Analysis of Temperature and Relative Humidity Variation in Wheelchair Cushion Monitoring Tests

Matthew Eicholtz¹, Advisor: Stephen Sprigle, PhD, PT²
¹George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332
²School of Applied Physiology, Georgia Tech, Atlanta, GA 30332

Introduction
- Clinicians need to prescribe wheelchair equipment that is tailored to the needs of the individual
- Relative humidity affects friction and skin’s ability to withstand loads
- Increased tissue temperature increases metabolic demand and may affect tissue integrity
- Need to develop ISO standards for cushion testing

Objectives
- Investigate relationship between temperature and relative humidity in controlled tests
- Monitor the same parameters in everyday use and assess the impact of user functionality
- Use results to create standardized lab test methods for characterizing cushion performance

Methods
MSR logger
- Temperature sensor, 0.1 °C
- Relative humidity sensor, 2%
- Occupancy switch

Controlled Test
- Same subject, same clothes, same chair
- Sensor located 2-3 cm forward of the ischial tuberosity
- Several cushions monitored for 45 min duration, some with 60 sec pressure reliefs every 15 minutes

Empirical Test
- Attached logger and sensors inside cushion cover
- Logged data for approximately 1 week

Data Analysis
- Bout of sitting: threshold set at 10 minutes
- Steady-state: initially defined as <1/2 °C/30 min

Results

Controlled Testing
- Silicone-impregnated foam
- Polyurethane foam
- High Profile Roho
- Action Twister

Empirical Testing
- Roho Harmony (air cushion) has a tighter temperature range and more rapid rise to maximum temperature than the Jay 2 (viscous fluid cushion)
- Person using Roho Harmony had a bout >6 hours 1+ times daily
- Person using Jay 2 got up more frequently

Conclusions
- Strong positive correlation between temperature and relative humidity
- Controlled tests did not reach steady-state, while most empirical bouts reached steady-state after approximately 90 minutes
- Cushions vary widely in microclimate management just like they vary widely in pressure management
- Movement is a good way to dissipate heat and alter shear and normal loading; can be facilitated through education, positive reinforcement
- Pressure reliefs are beneficial because they alleviate pressure and dissipate heat

Future Work
- Increase sample size to increase reliability of results
- Use subject debriefing to better contextualize data
- Inform modifications to current standardized heat & humidity test method
- Compare results of human and lab tests to assess validity

Acknowledgements
- This research was conducted as part of the RERC on Wheeled Mobility, which is supported by Grant H133E080003 from the National Institute on Disability and Rehabilitation Research of the U.S. Department of Education.
- I would like to thank my advisor, Dr. Stephen Sprigle, for his guidance and support.