Date: 10/3/80

Project Title: Stereological Analysis of Biological Soft Tissues

Project No: E-23-654

Project Director: Raymond P. Vito

Sponsor: Biomedical Research Support Grant (G-32-608)

Type Agreement: DHEW/PHS/NIH Grant No. 2 S07 RR07024-15 ($81,771 awarded for 15th year)

Amount: $3,800

Reports Required: (Internal Only) Summary Report due by April 30, 1981

Sponsor Contact Person(s):

<table>
<thead>
<tr>
<th>Technical Matters</th>
<th>Contractual Matters (thru OCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Internal)</td>
<td></td>
</tr>
<tr>
<td>Dr. John W. Crenshaw, Jr.</td>
<td>Biomedical Research Support Grant</td>
</tr>
<tr>
<td>School of Biology</td>
<td>Campus</td>
</tr>
</tbody>
</table>

Defense Priority Rating: None

Assigned to: Engineering Science and Mechanics (School/Engineering)

COPIES TO:

- Project Director
- Division Chief (EES)
- School/Laboratory Director
- Dean/Director—EES
- Accounting Office
- Procurement Office
- Security Coordinator (OCA)
- Reports Coordinator (OCA)
- Library, Technical Reports Section
- EES Information Office
- EES Reports & Procedures
- Project File (OCA)
- Project Code (GTRI)
- Other

Dr. John W. Crenshaw, Jr. File G-32-608
Sponsored Project Termination

Date: May 18, 1981

Project Title: Stereological Analysis of Biological Soft Tissues

Project No: E-23-654

Project Director: Raymond P. Vito

Sponsor: DHEW/PHS/NIH; Biomedical Research Support Grant (G-32-608)

Effective Termination Date: 3/31/81

Clearance of Accounting Charges: 3/31/81

Grant/Contract Closeout Actions Remaining:

- Final Invoice and Closing Documents
- Final Fiscal Report
- Final Report of Inventions
- Govt. Property Inventory & Related Certificate
- Classified Material Certificate
- Other

Assigned to: ESM

(School/laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director - EES
Accounting Office
Procurement Office
Security Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other: G-32-608

CA-4 (1/79)
Sterological Analysis of Biological Soft Tissues

Final Report

by

Raymond P. Vito
Associate Professor
April 30, 1981
Introduction

This report is a summary of work done under Biomedical Research Support Grant G-32-608.

The Grant was used to purchase equipment and supplies needed for the image analysis of histological sections of biological soft tissues. This report summarizes the algorithm developed for this purpose and the progress made in implementing the algorithm.

Algorithm

It is well known that any color can be generated by a superposition of the primary colors red, blue and green. Mathematically,

\[I_A = C_1 I_R + C_2 I_B + C_3 I_G \]

where \(I_A \) represents the intensity of light at a particular wavelength (color) \(\lambda \), \(I_R \), \(I_B \) and \(I_G \) represent light intensities of red, blue and green light respectively and \(C_1 \), \(C_2 \) and \(C_3 \) are constants.

The TV image digitizer generates a number between zero and 255 which corresponds to the light intensity at each of the 640 x 480 points, or "pixels," in the field of view. Mathematically, a picture may be thought of as a two-dimensional array of intensities \(I(J,K) \) \(J = 1, \ldots, 480, K = 1, \ldots, 640 \). One begins by digitizing three pictures using either a red, a blue or a green filter. Delectric filters, which have a very narrow band-pass, are used. The pictures \(I_{R}(J,K) \), \(I_{B}(J,K) \), \(I_{G}(J,K) \), are stored on a disk. They are also normalized to account for the different attenuations of the filters and the fact that the microscope light source is not true white light. This is done by removing the slide and adjusting the light level so as to achieve the same measured light intensity with each filter.

*Note: these are really red, blue and yellow; but green is adequate for our purposes.
It follows from equation (1) that one may imagine the color of pixel \((J,K)\) to be represented by a point in the "color space" shown in Figure (1). One can now manually scan the field of view using a joystick cursor and record the \((J,K)\) coordinates of a number of pixels representative of those in the phase of interest. These coordinates may be stored on a disk. The computer now automatically searches through pictures \(I_R(J,K)\), \(I_B(J,K)\), and \(I_G(J,K)\) and determines the intensity values which correspond to the colors of these pixels. These intensity values define a series of points in the color space of Figure (1). Given a sufficient number of points, one may think of the points as defining a volume in such a way that any pixel in the phase of interest has a color which lies in the volume.

Once the computer has been "trained" to recognize the colors in the phase of interest, it can automatically scan the pictures \(I_R(J,K)\), \(I_B(J,K)\) and \(I_G(J,K)\) and record all the \((J,K)\) coordinates of the pixels in the phase of interest. These coordinates provide the basis for the stereological analysis discussed below. They may be stored in a disk or they
may be used to generate and display a black/white picture showing clearly the separated phase. Note that once the volume in color space corresponding to the phase of interest is adequately defined, one can proceed to analyze other fields of view or other slides without additional manual input.

Progress

Two major FORTRAN programs have been written and tested. These are briefly described below.

POINTS This program requests the user to select (using a joystick cursor) a number of points in the phase of interest. It outputs a set of co-ordinates \((x,y)\) which may be read by program PHASE.

PHASE This program requires three digitized (and normalized) pictures \(P\Phi, P1\) and \(P2\) taken through red, blue and green filters. The sets of co-ordinates \((x,y)\) determined by POINTS are used to search \(P\Phi, P1, P2\) for the red, blue and green intensities at each point. These define a volume in "color space" which corresponds to the phase of interest. The pictures \(P\Phi, P1\) and \(P2\) are then used to generate a fourth picture which is black in the phase of interest and white elsewhere. This black/white picture is available for image analysis (areas, orientations, etc.).

Application

The algorithm is now working and various tests are being run. Specifically, we are investigating

a) the shape and size of the sample volume and how it affects the results

Additional small programs were written but are not documented here.
b) whether or not the sum of the separated phases gives
the original picture (internal check)

c) the choice of filters for the best results

The author's primary interest is the arterial wall and a proposal
dealing with this was submitted to the Georgia Heart Association.

However, arterial structure is extremely complex. We are, therefore,
currently focusing on the "Reid Index" (Reid 1960) which involves an area
measurement of mucus secreting bronchial cells. This simple problem per-
mits checking the automatic analysis with a manual one.

This work is in progress, will be reported in the literature and will
acknowledge the support of DHEW.

Acknowledgement

I'd like to thank Ms. Mary Bordonaro for her help in implementing
this algorithm.

Reference

Reid, Lynne; Measurement of the Bronchial Mucous Gland Layer: a