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Abstract

Biological multi-agent systems such as animal herds, insect colonies and fish schools provide a lot
of insight into the study and design of artificial multi-agent systems such as teams of autonomous
mobile robots. Similarly, a lot can be learned about biological systems by borrowing design and
analysis tools from multi-agent robotics. In this paper some recent work in the area of multi-agent
robotics by the authors has been summarized, which addresses some basic issues in the modelling of
formations with limited sensory and communication capabilities. The basic idea is to model spatial
relationships between agents as connectivity graphs. An information theoretic complexity measure
of multi-agent formations is suggested, which is based on the complexity of connectivity graphs. The
complexity measure helps find graphs and formations of the highest and the lowest complexities.
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1 Introduction

The interest in control and coordination of multi-agent robot teams has experienced a dramatic
increase during the last few years (Egerstedt & Hu, 2001; Gazi & Pasino, 2003; Jadbabaie, Lin &
Morse, 2003; Klavins, 2002; Muhammad & Egerstedt, 2003b; Ogren, Fiorelli & Leonard, 2002; Saber
& Murray, 2001). Some of the techniques developed for single agents, interacting with both struc-
tured and unstructured environments, such as trajectory tracking, nonlinear control, mapping and
localization, are readily applicable in the multi-agent case as well. However, a number of challenges,
stemming from the distributed and hence local nature of the information available to the individual
agents in the formation, have presented themselves. In order to look for inspiration when trying
to model such systems, roboticists have increasingly begun to look to naturally occurring systems,
where distributed, multi-agent systems are abundant. These systems range from human societies,
where each agent is an extremely complex system in itself, and the social behavior transcends be-
yond simple mechanical tasks, to lifeless physical systems made of agents like particles, atoms or
molecules. The latter carry no intelligence themselves, but interact using simple physical laws, and
give rise to complex adaptive systems as a group. Robotics can be characterized as finding its place
somewhere in between these two extremes. Needless to say, the comprehension of the complicated
behavior of human societies may be the ultimate goal for a multi-agent system designer, but it is
far too difficult and exists only in science fiction. The state of the art in multi-agent robotics is
instead tackling significantly more humble objectives, like terrain exploration, coordinated building
and manipulation, planning of team formations etc (Axelsson, Muhammad & Egerstedt, 2002; Balch
& Arkin, 1998; Beard, Lawton & Hadaegh , 2001; Fierro et al., 2001; Lawton, Beard & Young, 2000;
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Mataric, Nilsson & Simsarian, 1995; Reif & Wang, 1999; Tanner, Pappas & Kumar, 2002). On the
other hand, inspiration from lifeless physical systems is inadequate, as robotic platforms available
today carry so much computing power, sensors and communication capabilities that they capable of
much more than the imitation of simple “inverse-square” laws.

Group behavior is manifested in various biological systems as an impressive result of organic
evolution. Examples can be found among social insects, animal herds, bacterial colonies, schools
of fish, formations of flying birds, and so on. These group behaviors are very similar to the ones
exhibited in multi-agent robotics, because of the following reasons:

1. Local Interactions: Individuals in animal groups interact only locally with their immediate
neighbors and in many cases there is an absence of leader-hierarchy. This model is similar to
fully decentralized, artificial multi-agent systems made up of identical members with limited
individual sensor ranges. The emergence of a rich and complex global behavior from local
interactions is of prime interest in multi-agent robotics.

2. Simple Individual Behavior: In robotics, individual agents exhibit a relatively small number of
simple interactions, which give rise to complex group behaviors (Reynolds, 1987). This model
is relevant when studying animal groups in which the individuals interact in a small number
of simple ways.

3. Communications: Communication is an essential part of coordination in animal groups and
the physical methods of exchanging information has a rich variety. In insects, for example,
they communicate for alarm and assembly, recruitment, recognition, signalling presence of food,
grooming and a host of other activities (Wilson, 1971; Bonabeau et al., 1997). Individual robots
can also be equipped with communication channels for coordination. The issues concerning
suitable information exchange for coordination are still open and active research problems.

4. Group size, Complexity, and Randomness: In insect societies, it has been observed that indi-
vidual behavior is influenced by the colony size (Anderson & Ratnieks, 1999; Wilson, 1971). In
larger societies, individual workers tend to make their decisions by collecting advice from their
neighbors, and performing some kind of averaging or voting. In smaller colonies, the worker
relies more on its own judgement than information exchanged from other workers. This ex-
plains why the insect’s actions may look erratic and seemingly random at the individual level,
but give rise to order on a global level and why bigger colonies seem more ordered. These
issues are related to design criteria in multi-agent systems, like how small should the tracking
errors of individual control laws be, or what should be the resolution of the sensors, and finally
how are these individual design factors related to the team size?

It can therefore be concluded that there is a remarkable similarity between the group behaviors
found in biological systems and the ones roboticists want their artificial systems to exhibit. Similarly,
a lot can be learnt from the abstract artificial robotic systems when modelling behaviors for animal
groups. In this paper we present graph-theoretic models that are helpful to study the complexity
and topology of formations in robots that interact locally with their neighbors. From the discussion
above, it can be expected that these models might prove useful for the study of animal groups and
social insects, as well as for understanding the coordination of multiple mobile robots.
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2 Models of Formations

In many multi-agent systems, such as insect societies, animal herds, and robot teams, the individual
agents can collect information about their environment and other agents by either peer to peer
communication or by relying on sensory information. Since any physical sensor is always limited by
its range and resolution, or by calibration errors, the information available to each agent by direct
observation (or state estimation) is always limited and uncertain. Sensory limitations may also arise
due to directivity patterns of sensors, e.g. the conic field of view of an eye or a camera, the radiation
patterns of wireless antennas, sonars and lasers in robots.

Similarly, if we let the agents share information using peer to peer communication strategies,
the possibility to convey and use global information is limited due to bandwidth limitations, weaker
reception at large spatial distances, or the absence of feasible communication channels. This prob-
lem worsens as the formation size increases, both in cardinality and spatial dimension. Hence no
individual agent can be assumed to have complete knowledge about the states of every other agent.
This limitation directly leads to the question about how the local interactions should be represented.
An obvious choice is to let the existence of such interactions be represented by edges in graph-based
models (Muhammad & Egerstedt, 2003a; Jadbabaie, Lin & Morse A, 2003; Saber & Murray, 2003;
Tanner, Pappas & Kumar, 2002).

A natural way to model the limitations of interaction among agents is to define their regions of
influence. A region is defined according to the sensory range of an agent or the maximum distance
by which it can communicate with other agents. For robotics applications, this makes perfect sense,
but this also holds for biological multi-agent systems like social insects and fish schools, in which
agents only interact with their neighboring agents. Therefore, it is interesting to study the class
of graphs, based on a limited regions of influence. In a recent work by Muhammad & Egerstedt
(2003b), the case was investigated when all agents live in a two dimensional Euclidean space, and
have similar circular regions of influence of radius δ centered at their positions. The situation is
similar to Figure 1, where ant 1, cannot interact with ants 5 and 6, because they are outside its
region of influence, but it can interact with ants 2, 3, and 4. A graph can now be constructed, where
nodes correspond to agents, and there exists an edge between two agents if the one agent lies in
another’s region of influence. These graphs have been named as connectivity graphs by the authors
(Muhammad & Egerstedt, 2003b). The space of all connectivity graphs on N agents is denoted as
GN,δ ⊆ GN , where GN is the space of all possible graphs on N vertices. It can be immediately see
that:

• The connectivity graphs are simple by construction i.e. there are no loops or parallel edges.

• They are undirected because all agents have the same radius for their regions of influence.

• The motion of individual agents in the formation may result in the removal or addition of
edges in the connectivity graph, and therefore the graph is a dynamic structure.

• Every graph is not a connectivity graph.

An arbitrary graph exists as a connectivity graph if it has a valid realization in the configuration
space of agents. Many realizations can correspond to the same graph. Although, this can be stated
more rigorously, as given by Muhammad & Egerstedt, (2003b), the basic idea is straightforward.
There are many interesting examples of realizable and non-realizable connectivity graphs. If a graph
is completely disconnected, it means that the distance between any two agents in the formation
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Figure 1: Agents and their region of influence

are separated by more than the distance δ. This can easily be achieved by placing each agent in
such a way that it lies outside the regions of influence of all other agents. Therefore all completely
disconnected graphs are realizable as connectivity graphs. If a graph has many disjoint connected
components, each connected component can be placed “far away” from all other components so that
none of the agents in one component lie in the regions of influence of agents in other connected
component. By this construction, a realization for this graph can be obtained if and only if all
components are realizable individually. Similarly, complete graphs, where an edge exist between all
nodes can easily be produced, if the agents are placed very close to each other. Therefore, the study
of realizability of graphs can be confined to connected graphs only. Using this technique one can
now ask the question: when do graphs not exist as connectivity graphs?. Muhammad & Egerstedt
(2003b), proved the following theorem.

Theorem 2.1 The space of connectivity graphs over N agents GN,δ, is a proper subset of the space
of all possible graphs over N vertices GN , if and only if N ≥ 5.

The proof involves giving examples of graphs that cannot be realized for N ≥ 5. Examples of
non-realizable graphs for 5 and 6 vertices are shown in Figure 2. That these graphs are not realizable,
can be seen from geometrical arguments. In fact, the “star” graphs of the type given for N = 6,
do not exist for all N ≥ 6, which completes the proof. This theorem helps understand that not all
graphs are valid models for multi-agent formations.

Figure 2: Graphs that are not connectivity graphs.
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The importance of this characterization of the space of connectivity graphs can also be understood
as follows. From the discussion above, it can be seen that totally disconnected graphs and totally
connected (complete) graphs are trivially realizable. However these two extremes are not very
interesting from a behaviorial point of view. The disconnected case corresponds to he situation
where there is no interaction between agents. In the completely connected case however, the agents
are packed so tightly that the system becomes fully coupled and the global information is available
at all agents. The central theme of multi-agent coordination i.e. global behavior from local rules
therefore becomes irrelevant. Hence the situation of perhaps the greatest interest is between the two
extremes when the graph is not necessarily complete or even connected, and when no strictly proper
subset of the graph’s vertices is isolated from the rest. It is precisely this class of graphs and their
respective realizations, that give rise to the rich variety of global behaviors from simple local rules.

There are several results that have been proven by the authors about connectivity graphs. In
another work by Muhammad & Egerstedt (2003a), it has been shown how to obtain subgraphs
of connectivity graphs that resemble simplicial complexes, which are used in algebraic topology to
distinguish between different “shapes”. However the most interesting results, from the point of
view of biological multi-agent systems, describe the complexity of multi-agent systems in terms of
the complexity of their connectivity graphs. The results of this study has been a motivation for
designing algorithms to produce low-complexity multi-robot formations called δ-chains, that need a
small number of interactions to maintain formation. The work on complexity of multi-agent systems
is summarized below followed by some observations on its relevance to biological multi-agent systems.

3 Complexity of Multi-agent Systems

It has recently been shown by Muhammad & Egerstedt (2003c) that the type of graphs called δ-
chains have the lowest complexity among all multi-agent formations. A δ-chain is a connected graph,
which is also a Hamiltonian path on all nodes. See Figure 3. If Xj represent the state associated
with an agent 1 ≤ j ≤ N , the intrinsic structural complexity of the multi-agent formation is defined
as:

C(F) =
∑

j

∑

i 6=j

Fi,j(Xj), (1)

where each Fi,j is the information flow at agent j due to agent i according to some given communi-
cation protocol. The information flow at an agent, is the time rate of information exchange taking
place at that agent due to either or both sensory perception or communication. It was also shown
that the two modes of information exchange are equivalent from an information theoretic point of
view. Also, the presence of protocols implies that every interaction is not active during a certain
time period. Therefore the intrinsic complexity is bounded above by a quantity that assumes that
all interactions are active for all time. This bound is in-fact a complexity associated with a broadcast
protocol.

If ∆t is the minimum permissible time for information exchange in the system (due to either
bandwidth, sensor update interval, or algorithm execution cycle), then it can be seen that protocols of
synchronous information exchange, which are more complicated than the broadcast protocol, would
result in a decrease of the total information flow. Let us denote a formation as F = (X1, X2, . . . , XN ),
and denote the complexity of a formation, associated with the broadcast protocol as CB(F), then

CB(F) ≥ CP (F),
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Figure 3: δ-chain and complete graph for 7 vertices.

where CP (F) is the complexity for some arbitrary protocol. CB(F) is therefore the worst case
complexity associated with a particular formation. The information flow of a remote state Xj at
agent i, according to this protocol, is

Fi,j(Xj) =
I(Xj ;Zj,i)

kij∆t
, (2)

where Zj,i is the sensory measurement of the sensor on board agent j, (or the equivalent virtual
sensor for the communication channel between agents i and j), and I(Xj ;Zj,i) is the information
obtained about Xj from Zj,i (Cover & Thomas, 1991), and kij is an integral multiple of ∆t so that
kij∆t is the sensor update time.

We also showed that the complexity CB(F) is bounded above as

CB(F) ≤
∑

j

∑

i 6=j

deg(vj)
I(Xj ;Zj,i)

kij∆t
,

where deg(vi) is the number of agents being sensed (or communicated with directly) by agent i.
Furthermore, if the states exchanged by all agents are of the same type and encoded in the same
way, I(Xj ;Zi,j) = γ, then we can write

CB(F) ≤ γ

∆t

∑

i


deg(vi) +

∑

vj 6∈star(vi)

deg(vj)
kij


 .

Compare this to the complexity defined on a graph G = (V, E), in the context of molecular
chemistry (Plavsic & Plavsic, 2002).

C(G) =
∑

vi∈V


deg(vi) +

∑

vj∈V,vi 6=vj

deg(vj)
d(vi, vj)


 , (3)

where d : V × V → R+ is some distance function defined between vertices.
Therefore it is easy to see that,

CB(F) ≤ γ

∆t
C(G),

where G is the connectivity graph of the formation. This relationship leads to the following observa-
tion. The complexity of the connectivity graph of a formation is a (tight) upper bound for the worst
case complexity associated with an arbitrary protocol of communication in a multi-agent formation.
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Figure 4: δ-chains and V-formations in bird flight. (Copied with permission from A. Filippone,
UMIST, UK).

Therefore the study of structural complexity of multi-agent formations is closely related to the com-
plexity of their connectivity graphs. With these considerations in mind, the following theorem was
proved by Muhammad & Egerstedt (2003c).

Theorem 3.1 If G is a connected connectivity graph on N vertices, then the complexity of the graph
G is bounded above and below as

C(δN ) ≤ C(G) ≤ C(KN ), (4)

where δN is the δ-chain and KN the complete graph on N vertices.

This theorem gives the justification for studying δ-chains as low-complexity formations. The
δ-chains are interesting objects in the context of biological multi-agent systems. These chains are
examples of formations that can be maintained with minimum coordination. One of the most
interesting manifestations of these chains can perhaps be seen in formation flight of birds, specially
the V-formations. See Figure 4. Although, there have recently been studies that relate this type
of formation flight to energy conservation (Weimerskirch et al., 2001) , nevertheless the aspect of
minimum coordination is hard to overlook in this case. In other naturally occurring multi-agent
systems, δ-chains can be observed in queues, lines, caravans and flanks, that can be maintained with
minimum interaction between agents. This gives an additional leverage to the complexity definition
of Equation 1, which has also been shown to have a remarkable similarity with complexity measures
for chemical graphs (Muhammad & Egerstedt, 2003). Therefore these complexity measures may be
useful in comparing formations of various natural and artificial multi-agent systems.

4 Conclusions

The introduction of connectivity graphs for characterizing the local interactions in multi-agent for-
mations serves two purposes. First, since these interactions imply constraints on the movements of
the individual agents, it is vitally important that the set of feasible formations can be characterized
in a precise manner. This has been described as the space of all connectivity graphs for a fixed
number of agents. Secondly, and perhaps more importantly, these graphs provide guidance as to
how the information should flow between different agents in order for the team of agents to come
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up with plans for achieving global objectives in a decentralized manner. Therefore, these graph
theoretic models help us to study important aspects in the topology, complexity and coordination
of multi-agent systems. This abstraction of multi-agent systems makes it possible to compare and
relate behaviors in natural and artificial multi-agent systems and may provide useful in strength-
ening this connection, in addition to its original objective of advancing techniques in design and
implementation of autonomous robot teams.
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