<td>2.20</td>
<td>.44</td>
<td>.97</td>
</tr>
<tr>
<td>Card Punching</td>
<td>K Cards</td>
<td>0.00009</td>
<td>0.014</td>
<td>5.55</td>
<td>.07</td>
</tr>
<tr>
<td>Interactive</td>
<td>Connect Hour</td>
<td>0.01</td>
<td>1.5</td>
<td>.34</td>
<td>.51</td>
</tr>
<tr>
<td>ITE</td>
<td>Connect Hour</td>
<td>0.00039</td>
<td>--</td>
<td>2.33</td>
<td>--</td>
</tr>
<tr>
<td>Permanent Tape Storage</td>
<td>Reel Day</td>
<td>0.03</td>
<td>--</td>
<td>.02</td>
<td>--</td>
</tr>
<tr>
<td>Permanent Disk Storage</td>
<td>K IPU Day</td>
<td>0.03</td>
<td>4.5</td>
<td>.70</td>
<td>3.15</td>
</tr>
<tr>
<td>Digital Plotter</td>
<td>Hour</td>
<td>0.0001</td>
<td>0.015</td>
<td>24.02</td>
<td>.36</td>
</tr>
<tr>
<td>Mark Reader</td>
<td>Page</td>
<td>-</td>
<td>-</td>
<td>.11</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL $3,000.

Notes:

1. Where individual resource unit use is known, use the actual estimated quantity. (Applies only for resource units to be used. All lines are all resource units applicable.)

2. Where individual resource unit use is not known, you may estimate quantities of selected resource units by using the multiplier. The multipliers were developed using the average profile for sponsored research work performed during FY 72. The multiplier is the ratio of the unit to one E-SMU. You must estimate E-SMU, select other resource units to be used, then apply the multiplier. For example, you would not select the "interactive" or "PDE" if all computing will be over the counter batch processing.
RESEARCH PLAN

An experimental system will be developed for improving the magnetometer system used to measure lung function. A systematic study of the dimensional changes occurring during respiration in both the normal environment and during immersion will be undertaken. From this study the optimal number and positioning of the magnetometer pairs will be assessed. This information will then be combined with the development of more sophisticated mathematical models in order to predict lung volume. After the refined models are developed, they will be used to
study blood shifts occurring during immersion. The data collected on dimensional changes will also be used to develop a new method for estimating the mechanical work of breathing.

DETERMINATION OF OPTIMAL PLACEMENT OF MAGNETOMETERS

As discussed in the introduction, the placement and number of magnetometer pairs have been rather arbitrarily chosen. Of course, the larger the number of magnetometers, the more flexibility we have in modeling the behavior. In particular, the degrees of freedom associated with the chest and abdomen increase with the number of magnetometers. For one pair of magnetometers on the chest, differences between lateral and anterior-posterior motion cannot be distinguished. For two magnetometer pairs on the chest at the same vertical position, differences in chest movement at different heights cannot be assessed. Given practical limitations on the maximum number of magnetometers, in what position should they be placed? There are three criteria which we propose to consider:

1) The magnetometer should be placed on an area of the chest for which there is significant movement during respiration.

2) The magnetometer should be placed at a point on the body where the dimensional changes show either a strong positive or strong negative correlation with volume changes. Ideally, this correlation would be high for all types of respiratory maneuvers and during both dry and immersed breathing. The ideal is not likely to occur, and we shall determine experimentally which measurement points have the highest correlation with volume changes and whether the points are altered during immersion.

3) The third criterion is that the cross correlation of dimensional changes be low. If, for example, the correlation between the AP diameter of the chest and the AP diameter of the abdomen is high during all respiratory maneuvers, it would not be useful to measure both changes.
The applicant (3) has reported elsewhere the correlation between the output of the four pair magnetometer system, as conventionally mounted, and the volume during quiet breathing, and also during a vital capacity maneuver. The analysis is preliminary but does show the feasibility of using the calculations to optimize magnetometer placement. For convenience those preliminary results are repeated here. For 34 subjects performing a vital capacity maneuver, the correlation between the magnetometer output and the volume measured using a spirometer was calculated. The correlation was also calculated for 19 subjects breathing quietly. The results are seen below.

<table>
<thead>
<tr>
<th>MAGNETOMETER</th>
<th>QUIET</th>
<th>VITAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP CHEST</td>
<td>.9366</td>
<td>.9273</td>
</tr>
<tr>
<td>LATERAL CHEST</td>
<td>.6729</td>
<td>.6857</td>
</tr>
<tr>
<td>AP ABDOMEN</td>
<td>.9590</td>
<td>.8528</td>
</tr>
<tr>
<td>LATERAL ABDOMEN</td>
<td>.5027</td>
<td>.0415</td>
</tr>
</tbody>
</table>

The anterior posterior (AP) changes are more highly correlated with volume than are lateral changes. None of the changes are highly enough correlated in both maneuvers to serve as the optimal placement, however. The cross correlation between magnetometers for the above data sets are given below:

<table>
<thead>
<tr>
<th>PAIR</th>
<th>QUIET</th>
<th>VITAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP CHEST--LATERAL CHEST</td>
<td>.6191</td>
<td>.5685</td>
</tr>
<tr>
<td>AP CHEST--AP ABDOMEN</td>
<td>.9026</td>
<td>.6844</td>
</tr>
<tr>
<td>AP CHEST--LATERAL ABDOMEN</td>
<td>.4568</td>
<td>-.1013</td>
</tr>
<tr>
<td>LATERAL CHEST--AP ABDOMEN</td>
<td>.6442</td>
<td>.6431</td>
</tr>
<tr>
<td>LATERAL CHEST--LATERAL ABDOMEN</td>
<td>.3884</td>
<td>.2670</td>
</tr>
<tr>
<td>AP ABDOMEN--LATERAL ABDOMEN</td>
<td>.5095</td>
<td>.2147</td>
</tr>
</tbody>
</table>

The above table indicates that the cross correlation between pairs is dependent on the maneuver. The correlations for complex maneuvers are as yet unknown.
In order to determine with accuracy the optimal placement of the magnetometers we propose to repeat the calculations shown above for a variety of subjects. Each subject will be studied with the magnetometers in multiple positions and will perform the standard respiratory maneuvers. Subjects will be studied in air and then immersed to the neck. Using the three criteria described above, we will then have a quantitative determination of the optimal magnetometer placement.

MATHEMATICAL MODEL OF THE CHEST AND ABDOMEN

The applicant (3) has discussed in detail the modeling of the chest and abdomen, using the conventional magnetometer placement. There are basically two approaches which may be taken to model the system, an anatomical model in which the shapes of the chest and abdomen are approximated by a simple geometric shape, or a model equation which is independent of the anatomy. If one could accurately model the anatomy, then the first approach would be preferable. It is certain, however, that the actual distortions of the chest or abdomen during respiration cannot be described by distortion of a simple geometric shape. The change of shape of the chest wall may be approximated by a simple geometric model to be sure, but there is no guaranty that this approximation makes the best use of the dimensional changes measured by the magnetometers. It may be, for example, that instead of assuming the chest to be an elliptic cylinder, as Robertson et al. (1) have done, better results would be obtained if volume were assumed to be a polynomial expansion of the magnetometer output. It is quite likely that such an expansion will give a better fit for the breath from which the constants in the expansion are determined than will the anatomic model because of the larger
number of degrees of freedom of the expansion equation. However, the predictive ability of such a model must be demonstrated. It may be that the nonanatomic model fails completely in prediction. For instance, we may choose to model the lung volume by the following expression:

\[v = \sum_{j=1}^{4} \sum_{i=1}^{N} A(j,i) * M(j)^{**I} + C \]

Where the polynomials are of order \(N \). \(M(j) \) is the output of magnetometer "J", and \(A(j,i) \) and \(C \) are unknown constants. There are \(4*N + 1 \) constants to be determined. The higher the value of \(N \) the better will be the calibration fit, but this does not necessarily imply the predictive value of the expression is better for large \(N \). The proper order of the polynomial for the best predictive fit must be determined from the experimentally observed data. Many other types of polynomial expansions could also be tried, for example expressions containing the product of the magnetometer outputs, but the above expression illustrates the point.

Because the choice of a mathematical model for describing the lung volume in terms of magnetometer output is not clear, we shall try a variety of models. As discussed in reference (3), it is unlikely that a model dependent on only one or two parameters will be adequate. We shall analyze the fit of polynomial expansions, power series, and also the anatomical models of Robertson, or modifications thereof. A standard error criterion will be used to evaluate the models. It should be noted that none of the existent models can accurately predict the volume changes occurring during a complicated maneuver such as the Valsalva, while at the same time accurately predicting tidal volume
changes. It is hoped that the information gained by optimization of magnetometer placement and that gained by the formulation of more sophisticated models will lead to better indirect predictions of lung volumes.

HYSTERESIS OF RESPIRATORY MOVEMENTS

The dimensions of the chest and abdomen, as measured with the magnetometers, differ, for a given lung volume, on inspiration and expiration as can be seen in Figures 1 and 2. Notice the hysteresis loop. One may argue that the hysteresis is due to a time lag between the magnetometers and the spirometer. If this were the sole cause, however, there should be no hysteresis loop when the outputs of two magnetometers are compared. As seen in Figure 3, where we plot the changes in the AP diameter of the chest versus the change in lateral diameter of the chest, a large hysteresis loop is present in this tidal breathing maneuver. This hysteretic behavior is typical and many more examples can be found in reference (3).

On the basis of the above observations, it seems that there is indeed a hysteresis in the magnetometer output. The possibility also remains that there is a contribution to the hysteresis from lags in the spirometer output. This point will be discussed subsequently. One must still determine whether the observed hysteresis in the magnetometer outputs is an artifact.

It may be that angular rotation of the magnetometer is causing the observed hysteresis. We will analyze this possibility by comparing the magnetometer output to that of a linear differential transducer (LDT). Although quite restrictive in terms of the freedom of motion allowed the
subject, the LDT's are insensitive to angular rotation if mounted correctly. In order to validate the magnetometers output, we shall mount a magnetometer pair to the body and then attach one LDT to the transmitter and one LDT to the receiver. The experimental set up is sketched in Figure 4. If the outputs of the magnetometers and LDT's agree, the observed hysteresis must be real and can be accounted for in the modeling process. If the outputs differ, then one of the limits on the accuracy of the magnetometer system will be quantified.

There are two possible approaches for dealing with hysteresis in the modeling process. If the major portion of the hysteresis is due to phase lags in the spirometer system, a phase shift may easily be incorporated into the mathematical model using standard error criteria. If the major part of the hysteresis is due to dimensional hysteresis, then a separate model for inspiration and expiration may be used. In other words, the equation describing volume in inspiration will have different constants (although it may depend on the same parameters) than the equation describing expiration. The applicant has used such an approach in describing the mechanical properties of the lung (4).

BLOOD SHIFTS DURING IMMERSION

Once the magnetometer system has been validated and shown to be a useful means of measuring the volume, the system will be used to estimate blood shifts during immersion. It should be noted that while the magnetometers function adequately in water, the intercept and gain of the system is altered. This is easily handled in the data reduction analysis.

Before attempting to measure blood shifts due to immersion, we must demonstrate that measuring any type of blood shift is feasible. During
a Valsalva maneuver, blood is likely forces from the thorax and abdomen into the periphery. This shift will cause dimensional changes in the thorax and abdomen, and hence will be measured by the magnetometer system. The spirometer, on the other hand, will not be sensitive to dimensional changes other than those causing lung volume to change. By comparing the volume readings of the spirometer and that of the magnetometer system, the volume shift out of the thorax and abdomen can be calculated. Verification that the differences in volume from the two systems is due to fluid shifts can be accomplished by having the subject perform the Valsalva maneuver while the limbs have tourniquets applied. If the volume measurements agree, then we have strong evidence that we are measuring blood shifts. Further verification can be demonstrated by having the subject perform a Mueller maneuver with and without tourniquets. In this maneuver we expect fluid shifts into the abdomen and thorax.

Once shown reliable, the above method will be used to estimate blood shifts during immersion. By optimal placement of the magnetometers and use of the previously discussed models we should be able to estimate changes in both thoracic and abdominal volume. The magnetometer system will be calibrated in both air and water. The subject will then perform respiratory maneuvers in air in order to calibrate the volume model. With the magnetometers still attached, the subject will be immersed and the resultant dimensional changes measured, taking into account the calibration differences between air and water. The causes of the dimensional changes can again be ascertained by immersing the subject with and without limb tourniquets.
DETERMINATION OF THE MECHANICAL WORK OF BREATHING IN IMMERSED AND NON-IMMERSED SUBJECTS

The mechanical work of breathing, that portion which is due to thoracic movement and that which is due to diaphragmatic movement, is likely changed during immersion.

Unfortunately, direct measurement of the mechanical work of breathing is extremely difficult if not unattainable. The use of indirect means to determine the work is desirable. Although there are many aspects to be considered when estimating the work of breathing, (e.g., increased flow resistance, density effects of heavy gases, restrictive breathing apparatus, etc.), most are beyond the scope of this project. We may, however, estimate the mechanical work done, and its change during immersion, of distorting the lung and chest wall. This is likely to be an important factor due to the changes in breathing patterns during immersion.

Traditionally, the work of breathing is determined by the area between the ascending and descending limbs of the pressure-volume curves. Unfortunately, this method implicitly assumes the lung has a single degree of freedom and greatly oversimplifies the problem. It is especially difficult to fractionate the work between thoracic and abdominal movements using this approach.

We propose therefore to treat the lung as a continuous structure and calculate the work done in distorting the lung during respiration. In order to calculate the work of breathing, we must know the geometrical changes of the thoracic cage and diaphragm and the mechanical behavior of the lung. These dimensional changes will already be known in detail from the experimental study determining the optimal positioning of the magnetometers. The applicant (4,5,6) has done extensive work on mea-
uring the mechanical properties of the lung and the results of those studies will be used in the present work.

When calculating the work of breathing, there are at least two separate aspects which need study. One is the amount of work which must be done on the lung to distort it. This work is transformed into strain and surface energy. If the lung were elastic, this work would be recovered during expiration. Nevertheless, this aspect of the problem is still important. It may be that in the diving environment, the work necessary to expand the rib cage cannot be generated regardless of its reversibility. The other aspect of the work of breathing is that of irreversible losses exhibited as hysteresis. This is, of course, not recoverable. The lung certainly exhibits hysteresis and this aspect is not negligible.

In recent years there has been a significant amount of work done on calculating the distortion of the lung and the associated stresses and strains under a variety of loading conditions and respiratory movements. These programs invariably use the finite element method (FEM). The applicant has developed a finite element formulation for calculating stresses and strains in the lung when either the chest or diaphragm is moved (7). Importantly, the approach incorporates explicitly the effects of surface tension. These previous studies form a basis for calculating the mechanical work done in expanding and distorting the lung. The finite element method is based on the minimum potential energy principle. One consequence of equilibrium requirements is that the external work done on the lung in expanding and distorting it must be stored as potential energy. This energy exists either as strain energy or surface energy. Since the finite element method is based on an energy principle, one can relatively easily calculate numerically the energy stored in the
luna during movement. The major modification to the formulation of reference 7 is that, because of the asymmetry of the observed dimensional changes, the model must be generalized to three dimensions from the present axisymmetric formulation. The modification is straightforward and presents no conceptual difficulties.

If the lung were purely elastic, all the energy stored during inflation would be released during expiration. It has been shown previously that although the lung is viscoelastic, it may be treated as one elastic material during inflation, and a different elastic material during deflation. The above model will calculate this hysteresis loss. In slab tests the applicant (4,5) found that approximately 35% of the energy stored during stretching is irreversibly lost during unstretching. The hysteresis was relatively insensitive to strain rate.

The above method of calculation has the advantage of treating the lung as a continuous system and hence is able to fractionate the work done on the lung into that done in moving the diaphragm and that done in moving the chest wall. In order to do this, of course, we must know the movement of the diaphragm during respiration. We can obtain this information indirectly using the magnetometer system. In order to do so, the chest and abdomen must be modeled in some way. Robertson et al. have chosen to model each as an elliptic cylinder. It is my feeling that modeling the abdomen as an ellipsipsoid and the chest as a truncated ellipsoid is more accurate for our purposes. It is easy to show that the necessary data characterizing the ellipsoids is contained in the data from four properly placed magnetometers. The assumed model is only necessary if one wishes to partition the work. Otherwise the model is unnecessary. Various models will be used in order to ascertain the sensitivity of the calculations to the model choice.
Personnel

Principal Investigator - Donald L. Vawter

Graduate Research Assistant - To be filled by a new graduate student

Equipment

In the magnetometer system there are five channels of data which must be monitored and analyzed. There are two practical methods of analyzing these signals. One can record the signals on a FM recorder for later computer analysis or one can sample the data directly with a microprocessor. We have decided to use the microprocessor for several reasons. First, the instrumentation is much more powerful and can be used for on-line analysis. Secondly, research on the magnetometer systems is underway at NMRI using the requested microprocessor. It is quite important that both research groups have access to the developments of the other. Using the same hardware for collecting the data will enable us to effectively interact, by merely mailing our current software developments to the other group. For this reason, the software necessary for data acquisition will not be unnecessarily duplicated, saving countless time and effort. The particular choice for the hardware was again dictated by compatibility with the NMRI group, which thoroughly studied the optimal choice of the microprocessor. A third reason for using the microprocessor system is that the difference in cost between the microprocessor and a good instrumentation recorder is less than $2000.

The microprocessor system chosen will consist of the following, all manufactured by Digital Equipment Corporation:

Hardware

SR-VX SSB-CA which has as components:
- PDP 11/103 Central Processor (32k with I/O)
- RXV02 Dual Floppy Disk
- DLV11-J Terminal Port
- IA120-MA Printer Console
- RT11/V3B System Software
- ADV 11 16 Channel A to D Converter
- AAV 11 4 Channel D to A Converter
- DRV 11 16 Bit Parallel I/O Port

Software

Fortran IV V2.1
Fortran Laboratory Extensions

Direct lung volume measurements will be made with an Ohio Medical Products rolling seal spirometer.

Facilities

The necessary laboratory space, approximately 300 square feet, will be made available by VPI & SU. The data processing facilities of
the computer center will be available for large scale computational problems too complex for the microprocessor.

Human Subjects

The subjects for study will be volunteers from students, faculty and staff. Since all tests are noninvasive the subjects will be at minimal risk. The limb tourniquets will be applied for a maximum time of 1.5 minutes.
SUMMARY

In order to improve our ability to measure lung function and the work of breathing in the diving environment, we have proposed a project which will further develop the magnetometer system.

In this project we shall experimentally determine the optimal placement and number of magnetometers for indirectly measuring lung volume. We shall use this information to construct improved mathematical models for volume prediction. We shall study the changes in thoracic and abdominal shape that occur during respiration in both the normal and immersed state. We shall also attempt to indirectly estimate the blood shifts occurring during respiratory maneuvers, both in the normal and immersed environment. An estimate of the mechanical work of breathing will be made by developing a 3-dimensional finite element model based on energy principles.

ESTIMATED TIME TABLE

<table>
<thead>
<tr>
<th>Task</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary set up of data acquisition system</td>
<td>3 mos.</td>
</tr>
<tr>
<td>Determination of optimal placement of magnetometers</td>
<td>6 mos.</td>
</tr>
<tr>
<td>Hysteresis study</td>
<td>4 mos.</td>
</tr>
<tr>
<td>Mathematical modeling (including FEM development)</td>
<td>12 mos.</td>
</tr>
<tr>
<td>Measurement of blood shifts</td>
<td>6 mos.</td>
</tr>
<tr>
<td>Publication of results</td>
<td>5 mos.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>36 mos.</td>
</tr>
</tbody>
</table>
REFERENCES

Final Report: N00014-81-K-0126

Measurement of Lung Function Using the Magnetometer System

D. L. Vawter and J. D. Humphrey
Engineering Science and Mechanics
Georgia Institute of Technology
Atlanta, Georgia 30332
Introduction

In the last few years, several investigators [1,6,7,9,10,11,12] have studied the idea of estimating lung volume by measuring the dimensional changes of the chest and abdomen during respiration. The prospect of being able to know the value of lung volume from information obtained noninvasively was intriguing.

The most common method of measuring the dimensional changes is to use magnetometer pairs. A more complete description of the principles of operation can be found elsewhere [7]. For the purpose of this report, it is sufficient to note that magnetometer pairs generate a voltage that is proportional to the change in their separation distance. The relationship between voltage and the change in separation distance is essentially linear over the separation distances measured in this study.

If one is to adequately infer lung volumes from the measurement of dimensional changes of the thorax and or abdomen, the following questions must be addressed:

1). What dimensional changes should be measured?
2). How are the dimensional changes related to lung volume changes?
3). How reliable can the dimensional changes be measured?
4). Does the relationship between dimensional changes and lung volume change from breath to breath, or with the respiratory maneuver?
5). Does the relationship between lung volumes and dimensional changes differ from individual to individual?

We will attempt to answer many of the above questions, and will speculate on the answers to the others. Before describing our current experiments, however, it is worthwhile to review recent measurements with magnetometers.

The use of magnetometers in studying pulmonary ventilation was proposed by Mead et al. [7]. In this pioneering work, Mead and co-workers built upon an earlier study [6] in which they proposed that the abdomino-thoracic cavity could be treated as a two degree of freedom system (rib cage and abdomen), and that for isovolume maneuvers, volume change is nearly linearly related to changes in anteroposterior (AP) diameters. They showed [7] that, after calibration, the sum of magnetometer measured AP rib cage and abdominal diameters reflect lung changes closely. They recommended, therefore, that magnetometer measurements of minute ventilation would be useful where conventional (e.g., spirometric) techniques were inconvenient.

Gilbert et al. [3] used the method proposed by Konno and Mead to investigate breathing patterns during CO₂ inhalation. The major change was their introduction of a new "calibration procedure" whereby the two magnetometer signals (chest and abdomen) were "scaled" graphically by superimposing two breaths (an abdominal breath and a chest breath). In this way, they found that the "scaled-summed" magnetometer signal was linearly related to the spirometer volumes. The magnetometer-measured data was then used to construct tidal volume-ventilation curves for ten subjects.
In a later study, Gilbert et al. [4] used magnetometer-measured tidal volumes to show that conventional methods utilizing noseclips and mouthpieces alter the pulmonary parameters of: respiratory frequency, ventilation and tidal volume.

Grassino and Anthonisen [5] used magnetometers to examine the degree of distortion of the chest wall at functional residual capacity (FRC) during both high resistive inspiration and under external lateral compressions. In addition, they used magnetometer pairs to describe thoracic shape alterations while simultaneous regional volume distributions were measured with a Xeon technique. It is important to note that their studies were for isovolume maneuvers and that the results of Konno and Mead [6] were applicable.

Ashutosh et al. [2] used magnetometer-measured AP diametrical changes to study breathing patterns in both normal and COPD (Chronic Obstructive Pulmonary Disease) patients. They showed qualitatively that both abdominal and chest motions where synchronous with spirometrically measured breathing in all 10 normal subjects and in 7 of 17 COPD patients. In the other 10 COPD patients, the chest motion was found to be synchronous with spirometric volume, but the abdominal signal was asynchronous. It was further shown that, in general, the asynchronous pattern corresponded to a poorer patient prognosis. They concluded that recognition of this type of breathing pattern could be most helpful in initial patient assessment. Also, in an interesting application, they used the magnetometer signals to instruct patients to improve their breathing patterns by matching the magnetometer-measured breathing patterns with normal (desired) patterns. This method was used to help wean patients off of ventilatory assist devices.
Sharp et al. [10], using what they call the "Konno and Mead method of thoracoabdominal partitioning of breathing", looked at 81 normal subjects to investigate whether variations related to sex and/or age differences exist. Using two magnetometer pairs (chest and abdomen), they found no major differences in relative contributions of rib cage/abdominal breathing between men and women, or between young and old during any respiratory act. In addition, they pointed out two most important points: first, that for rapid ventilatory maneuvers, the approximately linear relationship between volume change and AP diameter no longer prevails, although preliminary studies suggested that in these ranges magnetometer based information is still qualitatively useful; and second, that phase lags in the lateral and AP diameter changes (rib cage and abdomen) render useless any attempts to interpret phase relationships during maximal voluntary ventilation.

In summary, we notice that the aforementioned investigations have used two magnetometer pairs to qualitatively investigate the roles of the rib cage and abdomen in breathing. Now, we mention several investigators who report quantitative results on inferring lung volumes from magnetometer measured diametrical body surface changes.

Stagg et al. [11], again using two magnetometers, introduced both a new calibration method and a volume model from which tidal volumes could be inferred. They showed that it is possible to calibrate the magnetometers accurately during spontaneous breathing. However, they (like Sharp) pointed out that there was no reported evidence stating that chest wall displacements are linearly related to volume at the extremes of vital capacity. Thus, they concluded, that magnetometer measurements
should be used within "moderate" volume ranges. They suggest the technique as an accurate means of measuring tidal volume and the time components of individual breaths.

They suggest four possible sources of error in the magnetometer based method: first, the calibration procedure; second, accurately defining the change in respiratory phase (expiration to inspiration); third, compression and decompression of thoracic gas at higher rates of ventilation, and fourth, cases of abnormal abdominothoracic distortion.

Robertson et al. [9] postulated three volume models (the first of which was analogous to Stagg) to quantitatively evaluate lung volume. They proposed that two additional magnetometer pairs (placed laterally at the same level as the AP) be used in the model. They showed that a four-magnetometer elliptical cylinder model gave the best results in quiet breathing and in vital capacity. They also point out that at the extremes of lung volume, the method may break down. Robertson reports an everpresent counterclockwise "looping" of the estimated volume at all tidal volume ranges. They suggest two possible reasons: first, "that different levels of the chest may behave differently in relation to the magnetometer between inspiration and expiration; they may lag behind or precede movements of the magnetometers". Second, the shift of blood to and from the extremities and thorax may be a factor. They conclude, however, that this method may be particularly well suited to studies of respiratory control and patient monitoring.

Ackerman [1], using the method of Robertson, automated the volume measurement on-line. He reports that breaths per minute, average tidal volume, and minute volume can be inferred and displayed at 15 second
intervals while monitoring a patient. He reports results are accurate to within 10% of spirometric techniques.

Vawter [12], tested seven volume models (one being the same as the Robertson model) and showed that any two or three parameter model is adequate to predict volume for the breath from which the model constants are determined. He further reported that calibration should be done with a complex respiratory maneuver if the model is required to predict such complex maneuvers.

Although Vawter suggests that no one dimensional measurement is sufficient to predict volume changes, he does report that two anatomical sites (AP chest and AP abdomen) individually correlated 85% or higher with spirometric volume. He, as did Robertson, noted the "looping" or hysteresis of respiratory movement and suggested the need to consider it in any further studies.

Melissinos et al. [8] studied changes in abdominothoracic shape during forced vital capacity (FVC) maneuvers. Using four magnetometers at different sites than aforementioned, they reported that at the AP xiphi-sternal junction and AP manubrium site that diametrical changes with volume are useful indices of the motion of the anterior chest during FVC. They also note that measurements are accurate (from iso-volume calibration [6]) during spontaneous breathing and slow respiratory maneuvers (20-80% vital capacity). They found changes in lateral xiphi-sternal magnetometers quite variable with subject. Also they report that AP abdominal changes may not be representative of the overall movement of the anterior abdominal wall. Finally, they demonstrated substantial nonuniformites in regional abdominothoracic dimension changes.
during FVC, and that overall chest wall volume displacement cannot be accurately represented by the two common magnetometer positions (rib cage and abdominal) during FVC.

METHODS

In order to answer the questions posed above, we have conducted a series of experiments in which we measured simultaneously both dimensional changes and changes in lung volume.

Four magnetometer pairs were used to measure diametrical changes of the abdominothoracic cavity at eight anatomical sites. Consistent with previous studies, the midline, both AP and laterally, was chosen as a locus of possible placement sites. We note that the lateral magnetometers were placed just anterior to the latissimus dorsi muscle. The eight sites chosen were: AP; M1, just superior to the sternal arch; M2, at the level of the xiphoid; M3, midway between the xiphoid and umbilicus, and M4, just inferior to the umbilicus. Laterally: M5, at the level of the fourth rib; M6, just inferior to the xiphoid level; M7, midway between M6 and M8, and M8 at the level of the umbilicus (Fig. 1).

Eleven normal subjects (ages 19-29) with no prior pulmonary function testing experience were studied (table 1). The magnetometer pairs were taped securely in the above mentioned positions. Care was taken that the long axes (y1 and y2 see Fig. 2) were parallel to avoid rotational effects [12]. Proper alignment was obtained at the position which generated a global minimum in voltage when one magnetometer was rotated with respect to the other.

Standing erect, each subject performed two separate breathing maneuvers: "quiet breathing" and "forced breathing" (ie., one vital capacity
maneuver was performed at the middle of a quiet breathing sequence). A total of eight breathing tests, each of forty-five seconds duration were performed by each subject. Thus, two "quiet" and two "forced" breathing tests were performed at each of the eight magnetometer placement sites.

A given test consisted of the subject performing the particular maneuver by breathing into a spirometer (Model 840, Ohio Medical Products) with his nose clamped. The subject was instructed to minimize all unnecessary body motions. The spirometer and the four magnetometer signals were recorded simultaneously as voltage (output) versus time (Fig. 3). A Minc 11 Computer (Digital Equipment Company) was used to convert the five analog signals to digitized form, and then to store the data on floppy disk for later analysis. All programs were written in BASIC (Appendix 1), and the data sampling rate was 66.67 samples per second (ie. 13.33 samples per channel per second).

Quantitative data analysis consisted of two approaches: First, in order to investigate the relationship between spirometric data and the diametrical changes of the chest and the abdomen, as well as the cross relationship between various anatomical sites (M1-M8), correlation coefficients (ρ) for the respective data were calculated. Second, fourier analysis was used to represent the data (ie. a given breath) as a sum of sinusoidal components to study the influence of "phase" and "amplitude" on the correlation. Two authors [8,9] have speculated that "phase differences" may influence how well magnetometer based techniques can be used to infer volume information. In addition, the spectral analysis allowed us to ascertain whether the signals could be modeled by a simple harmonic function.
Since dimensional changes during expiration and inspiration may be different [9,12], each portion of the breathing maneuver was analyzed separately.

RESULTS

The correlation coefficients relating the spirometric results to each of the eight magnetometer placement positions are given for each subject (Appendix 2). It can be seen from these tables that for each subject, at least one AP position had a correlation with the spirometric data of greater than 0.9. In all subjects, except subject #9, the M₁ location has the highest correlation coefficient. Subject #9 is an abdominal breather which illustrates the need to allow for different subject types. Tables 2, 3, 4 and 5 list the averaged correlation coefficients + standard deviations for correlation between spirometer-magnetometer position and cross correlations between the magnetometer positions. Gross observations from tables 2, 3, 4 and 5 show that the AP positions in each case correlate higher than their lateral counterparts. As can be seen, the M₁ position tends to correlate very well (>0.95) with the spirometer. It is important to note that this high correlation is coupled with a very low standard deviation. On the other hand, we note poor correlation between the spirometer and the M₂ and M₆ positions (ie. AP and lateral xiphoid levels). Not only are the correlations (.1610 <φ< .4638) very poor, but the scatter of the data is reflected by the large standard deviations (.3818 - .5982). Also, it is seen that negative correlations arise in the xiphoid data (subjects 6,7 in the AP position and subjects 6,9,10,11 in the lateral position). Determination of the cause of this poor correlation would require
alternate measurement of the dimensional changes. It could be that paradoxical breathing is the cause or that the magnetometers in this position were subjected to rotational motions, to which the magnetometers are sensitive [12].

The only cross correlation between magnetometer sites (AP and lateral considered separately) with a 80% or higher correlation is between the M3 and M4 sites (84% and 83%). Also, note that the correlation between magnetometer pairs is much lower than between the magnetometers and the spirometer. If the correlations were high, then the measurements would be redundant and one of the pairs could be eliminated.

The correlation coefficients reported above were calculated from data sets of seven to twelve breaths (45 seconds) for each of the two maneuvers. In addition, we looked at correlation coefficients for individual breaths, and at the inspiratory and expiratory portions of single breaths. We found that, in general, the correlation coefficient for an individual breath was higher than that of the total breathing sequence, and as the number of breaths increased toward the total for that individual test, the correlation coefficients approached that of the total. These results are to be expected if there are breath to breath variations in the signals (and if the signals have only a small component of random noise). No significant patterns were observed in this result (Table 6).

In table 7 we show the correlation coefficients for each subject (AP positions only) for six individual breaths from a "quiet breathing" test. As can be seen from the averages + standard deviations, position
M₁ has a high average correlation (>0.93) and a low standard deviation (.002 - .055). As in the above, the abdominal breather (subject #9) had the lowest M₁ correlation. Also, the M₂ position had the greatest variability and typically the largest scatter in the data. We observe, therefore, that breath to breath variations do not appear significant except in the M₂ position.

In the "forced breathing" maneuver, the subject was instructed, at a particular instant, to (on his/her end resting expiratory volume) inhale as deeply as possible (i.e. to maximum inspiratory level) and then exhale totally. This can be seen in figure 3 in the eighth breath. In each of the above cases, the correlations were calculated based on either averaged breathing or on quiet breaths. In table 8, we show for each subject the AP correlation coefficients calculated from a single "forced breath". As can be seen, observation of the forced breathing results showed no remarkable differences from those of quiet breathing.

To investigate the dependence of volume on magnetometer measured dimensional changes we plotted one versus the other. In most every case, hysteresis was present showing differences between expiration and inspiration. We generated these plots (spirometer vs Mᵢ, i = 1,2...8) for three breaths for each subject. In general, of the AP positions, it was the M₁ position which gave the least hysteresis and the M₂ position which corresponded to the most hysteresis (see Fig. 4). We note, however, that considerable variation in hysteresis was seen on a breath to breath basis (see Fig. 5). Similar results were observed laterally (Fig. 6). The degree of hysteresis is certainly reflected in the calculated correlation coefficients: this can be seen in figure 7 where three
different plots are given with the corresponding correlation for that breath. Thus, we felt it beneficial to separate the breath into its inspiratory and expiratory portions and calculate the respective correlation coefficients. We show the results calculated over a single quiet breath in table 9. It is worthwhile to note that in each case where the total breath correlation is 0.99 or greater, the inspiratory and expiratory results are essentially the same, as expected. In the case shown, it is interesting that both subjects for which higher abdominal correlations occurred, (subject #9 and subject #11 for this breath) the expiratory results were correlated higher than the inspiratory (for all > 0.99). Conversely, the other nine subjects tended to have higher inspiratory results in cases where the results did differ.

The fourier analysis (Appendix 3) reveals that the amplitude of the first harmonic was normally 7 to 20 times as large as those for higher harmonics for both the spirometer and the M1 magnetometer. The other magnetometers would not be adequately described using a single harmonic. In figure 8 we show a M2 plot for a single breath, and the need for seven harmonics to adequately describe the curve. In fact, often for the xiphoid level, the first harmonic was not dominant.

We also give in table 10 the calculated correlation coefficients for the breath for which the fourier results are given. Generally, it is seen that in cases of high correlation the phase difference between spirometer and magnetometer position is lower. Looking at the magnetometer position which had the most dominant first harmonic (which tended to coincide with the highest correlation for that subject) we see no
consistent pattern as to the dimensional changes lagging or leading the spirometric results. Thus, we can only say that variations from subject to subject are observable in this regard.

DISCUSSION

Unfortunately, to date there exists no literature to which we can directly compare our results. There are, however, reported findings and/or speculations to which our results may be addressed.

Robertson et al. [9] and Melissinos et al. [8] suggest that different levels of the chest and abdomen, respectively, behave differently in relation to the magnetometer-volume results. We point out that each of the eight anatomical sites considered herein did yield different results in correlation, hysteresis and phase relationships. Thus we have shown that although within a given anatomical region correlations may be similar (e.g., M₃ and M₄ vs S in tables 2, 3), each site considered did behave differently. Coupling our results with those reported by Vawter [12] further substantiates this point.

Sharp et al. [10] and Robertson et al. [9] both mention that the difference in phase between volume and dimensional changes may influence the usefulness of the magnetometer-found data. Indeed this may well be true but may be difficult to quantify. Only the M₁ position yielded results in which a dominant first harmonic was seen, and as pointed out above, subject to subject variability renders this analysis quite useless in generating a general conclusion.

We conclude by emphasizing comments by Robertson et al. [9] and Ashutosh et al. [2] in that the usefulness of magnetometers in studying pulmonary function may indeed lie in the realm of patient assessment and patient monitoring. Certainly, information from M₁ and M₃ or M₄
positions is qualitatively useful. However, useful quantitative inference of lung volumes from magnetometer-measured dimensional changes for the general populus appears unlikely to be found.

Conclusions

In the introduction we posed five questions and feel we can now comment on them:

1) What dimensional changes should be measured. Positions M1 and M3 show the most promise.

2) How are the dimensional changes related to lung volume changes. The relationship is complex and nonlinear, and also exhibits phase shifts and hysteresis.

3-5) How reliable can the dimensional changes be measured. Even for a given subject there are breath to breath differences. Between subjects the pattern of dimensional changes is not predictable.

Our conclusion is that magnetometers are useful for quantitative measurement of dimensional changes but because of the complexity of respiration will likely only have qualitative value in inferring lung volume.

Acknowledgment

The authors wish to thank Mr. Pu Li for his valuable assistance in the software and hardware developments during this project.
References

Table 1. Physical Characteristics of Subjects

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>SEX</th>
<th>HEIGHT (cm)</th>
<th>WEIGHT (kg)</th>
<th>CHEST (cm)</th>
<th>WAIST (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>(162)</td>
<td>(46.3)</td>
<td>(81.3)</td>
<td>(58.4)</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>(183)</td>
<td>(72.6)</td>
<td>(91.4)</td>
<td>(80.0)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>(190)</td>
<td>(81.6)</td>
<td>(96.5)</td>
<td>(83.8)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>(190)</td>
<td>(74.8)</td>
<td>(91.4)</td>
<td>(78.7)</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>(185)</td>
<td>(76.2)</td>
<td>(91.4)</td>
<td>(78.7)</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>(162)</td>
<td>(49.9)</td>
<td>(86.4)</td>
<td>(63.5)</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>(168)</td>
<td>(54.4)</td>
<td>(86.4)</td>
<td>(66.0)</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>(185)</td>
<td>(74.8)</td>
<td>(91.4)</td>
<td>(83.8)</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>(183)</td>
<td>(90.7)</td>
<td>(114.3)</td>
<td>(86.4)</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>(178)</td>
<td>(63.5)</td>
<td>(91.4)</td>
<td>(78.7)</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>(188)</td>
<td>(90.7)</td>
<td>(100.3)</td>
<td>(86.4)</td>
</tr>
</tbody>
</table>
Tables 2, 3, 4, 5. Averaged correlation coefficients over the test duration. S is for spirometer and Mi(i = 1,2,...,8) is magnetometer location. Notice the higher correlations for the AP positions compared to the lateral sites. Also, note the relatively high M1 and low M2, M6 correlations.

TABLE 2 AP QUIET BREATHING

<table>
<thead>
<tr>
<th>S</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1±0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>.9505±.0510</td>
<td>1±0</td>
<td></td>
<td>symmetric</td>
</tr>
<tr>
<td>M2</td>
<td>.4638±.4118</td>
<td>.3764±.4169</td>
<td>1±0</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>.7647±.1803</td>
<td>.6728±.2385</td>
<td>.6581±.3716</td>
<td>1±0</td>
</tr>
<tr>
<td>M4</td>
<td>.7999±.1455</td>
<td>.7104±.2307</td>
<td>.5659±.3224</td>
<td>.8422±.1428</td>
</tr>
</tbody>
</table>

TABLE 3 AP FORCED BREATHING

<table>
<thead>
<tr>
<th>S</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1±0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>.9675±.0241</td>
<td>1±0</td>
<td></td>
<td>symmetric</td>
</tr>
<tr>
<td>M2</td>
<td>.4121±.3818</td>
<td>.3422±.4103</td>
<td>1±0</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>.7945±.1150</td>
<td>.6917±.1527</td>
<td>.5227±.3238</td>
<td>1±0</td>
</tr>
<tr>
<td>M4</td>
<td>.6871±.1586</td>
<td>.5685±.1961</td>
<td>.4484±.2752</td>
<td>.8258±.1761</td>
</tr>
</tbody>
</table>
TABLE 4 LATERAL QUIET BREATHING

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M₅</th>
<th>M₆</th>
<th>M₇</th>
<th>M₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1+0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₅</td>
<td>.6062+.5139</td>
<td>1+0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₆</td>
<td>.1610+.5795</td>
<td>.1176+.5511</td>
<td>1+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₇</td>
<td>.5803+.3959</td>
<td>.4176+.4808</td>
<td>.0858+.5153</td>
<td>1+0</td>
<td></td>
</tr>
<tr>
<td>M₈</td>
<td>.4513+.5254</td>
<td>.3626+.4915</td>
<td>.2598+.6074</td>
<td>.4386+.4985</td>
<td>1+0</td>
</tr>
</tbody>
</table>

TABLE 5 LATERAL FORCED BREATHING

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M₅</th>
<th>M₆</th>
<th>M₇</th>
<th>M₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1+0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₅</td>
<td>.5619+.5082</td>
<td>1+0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₆</td>
<td>.3296+.5982</td>
<td>.0831+.6548</td>
<td>1+0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₇</td>
<td>.3555+.6198</td>
<td>.0794+.6002</td>
<td>.3194+.4766</td>
<td>1+0</td>
<td></td>
</tr>
<tr>
<td>M₈</td>
<td>.5316+.5390</td>
<td>.2533+.5807</td>
<td>.4172+.4974</td>
<td>.4771+.4415</td>
<td>1+0</td>
</tr>
</tbody>
</table>
Table 6 AP cumulative breath correlation coefficients for subject #10. Note that the values approach the total as the number of breaths increases. Exact correspondence is not achieved due to incomplete breath portions at each end.

<table>
<thead>
<tr>
<th>Number of Breaths</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9786</td>
<td>.6950</td>
<td>.9636</td>
<td>.6975</td>
</tr>
<tr>
<td>2</td>
<td>.9872</td>
<td>.9542</td>
<td>.9858</td>
<td>.8974</td>
</tr>
<tr>
<td>3</td>
<td>.9691</td>
<td>.8145</td>
<td>.9709</td>
<td>.6934</td>
</tr>
<tr>
<td>4</td>
<td>.9743</td>
<td>.6708</td>
<td>.9699</td>
<td>.6672</td>
</tr>
<tr>
<td>5</td>
<td>.9784</td>
<td>.6184</td>
<td>.9548</td>
<td>.6746</td>
</tr>
<tr>
<td>6</td>
<td>.9802</td>
<td>.5359</td>
<td>.9452</td>
<td>.6918</td>
</tr>
<tr>
<td>7</td>
<td>.9801</td>
<td>.5958</td>
<td>.9472</td>
<td>.7446</td>
</tr>
<tr>
<td>Last</td>
<td>.9799</td>
<td>.6073</td>
<td>.9453</td>
<td>.8184</td>
</tr>
</tbody>
</table>

TOTAL
(from Appendix 2) .9800 .6327 .9501 .8309
Table 7 AP correlation coefficients between spirometer and magnetometers for six individual breaths for each subject. Notice significant variations only in M2 position.

<table>
<thead>
<tr>
<th>Breath #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>AVG + SD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9943</td>
<td>.9924</td>
<td>.9965</td>
<td>.9859</td>
<td>.9869</td>
<td>.9677</td>
<td>.9873 + .010</td>
</tr>
<tr>
<td>M2</td>
<td>.7330</td>
<td>.9153</td>
<td>.8612</td>
<td>.9194</td>
<td>.9488</td>
<td>.9455</td>
<td>.8872 + .082</td>
</tr>
<tr>
<td>M3</td>
<td>.7938</td>
<td>.7128</td>
<td>.9286</td>
<td>.8702</td>
<td>.6305</td>
<td>.8504</td>
<td>.7977 + .109</td>
</tr>
<tr>
<td>M4</td>
<td>.6046</td>
<td>.6074</td>
<td>.6280</td>
<td>.6404</td>
<td>.8385</td>
<td>.8791</td>
<td>.7147 + .116</td>
</tr>
</tbody>
</table>

SUBJECT #2

M1	.9917	.9944	.9913	.9979	.9876	.9905	.9922 + .004
M2	-.2067	-.0136	-.2203	.4364	-.1368	.1806	.0081 + .259
M3	.8693	.9658	.8277	.9765	.9374	.9386	.9192 + .058
M4	.9706	.9940	.9247	.9941	.9764	.9812	.9735 + .026

SUBJECT #3

M1	.9849	.9843	.9921	.9933	.9948	.9908	.9900 + .004
M2	.5853	.6324	.8366	.6728	.8241	.9572	.7515 + .143
M3	.9468	.9757	.9898	.9841	.9912	.9937	.9802 + .018
M4	.7945	.9773	.9880	.9891	.9918	.9961	.9561 + .079

SUBJECT #4

M1	.9975	.9973	.9959	.99339960 + .002
M2	.8896	.8783	.8564	.92478873 + .029
M3	.9631	.9492	.9458	.97889592 + .015
M4	.8987	.9531	.9871	.95729490 + .037

SUBJECT #5

M1	.9442	.9234	.9551	.9581	.9725	.8983	.9419 + .027
M2	.9446	.9805	.9271	.9659	.9546	.9651	.9563 + .019
M3	.9562	.9816	.9529	.9908	.9777	.9771	.9727 + .015
M4	.9713	.9590	.9711	.9895	.9856	.9897	.9777 + .012

SUBJECT #6

M1	.9906	.9959	.9953	.9974	.9972	.9944	.9951 + .002
M2	.5938	-.0588	.0485	-.1482	.2152	-.7758	-.0208 + .453
M3	.9648	.7155	.9594	.9676	.8804	.8973	.8981 + .097
M4	.9629	.6785	.9516	.9552	.8816	.7841	.8689 + .115

21
<table>
<thead>
<tr>
<th>SUBJECT #7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9964</td>
<td>.9902</td>
<td>.9885</td>
<td>.9963</td>
<td>.9972</td>
</tr>
<tr>
<td>M2</td>
<td>-.9331</td>
<td>-.6511</td>
<td>.2943</td>
<td>.9136</td>
<td>.2874</td>
</tr>
<tr>
<td>M3</td>
<td>.9697</td>
<td>.8868</td>
<td>.8526</td>
<td>.9957</td>
<td>.9591</td>
</tr>
<tr>
<td>M4</td>
<td>.9896</td>
<td>.9187</td>
<td>.6794</td>
<td>.9729</td>
<td>.9658</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECT #8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9146</td>
<td>.9708</td>
<td>.9888</td>
<td>.9262</td>
<td>.9693</td>
</tr>
<tr>
<td>M2</td>
<td>.5116</td>
<td>.6896</td>
<td>.7786</td>
<td>.8107</td>
<td>.9004</td>
</tr>
<tr>
<td>M3</td>
<td>.8628</td>
<td>.6582</td>
<td>.8355</td>
<td>.8398</td>
<td>.9545</td>
</tr>
<tr>
<td>M4</td>
<td>.5478</td>
<td>.4092</td>
<td>.5868</td>
<td>.5822</td>
<td>.9237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECT #9</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9534</td>
<td>.9224</td>
<td>.8822</td>
<td>.9159</td>
<td>.9576</td>
</tr>
<tr>
<td>M2</td>
<td>.8300</td>
<td>.8505</td>
<td>.9074</td>
<td>.9395</td>
<td>.9759</td>
</tr>
<tr>
<td>M3</td>
<td>.9707</td>
<td>.9551</td>
<td>.9635</td>
<td>.9754</td>
<td>.9889</td>
</tr>
<tr>
<td>M4</td>
<td>.9685</td>
<td>.9846</td>
<td>.9899</td>
<td>.9886</td>
<td>.9932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECT #10</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9786</td>
<td>.9863</td>
<td>.9534</td>
<td>.9964</td>
<td>.9905</td>
</tr>
<tr>
<td>M2</td>
<td>.6949</td>
<td>.9518</td>
<td>.8867</td>
<td>.8838</td>
<td>.8882</td>
</tr>
<tr>
<td>M3</td>
<td>.9636</td>
<td>.9844</td>
<td>.9856</td>
<td>.9890</td>
<td>.9801</td>
</tr>
<tr>
<td>M4</td>
<td>.6975</td>
<td>.8892</td>
<td>.6231</td>
<td>.9794</td>
<td>.9729</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECT #11</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>.9609</td>
<td>.9836</td>
<td>.8344</td>
<td>.9497</td>
<td>.9764</td>
</tr>
<tr>
<td>M2</td>
<td>.9131</td>
<td>.9914</td>
<td>.8977</td>
<td>.9219</td>
<td>.9497</td>
</tr>
<tr>
<td>M3</td>
<td>.9656</td>
<td>.9211</td>
<td>.9454</td>
<td>.9701</td>
<td>.9384</td>
</tr>
<tr>
<td>M4</td>
<td>.8217</td>
<td>.9741</td>
<td>.8562</td>
<td>.9602</td>
<td>.6584</td>
</tr>
</tbody>
</table>
Table 8 AP Correlation coefficients for a single forced breath for each subject. Notice no remarkable differences from those of quiet breathing.

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>M_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9975</td>
<td>.9782</td>
<td>.8801</td>
<td>.9275</td>
</tr>
<tr>
<td>2</td>
<td>.9829</td>
<td>.6253</td>
<td>.9213</td>
<td>.9537</td>
</tr>
<tr>
<td>3</td>
<td>.9888</td>
<td>.4612</td>
<td>.9698</td>
<td>.8537</td>
</tr>
<tr>
<td>4</td>
<td>.9964</td>
<td>.9564</td>
<td>.9381</td>
<td>.8221</td>
</tr>
<tr>
<td>5</td>
<td>.9706</td>
<td>.9789</td>
<td>.9169</td>
<td>.9198</td>
</tr>
<tr>
<td>6</td>
<td>.9935</td>
<td>.2457</td>
<td>.7463</td>
<td>.4557</td>
</tr>
<tr>
<td>7</td>
<td>.9826</td>
<td>-.7417</td>
<td>.8894</td>
<td>.8696</td>
</tr>
<tr>
<td>8</td>
<td>.9948</td>
<td>.4384</td>
<td>.8431</td>
<td>.9616</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>no measurements made</td>
</tr>
<tr>
<td>10</td>
<td>.9844</td>
<td>.6871</td>
<td>.8938</td>
<td>.8866</td>
</tr>
<tr>
<td>11</td>
<td>.9555</td>
<td>.7147</td>
<td>.9204</td>
<td>.9243</td>
</tr>
</tbody>
</table>

Average .9847+.013 .5343+.512 .8919+.062 .8574+.148
Table 9 AP Correlation coefficients for a single breath showing individual correlations for inspiration (I), expiration (E) and the total breath (T)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>TEST</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>M₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>.9964</td>
<td>.9524</td>
<td>.9964</td>
<td>.8491</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9971</td>
<td>.9857</td>
<td>.9919</td>
<td>.9377</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9948</td>
<td>.8823</td>
<td>.9837</td>
<td>.8279</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>.9989</td>
<td>.2029</td>
<td>.9981</td>
<td>.9978</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9909</td>
<td>-.3788</td>
<td>.9001</td>
<td>.9784</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9874</td>
<td>-.1569</td>
<td>.9352</td>
<td>.9756</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>.9951</td>
<td>.9739</td>
<td>.9945</td>
<td>.9957</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9977</td>
<td>.7081</td>
<td>.9913</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9948</td>
<td>.8240</td>
<td>.9912</td>
<td>.9917</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>.9975</td>
<td>.9608</td>
<td>.9853</td>
<td>.9764</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9991</td>
<td>.9433</td>
<td>.9892</td>
<td>.9942</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9973</td>
<td>.8783</td>
<td>.9491</td>
<td>.9531</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>.9562</td>
<td>.9859</td>
<td>.9944</td>
<td>.9961</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9773</td>
<td>.9672</td>
<td>.9879</td>
<td>.9966</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9551</td>
<td>.9270</td>
<td>.9529</td>
<td>.9711</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>.9997</td>
<td>.8623</td>
<td>.9989</td>
<td>.9949</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9965</td>
<td>-.4624</td>
<td>.7004</td>
<td>.6487</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9959</td>
<td>-.0588</td>
<td>.7155</td>
<td>.6785</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>.9973</td>
<td>.9598</td>
<td>.9954</td>
<td>.9949</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9978</td>
<td>.9013</td>
<td>.9969</td>
<td>.9869</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9963</td>
<td>.9136</td>
<td>.9957</td>
<td>.9728</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>.9962</td>
<td>.9822</td>
<td>.9967</td>
<td>.9966</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9965</td>
<td>.9733</td>
<td>.9883</td>
<td>.9869</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9913</td>
<td>.9275</td>
<td>.9841</td>
<td>.9570</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>.9811</td>
<td>.9311</td>
<td>.9784</td>
<td>.9976</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9982</td>
<td>.9934</td>
<td>.9982</td>
<td>.9971</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9582</td>
<td>.9568</td>
<td>.9865</td>
<td>.9722</td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>.9974</td>
<td>.9479</td>
<td>.9956</td>
<td>.9851</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9981</td>
<td>.7965</td>
<td>.9821</td>
<td>.9845</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9964</td>
<td>.8838</td>
<td>.9890</td>
<td>.9794</td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>.9781</td>
<td>.9699</td>
<td>.9601</td>
<td>.9851</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>.9957</td>
<td>.9911</td>
<td>.9959</td>
<td>.9960</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>.9404</td>
<td>.9267</td>
<td>.9544</td>
<td>.9879</td>
</tr>
</tbody>
</table>
Table 10 Correlation coefficients for the single breath for which the fourier results (Appendix 3) are given

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>M₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9965</td>
<td>.8612</td>
<td>.9286</td>
<td>.6280</td>
</tr>
<tr>
<td>2</td>
<td>.9979</td>
<td>.4364</td>
<td>.9765</td>
<td>.9942</td>
</tr>
<tr>
<td>3</td>
<td>.9933</td>
<td>.6729</td>
<td>.9841</td>
<td>.9891</td>
</tr>
<tr>
<td>4</td>
<td>.9975</td>
<td>.8896</td>
<td>.9631</td>
<td>.8987</td>
</tr>
<tr>
<td>5</td>
<td>.8983</td>
<td>.9650</td>
<td>.9771</td>
<td>.9897</td>
</tr>
<tr>
<td>6</td>
<td>.9974</td>
<td>-.1482</td>
<td>.9675</td>
<td>.9552</td>
</tr>
<tr>
<td>7</td>
<td>.9963</td>
<td>.9136</td>
<td>.9957</td>
<td>.9729</td>
</tr>
<tr>
<td>8</td>
<td>.9913</td>
<td>.9275</td>
<td>.9841</td>
<td>.9571</td>
</tr>
<tr>
<td>9</td>
<td>.9224</td>
<td>.8505</td>
<td>.9551</td>
<td>.9846</td>
</tr>
<tr>
<td>10</td>
<td>.9534</td>
<td>.8868</td>
<td>.9856</td>
<td>.6231</td>
</tr>
<tr>
<td>11</td>
<td>.8344</td>
<td>.8977</td>
<td>.9454</td>
<td>.8562</td>
</tr>
</tbody>
</table>
Figure 1. The eight anatomical magnetometer placements \((M_i, i = 1, 2, \ldots, 8) \) are shown (see text).
Fig 2. Axes for a given magnetometer pair (transmitter and receiver).

Figure 3. A typical time trace of the five signals (spirometer, M_1, M_2, M_3, M_4) for subject #5 during a forced breathing maneuver is shown. Notice the maximal breath in the eighth breath see text for details.
Figure 4. Hysteresis curves of a given breath for a typical subject. Notice the more pronounced hysteresis in the M_2 (bottom) position with respect to the M_1 (top) position. (Next page M_2(top), M_1(bottom)).
Figure 5. Hysteresis curves for a given subject showing two successive breaths at the M₁ position. Note the variations. Greater variations were seen in each of the other three AP positions on these breaths.
Figure 6. Lateral (M_6) position hysteresis curves showing significant variations on successive breaths (Three curves; continued next page).
Figure 7. Three hysteresis plots for a given breath, subject #3. We note the apparent correspondence between the amount of hysteresis and the calculated correlation coefficient. They are for M_1, M_3, M_4 respectively (continued next page).
HYSTERESIS 3

$M_3: \rho = 0.824$

SPIROMETRIC DATA

HYSTERESIS 4

$M_4: \rho = 0.991$

SPIROMETRIC DATA
Figure 8. We show the actual and fourier representation of a M_2 vs time plot for a given breath. Seven harmonics were needed to accurately describe the curve.
Appendix 1

All data analysis and collection was performed on a Minc 11 with the controlling software written in the high level language, BASIC. The program listings as well as a brief program explanation are given below. The programs were written so as to "prompt" the user for the specific input as well as to instruct the user; this to allow other users to easily implement the programs on continued investigation.

A few points should be highlighted at this time. The test data files were stored as one dimensional integer arrays of three thousand data entries. They were stored as a sequence of spirometer, M_1, M_2, M_3, M_4 (or M_5, M_6, M_7, M_8) repeated 600 times. Approximately twenty four data files each of 3000 digitized points could be stored per secondary (data) diskette (Scotch, 8 inch, soft sector, double density, RX02 format).

In programs where individual breaths were analyzed (eg. ANALY3.BAS) the program asks for the spirometer file place (0 - 600) to define the given breath. This is exemplified in figure A.1. Thus by inputing any max/min value for the filplace, any breath, portion of a breath or sequence can be analyzed.

As a final note, all output data file names for output on disk drive 2 must be inputed before program execution. And, in the program listings, $1/2$ stands for "<" and $1/4$ stands for ">".

The programs are:

1) LUNG - The program LUNG controlled the data collection process (eq. sampling rate, sampling time). The five simultaneous signals were converted to digitized form, stored, and graphed on the screen for a qualitative "look" at the data.
(2) ANALYP — The program ANALYP recalled the data file from storage (from LUNG) and calculated the correlation coefficients as given in Appendix 2. The results were both stored and displayed on the screen.

(3) RESLT2 — The program RESLT2 recalled the data stored by ANALYP for any number of subjects and averaged and gave standard deviations for the results (as given in tables 2-5).

(4) MCAL — The program MCAL allowed us to perform calibration tests on each magnetometer based on separation distances, rotational effects and adjustment of relative gain.

(5) SCAL — The program SCAL was used to obtain calibration curves for the spirometer as output vs volume.

(6) MAX 4 — The program MAX 4 was used to scan each data file to determine the relative maxima and minima fileplaces for use as described above. Due to the experimental nature of the data, absolute extrema were rare, and results were often doubled checked visually using MANGE2.

(7) MANGE2 — The program MANGE2 was used to visually inspect data and to generate cross plots (hysteresis curves).

(8) ANALY3 — ANALY3 is essentially the same as ANALYP except that one could keyboard control which breath or parts thereof that correlations were to be calculated. The results of MAX 4 were used here.

(9) The following "chained programs" were used to calculate the fourier coefficients (up to seven harmonics) for the given breath. They allowed visual inspection of the breath, calculation of the coefficients, visual comparison of the results (see Figure 8), normalization of results with respect to the spirometer and storage.
(i) FMAIN
(ii) FGRAPH
(iii) FCOEFF
(iv) FCOMP
(v) FNORM
(vi) FOUT
(vii) NSTORE
LUNG.BAS

10 B$="**** ***** ***** ***** ***** *****"
20 DIM M%(3000) T=0
30 DISPLAY_CLEAR
40 PRINT "***"
41 PRINT "This program collects data from channels 0-4 and writes to a file or to the screen."
42 PRINT "Enter the filename for output; \ LINPUT F$
45 PRINT "Enter the file number 1-10; \ INPUT F5"
48 PRINT "Enter the number of data points to be taken; \ INPUT DI"
52 PRINT "Are you ready? \ RETURN; \ INPUT AS"
60 FOR J=1 TO 100 \ NEXT J
70 I=1
80 SCHEDULE('INTERVAL',1,140)
90 PRINT CHR$(7)
100 AIN(M%(),D1,075,0,5)
110 IF I=0 THEN 150 \ GO TO 120
115 I=0 RETURN
120 PRINT CHR$(7) \ PRINT "Input from channel 0-4 now complete."
125 GRAPH(M%())
135 PRINT "Output to disk or to screen or do nothing (D or S or N); \ INPUT A$
150 IF A$='D' GO TO 200 \ IF A$='S' GO TO 230 \ IF A$='N' GO TO 170
200 OPEN 'DK1:F.DAT FOR OUTPUT AS FILE #F5
210 FOR K=0 TO D1-1 \ PRINT #F5,M%(IC) \ NEXT K
220 CLOSE #F5 \ DISPLAY_CLEAR \ GO TO 270
230 DISPLAY_CLEAR
240 FOR K=0 TO D1/5-1 \ K%=5*K
250 PRINT USING B$,K%,M%(K%),M%(K%+1),M%(K%+2),M%(K%+3),M%(K%+4)
260 NEXT K
270 PRINT /
290 DISPLAY_CLEAR\ STOP \ END
ANALYP.BAS

10 DIM M%(4,599),S(4),Q(4),T(4,4),C(4,4)
20 R=0 Z$='DAT W$='----------------------------------'
28 PRINT '**
29 PRINT 'This program calculates the sum, the sum-squared and the correlation coefficients for channels 0-4'
30 PRINT '**
31 PRINT
32 PRINT 'Enter the filename for input ; INPUT F$
33 PRINT 'Enter the file number 1-10; INPUT F6
34 PRINT 'Enter the number of data points collected'; INPUT C1
35 PRINT
36 PRINT 'note: did you substitute filename into #60'
37 C1=3000
38 OPEN F$&'0.DAT FOR OUTPUT AS FILE #10
39 OPEN 'DK1:F.DAT FOR INPUT AS FILE #F6
40 FOR J=0 TO C1/5-1 FOR I=0 TO 4 INPUT #F6,M%(I,J) NEXT I NEXT J
41 CLOSE #F6
42 FOR I=0 TO 4 S(I)=0
43 L=C1/5-1
44 FOR K=0 TO 4 T(I,K)=0 C(I,K)=0 NEXT K
45 FOR J=0 TO L SCI)=S(I)+Mro(I,J) NEXT J
46 FOR K=0 TO I
47 FOR J=0 TO L PRINT V; T(I,K)=T(I,K)+1*MVo(I,J)*M%(K,J) NEXT J
48 NEXT K
49 FOR K=0 TO I C(I,K)=T(I,K)-S(I)*S(K)/(L+1) NEXT K
50 FOR I=0 TO 4 Q(I)=SQR(ABS(C(I,I))) FOR K=0 TO I C(I,K)=C(I,K)/Q(K)*10000+.5)/10000
51 NEXT I
52 FOR I=0 TO 4 FOR K=I TO 4 T(I,K)=T(K,I) C(I,K)=C(K,I) NEXT K NEXT I
53 PRINT
54 PRINT W$
55 PRINT '***SUM***
56 PRINT S(0),S(1),S(2),S(3),S(4)
57 PRINT '***INNER PRODUCT***
58 FOR I=0 TO 4 PRINT T(I,0),T(I,1),T(I,2),T(I,3),T(I,4) NEXT I
59 PRINT '***CORRELATION COEFFICIENT***
60 FOR I=0 TO 4 FOR J=0 TO 4 PRINT #10,C(I,J) NEXT J NEXT I
61 CLOSE #10
62 IF H$='A' THEN PRINT 'AGAIN'
63 DISPLAY CLEAR STOP END
RESLTZ.BAS

10 DIM S(4,4), C(4,4), A(4,4), S1(4,4), D(4,4)
15 FOR K=0 TO 4 \ FOR L=0 TO 4 \ S(K,L)=0 \ NEXT L \ NEXT K
17 N=0
18 PRINT 'Enter the output filename'; \ LINPUT GS
20 PRINT 'Enter the input filename'; \ LINPUT FS
25 N=N+1
30 OPEN FS&'0.DAT FOR INPUT AS FILE #5
40 FOR I=0 TO 4
45 FOR J=0 TO 4
50 INPUT #5,C(I,J)
55 NEXT J
60 NEXT I
70 CLOSE #5
80 FOR I=0 TO 4
85 FOR J=0 TO 4
100 S(I,J)=S(I,J)+C(I,J)
105 S1(I,J)=S1(I,J)+C(I,J)^2
110 NEXT J
120 NEXT I
170 PRINT 'Again?'; \ LINPUT AS
180 IF AS='Y' THEN 20
200 FOR K=0 TO 4
210 FOR L=0 TO 4
220 A(K,L)=S(K,L)/N
225 D(K,L)=SQR(ABS((S1(K,L)-N*A(K,L)^2)/(N-1)))
230 NEXT L
240 NEXT K
241 PRINT " PRINT "
245 PRINT 'Wish to store this?'; \ LINPUT Q$
246 IF QS='N' THEN 271
250 OPEN GS&'.DAT FOR OUTPUT AS FILE #3
255 PRINT #3,'THE AVERAGE VALUES ARE:
260 PRINT #3,' THE STANDARD DEVIATIONS ARE:
265 FOR J=0 TO 4 \ PRINT #3,D(J,0),D(J,1),D(J,2),D(J,3),D(J,4) \ NEXT J
270 CLOSE #3
271 DISPLAY CLEAR \ PRINT 'AVERAGE VALUES ARE:' \ PRINT
272 FOR I=0 TO 4 \ PRINT A(I,0),A(I,1),A(I,2),A(I,3),A(I,4) \ NEXT I
273 PRINT " THE STANDARD DEVIATIONS ARE:' \ PRINT "
274 FOR J=0 TO 4 \ PRINT D(J,0),D(J,1),D(J,2),D(J,3),D(J,4) \ NEXT J
280 STOP \ END
MCAL.BAS

1 REM D1=SEPARATION DISTANCES, S1=AVERAGE VOLTAGE/DISTANCE
2 REM A3=MEAN DISTANCE, A4=MEAN VOLTAGE
3 REM B3=SLOPE, B4=INTERCEPT
10 REM THE PROGRAM NAME IS MCAL
20 REM ENTER CHANNEL #5 TO STOP
50 DIM D1(20),S1(20),V(100),V1(100)
55 DIM S(100),A1(20),A2(20),B1(20),B2(20)
60 I=0 \ M=20
62 PRINT '**'
63 PRINT '41 This program allows calibration of the magnetometers voltage vs. separation distance...
64 PRINT 'a least squares fit can then be computed.'
65 PRINT '**',
66 PRINT 'PRINT '**'
68 PRINT "PRINT "
80 FOR K=0 TO M \ S1(K)=0 \ D1(K)=0 \ NEXT K
86 FOR K=0 TO 99 \ V(K)=0 \ V1(K)=0 \ NEXT K
100 I=I+1 \ J=0 \ A1(I)=0 \ A2(I)=0 \ B1(I)=0 \ B2(I)=0 \ B3=0 \ B4=0
101 PRINT 'ENTER THE MAGNETOMETER NUMBER; INPUT I1
102 I=I1
103 IF I=5 THEN 275
105 DISPLAY CLEAR
109 PRINT 'SET UP MAGNETOMETER PAIR #',I
110 PRINT 'ANOTHER SEPARATION DISTANCE Y or N; INPUT QS
111 PRINT "PRINT "
120 PRINT 'PLEASE GIVE SEPARATION DISTANCE (inches); INPUT D
130 D1(J)=D
140 SCHEDULE('INTERVAL',10,200)
150 AIN('DISPLAY',V0,100,.1,1)
160 IF L=0 THEN 205
170 GO TO 170
180 L=0 \ RETURN
200 L=0 \ RETURN
205 DISPLAY CLEAR
210 FOR K=0 TO 99 \ V1(K)=V(K) \ S(K+1)=S(K)+V1(K)
215 NEXT K
220 S1(J)=S(K+1)/K
225 M=J
230 GO TO 120
232 PRINT
233 PRINT 'DISTANCE AVERAGE VOLTAGE'
234 PRINT "
235 FOR L=1 TO J \ PRINT D1(L),S1(L) \ NEXT L
236 PAUSE(5)
240 PRINT " PRINT "
265 PRINT 'DO YOU WANT TO PRINT A LEAST SQUARES ANALYSIS?'; \ INPUT L$
270 IF L$='YES' THEN GOSUB 300
271 IF L$='Y' THEN GOSUB 300
272 PRINT 'DO YOU WANT TO STORE THIS?'; \ INPUT D$
273 IF D$='Y' THEN GOSUB 480 \ IF D$='YES' THEN GOSUB 480
274 DISPLAY_CLEAR
275 IF I$5 THEN 80 \ IF I=5 THEN STOP
300 REM THIS IS THE LEAST SQUARES SUBROUTINE
310 FOR K=1 TO M
320 A1(K+1)=A1(K)+D1(K)
330 A2(K+1)=A2(K)+S1(K)
340 NEXT K
350 A3=A1(M+1)/M
360 A4=A2(M+1)/M
370 FOR L=1 TO M
380 B1(L+1)=B1(L)+(D1(L)-A3)*(S1(L)-A4)
390 B2(L+1)=B2(L)+(D1(L)-A3)
400 NEXT L
410 B3=B1(M+1)/B2(M+1)
420 B4=A4-B3*A3
425 PRINT
430 PRINT 'THE SLOPE IS'; \ PRINT B3
440 PRINT 'THE INTERCEPT IS'; \ PRINT B4
450 PRINT "
460 PAUSE(15)
465 DISPLAY_CLEAR
470 RETURN
480 REM THIS IS A SUBROUTINE TO STORE DATA
490 PRINT 'ENTER THE DATA FILE NAME?'; \ INPUT S$
500 OPEN S$&'.DAT' FOR OUTPUT AS FILE #3
510 FOR K=1 TO J \ PRINT #3,D1(K),S1(K) \ NEXT K
520 CLOSE #3
530 PRINT \ PRINT \ PRINT
540 RETURN
SCAL.BAS

50 REM PROGRAM NAME IS SCAL
100 DIM A(100), A1%(100), A2(11), S(100), S2(11), S1(11), Z1(11)
120 PRINT '**
121 PRINT ' 4
122 PRINT ' 0
123 PRINT ' This program calibrates input voltages in terms of volume for the spirometer...begin at vol=0
124 PRINT ' 4
125 PRINT '**
130 REM DESIGNED TO INPUT 10 VOLUMES AND CALIBRATE (0-10)
140 J=0 \ I=1 \ S(0)=0 \ S2(0)=0 \ S1(0)=0 \ Z1(0)=0
150 SCHEDULE('INTERVAL',10,190)
160 AIN('DISPLAY', A1%(), 100, .1, 0,)
180 IF I=0 GO TO 190 \ GO TO 160
190 I=0
200 FOR K=0 TO 99 \ A(K)=A1%(K) \ PRINT A(K) \ NEXT K
210 FOR L=0 TO 99 \ S(L+1)=S(L)+A(L) \ NEXT L
220 A2(J)=S(100)/100
225 DISPLAY CLEAR
230 PRINT 'THE VOLUME MEASURED WAS: ; PRINT J
240 PRINT 'AVERAGE VOLTAGE WAS: ; PRINT A2(J)
243 PRINT ''
244 PRINT '***YOU HAVE TEN SECONDS TO INCREASE VOLUME***'
245 PAUSE(10)
246 PRINT CHR$(7)
250 I=1 \ J=J+1 \ S(0)=0
260 SCHEDULE('INTERVAL',10,190)
270 IF J=11 THEN 285
280 RETURN
285 PRINT 'VOLUME	 VOLTAGE'
286 FOR I=0 TO 10 \ PRINT I,A2(I) \ NEXT I
287 PRINT ' '
289 REM NOW HAVE VOLTAGES VS VOLUME DATA
300 REM NEXT PERFORM LEAST SQUARES DATA REDUCTION
310 FOR J=0 TO 10 \ S2(J+1)=S2(J)+A2(J) \ NEXT J
320 V3=S2(11)/11
330 V4=5
340 FOR K=0 TO 10 \ A(K)=(A2(K)-V3)*(K-V4) \ NEXT K
350 FOR K=0 TO 10 \ S1(K+1)=A(K)+S1(K) \ NEXT K
360 FOR K=0 TO 10 \ Z(K)=(K-V4)^2 \ NEXT K
370 FOR K=0 TO 10 \ Z1(K+1)=Z(K)+Z1(K) \ NEXT K
375 K=11
380 M=S1(K)/Z1(K)
390 B=V3-M*V4
400 REM VOLTS =VOLUME*M+B i.e. LINEAR RELATIONSHIP
410 REM USE EQN VOL=(VOLTS-B)/M
416 PRINT 'THE LEAST SQUARES INFORMATION IS:
417 PRINT ' '
420 PRINT 'THE SLOPE IS: ; PRINT M
430 PRINT 'THE Y INTERCEPT IS: ; PRINT B
440 PAUSE(20)
450 DISPLAY CLEAR
460 STOP \ END
MAX4.BAS

1 REM
100 REM This program allows one to find the relative extremum
101 REM values in the spirometer data set
120 DIM M%(3000),S%(600),C1(50),C2(50)
125 DIM C3(50),C4(50)
130 B=0 \ D=0
140 OPEN 'DK1:JDH1.DAT' FOR INPUT AS FILE #3
150 FOR I=0 TO 2999
160 INPUT #3,M%(I)
170 NEXT I
180 CLOSE #3
190 REM
200 FOR K=0 TO 599 \ K%=5*K
210 S%(K)=M%(K%)
220 NEXT K
230 REM
240 FOR K=3 TO 595
250 T1=S%(K) \ T2=S%(K+1) \ T3=S%(K+2) \ T4=S%(K-3) \ T5=S%(K+3)
260 IF T1=T2 THEN IF T3=T2 THEN IF T4=T2 THEN IF T5=T2 THEN B=B+1 \ C1(B)=K+1
270 IF T1=T2 THEN IF T3=T2 THEN IF T4=T2 THEN IF T5=T2 THEN D=D+1 \ C2(D)=K+1
280 NEXT K
290 IF B>D THEN J1=B
300 IF D>B THEN J1=D
305 PRINT ' FILE PLACE MAX FILE PLACE MIN'
306 PRINT \ PRINT
310 FOR J=1 TO J1 \ PRINT C1(J),S%(C1(J)),C2(J),S%(C2(J)) \ NEXT J
320 REM
325 PRINT \ PRINT
330 PRINT 'WISH TO STORE MAX / MIN VALUES'; \ INPUT SS
340 IF SS='N' THEN 380
345 PRINT \ PRINT 'ENTER THE FILENAME PLEASE'; \ INPUT FS
350 OPEN FS&'.DAT' FOR OUTPUT AS FILE #4
355 PRINT #4,' FILE PLACE MAX FILE PLACE MIN'
356 PRINT #4,***
360 PRINT #4,*******************************
365 FOR J=1 TO J1 \ PRINT #4,C1(J),S%(C1(J)),C2(J),S%(C2(J)) \ NEXT J
370 CLOSE #4
380 PRINT \ PRINT
390 STOP \ END
REM Program name HELLO or MANAGE
5 REM THIS PROGRAM ALLOWS ONE TO OPEN A MAGNETOMETER DATA
6 REM FILE AND ... GRAPH,TRANSFER OR DISPLAY THE DATA
7 REM note: must sub filename into #30 and #120
8 35-=' #### 	 ##### 	 ##### 	 ##### 	 ##### '
9 DIM M%(3000)
10 DIM S%(600),Y%(600)
30 OPEN 'DK1:F2.DAT FOR INPUT AS FILE #3
40 FOR I=0 TO 2999
50 INPUT #3,M%(I)
60 NEXT I
70 CLOSE #3
90 PRINT 'DO YOU WISH TO COPY FILE TO ANOTHER DISK; \ LINPUT F$
100 IF F$='N' THEN 163
105 DISPLAY_CLEAR
110 PRINT 'PLACE NEW DISKETTE INTO DRIVE Z
115 PAUSE(15) \ PRINT \ PRINT
120 OPEN 'DK1:F.DAT FOR OUTPUT AS FILE #5
130 FOR I=0 TO 2999
140 PRINT #5,M%(I)
150 NEXT I
160 CLOSE #5
163 PRINT \ PRINT \ PRINT
196 PRINT 'GRAPH THE RESULTS'; \ LINPUT G$
198 IF G$='N' THEN 205
199 GRAPH(M%,M%())
205 DISPLAY_CLEAR \ PRINT 'GRAPH SPIROMETRIC RESULTS'; \ LINPUT V$
210 IF V$='N' THEN GOSUB 325
211 PRINT 'DISPLAY THE NUMERICAL RESULTS'; \ LINPUT D$
212 IF D$='Y' THEN GOSUB 385
215 PRINT 'WISH TO GRAPH HYSTERESIS; \ INPUT H$
216 IF H$='N' THEN 320
217 PRINT 'ENTER DESIRED MAGNETOMETER FOR COMPARISION'; \ INPUT I
218 PRINT 'ENTER THE FILEPLACES DEFINING DATA RANGE'; \ INPUT M1,M2
230 FOR K=M1 TO M2 \ K%=5*K
240 S%(K%)=M%(K%+I)
250 NEXT K
260 GRAPH(Y%,S%(),S%())
300 PRINT 'AGAIN'; \ LINPUT A$
305 DISPLAY_CLEAR
310 IF A$='Y' THEN 196
315 PRINT 'WISH TO STORE THIS'; \ LINPUT S$
316 IF S$='Y' THEN GOSUB 500
320 STOP
325 REM SUBROUTINE
326 PRINT 'ENTER CHANNEL NO. 0-4'; \ INPUT M7
330 FOR J5=0 TO 599
335 S%(J5)=M%(J5*5+M7)
340 NEXT J5
350 GRAPH(,,S%(i))
360 LABEL(,'SPIROMETRIC CURVE',',')
370 PAUSE(15) \ DISPLAY_CLEAR
380 RETURN
385 REM SUBROUTINE
390 FOR K=0 TO 599 \ K%=5*K
400 PRINT USING B$,K,M%(K%),M%(K%+1),M%(K%+2),M%(K%+3),M%(K%+4)
410 NEXT K
420 DISPLAY_CLEAR
430 RETURN
500 PRINT 'ENTER OUTPUT FILENAME'; \ INPUT F$
510 OPEN F$&'.DAT FOR OUTPUT AS FILE #3
520 FOR I=M1 TO M2
530 PRINT #3,I,S%(I),Y%(I)
540 NEXT I
550 CLOSE #3
560 RETURN
100 REM This program calculates correlation coefficients
110 REM for inspiration/expiration parts of the data
200 DIM M%(3000),I%(525),E%(525)
210 DIM M1(25),C(2),M2(25)
220 REM
230 Z$="CHANNEL INSPIRATION EXPIRATION"
240 OPEN 'DK1:F.DAT FOR INPUT AS FILE #3
250 FOR I=0 TO 2999
260 INPUT #3,M%(I)
270 NEXT I
280 CLOSE #3
290 PRINT 'Enter the number of MAX,MIN values; INPUT B
300 FOR J=1 TO B
310 PRINT 'Enter the MAX,MIN fileplace; INPUT M1(J),M2(J)
320 NEXT J
330 A1=0
340 FOR K=1 TO B-1
350 FOR C=M2(K) TO M1(K+1)
360 Wo(A1)=M%(C*5)
370 A1=A1+1
380 NEXT C
390 NEXT K
400 A1=A1-1
410 A2=0
420 FOR K=1 TO B-1
430 FOR L=M1(K) TO M2(K)
440 E%(A2)=M%(L*5)
450 A2=A2+1
460 NEXT L
470 NEXT K
480 A2=A2-1
490 DISPLAY CLEAR
500 PRINT 'WISH TO SEE EXPIRATION/INSPIRATION GRAPHS; INPUT E$
510 IF ES='N' THEN 560
520 REGION('UPPER',1) \ REGION('LOWER',2)
530 GRAPH(,,I%(1),2,1) \ GRAPH(,,E%(1),2,2)
540 LABEL('EXPIRATION',',1) \ LABEL('INSPIRATION',',1)
550 PAUSE(15) \ DISPLAY_CLEAR
560 PRINT \ PRINT
570 PRINT 'WISH TO CALCULATE CORRELATION COEFFICIENTS; INPUT C$
580 IF CS='N' THEN 1020
590 DISPLAY_CLEAR
600 PRINT Z$
610 PRINT \ PRINT
620 FOR M7=0 TO 4
630 P1=0 \ S1=0 \ S2=0 \ S3=0 \ S4=0 \ A3=0 \ A4=0 \ D1=0 \ D2=0 \ N=0
640 C(1)=0 \ C(2)=0
650 FOR K=1 TO B-1
660 FOR C=M2(K) TO M1(K+1)
670 N=N+1

49
680 X=5*C \ Y=5*C+M7
690 S1=S1+M%(X)
700 S2=S2+M%(Y)
710 S3=S3+M%(X)+2
720 S4=S4+M%(Y)+2
730 Q1=M%(X) \ Q2=M%(Y)
740 P1=P1+Q1*Q2
750 NEXT C
760 NEXT K
770 A3=S1/N
780 A4=S2/N
790 D1=SQR(ABS(1/(N-1)*S3-N*A3^2))
800 D2=SQR(ABS(1/(N-1)*S4-N*A4^2))
810 C(1)=(1/(N-1))*((P1-N*A3*A4)/(D1*D2))
820 P2=0 \ R1=0 \ R2=0 \ R3=0 \ R4=0 \ A5=0 \ A6=0 \ D3=0 \ D4=0 \ M=0
830 FOR K=1 TO B-1
840 FOR C=M1(K) TO M2(K)
850 M=M+1
860 X=5*C \ Y=5*C+M7
870 R1=R1+M%(X)
880 R2=R2+M%(Y)
890 R3=R3+M%(X)+2
900 R4=R4+M%(Y)+2
910 Q3=M%(X) \ Q4=M%(Y)
920 P2=P2+Q3*Q4
930 NEXT C
940 NEXT K
950 A5=R1/M
960 A6=R2/M
970 D3=SQR(ABS(1/(M-1)*(R3-M*A5^2)))
980 D4=SQR(ABS(1/(M-1)*(R4-M*A6^2)))
990 C(2)=(1/(M-1))*((P2-M*A5*A6)/(D3*D4))
1000 PRINT M7,C(1),C(2)
1010 NEXT M7
1020 STOP \ END
FMAIN.BAS

100 REM Program name is FMAIN
120 COMMON M%(3000)
140 OPEN 'DK1:F2.DAT' FOR INPUT AS FILE #3
160 FOR I=0 TO 2999
180 INPUT #3,M%(I)
200 NEXT I
220 CLOSE #3
240 PRINT 'Wish to see spirometric curve?; INPUT S$
260 IF S$="Y" THEN CHAIN 'FGRAPH.BAS'
280 PRINT 'Wish to calculate fourier coefficients?; INPUT F$
300 IF F$="Y" THEN CHAIN 'FCOEFF.BAS'
320 PRINT 'Wish to print out FOURIER RESULTS?; INPUT R$
340 IF R$="Y" THEN CHAIN 'FOUT.BAS'
360 STOP END

FGRAPH.BAS

100 REM Program FGRAPH.BAS to be used with FMAIN.BAS and FCOEFF in chain
120 DIM S%(600)
140 COMMON M%(3000)
160 PRINT 'Which channel please?; INPUT C
170 FOR J=0 TO 599 S%(J)=0 NEXT J
180 FOR I=0 TO 599 S%(I)=M%(I*5+C) NEXT I
200 GRAPH(S%,S%) PAUSE(5) DISPLAY CLEAR
220 PRINT 'AGAIN?; INPUT A$
240 IF A$="Y" THEN 160
260 CHAIN 'FCOEFF.BAS'

FCOEFF.BAS

100 REM program FCOEFF.BAS
120 DIM A(5,7),B(5,7)
140 COMMON M%(3000),A1(4),G(5,7),P(5,7),N,N2,M1,M2
160 PRINT 'Enter number of harmonics to be found';
180 PRINT 'Enter max datafile places to define data range';
200 N=M2-M1+1
220 FOR K=0 TO 4 FOR T=M1 TO M2 \ A1(K)=A1(K)+M%(T*5+K) \ NEXT T \ NEXT K
240 FOR K=0 TO 4 \ A1(K)=A1(K)/N \ NEXT K
245 FOR J=1 TO N2
250 FOR K=0 TO 4 \ A(K,J)=0 \ B(K,J)=0 \ NEXT K
255 NEXT J
260 FOR J=1 TO N2
280 FOR K=0 TO 4
300 FOR T=M1 TO M2
320 A(K,J)=A(K,J)+M%(T*5+K)*COS(2*PI*J*T/N)
340 B(K,J)=B(K,J)+M%(T*5+K)*SIN(2*PI*J*T/N)
360 NEXT T
380 NEXT K
400 NEXT J
440 FOR J=1 TO N2
460 FOR K=0 TO 4
480 A(K,J)=A(K,J)*2/N
500 B(K,J)=B(K,J)*2/N
520 G(K,J)=SQR(A(K,J)^2+B(K,J)^2)
540 P(K,J)=ATN(A(K,J)/B(K,J))
560 IF B(K,J)<>0 THEN P(K,J)=P(K,J)+PI
580 NEXT K
600 NEXT J
620 CHAIN 'FCOMP.BAS'
FCOMP.BAS

100 REM program FCOMP.BAS
110 DIM S%(600),F%(600)
120 COMMON M%(3000),A1(4),G(5,7),P(5,7),N,N2,M1,M2
130 PRINT 'Wish to compare the results with original file; \ INPUT C$
135 IF C$='N' THEN 540
136 DISPLAY_CLEAR
140 PRINT 'Enter the channel # for comparison; \ INPUT M7
160 FOR T=M1 TO M2 \ F%(T)=0 \ NEXT T
180 FOR T=M1 TO M2
200 FOR J=1 TO N2
220 F%(T)=F%(T)+G(M7,J)*SIN(2*PI*T*J/N+P(M7,J))
240 NEXT J
260 F%(T)=F%(T)+A1(M7)
280 S%(T)=M%(T*5+M7)
300 PRINT S%(T),F%(T)
320 NEXT T
340 DISPLAY_CLEAR
360 REGION('UPPER',1) \ REGION('LOWER',2)
380 GRAPH('S%',1,Z,1) \ GRAPH('F%',1,Z,2)
400 LABEL('SPIROMETRIC RESULT one breath';',1)
420 LABEL('FOURIER ANALYSIS REPRESENTATION',',2)
440 PRINT 'The number of harmonics found is';N2
460 PRINT \ PRINT 'CLEAR THE SCREEN?'; \ INPUT Q$
480 PRINT 'AGAIN'; \ INPUT A$
500 IF A$='Y' THEN 136
520 IF Q$='Y' THEN DISPLAY_CLEAR
540 CHAIN 'FOUT.BAS'
FNORM.BAS

100 REM program FNORM.BAS
120 COMMON M%(3000),A1(4),G(5,7),P(5,7),N,N2,M1,M2
140 PRINT 'Wish to print out normalized fourier results'; LINPUT R$
180 DISPLAY CLEAR
200 IF R$='N' THEN 510
220 PRINT '*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***'
240 PRINT \ PRINT
260 PRINT ' 	 NORMALIZED AMPLITUDES'
280 PRINT
300 PRINT 'SPIROMETER 	 MAG1 	 MAG2 	 MAG3 	 MAG4'
310 G1=G(0,1)
320 FOR J=1 TO N2
341 PRINT G(0,J)/G1,G(1,J)/G(1,1),G(2,J)/G(2,1),G(3,J)/G(3,1),G(4,J)/G(4,1)
342 REM PRINT G(0,J)/G1,G(1,J)/G1,G(2,J)/G1,G(3,J)/G1,G(4,J)/G1
360 NEXT J
380 PRINT ' 	 NORMALIZED PHASE ANGLES'
400 PRINT
420 PRINT
440 PRINT 'SPIROMETER 	 MAG1 	 MAG2 	 MAG3 	 MAG4'
450 P1=PI/2
455 N5=P1-P(0,1)
460 FOR J=1 TO N2
482 IF J=1 THEN 510
483 REM Now we are only looking at the first and dominate harmonic
500 NEXT J
510 PRINT 'Wish to store data on DKO:'; LINPUT S$
515 IF S$='Y' THEN CHAIN 'NSTORE.BAS'
520 STOP \ END
100 REM program FCOMP.BAS
110 DIM $%(500),F%(500)
120 COMMON M%(3000),A1(4),G(5,7),P(5,7),N,N2,M1,M2
130 PRINT 'Wish to compare the results with original file?'; \ INPUT C$
135 IF C$='N' THEN 540
136 DISPLAY_CLEAR
140 PRINT 'Enter the channel # for comparison'; \ INPUT M7
160 FOR T=M1 TO M2 \ F%(T)=0 \ NEXT T
180 FOR T=M1 TO M2
200 FOR J=1 TO N2
220 F%(T)=F%(T)+G(M7,J)*SIN(2*PI*T*J/N+P(M7,J))
240 NEXT J
260 F%(T)=F%(T)+A1(M7)
280 S%(T)=M%(T*5+M7)
300 PRINT $%(T),F%(T)
320 NEXT T
340 DISPLAY_CLEAR
360 REGION('UPPER',1) \ REGION('LOWER',2)
380 GRAPH('F%',1) \ GRAPH('F%',2)
400 LABEL('SPIROMETRIC RESULT one breath',1)
420 LABEL('FOURIER ANALYSIS REPRESENTATION',2)
440 PRINT 'The number of harmonics found is:',N2
460 PRINT 'CLEAR THE SCREEN?'; \ INPUT Q$
480 PRINT 'AGAIN?'; \ INPUT A$
500 IF A$='Y' THEN 136
520 IF Q$='Y' THEN DISPLAY_CLEAR
540 CHAIN 'FNORM.BAS'
100 REM program NSTORE.BAS
120 COMMON M%(3000),A1(4),G(5,7),P(5,7),N,N2,M1,M2
140 PRINT 'Enter the filename N(file).DAT'; \ INPUT F$
160 OPEN F$&'.DAT FOR OUTPUT AS FILE #5
180 PRINT #5,'*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***'
200 PRINT #5,'NORMALIZED AMPLITUDES'
220 PRINT #5,'SPIROMETER MAG1 MAG2 MAG3 MAG4'
240 PRINT $5,G(0,1)
260 FOR J=1 TO NZ
280 REM PRINT #5,G(0,J)/G(0,1),G(1,J)/G(1,1),G(2,J)/G(2,1),G(3,J)/G(3,1),G(4,J)/G(4,1)
300 PRINT #5,G(0,J)/G1,G(1,J)/G1,G(2,J)/G1,G(3,J)/G1,G(4,J)/G1
320 NEXT J
340 PRINT #5,'NORMALIZED PHASE ANGLES'
360 PRINT #5,'SPIROMETER MAG1 MAG2 MAG3 MAG4'
380 PRINT #5,N5=P1/2-P1
400 FOR J=1 TO N2
440 REM PRINT #5,P(0,J)/P1,P(1,J)/P1,P(2,J)/P1,P(3,J)/P1,P(4,J)/P1
450 IF J=1 THEN 480
460 NEXT J
480 CLOSE #5
500 STOP \ END
Figure A.1 Schematic wave form illustrating the fileplace - data representation of a typical forty-five second trace. By specifying various maxima and minima values, we can analyze any breath(s).

MIN = 160
MAX = 240
Appendix 2

Correlation coefficients averaged over the entire test duration for each subject (four tables)
AP QUIET BREATHING

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>S-M₁</th>
<th>S-M₂</th>
<th>S-M₃</th>
<th>S-M₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9756</td>
<td>.7029</td>
<td>.2859</td>
<td>.7602</td>
</tr>
<tr>
<td></td>
<td>.9604</td>
<td>.6737</td>
<td>.4095</td>
<td>.5166</td>
</tr>
<tr>
<td>2</td>
<td>.9641</td>
<td>.0321</td>
<td>.7187</td>
<td>.8617</td>
</tr>
<tr>
<td></td>
<td>.9733</td>
<td>.114</td>
<td>.8701</td>
<td>.9320</td>
</tr>
<tr>
<td>3</td>
<td>.9684</td>
<td>.5499</td>
<td>.8772</td>
<td>.9402</td>
</tr>
<tr>
<td></td>
<td>.978</td>
<td>.5955</td>
<td>.9184</td>
<td>.9685</td>
</tr>
<tr>
<td>4</td>
<td>.9778</td>
<td>.6848</td>
<td>.8313</td>
<td>.8529</td>
</tr>
<tr>
<td></td>
<td>.9942</td>
<td>.8666</td>
<td>.9516</td>
<td>.8994</td>
</tr>
<tr>
<td>5</td>
<td>.9287</td>
<td>.9487</td>
<td>.7817</td>
<td>.8928</td>
</tr>
<tr>
<td></td>
<td>.9258</td>
<td>.8915</td>
<td>.8529</td>
<td>.8463</td>
</tr>
<tr>
<td>6</td>
<td>.9932</td>
<td>.1206</td>
<td>.7494</td>
<td>.7081</td>
</tr>
<tr>
<td></td>
<td>.9923</td>
<td>-.1543</td>
<td>.7080</td>
<td>.7669</td>
</tr>
<tr>
<td>7</td>
<td>.9575</td>
<td>-.3899</td>
<td>.7365</td>
<td>.7554</td>
</tr>
<tr>
<td></td>
<td>.9795</td>
<td>-.452</td>
<td>.7887</td>
<td>.7360</td>
</tr>
<tr>
<td>8</td>
<td>.9433</td>
<td>.4992</td>
<td>.7954</td>
<td>.5023</td>
</tr>
<tr>
<td></td>
<td>.9611</td>
<td>.7998</td>
<td>.8759</td>
<td>.6865</td>
</tr>
<tr>
<td>9</td>
<td>.8081</td>
<td>.5431</td>
<td>.9005</td>
<td>.9243</td>
</tr>
<tr>
<td></td>
<td>.8123</td>
<td>.8671</td>
<td>.9632</td>
<td>.9566</td>
</tr>
<tr>
<td>10</td>
<td>.9817</td>
<td>.7019</td>
<td>.8107</td>
<td>.9496</td>
</tr>
<tr>
<td></td>
<td>.98</td>
<td>.6327</td>
<td>.9501</td>
<td>.8309</td>
</tr>
<tr>
<td>11</td>
<td>.9549</td>
<td>.3118</td>
<td>.5573</td>
<td>.8089</td>
</tr>
<tr>
<td></td>
<td>.9000</td>
<td>.6635</td>
<td>.491</td>
<td>.5013</td>
</tr>
</tbody>
</table>
AP FORCED BREATHING

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>S-M₁</th>
<th>S-M₂</th>
<th>S-M₃</th>
<th>S-M₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9849</td>
<td>0.8845</td>
<td>0.7125</td>
<td>0.6538</td>
</tr>
<tr>
<td></td>
<td>0.9825</td>
<td>0.4154</td>
<td>0.5152</td>
<td>0.7858</td>
</tr>
<tr>
<td>2</td>
<td>0.9847</td>
<td>0.3966</td>
<td>0.8795</td>
<td>0.9500</td>
</tr>
<tr>
<td></td>
<td>0.9742</td>
<td>0.5829</td>
<td>0.9202</td>
<td>0.8796</td>
</tr>
<tr>
<td>3</td>
<td>0.9562</td>
<td>0.3586</td>
<td>0.9099</td>
<td>0.6506</td>
</tr>
<tr>
<td></td>
<td>0.9817</td>
<td>0.0644</td>
<td>0.7709</td>
<td>0.6267</td>
</tr>
<tr>
<td>4</td>
<td>0.9885</td>
<td>0.8884</td>
<td>0.8784</td>
<td>0.6715</td>
</tr>
<tr>
<td></td>
<td>0.9873</td>
<td>0.7373</td>
<td>0.8222</td>
<td>0.7403</td>
</tr>
<tr>
<td>5</td>
<td>0.9344</td>
<td>0.9608</td>
<td>0.8360</td>
<td>0.8589</td>
</tr>
<tr>
<td></td>
<td>0.9400</td>
<td>0.9646</td>
<td>0.7994</td>
<td>0.8065</td>
</tr>
<tr>
<td>6</td>
<td>0.9924</td>
<td>0.0985</td>
<td>0.6358</td>
<td>0.3156</td>
</tr>
<tr>
<td></td>
<td>0.9493</td>
<td>0.1685</td>
<td>0.7157</td>
<td>0.4737</td>
</tr>
<tr>
<td>7</td>
<td>0.9747</td>
<td>-0.1161</td>
<td>0.7514</td>
<td>0.7900</td>
</tr>
<tr>
<td></td>
<td>0.9815</td>
<td>-0.4587</td>
<td>0.8371</td>
<td>0.8058</td>
</tr>
<tr>
<td>8</td>
<td>0.9542</td>
<td>0.3257</td>
<td>0.7513</td>
<td>0.5126</td>
</tr>
<tr>
<td></td>
<td>0.9672</td>
<td>0.7193</td>
<td>0.9250</td>
<td>0.4977</td>
</tr>
<tr>
<td>9</td>
<td>0.894</td>
<td>0.083</td>
<td>0.8755</td>
<td>0.7737</td>
</tr>
<tr>
<td></td>
<td>0.9621</td>
<td>0.0929</td>
<td>0.9284</td>
<td>0.8048</td>
</tr>
<tr>
<td>10</td>
<td>0.9815</td>
<td>0.6555</td>
<td>0.8428</td>
<td>0.6209</td>
</tr>
<tr>
<td></td>
<td>0.9914</td>
<td>0.6953</td>
<td>0.8102</td>
<td>0.5193</td>
</tr>
<tr>
<td>11</td>
<td>0.9433</td>
<td>0.4500</td>
<td>0.5396</td>
<td>0.5653</td>
</tr>
<tr>
<td></td>
<td>0.9788</td>
<td>0.0986</td>
<td>0.8221</td>
<td>0.8171</td>
</tr>
</tbody>
</table>

60
LATERAL FORCED BREATHING

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>S-M₅</th>
<th>S-M₆</th>
<th>S-M₇</th>
<th>S-M₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9498</td>
<td>.8243</td>
<td>.4687</td>
<td>.8271</td>
</tr>
<tr>
<td></td>
<td>.9232</td>
<td>.8563</td>
<td>-.2496</td>
<td>.8062</td>
</tr>
<tr>
<td>2</td>
<td>-.5975</td>
<td>.5453</td>
<td>.8145</td>
<td>.7288</td>
</tr>
<tr>
<td></td>
<td>-.7195</td>
<td>.6283</td>
<td>.7250</td>
<td>.7511</td>
</tr>
<tr>
<td>3</td>
<td>.7910</td>
<td>.7788</td>
<td>.9334</td>
<td>.7523</td>
</tr>
<tr>
<td></td>
<td>.8450</td>
<td>.8362</td>
<td>.9157</td>
<td>.8708</td>
</tr>
<tr>
<td>4</td>
<td>.9453</td>
<td>.8342</td>
<td>-.7874</td>
<td>.9471</td>
</tr>
<tr>
<td></td>
<td>.7000</td>
<td>.8479</td>
<td>-.6118</td>
<td>.8523</td>
</tr>
<tr>
<td>5</td>
<td>.4483</td>
<td>.3807</td>
<td>.8277</td>
<td>.694</td>
</tr>
<tr>
<td></td>
<td>.8778</td>
<td>.4090</td>
<td>.3967</td>
<td>.7428</td>
</tr>
<tr>
<td>6</td>
<td>.9745</td>
<td>-.0956</td>
<td>.813</td>
<td>.5289</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>.9128</td>
<td>.5022</td>
<td>.8911</td>
<td>.5499</td>
</tr>
<tr>
<td></td>
<td>.8807</td>
<td>.4291</td>
<td>.9126</td>
<td>.6256</td>
</tr>
<tr>
<td>8</td>
<td>.1717</td>
<td>.8939</td>
<td>.7823</td>
<td>.8789</td>
</tr>
<tr>
<td></td>
<td>-.0776</td>
<td>.8987</td>
<td>.7360</td>
<td>.4747</td>
</tr>
<tr>
<td>9</td>
<td>.0314</td>
<td>.3034</td>
<td>.3671</td>
<td>.6653</td>
</tr>
<tr>
<td></td>
<td>.6533</td>
<td>-.1091</td>
<td>.6391</td>
<td>.7598</td>
</tr>
<tr>
<td>10</td>
<td>.9323</td>
<td>-.8566</td>
<td>.3128</td>
<td>.7848</td>
</tr>
<tr>
<td></td>
<td>.7259</td>
<td>-.4663</td>
<td>.1383</td>
<td>-.2513</td>
</tr>
<tr>
<td>11</td>
<td>.5952</td>
<td>-.6212</td>
<td>-.7816</td>
<td>-.9421</td>
</tr>
<tr>
<td></td>
<td>.8375</td>
<td>-.8987</td>
<td>-.7784</td>
<td>-.8823</td>
</tr>
</tbody>
</table>
Lateral Quiet Breathing

<table>
<thead>
<tr>
<th>Subject</th>
<th>S-M5</th>
<th>S-M6</th>
<th>S-M7</th>
<th>S-M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.9260</td>
<td>.1024</td>
<td>.0612</td>
<td>.1375</td>
</tr>
<tr>
<td></td>
<td>.9182</td>
<td>.1963</td>
<td>.2576</td>
<td>.1591</td>
</tr>
<tr>
<td>2</td>
<td>-.7599</td>
<td>.0007</td>
<td>.8106</td>
<td>.5375</td>
</tr>
<tr>
<td></td>
<td>-.9163</td>
<td>.1814</td>
<td>.8882</td>
<td>.479</td>
</tr>
<tr>
<td>3</td>
<td>.8213</td>
<td>.4033</td>
<td>.9653</td>
<td>.9443</td>
</tr>
<tr>
<td></td>
<td>.8459</td>
<td>.3365</td>
<td>.9423</td>
<td>.9572</td>
</tr>
<tr>
<td>4</td>
<td>.8483</td>
<td>.8142</td>
<td>.4001</td>
<td>.9183</td>
</tr>
<tr>
<td></td>
<td>.8420</td>
<td>.7663</td>
<td>.2381</td>
<td>.9458</td>
</tr>
<tr>
<td>5</td>
<td>.9365</td>
<td>.3881</td>
<td>.9498</td>
<td>.9254</td>
</tr>
<tr>
<td></td>
<td>.9325</td>
<td>.8679</td>
<td>.8903</td>
<td>.9508</td>
</tr>
<tr>
<td>6</td>
<td>.9671</td>
<td>-.4681</td>
<td>.8297</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>.9563</td>
<td>-.2238</td>
<td>.8528</td>
<td>-.002</td>
</tr>
<tr>
<td>7</td>
<td>.7661</td>
<td>.5974</td>
<td>.8628</td>
<td>.3024</td>
</tr>
<tr>
<td></td>
<td>.6750</td>
<td>.5631</td>
<td>.7379</td>
<td>.4607</td>
</tr>
<tr>
<td>8</td>
<td>.1779</td>
<td>.6302</td>
<td>.2795</td>
<td>.2273</td>
</tr>
<tr>
<td></td>
<td>.514</td>
<td>.8236</td>
<td>.3090</td>
<td>.0596</td>
</tr>
<tr>
<td>9</td>
<td>.5011</td>
<td>-.5108</td>
<td>.9380</td>
<td>.9391</td>
</tr>
<tr>
<td></td>
<td>.659</td>
<td>-.2317</td>
<td>.6926</td>
<td>.9024</td>
</tr>
<tr>
<td>10</td>
<td>.9478</td>
<td>-.7823</td>
<td>.7529</td>
<td>.8037</td>
</tr>
<tr>
<td></td>
<td>.7090</td>
<td>-.8433</td>
<td>.6728</td>
<td>.7586</td>
</tr>
<tr>
<td>11</td>
<td>.7596</td>
<td>.3045</td>
<td>-.1464</td>
<td>-.6463</td>
</tr>
<tr>
<td></td>
<td>.3086</td>
<td>-.8804</td>
<td>-.4177</td>
<td>-.8461</td>
</tr>
</tbody>
</table>
Appendix 3

The fourier analysis results, one typical breath for each subject.
NAMY2.DAT

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0818772</td>
<td>1.53173</td>
<td>0.277958</td>
<td>1.05395</td>
<td>0.243016</td>
</tr>
<tr>
<td>0.03666824</td>
<td>0.277958</td>
<td>0.153484</td>
<td>0.438685</td>
<td>0.20207</td>
</tr>
<tr>
<td>0.0285365</td>
<td>0.0547998</td>
<td>0.190196</td>
<td>0.151556</td>
<td></td>
</tr>
<tr>
<td>0.0285365</td>
<td>0.127475</td>
<td>0.0818772</td>
<td>0.135557</td>
<td>0.1556</td>
</tr>
<tr>
<td>0.0117908</td>
<td>0.0161791</td>
<td>7.58024E-03</td>
<td>0.050434</td>
<td>0.0901269</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.55904</td>
<td>1.3449</td>
<td>1.57636</td>
<td>1.87677</td>
</tr>
</tbody>
</table>

NCNG2.DAT

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.120703</td>
<td>0.745678</td>
<td>0.097519</td>
<td>0.659867</td>
<td>0.886666</td>
</tr>
<tr>
<td>9.54317E-03</td>
<td>0.0201517</td>
<td>0.0709527</td>
<td>0.133125</td>
<td>0.139206</td>
</tr>
<tr>
<td>0.012031</td>
<td>0.023132</td>
<td>0.0289273</td>
<td>0.0893821</td>
<td>0.009037</td>
</tr>
<tr>
<td>6.7169E-03</td>
<td>0.0191849</td>
<td>0.023747</td>
<td>0.0108346</td>
<td>9.70657E-03</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.54219</td>
<td>2.4549</td>
<td>1.60014</td>
<td>1.59252</td>
</tr>
</tbody>
</table>
NDAT2.DAT

FOURIER ANALYSIS OF MAGNETOMETER DATA

Normalized Amplitudes

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.676668</td>
<td>0.202765</td>
<td>0.889067</td>
<td>0.551774</td>
</tr>
<tr>
<td>0.158674</td>
<td>0.1922115</td>
<td>0.281772</td>
<td>0.276767</td>
<td>0.0951901</td>
</tr>
<tr>
<td>0.0229658</td>
<td>0.0191326</td>
<td>0.0473572</td>
<td>0.0825194</td>
<td>6.28071E-03</td>
</tr>
<tr>
<td>0.0349847</td>
<td>0.0147153</td>
<td>0.0413403</td>
<td>0.0667264</td>
<td>0.0210197</td>
</tr>
<tr>
<td>0.0174095</td>
<td>0.0156769</td>
<td>0.0310486</td>
<td>0.0209508</td>
<td></td>
</tr>
</tbody>
</table>

Normalized Phase Angles

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.61464</td>
<td>1.68415</td>
<td>1.5423</td>
<td>1.43012</td>
</tr>
</tbody>
</table>

NJAG2.DAT

FOURIER ANALYSIS OF MAGNETOMETER DATA

Normalized Amplitudes

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8042</td>
<td>1.07428</td>
<td>0.450423</td>
<td>1.02361</td>
<td>1.190903</td>
</tr>
<tr>
<td>0.598286</td>
<td>0.210806</td>
<td>0.210626</td>
<td>0.320047</td>
<td>0.0730519</td>
</tr>
<tr>
<td>0.0575806</td>
<td>0.0417476</td>
<td>0.0816732</td>
<td>0.135963</td>
<td>0.0318352</td>
</tr>
<tr>
<td>0.0163215</td>
<td>0.023997</td>
<td>0.0103082</td>
<td>0.0301155</td>
<td>0.0224769</td>
</tr>
</tbody>
</table>

Normalized Phase Angles

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.53719</td>
<td>1.82035</td>
<td>1.67781</td>
<td>1.63941</td>
</tr>
</tbody>
</table>
NJDH2.DAT

Fourier Analysis of Magnetometer Data

Normalized Amplitudes

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.308159</td>
<td>0.368654</td>
<td>1.28451</td>
<td>1.1958</td>
</tr>
<tr>
<td>0.0590098</td>
<td>0.027976</td>
<td>0.106163</td>
<td>0.259992</td>
<td>0.129805</td>
</tr>
<tr>
<td>0.049087</td>
<td>0.030723</td>
<td>0.0438816</td>
<td>0.126412</td>
<td>0.0659156</td>
</tr>
<tr>
<td>0.0124552</td>
<td>0.0582475</td>
<td>0.0301776</td>
<td>7.07686E-03</td>
<td>0.0467637</td>
</tr>
<tr>
<td>0.0188293</td>
<td>3.32986E-03</td>
<td>3.06696E-03</td>
<td>0.0193889</td>
<td>3.98701E-03</td>
</tr>
</tbody>
</table>

Normalized Phase Angles

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.18552</td>
<td>1.60638</td>
<td>1.72337</td>
<td>1.68595</td>
</tr>
</tbody>
</table>

NKGM2.DAT

Fourier Analysis of Magnetometer Data

Normalized Amplitudes

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7058</td>
<td>.112815</td>
<td>.657055</td>
<td>.276472</td>
</tr>
<tr>
<td>.176537</td>
<td>.275889</td>
<td>.0844583</td>
<td>.144678</td>
<td>.0588457</td>
</tr>
<tr>
<td>.0380045</td>
<td>.0994377</td>
<td>.0753942</td>
<td>.0952208</td>
<td>.0317776</td>
</tr>
<tr>
<td>.0215485</td>
<td>.0150283</td>
<td>.036331</td>
<td>.0369434</td>
<td>.0122785</td>
</tr>
<tr>
<td>5.48140E-03</td>
<td>.0134287</td>
<td>.035262</td>
<td>.0299376</td>
<td>.0203154</td>
</tr>
</tbody>
</table>

Normalized Phase Angles

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.62188</td>
<td>3.40169</td>
<td>1.67889</td>
<td>1.75207</td>
</tr>
</tbody>
</table>
NRSH2.DAT

*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.06612</td>
<td>0.908002</td>
<td>1.90461</td>
<td>.984701</td>
</tr>
<tr>
<td>.320819</td>
<td>0.310658</td>
<td>0.386747</td>
<td>.569066</td>
<td>.205221</td>
</tr>
<tr>
<td>.109077</td>
<td>0.125224</td>
<td>0.036669</td>
<td>.178088</td>
<td>.0861792</td>
</tr>
<tr>
<td>.0493407</td>
<td>0.0398869</td>
<td>0.144349</td>
<td>.092692</td>
<td>.0625694</td>
</tr>
<tr>
<td>2.89136E-03</td>
<td>0.0431166</td>
<td>0.0213328</td>
<td>.0427264</td>
<td>.0186506</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.63064</td>
<td>1.2926</td>
<td>1.58333</td>
<td>1.40485</td>
</tr>
</tbody>
</table>

NRT02.DAT

*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.432942</td>
<td>.537349</td>
<td>1.03694</td>
<td>.444539</td>
</tr>
<tr>
<td>.0970627</td>
<td>.0260461</td>
<td>.149473</td>
<td>.218046</td>
<td>.106696</td>
</tr>
<tr>
<td>.038051</td>
<td>.0315812</td>
<td>.0828117</td>
<td>.0965678</td>
<td>.0354931</td>
</tr>
<tr>
<td>.0218677</td>
<td>6.85992E-03</td>
<td>.0321194</td>
<td>.0221177</td>
<td>.0294254</td>
</tr>
<tr>
<td>.0129702</td>
<td>.0140204</td>
<td>9.23482E-03</td>
<td>.0359399</td>
<td>.042443</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.68511</td>
<td>1.8608</td>
<td>1.65996</td>
<td>1.74555</td>
</tr>
</tbody>
</table>
NSMV2.DAT

*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.443144</td>
<td>1.27092</td>
<td>1.40955</td>
<td>.835117</td>
</tr>
<tr>
<td>.111953</td>
<td>.119025</td>
<td>.455513</td>
<td>.30066</td>
<td>.162786</td>
</tr>
<tr>
<td>.0871499</td>
<td>.0470324</td>
<td>.26756</td>
<td>.198715</td>
<td>.102874</td>
</tr>
<tr>
<td>.0586643</td>
<td>.0484116</td>
<td>.149006</td>
<td>.122612</td>
<td>.0472155</td>
</tr>
<tr>
<td>.0339576</td>
<td>.0344445</td>
<td>.0944689</td>
<td>.068373</td>
<td>.0283885</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.26516</td>
<td>2.04038</td>
<td>1.82385</td>
<td>1.6121</td>
</tr>
</tbody>
</table>

NTDK2.DAT

*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.850661</td>
<td>.247883</td>
<td>1.22582</td>
<td>.450589</td>
</tr>
<tr>
<td>.188684</td>
<td>.213981</td>
<td>.0989264</td>
<td>.353044</td>
<td>.0604822</td>
</tr>
<tr>
<td>.0458051</td>
<td>.0573182</td>
<td>.0344821</td>
<td>.0998746</td>
<td>.0511678</td>
</tr>
<tr>
<td>.0660073</td>
<td>.0246433</td>
<td>.0493113</td>
<td>.114086</td>
<td>.0475755</td>
</tr>
<tr>
<td>9.45356E-03</td>
<td>.0349985</td>
<td>.0326862</td>
<td>.0718003</td>
<td>.0418472</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.85694</td>
<td>1.21839</td>
<td>1.48776</td>
<td>.72953</td>
</tr>
</tbody>
</table>
*** FOURIER ANALYSIS OF MAGNETOMETER DATA ***

NORMALIZED AMPLITUDES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0666984</td>
<td>0.640421</td>
<td>2.03128</td>
<td>1.66554</td>
<td>1.08363</td>
</tr>
<tr>
<td>.0428129</td>
<td>0.132997</td>
<td>0.254743</td>
<td>0.279774</td>
<td>0.11212</td>
</tr>
<tr>
<td>3.77183E-03</td>
<td>0.0480178</td>
<td>0.17451</td>
<td>0.176451</td>
<td>0.149901</td>
</tr>
<tr>
<td>.0205931</td>
<td>4.52137E-03</td>
<td>.082091</td>
<td>0.0315118</td>
<td>.0437652</td>
</tr>
</tbody>
</table>

NORMALIZED PHASE ANGLES

<table>
<thead>
<tr>
<th>SPIROMETER</th>
<th>MAG1</th>
<th>MAG2</th>
<th>MAG3</th>
<th>MAG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5708</td>
<td>1.02658</td>
<td>2.00377</td>
<td>1.8433</td>
<td>1.13621</td>
</tr>
</tbody>
</table>