GOT QUESTIONS?

Events

Ask Away

In this new feature, we will answer any question you might have. Whether it’s “What’s the procedure for reporting P-card abuse?” or “Will the campus Chick-fil-A ever sell spicy chicken sandwiches?,” anything that gets asked will be treated as a serious inquiry. The goal is to provide a forum where faculty and staff can anonymously ask any question and have it addressed. So, don’t be shy. E-mail your question to editor@comm.gatech.edu.

ARTS & CULTURE

November 9

The Ferst Center for the Arts welcomes the Georgia Tech Symphonic Band for an 8 p.m. performance. For tickets, call 404-894-9600.

November 12

The Ferst Center for the Arts will feature the Lily Cai Chinese Dance Company for an 8 p.m. performance. For tickets, call 404-894-9600.

November 14

The Ferst Center for the Arts welcomes the comedic talent Lauraano Marquez for a 4 p.m. performance. For tickets, call 404-894-9600.

November 18-21

The Ferst Center for the Arts will feature the Ballethenic Dance Company’s “Forty Years of Hand Papermaking.” For tickets, call 404-894-9600 for show times and tickets.

December 17

The Robert C. Williams Paper Museum is featuring an exhibit “Twinrocker: Forty Years of Hand Papermaking.” The museum is open Monday through Friday from 9 a.m. to 5 p.m. Admission is free. www.ipst.gatech.edu/amp

EVENTS

CETL Offers Useful Teaching Resources

When your schedule is crammed full of activities ranging from writing grant proposals and journal articles to serving on countless boards and committees, it’s difficult to devote time to honing your teaching skills.

That’s where the Center for the Enhancement of Teaching and Learning (CETL) comes in handy.

“Since everyone has different schedules, we try to offer faculty members several options for finding out about current issues in teaching and learning,” said Joyce Weinsheimer, associate director of CETL.

Here are some of the resources that CETL offers for faculty members:

Faculty Development Seminars. On the third Thursday of each month, CETL hosts a two-hour workshop on a teaching and learning topic. For example, this month’s workshop (see this month’s Events listing for more information) will feature Michele DiPietro, author of “How Learning Works: Seven Research-Based Principles for Smart Teaching.” At the event, copies of the book will be distributed to attendees, who will be encouraged to read the book and pass it along to colleagues.

Next fall, another seminar will be held that brings everyone who has read the book back together with the author for another discussion.

Other topics that have been featured include designing assignments that promote creative thinking, ethics and getting students involved in large lecture courses. Speakers include everyone from Tech faculty to guests such as DiPietro. And to

Sickle cell disease involves a single altered gene that produces abnormal hemoglobin — the protein that carries oxygen in the blood. In sickle cell disease, red blood cells become hard, sticky and “C” shaped. Sickle cells die early, which causes a constant shortage of red blood cells. The abnormal cells also clog the flow in small blood vessels, causing chronic pain and problems such as infections and acute chest syndrome.

The gene correction approach proposed by the research team to treat sickle cell disease involves delivering engineered zinc-finger nucleases (ZFNs) — genetic scissors that cut DNA at a specific site — and DNA correction templates into the nuclei of hematopoietic stem cells isolated from the bone marrow of individuals with sickle cell disease.

The researchers plan to engineer and optimize the ZFN proteins so they will induce a double-strand break in the DNA near the sickle cell disease mutation, thereby activating the gene for correction. The broken DNA ends will enter the homologous recombination repair pathway, which will use the genetic information provided by the donor template — rather than the donor template.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The Georgia Tech-led Nanomedicine Center for Nucleoprotein Machines has received an award of $16.1 million for five years as part of its renewal by the National Institutes of Health (NIH).

The Center Receives $16.1 Million Award

ABBY VOGEL ROBINSON

The Georgia Tech-led Nanomedicine Center for Nucleoprotein Machines has received an award of $16.1 million for five years as part of its renewal by the National Institutes of Health (NIH).

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.

The eight-institution research team plans to pursue development of a clinically viable gene correction technology for single-gene disorders and demonstrate the technology’s efficacy with sickle cell disease.

Currently, there is no widely available cure, according to Center Director Gang Bao, the Robert A. Milton Chair in Biomedical Engineering in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

“By directly and precisely fixing the single mutation, we hope to reduce or eliminate the sickle cell population in an individual’s blood stream and replace the sickle cells with healthy red blood cells,” Bao said.
Institute

Tech Hosts Sickle Cell Disease Symposium

Last week, Georgia Tech’s Institute for Bioengineering and Bioscience hosted the Sickle Cell Disease Symposium. Researchers, policy experts and community advocates gathered at the event to discuss the latest research and strategies for future success in combating this complex and debilitating blood disorder.

“Sickle cell disease is a very complicated and debilitating genetic blood disorder for which a cure and effective treatment strategies remain elusive, even 100 years after the initial discovery of the disease,” said conference organizer Gilda Barabino, professor and associate chair for graduate studies in the Wallace H. Coulter Department of Biomedical Engineering at Tech and Emory University.

“By bringing together these groups, we seek to work across boundaries and deliver a blueprint for an integrated sickle cell research strategy.”

Sickle cell disease is a blood disorder that results in patients having mostly hemoglobin S in their bloodstream. Patients with this disorder often have red blood cells that take on a sickle shape, rather than the typical disc shape. The sickle-shaped blood cells are less pliable than normal red blood cells, making it difficult for blood to pass through small blood vessels.

When sickle cells clog up small blood vessels, less fresh blood can flow to that tissue, causing damage and the eventual complications that accompany sickle cell disease.

All races can be affected, but the disease is most prevalent in those with ancestry from sub-Saharan Africa, Saudi Arabia, India, the Mediterranean and Latin and South America, Barabino said.

Mark Your Calendars for Campaign Launch

Join President G. P. "Bud" Peterson and Campaign Chair John F. Brock III, chairman and CEO of Coca-Cola Enterprises, for a celebration of the campus launch of Campaign Georgia Tech. The event will be held on Nov. 12 at 5 p.m. in the Student Center Ballroom, and a reception will follow.

NANOMEDICINE, continued from page 1

original flawed information — to correct the mutation. When the gene-corrected hematopoietic stem cells are injected back in the body, they will produce healthy red blood cells to replace the sickle cells.

“We think it’s a promising approach because we do not need to fix all of the mutations in all cells; we only need to greatly reduce the sickle cell population by replacing those cells with healthy red blood cells,” Barabino said.

The center is one of eight NIH Nanomedicine Development Centers established in 2005 and 2006. The centers have highly multidisciplinary scientific teams that include biologists, physicians, mathematicians, engineers and computer scientists. Through an intense competition, the NIH selected four centers for second-phase funding, including the one led by Georgia Tech.

In addition to experts in the Coulter Department of Biomedical Engineering and the School of Chemical and Biomolecular Engineering, researchers from Medical College of Georgia, Cold Spring Harbor Laboratory, New York University Medical Center, Massachusetts Institute of Technology, Stanford University and Harvard University are also members of the center.

Professor Honored with Scholarship

The American Institute of Aeronautics and Astronautics (AIAA) has honored Professor Amy Pritchett’s contribution to her field by creating the Dr. Amy R. Pritchett Digital Avionics Scholarship.

“I am a bit overwhelmed by this honor and can’t thank the AIAA enough,” said Pritchett, who is the David S. Lewis Associate Professor in the School of Aerospace Engineering. According to the AIAA, Pritchett was recognized for her efforts in support of the Digital Avionics Technical Committee and the IEEE/AIAA Digital Avionics Systems Conference, specifically to involve undergraduate students within the committee and at the conference.

The scholarship is one of four $2,000 undergraduate scholarships endowed each year by AIAA’s Digital Avionics Technical Committee and is established by an endowment with the AIAA Foundation.

In addition to founding the Tech Cognitive Engineering Center and being selected by the Women in Engineering program to receive a Faculty Excellence Award in 2003, Pritchett also held a two-year appointment at the National Aeronautics and Space Administration from January 2008 to December 2009, where she served as director of the Aviation Safety Program.

FACULTY/STAFF DEVELOPMENT

November 15

The Department of Capital Planning & Space Management will host a class to The Department of Capital Planning & Space Management will host a class to
Tech's Campus Gains 75 New Trees

Georgia Tech’s grounds got a little greener this past weekend, thanks to a gift from the Arbor Day Foundation.

In a ceremony on Saturday, student organizations, staff and university leadership gathered to assist with the planting of the 75 trees provided by the foundation.

“We’re very appreciative of the Arbor Day Foundation for selecting our application,” said Hyacinth Ide, Facilities landscape manager. “The trees that have been selected will not only offer shade for our students, but will also provide some beautiful fall foliage for all to enjoy.”

The Institute of one of six universities selected to receive a gift of 75 trees and has been awarded the Tree Campus USA distinction for the past three years.

The program was started by the foundation in 2008 to recognize colleges and universities that practice sound campus forestry. To earn the distinction, institutions are required to meet five core standards of tree care and community engagement.

www.arborday.org/programs/treeCampusUSA

Women of Distinction Honored at Leadership Conference

This year’s Women of Distinction awards were awarded during the opening dinner of the 2010 Women’s Leadership Conference, which was held in late October.

The winners include (from left to right) College of Management Associate Professor Deborah Turner (faculty award); Laura Kitashima (graduate student award); Candace Mitchell (undergraduate student award); and Senior Staff Counselor Rosemary “Rome” Lester of the Counseling Center (staff award). Sally Jabaley (not pictured), project assurance manager and learning advisor for Shell International, received the alumna award.

www.gtwic.com
Admissions Professional Enjoys Job, Good Food

There are two things Merideth Ray is passionate about: her work in admissions and restaurants ranging from Sotto Sotto to Nuevo Laredo Cantina.

“I really enjoy food,” said the senior assistant director of undergraduate admissions.

“So, if I weren’t in my current role, I’d love to be a chef or a food writer living somewhere like Provence.”

As a matter of fact, Ray enjoys food so much, she started the blog “An Atlantan Eats: Food Finds and Favorites from an Atlantan’s Point of View” (http://anatlantaneats.blogspot.com).

“I’ve lived in Atlanta for most of my life, so people were always asking my advice on where to eat,” Ray said. “I started keeping a journal of restaurants with links to their websites, and eventually it just made sense for this to evolve into a blog.”

Recently, The Whistle sat down with her to learn about her experiences at Tech and the best places to grab lunch. Here’s what Ray shared:

What brought you to Tech?
I actually earned my bachelor’s degree from Tech in 2000. After graduation, I headed to the University of Georgia to earn a master’s in student affairs, but in 2003 I returned to campus to work with the FASET Orientation program. I served as assistant director, and then as director until 2007 when I began work as a transfer counselor in admissions. I began my current position in August of this year.

Describe a typical day.
I’m very involved in the training and supervision of the students who lead our campus visits, and I handle the West Coast recruiting territory. So, I communicate a lot with prospective and current students. My days are also full of meetings with the other campus units that collaborate with admissions and occasional evening events with students.

What is something that you want Tech’s faculty and staff to know about admissions?
Last year, about 13,000 prospective students came to Tech for one of our daily one-hour information sessions and tours.

What do you enjoy most and least about your job?
I enjoy my continuous interaction with prospective and student leaders. My least favorite part of the job is the paperwork. But, my strategy for making it more bearable is to make sure my paperwork has a personal connection. For example, if I have a catering contract to turn in, I’ll visit that office and speak with my contact in person, rather than just send an e-mail or make a phone call.

What is something everyone should do while working at Tech?
Take advantage of the activities we have access to. For example, when President Obama was running for office, I was able to attend his political rally on campus, and I’ve gotten to hear Maya Angelou speak. These are things I probably wouldn’t have done if I didn’t work at Tech.

Where is the best place to eat lunch on and off campus, and what do you order?
The best place on campus is Junior’s, and I get the gyro plate, which isn’t on the menu. (It’s different from the gyro sandwich because it’s a Greek salad with gyro meat.) The best off-campus lunch spot is Toscanos and Son on Marietta Street, because they know how to do a panini right — with fresh Italian cured meats and cheese on authentic bread.

Aside from blogging, what do you do in your spare time?
I enjoy cooking and like to take cooking classes. I really enjoy the Simple Abundance cooking classes that are sponsored by the Atlanta Community Food Bank. Classes are held at Cook’s Warehouse locations and all of the money raised goes to a good cause.

Know of Anyone We Should Profile?
Do you know of someone who would be good to profile for our faculty and staff Q&A feature (above)? If you do, please e-mail suggestions to editor@comm.gatech.edu.

Ramblin’ Through Time
Drownproofing was a Rite of Passage for Students
In each issue, we’re partnering with the Georgia Tech Alumni Magazine to highlight a piece of Tech history. This issue’s topic: Fred Lanoue’s Drownproofing class.

The following is an excerpt from an article published in the December 1987 Tech Alumni titled “Drownproofing.”

Since early in World War II, Tech has stressed a course called “Drownproofing” in its physical training program.

Developed by Tech swimming coach, Fred R. Lanoue, using Tech students as guinea pigs, the course is now required of all Tech freshmen as part of the PT curriculum.

Fundamentally, drownproofing is a technique of breathing while swimming in deep water with such an absolute minimum of energy expenditure that complications like multiple cramps, heavy clothes, disabling injuries, rough water and long immersion are minimized.

Lanoue’s course is also being taught at Emory, Duke, Kenyon College and the U.S. Naval Academy...

What brought you to Tech?
If you haven’t already made a donation to the Georgia Tech Charitable Campaign, now is the time. The 2010-2011 campaign runs through Nov. 12. Visit TechWorks to make your donation.

Charitable Campaign Runs Through Nov. 12
Charitable Campaign Runs Through Nov. 12

Free yellow jacket nest removal. Nests to be removed, given as gift to those who remove them.

MISCELLANEOUS
Interested in carpooling? Looking for a ride from Sikkabros Road/Mars Hill Road in the Hedgesgrove Development. Working hours 8:30 a.m. to 5:30 p.m.; flexible hours 8 a.m. to 9 p.m. E-mail to KMuru@comm.gatech.edu.

Eureka “The Boss” SmartVac vacuum. Top rated by Consumer Reports. Carpet and floor selection, like new, 18 months old. $50 OBO. Call 404-894-1990 or e-mail brucahenson@emory.gatech.edu.

Free yellow jacket nest removal. Nests to be removed, given as gift to those who remove them.

Heavy-duty swivel TV stand for both CRT and flat panels TVs. Can hold wall to 100 lbs, has a divider shelf for stereo/DVR/VDUs components with glass door and side storage shelves for DVD/ VHS. Some scratches and scuffs from normal wear. Call 404-939-1048.

FURNITURE/APPLIANCES
Full-sized, 3-section couch with large, oversized matching chair. Beige with microsuede upholstery. Chair has never been slept on! $750. Call 404-210-9092.

Like new, 3 piece Macy’s chocolate microsuede queen sleeper sofa, chair and ottoman. Sleeper bed has never been slept on and is $750. Call 404-939-1048.

Top-rated by Consumer Reports. Carpet and floor selection, like new, 18 months old, $50 OBO. Call 404-894-1990 or e-mail brucahenson@emory.gatech.edu.

FURNITURE/APPLIANCES
Free yellow jacket nest removal. Nests to be removed, given as gift to those who remove them.

Heavy-duty swivel TV stand for both CRT and flat panels TVs. Can hold wall to 100 lbs, has a divider shelf for stereo/DVR/VDUs components with glass door and side storage shelves for DVD/ VHS. Some scratches and scuffs from normal wear. Call 404-939-1048.

Interested in carpooling? Looking for a ride from Sikkabros Road/Mars Hill Road in the Hedgesgrove Development. Working hours 8:30 a.m. to 5:30 p.m.; flexible hours 8 a.m. to 9 p.m. E-mail to KMuru@comm.gatech.edu.

Eureka “The Boss” SmartVac vacuum. Top rated by Consumer Reports. Carpet and floor selection, like new, 18 months old, $50 OBO. Call 404-894-1990 or e-mail brucahenson@emory.gatech.edu.

Free yellow jacket nest removal. Nests to be removed, given as gift to those who remove them.

Heavy-duty swivel TV stand for both CRT and flat panels TVs. Can hold wall to 100 lbs, has a divider shelf for stereo/DVR/VDUs components with glass door and side storage shelves for DVD/ VHS. Some scratches and scuffs from normal wear. Call 404-939-1048.

Like new, 3 piece Macy’s chocolate microsuede queen sleeper sofa, chair and ottoman. Sleeper bed has never been slept on and is $750. Call 404-939-1048.

Heavy-duty swivel TV stand for both CRT and flat panels TVs. Can hold wall to 100 lbs, has a divider shelf for stereo/DVR/VDUs components with glass door and side storage shelves for DVD/ VHS. Some scratches and scuffs from normal wear. Call 404-939-1048.

Like new, 3 piece Macy’s chocolate microsuede queen sleeper sofa, chair and ottoman. Sleeper bed has never been slept on and is $750. Call 404-939-1048.