ACADEMICS:
Georgia Tech's Forte

Academics is perhaps the most overlooked section in the BLUEPRINT; although there is more excitement in Sports, more fun and games in Fraternities, more zest and color in Student Life, it is the level of scholastic excellence above everything else that makes Georgia Tech, as a school, practically second to none. It is because we, as students, are so close to the "educational process" that we see it as Ma Tech's giant rip-off. It is the fierceness of the competition that makes Techman fight for success, and all the while the elusive "4.0" teases from the nebulous future — always just one quarter away. And even though we occasionally have to fight for our academic lives, and though we lose some friends along the way, we are better because of it — and that is the essence of the Tech student.

And so, don't overlook Academics, but rather appreciate it. This section covers, in some new and refreshing ways, the academic attitudes of 1973: the people, the schools, and the research that set Georgia Tech apart.
Academics Set the Pace at Tech
Labs Play a Prominent Role in Course Work
Research: A Vital Part of Georgia Tech
Dr. Joseph M. Pettit has brought to the office of the presidency of Georgia Tech a strong determination to pursue those objectives which are in the best interest of the Institute and a quiet confidence that these goals can be achieved. His presidency to date has been one of unpublicized accomplishment: his name is rarely in the news — to the point where many people wonder what the man is up to. He has little of the splash and color of his predecessor, Arthur Hansen, but he stands nonetheless as a most distinguished voice for this school.

On the personal side, Dr. Pettit is a very warm and likeable man, sincerely concerned about those he represents. The problems and affairs of Georgia Tech spread out in so many directions — all crying out for attention — that coping with them could engulf a man; Dr. Pettit, however, considers the presidency not an awesome burden, but an awesome opportunity to deal with the challenges that find their way to his office. He enjoys a good working relationship with the Board of Regents, the University System, the Administration, faculty, and students. Dr. Pettit has expressed satisfaction with the rate of completion of campus projects and the competency of campus planning: he explains that the costs are so high and the funds so slow in coming that even the progress currently being made is remarkable. Priorities are always difficult to establish, but some of the foremost problems Dr. Pettit is tackling are inflated operating costs, the recruitment of an excellent faculty, and the living conditions in Area I. He is optimistic about such things as future growth, the quality of education, and continued high standards of admissions. Dr. Pettit finds enjoyment in most of his official duties and desires a close rapport with students.
ABOVE LEFT: Frank Roper, Registrar. ABOVE RIGHT: Dr. Vernon Crawford, Vice President for Academic Affairs. FAR LEFT: Ewell Barnes, Vice President for Business and Finance. LEFT: Dr. Clyde Robbins, Vice President for Campus Planning.
Deans of the Colleges

Dr. Ferdinand K. Levy, Dean of the College of Industrial Management

Dr. Henry S. Valk, Dean of the General College
The Deans of Students

LEFT: James Dull, Dean of Students. RIGHT: Miller Templeton, Assistant Dean of Students
A. E. Includes
Applied Courses

AEROSPACE ENGINEERING

The School of Aerospace Engineering continues to be a very prestigious school at Tech, despite reduced enrollments in this discipline during the past few years. New innovations at the school include increased applications of fundamental principles through lab courses, and an increased number of available electives. In addition to curriculum changes, new research laboratories are constantly being readied to keep pace with challenges in the field of aerospace technology.

AIR FORCE R.O.T.C.

The first two years of Air Force ROTC are characterized by a general grounding in the military organization and its role in U.S. affairs. The last two years provide an indepth curriculum which serves to prepare a cadet for his — or her — commission in the Air Force. There are many opportunities for ROTC graduates in the Air Force, a fact that has contributed to the program’s popularity at Georgia Tech.

ARCHITECTURE

The School of Architecture attempts to provide a well-rounded curriculum that will lead its graduates to design both beauty and function into their projects. There are three undergraduate options available: a five year course in Architecture with options in design and structures, a four year plan in Industrial Design, and a four year program in Building Construction. Master degrees are granted in Architecture and City Planning.

ARMY (MILITARY SCIENCE)

The new emphasis of the United States Armed Forces is reflected in Army ROTC at Georgia Tech: the importance of the individual is stressed, with quality and not quantity as the fundamental characteristic of the unit. Individual leadership was emphasized this year, along with participation and high achievement in training exercises at Fort Benning and other locations.
Biology Gets New Director

BIOLOGY

Biology . . . where the rats are real! The School of Biology has more to offer, however, than cute critters and a zoo-like atmosphere. New to the department this year as Director was a widely-known and distinguished biologist, Dr. John W. Crenshaw, Jr. An enlarged faculty and an increasingly flexible curriculum made it possible for students to take those courses which more nearly fit their interests and career goals. As in the past, the degree program provided an excellent undergraduate preparation for graduate, medical, and dental schools.

CERAMIC ENGINEERING

Again this year, as in the past, the School of Ceramic Engineering was characterized by an outstanding faculty and complete modern equipment. From this strong base the school has worked on its curriculum, making it possible for the student to specialize within the field, especially at the graduate level.

CHEMICAL ENGINEERING

The Chemical Engineering department has advanced facilities including labs for cryo-chemistry and cryogenics, X-ray characterization, fine-particle study, metallurgical research, unit operations, and bench-scale testing. Also located in the department are computer terminals and a complete machine shop. Ch. E. remains in 1973 a most prestigious major.

CHEMISTRY

The School of Chemistry continued to upgrade its facilities in 1973, even though Lyman Hall Laboratory lingered on as a skeleton in the department’s closet. The large number of electives within the curriculum have proved to be very successful; the flexibility offered by this program allowed the student to develop his interests in an applied, theoretical, or pre-professional direction.

ABOVE LEFT AND FAR LEFT: Biology. ABOVE RIGHT: Chemical Engineering. CENTER LEFT: Chemistry. LEFT: Ceramic Engineering.
C.E. and E.E. Have Liberal Programs

CIVIL ENGINEERING
An increasingly flexible curriculum has been adopted by the School of Civil Engineering over the past couple of years. This program has proved to be popular among students as reflected in the increased enrollment in C.E. In addition to the promising outlook on the undergraduate level, the graduate program, which includes the PhD., has been expanded in the past two years.

ELECTRICAL ENGINEERING
There has been extensive reform in the School of Electrical Engineering, resulting in a more liberal core curriculum with a greater number of electives than were available in the past. The school also places heavy emphasis on academic advising in order to more effectively help students toward their individual goals. In this way, a student can specialize or get a very general education in the discipline.

ENGINEERING SCIENCE AND MECHANICS
The purpose of Engineering Science is to offer a very wide range and fundamental engineering curriculum that will provide a strong background with a maximum number of elective hours.

ENGINEERING GRAPHICS
The Engineering Graphics Department allows students in engineering the opportunity to develop the drawing skills they will need in their careers. Beyond that, the department's curriculum leads to an appreciation of some of the practical and most basic problems that are to be encountered in the application of textbook engineering.

Geophysical Sciences Emphasize The Environment

INDUSTRIAL AND SYSTEMS ENGINEERING

The School of Industrial and Systems Engineering, like most of the other major engineering schools on campus, now offers a liberal curriculum featuring an increased number of elective hours and a decreased number of hours needed for graduation. The result of these revisions has been increased flexibility for the student and a greatly improved program of study overall.

GEOPHYSICAL SCIENCES

In Geophysical Sciences, more and more emphasis is being placed on ecology and the environment. New courses in environmental geology and oceanography have been offered. Various options in the geophysical sciences are available through the schools of Physics, Chemistry, and Civil Engineering.

ABOVE RIGHT: The School of Industrial and Systems Engineering. RIGHT: Geophysical Sciences.
English Features
Contemporary Electives

ENGLISH
The English Department has recently added several upper-level electives to its curriculum. These new courses reflect current interests and contemporary issues. The increase in numbers and types of electives has effectively drawn students back into the English Department after their lower-level requirements have been satisfied.

MATHEMATICS
One of the primary concerns of the School of Mathematics is the maintenance of a top quality faculty. The curriculum for non-majors who must take calculus remains unchanged, but sweeping revisions in the undergraduate degree program have led to liberalized electives and a reduced number of hours required for graduation.

ABOVE LEFT: English Department. LEFT AND BELOW LEFT: School of Mathematics.
I.C.S. Offers
B.S. Degree

INFORMATION AND
COMPUTER SCIENCE

In addition to its excellent graduate programs, the School of Information and Computer Science now offers an undergraduate curriculum leading to the B.S. degree. Also new in the school is a graduate option in Biomedical Information Systems Engineering.


MODERN LANGUAGES

The Department of Modern Languages has continued its development toward a more sophisticated approach to the instruction of foreign languages. This trend in the department is leading to greater opportunities than ever before. In this respect, both undergraduates who wish to advance themselves, and graduate students who need to satisfy language requirements will have better programs than were available in the past.

ABOVE RIGHT: Information and Computer Science. RIGHT: Modern Language.
N.E. Investigates Pollution Reduction

MECHANICAL ENGINEERING
The School of Mechanical Engineering has a curriculum that allows students the opportunity to develop their individual interests in areas such as design, dynamics, fluid mechanics, heat transfer, kinematics, philosophy of design, thermodynamics, material for engineering, and energy conversion. Graduate students also have a broad range of fields open to them for specialization, a few of which are bioengineering, combustion, fluidics and fluid power, power and propulsion, and dynamics and vibration.

NUCLEAR ENGINEERING
The School of Nuclear Engineering is characterized by outstanding research equipment and a highly qualified staff. The programs of this school are directed toward graduate students and focus on solving contemporary problems in power generation, pollution reduction, transportation, and nuclear medicine. The school also attempts to give its students sufficient background and stimulation in order that they may handle the challenges of the future.

ABOVE LEFT: Mechanical Engineering. LEFT: Nuclear Engineering.
Self-study Courses Offered in Physics

NAVAL R.O.T.C.
In recent years, Georgia Tech’s Naval ROTC Unit has consistently been among the largest in the nation. It's popularity has continued through wild fluctuations in this country's military role and through students' reevaluations of educational priorities. Students are drawn to Naval ROTC by the excellent opportunities graduates can find in the Navy.

PHYSICAL TRAINING
The Physical Training Department has not changed much since last year, when a major curriculum overhaul redeigned undergraduate P.T. requirements. The days of agonizing through mandatory courses have passed, without sacrificing any of the basic goals of the program. Highlights of the new curriculum are more electives, which allow students flexibility in choosing P.T. courses.

PHYSICS
Due in large measure to its flexible undergraduate options, the School of Physics has remained one of the most popular schools at Georgia Tech. Two of these options are a biophysics program of study and a cooperative program with Georgia State in which a student interested in teaching may take required education courses at State while completing degree requirements here at Tech.

Self-study physics courses were again available on an elective basis in 1973.

SOCIAL SCIENCE
The Social Science Department continues to attract Tech students who want to compliment their technical education with a liberal arts experience. Many people pursue a minor degree in social science. For graduate students, the department offers courses which provide an insight into the interactions of society and technology.

Psychology Offers Broad Curriculum

TEXTILES
Textiles places its emphasis on the constant upgrading of faculty and facilities. All faculty members are highly educated and have extensive practical experience in their chosen specialization. Computers are being applied to many research problems. Soon the school will have the most complete laboratories in the country.

PSYCHOLOGY
The School of Psychology offers a very liberal curriculum that essentially lets the student mold his or her own program. This flexibility is achieved by allowing 56 hours of electives instead of a rigid schedule of required courses, and by encouraging suggestions from students. Psychology electives continue to be popular among students from all schools.
Industrial Management
To Offer New Option

INDUSTRIAL MANAGEMENT
This was a year of major change for the College of Industrial Management. Foremost of these changes was the installation of a new director, Dr. Ferdinand K. Levy. Other changes centered around improved approaches to more efficient and effective learning. Video tapes are being applied more and more to classroom situations in an effort to stimulate interest on the part of the students.

Plans for next year include the deletion of two options and the addition of a new one requiring fewer hours than present programs.

FAR LEFT: Textiles. NEXT LEFT: Psychology. BELOW, LEFT AND RIGHT: Industrial Management
Dr. Robert H. Fetner
Researches the Cytogenetic
Effects
of High Energy Radiation
Dr. Robert H. Fetner's professional interest is in the physical and biological basis of inheritance. Since 1957 at Georgia Tech, he has been engaged in research and teaching on the cytogenetic effects of high energy radiation (H.E.R.) and certain chemical agents. Dr. Fetner's research has been supported by the Atomic Energy Commission, the School of Aviation Medicine, and the National Institutes of Health.

At about the time Tech acquired its nuclear reactor, graduate courses in the biological effect of high energy radiation were initiated to provide knowledge of this subject. It is important that those scientists and engineers who will be responsible for the utilization and application of nuclear energy be aware of the biological effects and sound implications of their technology.

From a biological standpoint, H.E.R. is a very important investigative tool for the study of biological structure and processes. Biologists learn much about normal structure and processes by producing and studying abnormalities. For example, we learn about the normal genetic unit (gene) by studying an abnormal unit (a mutant). High energy irradiation is one of the most useful tools in producing specific and predictable changes in the genetic structures.

It is an enigma that high energy radiation has evolved as one of the most effective and useful weapons in the treatment of cancer while also being a powerful cancer-inducing agent. This high energy radiation is a double edged sword — on the one hand a useful tool for man's health and a powerful source of energy, and on the other hand a technological by-product with considerable risk to mankind. Knowledge and education on all aspects of this subject are needed, and the need will increase.
Dr. Stanford Investigates the Physiology of Memory

Dr. A. L. Stanford, Professor of Physics, is a graduate of Georgia Tech ('52) and received both his M.S. and Ph.D. in Physics at Tech. After three years in the Navy, he spent six years at the Sperry Rand Corporation as a Research Staff Consultant. He has been on the faculty at Tech since 1964.

In the School of Physics, Dr. Stanford is engaged in research intended to shed light on the means by which brains of mammals store information. The techniques used in this research involve the transfer of information from one animal to another. Rats and mice are used as the research animals. The animals are trained to accomplish simple, but measurable tasks; their brains are then removed and an extract is prepared from the brains' cellular material. This extract is then injected into untrained animals, which are then tested to determine the extent to which they have acquired the information learned by the donors.

This research program includes studies of some strange phenomena that occur in a particular strain of mice: the mice are subjected to a loud bell when they are sixteen days old. They are then "primed" so that when they are subjected to the bell exactly five days later, they have convulsive seizures and die. Attempts are being made to transfer this primed response to mice that have never been exposed to the bell via the brain extract.

ABOVE: Dr. A. L. Stanford, graduate student Mike Corwin, and friend. RIGHT: Dr. Stanford and Mr. Corwin "teaching" a rat a lesson he hopefully won't forget.
Chemistry Has Varied Research Interests

DR. HERBERT O. HOUSE

Herbert O. House is perhaps the most distinguished Professor of Chemistry at Georgia Tech. He came to Tech in 1971 from the Massachusetts Institute of Technology where he had been a full professor. Dr. House is presently Seydel-Wooley Professor of Chemistry and continues to be active in various outstanding chemical societies. His research interests include studies of new or improved synthetic methods for organic chemistry, the chemistry of carbonions, molecular arrangements, stereochemical studies, and studies of reactions involving electron transfer.

DR. NAI-TENG YU

Dr. Nai-Teng Yu, Assistant Professor of Chemistry, is primarily an organic chemist. His current research interests include applications of laser-excited Raman spectroscopy and temperature-jump fast kinetics to problems of structure and mechanisms in biological systems.

DR. JAMES C. POWERS

Dr. James C. Powers, Assistant Professor of Chemistry, is interested in the structure of proteins and the mechanism of enzymatic catalysis. Methods of chemically modifying proteins are being developed in order to change the specificity of enzymes. Some studies require organic synthesis and/or use of x-ray diffraction and nuclear magnetic resonance techniques.

DR. RAYMOND F. BORKMAN

Dr. Raymond F. Borkman, Assistant Professor of Chemistry, is an exceptional young chemist who this year was named Sigma Xi's Man of the Year. He is interested in applying the ideas and methods of quantum mechanics to problems in experimental and theoretical chemistry. Areas of experimental interest include electronic spectroscopy and photochemistry of organic molecules, and in particular the related phenomena of energy transfer and radiationless transitions.

ABOVE: Dr. Herbert House in his laboratory. CENTER LEFT: Dr. Nai-Teng Yu in his office. CENTER RIGHT: Dr. James Powers operating a Cary 14 uv and visible spectrometer. LEFT: Dr. Borkman, left, and a postdoctoral assistant studying phosphorescence emission spectra.
Dr. Robert Carstens
Develops a New
Enclosed Capsule
Transportation System

For about five years, Dr. Robert Carstens of Civil Engineering, Mr. Bates, and the students in C.E. 320, Fluid Mechanics Laboratory, have been studying the flow of capsules in enclosed conduits. Of particular interest has been the movement of cargo in unstreamlined wheeled vehicles through a pneumatic pipeline. The development of patentable features was followed by an exclusive license agreement with Trans-Southern Pipeline Corporation of Houston, Texas, for further development and marketing. A sub-license has been issued to Daifuku Machinery Works of Osaka, Japan.

Dr. Carstens believes that capsule-transport in pipelines offers an ecologically attractive alternate means of ground transport. Apparently others see the potential in this form of transport as well, inasmuch as Dr. Carstens was cited by Engineering News Record as one of the "Men who made marks in 1972".
The Engineering Experiment Station (EES) was authorized by the Georgia legislature "to aid in the promotion of scientific, engineering, and industrial research; to advance science, technology, and education; to promote the general welfare of the people of the State of Georgia through such a program, and to render assistance to national programs of science, technology, and preparedness." The majority of research performed at the Engineering Experiment Station is supported by contracts with governmental organizations and private industries.

One of the current research projects is being conducted by the High Temperature Materials Division of the Applied Sciences Department utilizing the French National Center for Scientific Research's solar energy furnace located in the Pyrenees Mountains. This represents the first agreement between the French Center and a U.S. research institute and will allow the EES to develop a broad scope research capability in the high temperature solar energy field.

The furnace, the size of a 14-story building, is the site of four projects in high temperatures research. Areas to be investigated are thermal-mechanical properties of materials at high temperatures, high temperature dielectric properties of materials, thermal and electrical evaluation of radomes and high temperature chemistry. Future plans include exploration of high temperature solar energy for industrial applications.

The furnace is actually an oversized magnifying glass system. A reflector, 130 feet high by 175 feet wide, is composed of 9,500 mirrors each 17 inches square. Sixty-three smaller mirrors, called heliostats, are set in 8 tiers in front of the huge reflector and follow the sun, concentrating its rays in parallel beams onto the reflector. The heliostats are 24 feet high by 19 feet wide, and each is composed of 180 mirrors, each 19 inches square.

Constructed at a cost of two million dollars, the furnace went into operation in 1971 after twelve years of building. It took almost two years to adjust the 20,000 mirrors to catch the appropriate angle of the sun's rays. It is the world's largest furnace, producing solar intensities as high as 6,000 degrees Fahrenheit.

One project studies the radome, a ceramic nose cone which protects radar mechanisms in spacecraft, at high temperatures. Until the use of the furnace became a reality, there was no effective way to determine the effects of heat on the electrical performance of a radome as it goes through the atmosphere at high velocities.

The Engineering Experiment Station's ultimate interest in solar energy research is stimulating economic uses. Successful industrial use of solar energy could be a major factor in conserving energy resources and in combating pollution. With environmentalists curbing the use of polluting fuels and natural resources rapidly depleting, solar energy is being viewed more seriously as a potential source of power. Solar heat is currently being used experimentally in several houses in the Pyrenees.

A major problem in sun power is storage, and so far there are no simple solutions. The most realistic idea has been to convert the energy into another form. For example, using the sun to convert coal into a less-polluting gas form or manufacturing hydrogen and using that as a fuel.

Since solar energy is clean, the production of purer materials more resistant to body fluids for medical transplant use is a possibility. Garbage disposal at high temperatures is another potential use.

Some Georgia industries such as the paper, canning, and food processing companies may be interested in solar energy since one practical application can be the development of a steam power generation prototype.

Whatever the applications of solar energy, the researchers of the Engineering Experiment Station will be involved, developing and applying this ancient form of power.

*LEFT: The set-up for testing a radome in the French solar furnace.*
Koseme is the highest junior honorary. This society recognizes students who have made exceptional contributions to Georgia Tech in the course of their junior year. To be elected into Koseme a student must earn the unanimous approval of the existing membership. The honorary is highly selective, with only a couple of new people inducted each quarter.

Not pictured below are Tom McCoun, Mike Austell, Don Williams, Chris Parker, and Louis Isaf.

The ANAK Society was formed on Georgia Tech’s campus in 1908 in order to honor a select few in the senior class who had contributed in some outstanding way to the school. Induction into ANAK is one of the most coveted honors at Tech.

In addition to the three men pictured above, three ANAK members failed to be photographed. They are Jesús Léon, Howard McQueen, and Jimmy Carter, Governor of the State of Georgia.
Omicron Delta Kappa is the outstanding senior leadership society. ODK attempts to involve all areas of the Tech community in a creative forum where ideas can be discussed. The Georgia Tech chapter was founded in 1930 with requirements for membership including outstanding character, leadership, and scholarship. ODK is involved in several service projects with the main thrust of their efforts being in the realm of academic reform.

Omicron Delta Kappa

Anthony Arduengo
Michael Austell
Wm. Joseph Brookbank
Joe B. Fraser
Stephen T. Harris

David J. Hill
J. Thomas Hyder
Richard Inman
Louis T. Isaf
Brian Kinsey

Samuel O. Piper
Arnoldo Ramirez
Paul L. White
Gregory B. Williams
Mark Zweckar
Phi Kappa Phi

Phi Kappa Phi has been an honorary at Georgia Tech since 1914; nationally, the society was founded in 1897. The purpose of Phi Kappa Phi is the "recognition and encouragement of superior scholarship in all fields of study." Members are drawn from all schools, with prime qualifications for induction being academic excellence and good character. Phi Kappa Phi attempts to be active in service to Tech and the community. In addition to these activities, the honorary contributes to funds for publications and to fellowships for graduate study.
The Georgia Alpha Chapter of Tau Beta Pi was established at Georgia Tech in 1925; nationally it is the oldest and perhaps most highly respected society honoring outstanding students in fields allied with engineering. The Tech chapter is one of the largest of the hundred chapters in existence.

To be considered for membership, a student in engineering must rank in the upper tenth of the Junior Class, or the upper eighth of the Senior Class.

Mary E. Atkins
Marion C. Baggett
Bruce O. Barringer
Bryant Bechtold
Steve H. Blair
Leo R. Bohanick
Craig A. Bonap
J. Robert Bost
Kenneth G. Boyer
Robert W. Brinly
Win. Joseph Brookbank
U. Lamar Brown
Harry W. Bruce III
Thomas W. Butle
William K. Capron
Walter A. Carpenter
Raymond G. Clinton
Deborah L. Coe
Gregory A. Cox
Frank H. Cullen Jr.
Kenneth Culpepper
William D. Culver
Anthony Dahmus
David Dameron
Joe H. Defenderfer
Ronald Dennis
Ernest Dixon
Robert L. Dixon
Charles C. Dunham
William Emmich
Carolyn M. Finney
Charles Fowler
Daniel V. Gearing
William J. Griffith
Bryan E. Harline
John R. Harris
Nelson G. Hawk
Wayne T. Handrix
Robert C. Hentschel
David Hickman
Arthur S. Hovis
Charles Humphris
Lee R. Hunter
Louis T. Isel
John Jackson
Charles Johnson
Philip C. Jones
John M. Killey
Steve Kilpatrick
Beta Gamma Sigma

Beta Gamma Sigma is an IM honorary at Georgia Tech. This society provides an incentive for better academic work, conducts plant tours, arranges discussions with business leaders, and involves itself in other activities that will promote the School of Industrial Management and its students.
Phi Eta Sigma — NATIONAL FRESHMAN HONOR SOCIETY

James S. Adams
John W. Bosky
Herchell A. Boyd
Edward L. Bridges
William H. Bruning
Harold V. Cooper
Richard G. Crow
Razzle B. Dazzle

Clarence R. Dwiggins
Bernard L. Flank
Carl E. Flinn
Judson E. Gary
Richard L. Gilbert Jr.
Daniel H. Greenberg
Den P. Griggs
David H. Hafner

James M. Henson
Jon D. Jeffries
Richard S. John
John S. Kendall
Ernest M. King
Robert V. Kolaric
Mark J. Kornfeld
Casey C. Lang

William P. McBride
Douglas F. Menne
William J. Mischowalter
James B. Mitchell
Mark E. Moffitt
Robert L. Nansteel
William J. Osterfield
Richard J. Ostrander

Steve N. Payne
David A. Phillips
Mario R. Rodriguez
Edward Sapota
Barry C. Smith
Clifford P. Settle
Christopher D. Smith
John A. Snader

Mike A. Staiger
Walter E. Stuenkel
James W. Tahler
Charles L. Tit
Carl A. Tomko
Jeff L. Tuttle
Andrew H. Welch
Charles T. White
Scabbard and Blade is the military honorary of Georgia Tech. Its purpose is to single out those Techmen who have shown military professionalism and leadership. Members are admitted on the recommendation of their individual departments. Scabbard and Blade serves to further the cause of leadership and encourages interaction among the different military departments.

The Order of Omega, Georgia Tech's honorary for outstanding fraternity members, provides a forum wherein new ideas in Greek Life can be formulated. Among other services, the society contributes significantly to rush on campus.

Members are chosen on the basis of their character, scholarship, and fraternity involvement; they must have been at Tech a minimum of one year, and must have at least junior standing.

BELOW, LEFT TO RIGHT: Bill Brown, Tom Rawls, Edwin Kohler, Associate Dean of Students; Lou Isaf, and Garry Bledsoe, Assistant Dean of Students. NOT PICTURED: Jim Bidgood, Paul Mayer, Miller Templeton, Assistant Dean of Students; and Don Williams.
Briaerean Society
Section I

Robert J. Bidlack Leo R. Bohanick Craig A. Borup Don F. Bridges Peter L. Check Randell W. Dickey
Ernest M. Dixon Bryan E. Hainline Nelson G. Hawk Leon C. Hendee Arthur S. Hovis Lee N. Hunter
Richard P. Kisida John D. Lee John N. Lee Martin B. Lundberg Rick W. Martin Lawrence M. Perry
The Briaerean Society is the honor-ary for students on the cooperative pro-
gram. To be eligible for membership, a
person must be at least a third quarter
sophomore with a 3.0 or better grade-
point average. The purpose of the
Briaerean Society is to serve the needs
of co-ops at Georgia Tech. The society
encourages increased participation in all
facets of life on campus.

Section I of the society is in school
during the summer and winter quarters
and at work in the spring and fall; Sec-
tion II has the opposite schedule.

Briaerean Society
Section II

William Alton
Steve H. Blair
Wm. Joseph
Brookbank
U. Lamar Brown
Edward Caldwell
William K. Capron
John C. Clark
James B. Culpepper

A. Dudley Daring
Bruce Dehnostel
Bruce T. Dietrich
Charles C. Dunham
Daniel V. Gearing
Wayne T. Hendrix
Robert Hentschel
Irwin H. Hosea

James D. Huber
James Wm. Jenkins
Wayne L. Klehn
Dennis K. Laidford
David McClelland
James L. Montgomery
Karl W. Myers
Shu Nakamoto

John Popielarzyczyk
James E. Prime
Richard D. Rhodes
James E. Sproul
William M. Wilkinson
William R. Williams
George Williamson
John C. Yancey