Project Title: Finite Difference Solutions to Problems of Rapid Crack Propogation

Project No: E-23-624

Project Director: Dr. Wilton W. King

Sponsor: Lockheed-Georgia Company

Agreement Period: From 1/1/77 Until 4/15/77

Type Agreement: Purchase Order No. CN65356

Amount: $1,350

Reports Required: Final Report

Sponsor Contact Person(s):

Technical Matters

Mr. R. W. Milling
Dept. 72-76
Lockheed-Georgia Company
Marietta, Georgia 30063

Contractual Matters (thru OCA)

Mr. W. R. Britton, Manager
Dept. 52-25, Zone 383
Lockheed-Georgia Company
Marietta, Georgia 30063

Defense Priority Rating: None

Assigned to: Engineering Science and Mechanics (School/Laboratory)

COPIES TO:

Library, Technical Reports Section
Director, Physical Plant
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other
Method of Finite Differences Applied to 2-D Problems of Rapid Crack Propagation

Dr. Wilton W. King

Lockheed-Georgia Company

Effective Termination Date: 4/15/77

Clearance of Accounting Charges: 4/15/77

Grant/Contract Closeout Actions Remaining:

- Final Invoice
- Final Fiscal Report
- Final Report of Inventions
- Govt. Property Inventory & Related Certificate
- Classified Material Certificate
- Other

Assigned to: Engineering Science and Mechanics (School/Laboratory)

Copies To:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director—EES
Accounting Office
Procurement Office
Security Coordinator (OCA)
Reports Coordinator (OCA)

Library, Technical Reports Section
Office of Computing Services
Director, Physical Plant
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other

CA-4 (3/76)
May 2, 1977

Mr. R. W. Milling
Department 72-76
Lockheed-Georgia Company
Marietta, GA 30063

Dear Mr. Milling:

Enclosed is one copy of the M. S. Special Problem Report in which Mr. F. P. Hagan summarizes the results of his work supported by Lockheed-Georgia during the period 1 January 1977 to 15 April 1977 under Purchase Order No. CN65356.

Your support of this effort is most appreciated.

Sincerely yours,

Wilton W. King
Associate Professor

sam

enclosure
A COMPUTER PROGRAM FOR FINITE-DIFFERENCE
ANALYSIS OF DYNAMIC FRACTURE PROBLEMS

by

Frank Paul Hagan

A report submitted to Dr. W. W. King in partial fulfillment of the requirements for the degree Master of Science in Engineering Science and Mechanics.

March 1977
Abstract

Finite difference schemes have been widely utilized to generate solutions to both static and dynamic problems in continuum mechanics. Of recent interest has been the application of this method to problems in fracture mechanics. This work considers plane strain elastic behavior of cracked sheets. A generalized FORTRAN program capable of handling arbitrary time independent displacement and stress loading along the boundaries of a finite sheet has been established. The program can easily be extended to examine the problem of a running crack. The program has been applied to a fixed grip edge cracked sheet. Using an extremely coarse mesh, a stress intensity factor 3.8% higher than the theoretical solution for a semi-infinite sheet was obtained. The dynamic problem of an instantaneously appearing crack of finite length was also examined.
I. Introduction

Many two dimensional dynamic fracture and wave propagation problems have been treated using finite difference techniques. The first problem chosen to test our finite difference computer program was an edge cracked sheet with fixed grips. The top of the beam was given a uniform displacement perpendicular to the crack axis.

Two dimensional elastic fracture was examined using a "Lagrangian Finite Difference Analog" by Hanson and Sanford [5], [6]. This technique is described by Petschek and Hanson [7].

Finite difference schemes were employed by Ottaviani [8], Alterman and Lowenthal [9] and Alterman and Rotenberg [10] to examine the propagation of seismic waves in quarter and three quarter planes.

The finite difference scheme used to solve our problem parallels to some extent the procedure followed by Shmuely and Peretz [1].
II. Theoretical Background

Elastic Equations and Boundary Conditions

Nomenclature:

\(\lambda, \mu = \) Lamé constants
\(c_1 = \) dilatational wave velocity
\(c_2 = \) shear wave velocity
\(\rho = \) density
\(\sigma_{ij} = \) stress tensor
\(u = \) displacement in x direction
\(v = \) displacement in y direction

For linearly elastic two-dimensional plane strain problems the stress-strain relations are:

\[
\sigma_{xx} = (\lambda + 2\mu) \frac{\partial u}{\partial x} + \lambda \frac{\partial v}{\partial y}
\]

\[
\sigma_{yy} = \lambda \frac{\partial u}{\partial x} + (\lambda + 2\mu) \frac{\partial v}{\partial y}
\]

The equations of motion are:

\[
\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y}
\]

\[
\rho \frac{\partial^2 v}{\partial t^2} = \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y}
\]

The Lamé constants are related to the compressional and shear wave velocities by:

\[
c_1^2 = \frac{\lambda + 2\mu}{\rho}
\]

\[
c_2^2 = \frac{\mu}{\rho}
\]
Combining (1), (2) and (3) yields:

\[
\frac{\partial^2 u}{\partial t^2} = c_1^2 \frac{\partial^2 u}{\partial x^2} + (c_1^2 - c_2^2) \frac{\partial^2 v}{\partial x \partial y} + c_2 \frac{\partial^2 u}{\partial y^2}
\]

\[
\frac{\partial^2 v}{\partial t^2} = c_2^2 \frac{\partial^2 v}{\partial x^2} + (c_1^2 - c_2^2) \frac{\partial^2 u}{\partial x \partial y} + c_1 \frac{\partial^2 v}{\partial y^2}
\]

Equations (4) represent the governing differential equations for two-dimensional elastodynamic behavior.

On the boundaries the displacements \(u \) and/or \(v \) may be specified, or the stresses may be specified. In the latter case equations (1) are utilized. It is convenient to write (1) in the following form.

\[
\rho \frac{\sigma_{xx}}{C_1} = c_1^2 \frac{\partial^2 u}{\partial x} + (c_1^2 - 2c_2^2) \frac{\partial^2 u}{\partial y}
\]

\[
\rho \frac{\sigma_{yy}}{C_1} = (c_1^2 - 2c_2^2) \frac{\partial^2 v}{\partial x} + c_1^2 \frac{\partial^2 v}{\partial y}
\]

\[
\rho \frac{\sigma_{xy}}{C_1} = (c_1^2 - 2c_2^2) \left(\frac{\partial^2 u}{\partial y} + \frac{\partial^2 u}{\partial x} \right)
\]

Finite Difference Scheme

The finite difference scheme followed for the solution of the static crack case is founded upon the method of "Dynamic Relaxation" first described by Day [11]. Essentially, the static problem is attacked as if it were a dynamic problem. The equations of motion are modified by adding an appropriate damping factor proportional to the velocity. Starting with arbitrary initial conditions, the modified equations of motion are integrated using finite difference algorithms in conjunction with the required boundary conditions. As the internal forces tend to equilibrate, the velocity and hence the damping effects vanish. This method is discussed further by Hodgkins [12].
For the two-dimensional elastodynamic problem, the equations of motion become:

\[
\begin{align*}
\frac{\partial u}{\partial t} + c_1^2 \frac{\partial^2 u}{\partial x^2} + (c_1^2 - c_2^2) \frac{\partial^2 u}{\partial x \partial y} + c_2^2 \frac{\partial^2 u}{\partial y^2} \\
\frac{\partial u}{\partial t} + c_2^2 \frac{\partial^2 u}{\partial x^2} + (c_2^2 - c_1^2) \frac{\partial^2 u}{\partial x \partial y} + c_1^2 \frac{\partial^2 v}{\partial y^2}
\end{align*}
\]

(6)

where \(\theta \) = damping constant.

Since the finite difference operators used for (4) and (6) are the same, one can readily solve a static crack problem thereby obtaining the required initial displacement field for a dynamic problem and then, by setting \(\theta \) equal to zero, solve the dynamic problems.

Most of the authors mentioned above [1], [3], [4] use the type of finite difference mesh shown in Figure (1).

![Fig. 1](image)

The physical boundaries of the material lie on the x and y axes. Material points lie half way between the grid lines. The grid is extended by four lines at a distance of h/2 past the "real" material boundaries.

This work used the type of mesh shown in Figure (2).

![Fig. 2](image)
The crack is located on the x axis which contains the actual material points, i.e., the material points coincide with the intersection points of the grid. There are no "imaginary" lines extended past the material boundaries. Therefore, the crack propagates along a line of material points in Fig. (2) and between material points in Fig. (1). Note that the crack tip is assumed between two grid lines in both Figs. (1) and (2).

Alterman and Rotenberg [10] discovered that a finite difference scheme utilizing central difference operators for derivatives perpendicular to the boundary lead to numerical instabilities. Therefore, forward difference operators were used for derivatives perpendicular to the boundary. This eliminated the need for the four extra "outside" grid lines [see Fig. 1].

Although a condition of free stress ($\sigma_{yy} = \sigma_{xy} = 0$) should ideally be prescribed along the physical crack boundary, this is not possible using a scheme as shown in Fig. (1). Shmuely and Peretz [1] and Shmuely and Alterman [3] in effect evaluate forward differences perpendicular to the boundary along $y = -h/2$ and central differences parallel to the boundary along $y = \frac{3}{2}h$. The scheme shown in Fig. (2) utilizes forward differences at the crack boundary and central differences at $y = h$.

Assuming the mesh size to be the same in both x and y directions, and denoting the time increment by k, the equations of motion (6) become:

\[
\begin{align*}
 u(x,y,t+k) &= \frac{1}{1 + 0.5k\delta} \left\{ 2u(x,y,t) - (1 - 0.5k\delta) u(x,y,t-k) + (C_1^2 k/h)^2 \right. \\
 & \quad \left[u(x+h,y,t) - 2u(x,y,t) + u(x-h,y,t) \right] + (C_1^2 - C_2^2) (k/2h)^2 \\
 & \quad \left[v(x+h,y+h,t) - v(x+h,y-h,t) - v(x-h,y+h,t) + v(x-h,y-h,t) \right] \\
 & \quad + (C_2 k/h)^2 \left[u(x,y+h,t) - 2u(x,y,t) + u(x,y-h,t) \right] \\
\end{align*}
\]

(8)
\[
v(x,y,t+k) = \frac{1}{1 + 0.5k} \left[2v(x,y,t) - (1 - 0.5k) v(x,y,t-k) + \left(C_2^2k/h \right)^2 \left[v(x+h,y,t) - 2v(x,y,t) + v(x-h,y,t) \right] + (C_2^2k/h) \right]
\]

Note the explicit nature of equations (8). Given the displacements at time \(t \) and \(t-k \) the displacement at time \(t+k \) can be found explicitly.

The possible boundary conditions become:

Along the grid lines \(x = 0 \) and \(x = L \);

\[
u_0^0(x,y,t) = u(x-h,y,t) + \left(\frac{C_1^2 - 2C_2^2}{2C_1^2} \right) \left[v(x-h,y,t) - v(x,y,t) \right]
\]

Along the grid lines \(y = 0 \) and \(y = H \);

\[
u_0^0(x,y,t) = u(x,y-h,t) + \left(\frac{C_1^2 - 2C_2^2}{2C_1^2} \right) \left[v(x,y-h,t) - v(x,y,t) \right]
\]

(9)

\[-u(x - h, h - h', t') - \rho/c_1^2 \sigma_{yy}(x)\]

Or, of course, the displacements \(u\) and \(v\) may be specified anywhere on the grid.

An alternate method of satisfying a symmetry condition with respect to a boundary using the difference scheme shown in Fig. (2) is as follows. One can use the equations of motion (8) for mesh points along the boundary in conjunction with the symmetry displacement conditions. This is effectively the same as extending the mesh one spacing beyond the material boundary, and then using the symmetry condition to define the displacements along this "imaginary" line.

The four grid corner displacements pose special problems since they cannot be uniquely determined from the boundary conditions. Alterman and Rotenberg [10] proposed rounding off the corner such that the tangent to the boundary was at an angle of 45° to the coordinate axis. The free stress condition was then applied. Shmuely and Peretz [1] proposed a much simpler solution. The corner displacement was set equal to the average of linear interpolations given along both sides of the corner. Thus, the \(x\) and \(y\) displacements at the corner shown in Fig. (3) are given by Eq. 10.

\[
u(0,0) = u(0,2h) + \\
2(u(0,h) - u(0,2h)) = 2u(0,h) - u(0,2h)
\]

\[(10). \ u(0,0) = \frac{1}{2} \left[2u(0,h) + 2u(h,0) - u(0,2h) - u(2h,0) \right] = 2u(h,0) - u(2h,0)\]

\[
v(0,0) = \frac{1}{2} \left[2v(0,h) + 2v(h,0) - v(0,2h) - v(2h,0) \right] = 2u(h,0) - u(2h,0)
\]

Fig. 3
Formulas of the form (10) were found to be unsatisfactory when both sides of the corner were free boundaries. In such cases the corner displacement was set equal to the displacement of an adjacent point. Therefore:

\[u(0,0) = u(1,0) \]

\[v(0,0) = v(0,1) \]

The stability of finite difference algorithms has been extensively studied by Richtmeyer [13]. Lax and Richtmeyer [14] examined the convergence of finite difference equations over a finite time interval for increasingly finer meshes. Consequently, their work does not treat the stability of finite difference equations as time \(t \to \infty \) for fixed mesh size (fixed \(\Delta t \)). Lewy [15] attacked the stability of the cylindrical wave equation as mesh size decreased.

The stability of the equations of motion (8) with the damping coefficient \(\delta = 0 \) has been examined by Alterman and Loewenthal [9]. The procedure they followed is basically as follows:

Assume a disturbance in displacement \(\eta \):

\[e^{i(Mha + nhb)} e^{ckp} \]

\[\eta = \eta_0 \]
where:
\[k = \Delta t \]
\[h = \text{grid spacing} \]
\[m, n, p = \text{integers} \]
\[mh = x \]
\[nh = y \]
\[kp = t \]
\[\eta_0 = (\eta_1, \eta_2), \text{ a constant vector} \]

Substituting \(\eta \) into (8) yields two homogeneous equations of the form:

\[
\begin{pmatrix}
A_1 - A_2 & A_3 \\
A_3 & A_1 - A_4
\end{pmatrix}
\begin{pmatrix}
\eta_1 \\
\eta_2
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

where \(A_1, A_2, A_3, \) and \(A_4 \) are complicated algebraic functions of \(K, h, x, y, \)
\(C_1 \) and \(C_2 \) Non-trivial solution requires
\[
\begin{vmatrix}
A_1 - A_2 & A_3 \\
A_3 & A_1 - A_4
\end{vmatrix}
= 0
\]
(11)

Stability requires \(|e^{ck}| \leq 1 \)
(12)

Satisfying (11) and (12), and after much algebraic manipulation, the stability condition becomes
\[
c_1 k \leq \frac{h}{1 + \frac{c_2^2}{c_1^2}}^{1/2}
\]
(13)

Shmuely and Alterman [16] examined by trial and error the effect of adjusting the dynamic relaxation damping constant \(\theta \) on the convergence of the solution.
Two three dimensional arrays X DISP(x,y,t) and Y DISP(x,y,t) are needed to store the x and y displacements. The first two dimensions of the array refer to the coordinates of the mesh points while the third dimension designate time (t = 2 > t = 1). Since two consecutive time steps are needed to calculate the subsequent node displacements, and since the oldest time step displacement (XDISP(a,b,1)) is only used to calculate the new displacement at its own node, all new displacements when calculated are stored in XDISP (x,y,1). This eliminates the need for a third time step storage space in the displacement array.

The origin of the coordinate axis is labeled (1,1) and for labeling purposes the mesh spacing is assumed to be unity. A measure of the convergence of the solution is given by XCONV and YCONV which are defined as:

\[
XCONV = \sum_{I=1}^{w} \sum_{J=1}^{H} [\text{XDISP}(I,J,2) - \text{XDISP}(I,J,1)]^2
\]

\[
YCONV = \sum_{I=1}^{w} \sum_{J=1}^{H} [\text{YDISP}(I,J,2) - \text{YDISP}(I,J,1)]^2
\]

where \(w = \) width of grid

\(H = \) height of grid

On the next page is a crude schematic of the program logic.
set all displacements equal to zero for 1st two time steps

read boundary conditions assigning appropriate XDISP and YDISP values along the edges for the 1st two time steps

All mesh points have now been assigned displacements for the 1st two time increments [displacement of interior points = 0].

Theta (damping coeff.) \(\neq 0 \)

Using equations (8) calculate the interior node displacements for the next successive time step

Using the boundary conditions and the newly calculated interior displacements, calculate the edge displacements

Using interpolation functions calculate the corner displacements

Static Solution obtained print results

Theta = 0; IP = 1
Boundary Condition adjusted for crack

Return once
Test Problem

The first problem chosen to test the computer program was an edge cracked sheet under fixed grip loading (see Fig. 4).

Using dynamic relaxation, the static solution to the cracked and uncracked problem was obtained. The displacement field of the uncracked problem provided the initial conditions needed for the dynamical problem of a suddenly appearing crack of length \(\ell \).

The mesh used is shown in Fig. 5. Taking advantage of the symmetry about the x-axis, only the top half of the plane was considered. The following boundary conditions must be satisfied:

\[
\begin{align*}
\sigma_{yy} &= 0 \quad \text{and} \quad \sigma_{xy} = 0 \quad \text{on} \quad y = 0 \quad \text{for} \quad 0 \leq x \leq \ell \\
v &= 0 \quad \text{and} \quad \sigma_{xy} = 0 \quad \text{on} \quad y = 0 \quad \text{for} \quad \ell \leq x \leq w \\
\sigma_{xx} &= 0 \quad \text{and} \quad \sigma_{xy} = 0 \quad \text{on} \quad x = 0, w \quad \text{for} \quad 0 \leq y \leq H \\
v &= v_0 \quad \text{and} \quad \sigma_{xy} = 0 \quad \text{on} \quad y = H \quad \text{for} \quad 0 \leq x \leq w
\end{align*}
\]
An 11 x 15 array of mesh points in the y and x directions respectively was used. The crack tip was assumed to lie halfway between the 10th and 11th grid lines on the x axis. The mesh spacing h was assumed to be the same in both directions. The specimen height (H), density (\(\rho\)), and dilational wave velocity (\(C_1\)) were all assumed equal to one (1). Poisson's ratio \(\nu\) was assumed equal to 0.25. \(\nu_0\) was taken to be 0.1.

The shear wave velocity is then given by:

\[
C_2 = C_1 \left[\frac{1 - 2\nu}{2(1-\nu)} \right]^{1/2} = 0.57735
\]

From equation (13), the maximum allowable time step is:

\[
k = \frac{h}{C_1} \left[1 + \frac{C_2^2}{C_1^2} \right]^{1/2} = \frac{h}{C_1} \left[1 + \left(\frac{0.57735}{1} \right)^2 \right] = 0.08660
\]

For conservatism, \(K\) was set equal to 0.08.

The choice of a suitable damping coefficient is largely a matter of trial and error. Our results tend to substantiate Shmuely and Peretzs' [1] choice of \(\theta = 0.05/h\) as yielding the fastest convergence.
As mentioned earlier, the four corner node displacements cannot be obtained from the boundary conditions. For corners at (0,H), (w,H), and (w,0) equations of the form of (10) suffice. However, such a linear interpolation scheme lead to numerical instabilities when applied to the free-free corner. The y displacement at this node was set equal to the y displacement of the adjacent node on the y axis.
Results

The static uncracked plate displacement field is shown in Fig. (6). The static crack boundary displacements are plotted in Fig. (7).

Given the crack surface displacements, the stress intensity factor can be approximated. Near the crack tip the displacements are given by

\[
\begin{align*}
\{u_x\} &= \frac{K_I}{8G}\left(\frac{2r}{\pi}\right)^{1/2}\left\{\begin{array}{c}
(2K - 1) \cos \theta/2 - \cos 3\theta/2 \\
(2K + 1) \sin \theta/2 - \sin 3\theta/2
\end{array}\right
\}
\end{align*}
\]

where \(K = 3 - 4\nu\) for plane strain.

Solving for \(K_I\) in terms of \(u_y\) at \(\theta = \pi\) yields:

\[
K_I = \frac{\pi}{\sqrt{2\pi}} \frac{\sqrt{G}}{1-\nu}
\]

(15)

Using two computed data points to fit the curve \(a_0 + a_1 \sqrt{r} + a_2 r\) to the crack boundary displacement and using this approximate displacement function to evaluate (15) yields:

\[
K_I = \frac{\pi}{\sqrt{2\pi}} \frac{[2V(1) - V(2)] G}{(2-\sqrt{2})(1-\nu)}
\]

\(K_I\) was found to be 0.11075 \(E\).

Nilsson [16] showed the stress intensity factor for an infinite edge cracked strip under identical boundary conditions to be:

\[
K_I = \frac{V_o E}{\mu^{1/2}(1-\nu^2)}
\]
which for our case is 0.10667 E. Thus, our computation resulted in a stress intensity factor 3.8% higher than that of an idealized strip of infinite extent. The y-displacement field for the problem is shown in Fig. (8).

The crack boundary displacement for the problem of an instantaneously appearing crack of finite length is shown in Fig. (9).
Figure 6 - Uncracked Sheet
Figure 7 - Y Displacement of Creek Surface

DISTANCE FROM CREEK TIP

DISPLACEMENT
Figure 8 - Crack Displacements
DISTANCE FROM CRACK TIP

\(t = \text{Time elapsed} \times \text{Tips for different sets} \)
Bibliography

PROGRAM MAIN(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
DIMENSION XDISP(15,11,2), YDISP(15,11,2)
READ(5,*) N1,N2,C1,C2,THETA,TIME,11,12,13,14,15
IC=0
IP=0
NN=300
NM1=N1-1
NM2=N2-1
4 DO 5 I=1,N1
5 DO 5 J=1,N2
XDISP(I,J,1)=0.0
XDISP(I,J,2)=0.0
YDISP(I,J,2)=0.0
5 YDISP(I,J,1)=0.0
6 IF(I11.NE.1) GO TO 10
READ(5,*)(XDISP(1,J,2),J=1,N2)
DO 40 I=1,N2
0 XDISP(1,I,1)=XDISP(1,I,2)
1 IF(I12.NE.1) GO TO 10
READ(5,*)(YDISP(N1,J,2),J=1,N2)
DO 41 I=1,N1
1 YDISP(1,I,1)=YDISP(N1,I,2)
2 IF(I13.NE.1) GO TO 3
READ(5,*)(YDISP(J,1,2),J=1,N1)
DO 42 I=1,N2
2 YDISP(I,1,1)=YDISP(1,I,2)
3 IF(I14.NE.1) GO TO 99
READ(5,*)(YDISP(J,N2,2),J=1,N1)
DO 43 I=1,N1
3 YDISP(I,N2,1)=YDISP(1,N2,2)
9 DO 100 ICCC=1,NN
10 IC=IC+1
DO 10 I=2,NN1
DO 10 J=2,NN2
XDISP(I,J,1)=(1./(1.4+5.*TIME**THETA))**((2.*XDISP(I,J,2)-C1.-.5*TIME**THETA)**(2.+1.)/(H**2.))**2.
2 XDISP(I-1,J,2)**((C1**2.-C2**2.)*TIME)**2.)/(H**2.)**2.*YDISP(I+1,J,2)+
3 XDISP(I-1,J,2)+((C1**2.-C2**2.)*TIME)**2.)**2.*YDISP(I+1,J+1,2)+
4 -YDISP(I+1,J-1,2)-YDISP(I-1,J+1,2)+YDISP(I-1,J-1,2))**1./(H**2.)**2.+
B1./(H**2.)**2.+
5 ((C2**TIME)**2.)*((XDISP(I,J+1,2)-2.*XDISP(I,J,2)+XDISP(I,J-1,2))**2.*XDISP(I,J+1,2)+
2 *(XDISP(I,J-1,2))/(H**2.)**2.*YDISP(I+1,J,2)+
3 YDISP(I-1,J,2)**((C1**2.-C2**2.)*TIME)**2.)/(H**2.)**2.*YDISP(I+1,J+1,2)+
4 -YDISP(I+1,J-1,2)-XDISP(I-1,J-1,2)+YDISP(I-1,J-1,2))**1./(H**2.)**2.+
B1./(H**2.)**2.+
5 ((C2**TIME)**2.)*((XDISP(I,J+1,2)-2.*XDISP(I,J,2)+YDISP(I,J-1,2)))
9 CONTINUE
DO 100 ICCC=1,NN
10 IC=IC+1
DO 10 I=2,NN1
DO 10 J=2,NN2
XDISP(I,J,1)=XDISP(2,J,2)+((C1**2.-C2**2.))/(H**2.)**2.*C1**2.**2.)/(H**2.)**2.*YDISP(I,J-1,2)
2 YDISP(I,J,1)=YDISP(2,J,2)+5.*(XDISP(I,J+1,2)-XDISP(I,J-1,2))
1 IF(I11.NE.0) GO TO 12
DO 102 J=2,NN2
1=1
YDISP(1,J,1) = 1/(1. + 5*TIME*THETA) *(2.*YDISP(1,J,2)-(1.- 5*TIME))
2 *YDISP(I,J,1) + 2.*C2*TIME**2.*YDISP(I+1,J,2) - YDISP(I,J,2)
3 + (C1**2.*C2**2.*TIME**2.*YDISP(I+1,J,2)+.*YDISP(I+1,J+1,2) + DxISP(1,J-2)
4 + (C1**TIME**2.*YDISP(I+1,J+1,2) - 2.*YDISP(I,J,2) +
5 YDISP(I,J-2))

102 CONTINUE

12 IF(I2.NE.2) GO TO 13
 DO 103 J=2,NM2
 XDISP(N1,J,1) = XDISP(NM1,J,2) - (C1**2 - C2**2) /
 C2*TIME**2.*YDISP(N1,J+1,2) - YDISP(N1,J,2)
 YDISP(N1,J,1) = YDISP(N1,J,2) - 5.*XDISP(N1,J,1,2)
 XDISP(1,J-2)

103 CONTINUE

13 IF(I2.NE.0) GO TO 14
 DO 104 J=2,NM2
 XDISP(1,J,1) = 1/(1. + 5*TIME*THETA) *(2.*XDISP(1,J,2)-(1.- 5*TIME))
 2 *XDISP(I,J,1) + 2.*C2*TIME**2.*XDISP(I+1,J,2) - XDISP(I,J,2)
 3 + (C1**2.*C2**2.*TIME**2.*XDISP(I+1,J,2)+.*XDISP(I+1,J+1,2) +
 4 XDISP(I,J-2)
 5 XDISP(I,J-2))

104 CONTINUE

14 IF(I3.NE.2) GO TO 15
 DO 105 I=2,NM1
 XDISP(I,1,1) = XDISP(I,2,2) + 5.*XDISP(I+1,1,2) - YDISP(I-1,1,2)
 XDISP(I,2,2)

105 CONTINUE

15 IF(I3.NE.0) GO TO 16
 DO 106 I=2,NM1
 J=1
 XDISP(I,J,1) = 1/(1. + 5*TIME*THETA) *(2.*XDISP(I,J,2)-(1.- 5*TIME))
 2 *XDISP(I,J,1) + 2.*C2*TIME**2.*XDISP(I+1,J,2) - XDISP(I,J,2)
 3 + (C1**2.*C2**2.*TIME**2.*XDISP(I+1,J,2)+.*XDISP(I+1,J+1,2) +
 4 XDISP(I,J-2)
 5 XDISP(I,J-2))

106 CONTINUE

16 IF(I3.NE.3) GO TO 17
 DO 31 I=2,10
 YDISP(I,1,1) = YDISP(I,2,2) + (C1**2 - C2**2) /
 C2*TIME**2.*YDISP(I+1,1,2) - YDISP(I-1,1,2)
 XDISP(I,1,1) = XDISP(I,2,2) + 5.*YDISP(I+1,1,2) - YDISP(I-1,1,2)
 XDISP(I,2,2)

31 CONTINUE

17 CONTINUE

150 IF(I4.NE.2) GO TO 17
 IF(I4.NE.0) GO TO 18
 DO 108 I=2,N1
 J=2
 XDISP(I,J,1) = 1/(1. + 5*TIME*THETA) *(2.*XDISP(I,J,2)-(1.- 5*TIME))
 2 *XDISP(I,J,1) + 2.*C2*TIME**2.*XDISP(I+1,J,2) - XDISP(I,J,2)
 3 + (C1**2.*C2**2.*TIME**2.*XDISP(I+1,J,2)+.*XDISP(I+1,J+1,2) +
 4 XDISP(I,J-2)
 5 XDISP(I,J-2))

108 CONTINUE

18 DO 109 I=2,N1
 XDISP(I,N2,1) = XDISP(I,NM2,2) + 5.*YDISP(I+1,N,2,2) - YDISP(I-1,N,2,2)
 XDISP(1,N2,1)
107 CONTINUE
XDISP(N1,N2,1)=XDISP(N1-1,N2,2)+XDISP(N1,N2-1,2)-
2 .5*(XDISP(N1-2,N2,2)+XDISP(N1,N2-2,2))
XDISP(I,J,1)=XDISP(I-1,J,2)+XDISP(I,J-1,2)-.5*
2 (XDISP(I-2,J,2)+XDISP(I,J,3,2))
XDISP(I,J,1)=XDISP(I,J,2)+XDISP(I,J,2)-.5*
2 (XDISP(I,3,2))
XDISP(I,J,1)=XDISP(2,N2,2)+XDISP(1,N2-1,2)-
2 .5*(XDISP(3,N2,2)+XDISP(1,N2-2,2))
DO 55 I=1,N1
55 XTEMP=XDISP(I,J,1)
XDISP(I,J,1)=XDISP(I,J,2)
YTEMP=YDISP(I,J,1)
YDISP(I,J,1)=YDISP(I,J,2)
55 YDISP(I,J,2)=YTEMP
XCONV=0.0
YCONV=0.0
DO 65 I=1,N1
DO 65 J=1,N2
XCONV=(XDISP(I,J,2)-XDISP(I,J,1))**2.+XCONV
YCONV=(YDISP(I,J,2)-YDISP(I,J,1))**2.+YCONV
65 WRITE(6,305) (YDISP(I,J,2),I=1,10)
305 FORMAT(1x,10E12.5)
IC=0
100 CONTINUE
WRITE(6,77)
77 FORMAT(1x,10E12.5)
WRITE(6,88) ((XDISP(I,J,2),I=1,10),J=1,N2)
88 FORMAT(1x,10E12.5)
WRITE(6,77)
97 FORMAT(1x,5E12.5)
WRITE(6,88) ((YDISP(I,J,2),I=1,10),J=1,N2)
WRITE(6,77)
93 FORMAT(1x,6E12.5)
THETA=0.
J3=1
IP=IP+1
NN=10
IF(IP.EQ.1) GO TO 99
90 STOP
END