\[\frac{dy}{dx} = -3x \]

\[x(0) = 3 \]
\[y(0) = 4 \]

3 = A + B

4 = y(0) = 3A + B - 1

\[y(x) = e^x \]

THE ANSWER
Institute Strives for Success With Continued Review

Anniversaries are more than a time for celebration, they offer a chance to reflect on the past and envision the future. Each of us, because of the four or five short years spent at Tech with our noses glued in our books, finds it easy to see Tech as some colossus too vast and too stagnant to ever change. Isn’t Tech after all the home of the infamous Dr. Staff, creator of the famous Tech shaft? Isn’t that illusive commodity called sleep a luxury to most Tech. students. Some things really seem to be timeless.

One of the benefits of working for the Blueprint is having piles of old Blueprints hanging around. A few minutes of gazing through them and you realize that things really do change around here. Maybe you don’t have access to old Blueprints, but that’s okay, just think of all of the things that have happened in the last few years. If you are a senior, you probably remember taking physics before the tests and the classes themselves were standardized by the School of Physics. EE’s, do you remember those notorious gates which started a while back and got tougher and tougher only to be phased out now? Do you remember where you used to take your management, economics, and industrial engineering classes before the ISYE/IM complex was built? Did you ever try to get time on Cyber before the general student accounts came out? Things really do change at a giant institute like Tech.

If you think that these are minor changes, then do you remember when Health Physics and Nuclear engineering were taught by the School of Nuclear Engineering? Do you know what ever happened to the School of Health Systems? All of these schools have become victims of Tech’s consolidation craze that has hit campus in the past few years.

With all of these changes happening in such a short time, it becomes apparent that Tech’s place in the academic world is not fixed. Staying at the forefront of education and research is a difficult task, one that requires insight into a changing world as well as the proper financial and moral support. Hopefully these ingredients will be available to Tech in the future.

Looking ahead, there is much promise for Tech in the coming century. Every school at Tech is actively planning for the future and is making the necessary changes to insure that Tech graduates continue to be a highly desired commodity throughout industry. We’ve done it right for a century and there is no reason that we can’t keep on doing it right through the next one either.

TOP, LEFT TO RIGHT: Jacques Cousteau speaks at convocation. Professor Brewer explains a problem in antennae laboratory. BOTTOM, LEFT TO RIGHT: Karen Platek pays close attention in organics class. Dr. Yancy’s black history class takes a field trip to the Tuskegee Institute. Dr. Weems demonstrates a fold line.
My special greetings to all the Georgia Tech students represented in this 1986 edition of the Blueprint.

In many ways you are a chosen few. This is the first Blueprint to be published in Georgia Tech's Second Century, and you are in it! Moreover, you will become Tech's first alumni of this Second Century. The original alumni of Tech — and those who followed — played an important role in shaping Georgia Tech as we know it today. When our third century rolls around, the student then will say, "Yes, the alumni of the 1980's contributed much to what we have in the year 2085."

I am not speaking primarily of financial contributions, although the excellence of Georgia Tech in the future — and hence the prestige of your diploma — will depend increasingly upon support from the private sector — even more than from the public sector. Much of our recent support has come from alumni as individuals and from their corporate employers, often facilitated by one or more Tech alumni in these corporations.

I'm speaking more of vision and leadership. The founders and the early alumni had a vision of what Georgia Tech might become, and then they helped to bring it about. Have you a vision of what your alma mater ought to aspire to become in the years ahead? Think about it.

Leadership among our alumni has been very important to the recent progress of Georgia Tech — as I know from first-hand knowledge as your president: leadership of our alumni in the legislature, on the Board of Regents, in the trustees of the Georgia Tech Foundation, members of the National Advisory Board, officers of the Alumni Association and its regional clubs. Seek out opportunities to volunteer your service and make your own contribution. It will make a difference in the future of this fine institution.
Industry-supported Research Raises Institute Rank

TOP, LEFT: Dean of Students Staff: Front: Carole Moore, Asst. Vice-President, Student Affairs; Jo Ivey, Director of New Student and Parent Programs; Barbara Winshop, Director of Counseling and Career Planning Center; James E. Dull, Vice-President, Student Affairs; Middle: Miller Templeton, Director of International Services and Programs; Roger Wehrle, Director of Student Center; Gary Schwarzmueller, Director of Housing; Edwin P. Kohler, Assoc. Vice-President, Student Affairs; Back: William Osher, Assoc. Director of Counseling and Career Planning Center; Nicholas Gordon, Director of Student Health; Steven Leist, Asst. to the Vice-President, Student Affairs.

BOTTOM, LEFT TO RIGHT: President Pettit and staff discuss plans for future Institute Research. President’s Staff: Front: John Gibson, Asst. to the President for Affirmative Action and Employee Relations; James Stevenson, Executive Assistant to the President; Joseph M. Pettit, President; James E. Dull, Vice-President of Student Affairs; Back: Richard Fuller, Vice-President of Business and Finance; Thomas Stelson, Vice-President of Research; John Carter, Director of Alumni Association; Clyde Robbins, Vice-President, Office of Planning; Henry Bourne, Vice-President of Academic Affairs.
Architecture has been taught at Georgia Tech for over eighty years, but the establishment of an independent College of Architecture ten years ago has been the cause of important developments in teaching in the field. These can be seen in three major areas of activity: specialization, research, and doctoral studies.

Specialization: Students in the Architecture Program can work between several major areas in which Architectural knowledge has a central role. Through the work of Post Occupancy Evaluation in the field of Environment and Behavior there is increasing understanding of the influence of environment on human activity. In the field of Architectural Technology progress is being made in many fields addressing questions of building performance and mechanical efficiency. The field of Urban Design and Development places architects in a roll designing with public policy and money as well as with building form. And lastly in the area of Theory and Methods, the student at Georgia Tech is given broad latitude to consider questions of building form and content.

Research: Among architectural schools, the Georgia Tech program is a national leader in research. The program’s initial reputation grew out of important national work in making environments accessible for the handicapped. This work continues and current studies involve such questions as the use of textured floor surfaces for the blind, and the movements of people in emergency situations inside buildings.

Doctoral Program: It is in questions concerning the nature of architecture that the most important developments are taking place. The doctoral program, established in 1981 after several years of planning, was chosen to give emphasis to questions in architectural theory, history and criticism.
Program Focuses on Expanding Construction Industry

The Building Construction program has taken an innovative and forward-looking step into the future with a vision focused on the expanding directions of the construction industry. The vision revealed an increasing need for professional constructors in the areas of construction management, construction development, and construction science.

An expanded program of construction education has been developed to fulfill the industry needs and to go well beyond the level achieved here at Georgia Tech or anywhere else. The program maintains a foundation of basic study in construction technology and practice management, physical sciences and mathematics; and a broad offering of liberal arts in architecture, humanities and social sciences.

The expanded program features concentrated study in one of three formal options to be selected by the participants compatible with individual career goals: Construction Management, Construction Development, and Construction Science.

The Construction Management Option provides opportunity to pursue specialized study in management systems. Utilized by contractors, builders, construction managers, and architects and engineers in the management of the construction processes.

The Construction Development Option introduces the student to entrepreneurial theories and practices in the development of construction projects ranging from single facilities to multiple complexes of buildings.

The Construction Science Option is an analytically oriented specialized course of study designed to encourage the student to challenge current methods of building construction and delivery techniques and to seek innovative solutions through study, research, and technical inquiry.

Each course of study is a four-year program designed to constitute an exemplary educational experience for prospective leaders in the construction industry and lead to a Bachelor of Science in Building Construction degree.

TOP, LEFT TO RIGHT: Dr. Dreger, Director of Building Construction. Dr. Payne, Director of Industrial Design. BOTTOM, LEFT TO RIGHT: An office building's floor plans show detailed design. Draftboard work is a necessary evil. Industrial design projects require hands-on labor.
INDUSTRIAL DESIGN

NASA Medical Facility Designed

In the last two years Georgia Tech’s Industrial Design Program has grown from forty-five to sixty-five students, while generating a number of interesting activities with this expansion. Tech’s Industrial Design students worked on an orbiting space medical facility for NASA’s biomedical office at the Kennedy Space Center in Florida. The students continue to design a range of products for the disabled through Georgia Tech’s Center for Rehabilitation Technology, which was founded by Industrial Design Professor Richard Martin as a spin-off from ongoing activities in the Industrial Design program.

An Industrial Design junior class developed a new store interior for HiFi Buys, a trademark for intown neighborhood schools and a traveling exhibit for the Georgia Tech Centennial Committee. Not to be out done, last year’s sophomore class designed a series of hair dryers which were so successful that they were written up in the Atlanta Constitution, and six students were given design awards by Conair, the nation’s leading manufacturer of hair dryers. In August of ‘85 the industrial design faculty and twenty students attended Worldesgin, the International Councilor Societies of Industrial Design Conference and Exhibition in Washington, D.C. During this conference, Tech’s Industrial design Program was well represented by a three panel exhibition designed and constructed by its junior and senior classes.
Senior Design Utilizes Computer Aided Engineering

As Georgia Tech enters its second century, the College of Engineering is initiating an aggressive program to expand faculty, update instructional laboratory facilities, and incorporate the latest technology into all curricula. During the past year, twenty-five new faculty, beyond the number required to replace those who retired or resigned, have joined the College. They came from some of the most prestigious institutions in the country. An equal number of new faculty will be added each of the next several years.

The renovation of the French Building into a state-of-the-art CAE/CAD (computer aided engineering/computer aided design) laboratory was completed last summer, with the assistance of contributions from alumni and several corporations. Aerospace engineering is already making use of the facility in senior design courses. Within the next two years, CAD will become one of every Tech engineering student’s educational experiences.

A campus wide computer network was extended into several more college buildings during the past year. It is planned that all major college facilities will be tied into the network during the coming year. Additional computer terminal and micro-computer clusters are also planned. These expanded facilities will permit the faculty to expand the use of these latest engineering tools throughout the curricula.

Several instructional laboratories in electrical engineering and mechanical engineering have been brought up to the state-of-the-art. Emphasis has been placed on laboratories related to manufacturing. Hands-on experience with electronic micro-processors, automated materials handling equipment, robots and numerically controlled machines are now available.

The College of Engineering has formed a School of Materials Engineering and is increasing emphasis in this area. The Ceramic engineering and metallurgy programs have been merged into the new unit.

The College continues to rank among the top several educational institutions in the nation in student quality and number of graduates. Principally because of the attraction of its engineering programs, Georgia Tech has the largest percentage of National Merit Scholars and National Achievement Scholars among public institutions. Tech ranks second in the nation in number of engineering degrees granted to women and first in the number of bachelor degrees granted to minorities.

TOP: Bart Savage and his digital lab partner attempt to form letters on their LED display. BOTTOM, LEFT TO RIGHT: William Sangster, Dean of the College of Engineering. Mechanical Engineering Professor Williams explains system controls in his engines lab. Dr. Martin, Civil Engineering professor, lectures in fluid mechanics lab.
Enrollment Increases Dramatically

The interest and enrollment in Aerospace Engineering has experienced a marked increase in recent years. This has resulted in the necessity to limit the number of entering freshmen and the number of transfer students both from within and without Georgia Tech. The general limiting factor is the predicted or attained overall grade point average. Although this action is regretted, it will enable the school to maintain and improve the quality of both its educational process and its graduates.

New faculty members are being added which strengthen the programs at all levels and, at the same time, broaden the curriculum available to aerospace majors. With the new faculty and the planned revision of the undergraduate curriculum, new courses in the areas of flight mechanics and controls will be introduced and it will be possible for undergraduates to elect to specialize in a particular area to a greater degree than in the past. The six new faculty include four of senior rank in the areas of aircraft design, fluid mechanics and combustion, aeroelasticity, and two of junior rank in the areas of computational fluid dynamics, fluid mechanics and propulsion.

The challenges for the Aerospace engineer during the next 100 years are enormous in all three facets of any discipline: education, research, and industry. The Aerospace faculty is accepting the challenges with enthusiasm and is developing new courses and conducting research which will maintain and improve the school's and the Institute's national and international leadership in this broad area.
Computer Age Allows Wide Range of Problem Solving

The School of Chemical Engineering is prepared to move into Georgia Tech's second century with a modern curriculum and an expanded faculty. The computer age has arrived and will continue to have a major and expanding impact on chemical engineering education and practice. This high-speed tool will permit students and faculty to consider a broader range of more comprehensive problems.

The retirement of Professor Henderson Ward at the end of fall quarter ended a long and distinguished career. Dr. Yaman Arkun, an expert in process design, simulation and control joined the faculty. Important areas for future chemical engineering studies include process control as well as applied chemistry in fields such as polymers and colloids. Biotechnology also promises to be an important future thrust.

TOP, LEFT TO RIGHT: Dr. DuCoffe, Director of Aerospace Engineering. Jay Hsu uses a pressure reaction apparatus. BOTTOM, LEFT TO RIGHT: Research engineer Stephen Meyer makes adjustments to the neck of his test mannequin. High-Tech equipment is utilized in bio-fluids lab. Dr. Poehlein, Director of Chemical Engineering.
Laboratories Keep School in Forefront of Technology

Several areas of excellence are growing within the School of Civil Engineering. These include such facilities as the Center for the Advancement of Computational Mechanics, which is involved in the application of digital computers for solving high-technology problems, and the GTICES Structural Systems Laboratory, primarily devoted to structural engineering.

The School of Civil Engineering at Georgia Tech is recognized throughout the world for its construction management program and research facilities, and activities.

The Transportation Group is developing two new areas of activity; technology transfer, whose objective is the bringing of applicable technology to the small city and rural county areas of Georgia and the development of undergraduate and graduate courses in the repair and rehabilitation of public works facilities.

There are many laboratories within the Civil Engineering School. These include the Geotechnical and Materials Laboratory, the Laboratory for the Evaluation of Marginal and New Materials, the Environmental Engineering Laboratory, and the Hydraulics Laboratory. With continued efforts to maintain and upgrade these state-of-the-art facilities the School of Civil Engineering at Georgia Tech will continue to be looked upon as a leader of excellence in the research and development within the many facets of Civil Engineering.

TOP, LEFT TO RIGHT: Fine adjustments assure an accurate reading. Dr. Fitzgerald, Director of Civil Engineering and ESM. BOTTOM, LEFT TO RIGHT: A student surveys the Student Center lawn. Dr. Chen explains tension. Students listen intently in class.
The School of Engineering Science and Mechanics, directed by Dr. J. Edmund Fitzgerald, prepares students for careers in engineering and related fields through emphasis on the fundamental principles and techniques in mathematics and the engineering sciences. Stressing the technical areas of experimental stress analysis, dynamics systems, biomechanics, certain aspects of flow phenomena, and the fundamentals of structured design, Engineering Science and Mechanics undergraduate curriculum is generally recognized as one of the most difficult on the campus, therefore attracting above average students.

The instructional and research programs in the area of Theoretical and Applied Mechanics outline a general framework for engineering and the physical sciences. Course options provide in-depth study in interdisciplinary, technically related areas as well as preparations for professional schools of business, law and medicine.

The Engineering Science and Mechanics graduate has a wide choice of specialized areas that can provide a foundation for starting his or her career or for entering postgraduate study. Students receiving M.S. and Ph.D. degrees from the School of Engineering Science and Mechanics are well equipped to deal with new and more difficult problems with vibrations, stress analysis, fluid mechanics, and mechanical and structural design; most are also experienced in the use of finite element methods of analysis and in the utilization of computer systems.
School Pursues Number One Spot

Under a recent plan of development, the School of Electrical Engineering has set its sights on surging to the forefront of publicly supported educational institutions in the country. Basic components of the plan are a high quality student body, with an appropriate mix of undergraduate and graduate students, national and international recognition of several technical areas, and resource development emphasizing increased external interactions and funding.

Barely two years after initial conception of the plan, faculty has expanded from 45 to 54 regular members, and degree productivity has reached an all-time high for any engineering department anywhere in the country. A new degree program in computer engineering has been approved that will soon be implemented, and the doctoral program has been augmented significantly. Facilities are being programmed for significant expansion, with construction of the new Microelectronics Research Building, and the new Advanced Engineering and Computer Applications Building, both adjacent to the Van Leer Electrical Engineering Building.

Research within the program is growing at a rapid pace. Major developments recently materialized in computer engineering, modern optics, and electric power engineering. The highly distinguished program in digital signal processing continues to receive recognition from many sectors and funding from a number of sponsors.

TOP, LEFT TO RIGHT: Eric Snyder utilizes a helium-neon laser to perform an optics laboratory experiment. Student contemplates microwave waveguides in Senior Electromagnetics Lab. BOTTOM, LEFT TO RIGHT: Dr. Demetrios Paris, Director of Electrical Engineering. Digital lab student demonstrates a logic function on her breadboard. Sophisticated equipment abounds in the Microelectronics Research Laboratory.
Logistics Lab Nears Its Completion

Traditionally, the School of Industrial and Systems Engineering has focused on the industrial environment and on the analysis and design of systems that efficiently produce goods and services. Particular attention has been paid to both the physical processes involved and the decision making components of the industrial environment. The area of concern has recently expanded to include the social domain as well as the industrial sector.

Since its 1983 move from the old A. French Building into the new $10,000,000 complex on West Campus the Industrial and Systems Engineering School has had the newest and largest research facility in the United States.

A new course is being developed to better utilize the new Litton Material Handling Laboratory in order to give undergraduates more laboratory experience. The Texas Instruments Company has donated a Personal Computer Laboratory for the students of the Industrial and Systems Engineering School. This gift consisted of fourteen PC's along with software for each unit. In addition to these facilities, the logistics lab, consisting of an IBM 4341 and eight colorgraphics displays, is nearing completion.

With continued support from industry the School of Industrial and Systems Engineering at Georgia Tech will continue to be ranked among those leading the nation in research and development in the industrial environment.
School Named for G. W. Woodruff

The oldest academic unit at Georgia Tech began its second century with a new name: The George W. Woodruff School of Mechanical Engineering. In a festive ceremony on September 20, President Pettit unveiled a new sign in front of the Mechanical Engineering Building and paid tribute to a distinguished member of the Class of 1917. An influential business and civic leader widely known for his commitment to education, George Woodruff has been a generous benefactor and advisor to Georgia Tech for over fifty years.

Its new name was one of several significant changes occurring within the school during its Centennial year. In the fall the unprecedented appointment of thirteen new faculty members to the Mechanical Engineering, Nuclear Engineering, and Health Physics programs significantly improved the student/faculty ratio and also expanded the school’s research activities in such areas as acoustics, tribology, plasmas, thermosciences, and manufacturing. A vigorous graduate program has also strengthened the school’s research potential.

In the undergraduate program, revisions in the ME curriculum included the restructuring of the thermal science courses, the addition of a technical writing requirement, and the integration of computer usage into most core courses. The redevelopment of the instructional laboratories has continued, with new computers and advanced instrumentation introducing students to state-of-the-art technologies. In the Undergraduate Internship Program, outstanding seniors developed their leadership and communication skills as they assisted faculty members in the classroom and laboratory.

As it plans for the future, Mechanical Engineering anticipates several additional faculty appointments. To support new faculty members as well as its expanding graduate enrollment, the school is seeking to provide new laboratories and office space through a major renovation of the Mechanical Engineering Building.
Georgia Tech's Centennial Year was the first year for the new School of Materials Engineering which was formed by combining the old School of Ceramic Engineering with the Metallurgy Program previously located in the School of Chemical Engineering. The new school will offer degrees in both Ceramic and Metallurgical Engineering, and will become the focal point for materials education and research in the Engineering College. To increase the strength of its faculty, three new members have joined the metallurgy component of the new school, and two new ceramic engineering faculty will be added in the near future.

Advances in materials often represent a key element in technological progress. Thus the new School of Materials Engineering will be an important part of Georgia Tech's educational and research programs during the next century.
The School of Textile Engineering works jointly with the School of Chemical Engineering to offer exceptional courses in polymers at the undergraduate level and an M.S. degree in polymers at the graduate level. Fully 75% of all technically trained engineers and chemists graduating in the United States today will work for companies requiring a knowledge of polymers. Those who are wise enough to get such training in college will definitely be getting more and better job offers upon graduation. Currently all graduates are finding exceptional job opportunities since the School of Textile Engineering continues to offer the only accredited Textile Engineering degree in the country.

The school is completing a quality renovation with $400,000 supplied by the Textile Education Foundation. The school also plans to expand technical coverage to encompass more of the "structural fiber" area such as non-wovens and composites as well as to increase assistance and interaction with the Georgia carpet industry, which supplies 65% of all the carpets made in the nation today.

The school has state of the art computer, textile, weaving, dyeing, chemical, analytical and microscopy equipment. It also maintains the only constant temperature/constant humidity physical testing lab on the Tech campus.
College Accepts Future Challenges

Tech took its first step in offering an education in management when W. M. Fambrough, an Atlanta businessman established the School of Commerce in 1913. Thirteen years after its creation it was already the largest academic unit at Tech and offered the State of Georgia's first business program to be accredited by the American Assembly of Collegiate Schools and Businesses. The school became the Atlanta Division of the University of Georgia in 1933 (now Georgia State University) and Tech established a new Department of Industrial Management specifically devoted to combining management education with engineering and scientific technology. The new department was so successful that it expanded to the graduate level and in 1945, the State of Georgia's first professional master’s degree, the Master of Science in Industrial Management was available at Tech. When the department moved into the Swann Building in 1948, it became the School of Industrial Management. By 1969, after growing into the College of Industrial Management, the college had produced the largest total number of graduates of any of Tech's four colleges.

Today with eleven hundred students and forty faculty members, the College offers undergraduate degrees in management, economics and management science and graduate degrees in management. The entire management curriculum offered by the College produces about fifteen percent of all Georgia Tech graduates, the highest percentage of any academic unit at Tech.

As it looks to the future, the college believes that management thru the remainder of the century and beyond will be increasingly faced with the challenges of adopting science, engineering, and technology to improve the human condition world wide. To meet these challenges, the College of Management has structured its program to prepare students to work in a technical environment and plans to have the premier management program in the U.S. emphasizing management in science, engineering and technology.
Among the perplexities of modern society, economic problems and issues stand out and demand attention. Tech's program in economics enables students to analyze complex economic problems and to become acquainted with concepts and policies for solving them.

Economics is one of the few social sciences in which Tech offers a degree. Economics offers the student a round educational opportunity while developing a person's ability to analyze problems and reason logically. This explains economics' position as a favored major for pre-professional students seeking law degrees or M.B.A.'s.

The Economics Department is in the College of Management and hence is based on the management core. The economics student receives groundwork in management education including work in accounting, finance, marketing, and management science. This curriculum prepares a student to cope with advances that are constantly being made in this field, and to stay abreast of whatever the future's changing economic conditions may hold.
Statistical Models Are Implemented With Computers

One hundred and fifty students are enrolled in the undergraduate Management Science degree program. Management Science is the development of mathematical and statistical decision models and their implementation, usually with computers, to assist in the solution of management problems. It is used, for example, to choose the time to expand a factory, but not to design the machines; to allocate advertising expenditures among media, but not to write the advertising copy; and to deal with allocating funds in an investment portfolio, rather than to analyze a balance sheet.

Most management problems involve important technological, social, and organizational details. As a result, operational and planning analyses are often interdisciplinary team activities. These considerations lead to the use of mathematical and statistical models that simplify through explicit mathematical/symbolic statements the factors involved and their relationships. Numerical solutions are usually obtained with a computer.

Enrollment in the Management Science B.S. program has been growing steadily for the past seven years. Majors combine an introduction to the various business-related areas with more mathematics coursework than is required in any of the engineering schools. Students are required to specialize in an area of their choice; some of the most popular choices are operations management/ISyE, informations systems/ICS, organizational behavior/Psychology, and marketing.

The majority of graduates choose professional positions rather than graduate study although an increasing number of students are electing the latter route. Jobs taken are extremely diverse in type of responsibility, sort of employer, and geographical location. Recent graduates are found in nearly all of the types of positions normally associated with degree recipients in Management, ISyE, and ICS.
National Prestige Grows With Additional Faculty

The College of Sciences and Liberal Studies continues to increase the national prestige of its educational and research programs. The most notable achievement for the current year is the increase of the faculty, both in quantity and quality. Eighteen regular faculty and nine full-time visitors joined the college faculty during the academic year. The new regular faculty is comprised of seven in the natural sciences, one in mathematics, four in computer science, two in psychology, three in the humanities and social sciences, and one in physical education. The visitors consist of four in mathematics, three in computer science, and two in humanities. This represents a net increase of nine faculty over the past academic year and translates into a significant improvement in our educational programs. The research programs of the new faculty members are expected to contribute in an essential way to local and national needs.
Research Hubbed on Biotechnology

There is a large and ever increasing demand for graduates trained in basic and applied research in bioconversion processes, natural product biochemistry and genetics. Through proper orientation and integration of the programs and faculty at Georgia Tech, we have the potential to be leaders in the areas of Applied Biology.

The school's academic and research program focuses on specific core disciplines within the broad field of biotechnology. At Georgia Tech, the school's research program is "Basic Biological Systems" which includes biomass formation, metabolic regulation studies and natural and synthetic product formation and bioconversion. To fully accomplish our goal of establishing such a program, the school is continuing to expand with new faculty members who are multidisciplinary in scientific training.

The faculty is developing the fundamental tools pertinent for academic/research training in biotechnology. These tools consist of the following: bioreactors and support systems, advanced methods for conducting large scale bioconversions with cells or their components; immobilized whole cells and subcellular components, a practical way to exploit the biochemistry and physics of cells and their components; industrial biology, methods for exploitation of organisms for producing pure and specific chemicals not previously available; and genetic engineering, methods for altering life processes through gene manipulation.
CHEMISTRY

The Future Brings a New Way of Viewing a Molecule

The School of Chemistry at Georgia Tech has had a long tradition of leadership in undergraduate education, graduate education, and research on this campus and will continue to play that leadership role in the future.

An active, vibrant graduate program in biochemistry exists within the department and several undergraduate courses including a laboratory course are offered in biochemistry. The school's emphasis in the near future will continue in biochemistry both at the graduate and undergraduate level, while new faculty will be sought in the areas of surface and solid state chemistry thereby complementing the research programs in microelectronics and in material science. The importance of chemical analysis and chemical separations will undoubtedly result in the addition of faculty with expertise in these rapidly developing areas. New graduate courses in these disciplines will be the first to appear in a formal manner, but most assuredly the ideas and interests of these active faculty members will be introduced into the undergraduate courses.

The undergraduate curriculum in the nineties is almost certain to be very different from that of today. Computers and computer graphics will provide dramatic new views into the chemist's world of molecules. New instruments based upon lasers, microprocessors, electric and magnetic field effects capable of penetrating the inner-most details of molecular structure will become routine even at the undergraduate level. Freshman on up through doctoral students will have direct access to these new molecular tools of the chemist. The Georgia Tech Centennial Motto "Designing Tomorrow Today" is taking place in the School of Chemistry at this very important time in our history.

TOP, LEFT TO RIGHT: Biology professor lectures on genetics. Dr. Grovenstein discusses thermal chemistry. BOTTOM, LEFT TO RIGHT: Dr. Torrable, Director of Biology. Biology student pays close attention in class. Director of Chemistry, Dr. Pierotti. Students display their prowess in P-chem laboratory.
Emphasis is on Varied Literatures

The Department of English serves the Institute's professional degree programs by providing opportunities for critical inquiry through close reading, dialogues, and careful writing. The contexts for such inquiry are course clusters in Literature and Science, Drama and Film, American and Southern Literature, and Western Tradition in Literature and Art. The department also offers a program in Technical Communication. These programs tend to feature interdisciplinary teaching and learning, and the recruitment of new faculty emphasizes an ability to teach in more than one discipline.

The department plans to increase the use of extended resources. Courses in drama and film will evolve toward a workshop mode that reaches out to professional actors, directors, and producers. Western Tradition in Literature and Art will engage perspectives from the College of Architecture, and Literature and Science will reach out to other disciplines that feature theories of knowledge.

The technology of information transfer will be used wherever possible in these programs. Technical Writing courses already feature text processing and graphic representation. Before the end of the current year the department will have a video lab to support focused study of literary works as well as the development of speech skills.
GEOPHYSICAL SCIENCE

Number of Doctoral Students Shows Notable Increase

The School of Geophysical Science is a graduate school that emphasizes research on fundamental natural processes in the solid earth, the atmosphere, and the oceans and on the influence of human activities on the natural physical environment. Because of the quality of the programs started in the 1970's and of continuing efforts to build research programs that are nationally recognized, the proportion of doctoral students in the school has increased rapidly during the 1980's.

Recognizing that research on environmental problems and natural resources will be of growing importance, Dr. C. S. Kiang has planned to build nationally recognized research programs in these areas. Taking advantage of the fact that many of the fundamental principles of the geophysical sciences are important in both the atmospheric sciences and the geophysical sciences, new programs will be built on principles and methods that are common to both. A program of primary emphasis will be environmental chemistry, which includes current programs in atmospheric chemistry and geochemistry.
As Tech begins its second century, the School of Information and Computer Science hopes to play a leading role in Tech's emergence as one of the nation's top research universities. One step in that direction was taken in the fall of 1985 with the establishment of the Software Engineering Research Center, an organization created to coordinate software engineering efforts within the School of ICS and across the Tech campus.

One of the school's most urgent needs for the future is a building designed to accommodate the space requirements of a rapidly growing department. In 1985, funds were allocated and an architect chosen for the planning of a new building for computer science and computer engineering that would house all ICS offices and laboratories. In the meantime, the school's acute need for space was eased by last fall's gain of additional office space in the Hinman Building.

Maintaining the quality of the undergraduate program is a key concern of ICS. In early 1986, ICS became one of the first departments in the nation to have its undergraduate program evaluated for accreditation by the new Computing Sciences Accreditation Board (CSAB), which is conducting the first accreditation program for undergraduate computer science programs. Professor Raymond Miller, director of the School of ICS, is the president of CSAB.

Goals include increased production at the doctoral level, the hiring of top-notch faculty members, and the constant augmentation of its laboratories and facilities.
Expansion Plans Prove Successful

Historically the School of Mathematics has been strongly driven by the service function since the College of Engineering requires that all students take at least five quarters of calculus and the Colleges of Management and Architecture require at least three quarters. In an effort to entice more entering students to major in mathematics the school has undertaken several new programs.

Faculty groups have been recruiting high school students by judging science fairs, cooperating with the organization MATH COUNTS, and running Tech's Annual Mathematics Conference. The school has also awarded several memorial prizes to qualified candidates.

At present the undergraduate curriculum is being expanded to provide more options to include significant minors in a number of engineering fields (mathematical engineers) and the sciences. Currently a new collaborative program with the Industrial and Systems Engineering and the College of Management provides students with an MS in statistics. Another option provides students with a cooperative degree as well as a teaching certificate from Georgia State University.

The results of these new efforts have been substantial. For the 85-86 school year 119 undergraduates were enrolled in the mathematics degree program compared to forty in the 82-83 academic year. Continued efforts should result in the department reaching its goal of 200 to 250 undergraduates by 1990.
The Music Department moved into a new prominence as a result of its participation in the major events of the Tech Centennial Celebration. The Band, the Chorale and the Jazz Ensemble were all featured in the Faculty and Staff Gala at Symphony Hall, the campus open house, special homecoming events throughout the year, and the Convocation at the Fox Theatre. The groups returned to Symphony Hall in June of last year for a performance of new music especially created for the Centennial Celebration.

Other new interest resulted from an expansion of musical groups on campus and courses offered to students. The history-theory class was filled to capacity each time it was offered, a brass ensemble and a percussion ensemble were established, and the Centennial Singers were formed.

The department looks to the future with plans for creative curricula involving innovative computer-music and increased on-campus musical opportunities.
Students and Faculty Stay in Shape

Ranging from Health Education to Bowling and Aerobics, the Physical Education and Recreation Department has a variety of courses for students. The Callaway Student Athletic Complex (SAC) is open for physical education classes, intramural competition, and informal recreation activities. Racquetball courts, a basketball court, and a one-half mile running track go along with three fields equipped with special turf designed to accommodate athletic activities.

Major efforts for the next year will be directed toward developing programs emanating from the Exercise Science Laboratory. These programs will serve as resources for students through fitness courses and laboratory periods. Measurements will be taken of heart rate, blood pressure, and body fat percentage to help students maintain personal health. There is an adult fitness program for faculty, staff, and alumni known as the PEACH program — Physical Evaluation and Conditioning for Health — where fitness assessment and supervision are ongoing programs. These programs demonstrate the growing interest in the areas of Exercise Science and Health Enhancement.

TOP, LEFT TO RIGHT: Dr. Reedy, Physical Education Director. Research assistant demonstrates proper laser setup. BOTTOM, LEFT TO RIGHT: Leigh Ann Hinds exercises to the beat. PE 1010 teaching assistant grades swimmers. Dr. Thomas, Physics Director. Dr. Shultz adjusts his laser.

214 / Physical Education
Future Courses will Be Taught with Aid of Computers

The School of Physics has recently added to its faculty Assistant Professors Ahmet Erbil and Turgay Uzer and Associate Professors Andrew Zangwill and John Wood. Recent improvements in the school include cooperative research overseas, and improvement of its instructional laboratory facilities.

In the future the School of Physics expects to see an increased use of computer-assisted instruction in the sophomore service courses. As high school preparation improves, it is no longer appropriate for all students to start at the same point and to continue at the same pace. Only computer-assisted instruction can provide the necessary flexibility for efficiently educating tomorrow's scientists and engineers.

Physics traditionally provides the underlying discoveries upon which major engineering advances are built. This occurs not by design but by chance events springing from a quest to understand better the composition and mechanics of our world and the universe to which it is a part. This school seeks to address the challenge of fundamental understanding and to identify those discoveries that may be of benefit to society.
The School of Psychology has seen a great deal of change in the past year. The school has two new faculty members, entirely renovated laboratories, new offices in the Skiles Building, a new acting director for the school.

The undergraduate and graduate programs are in a period of growth, with tremendous interest in the five undergraduate certificate programs in psychology. The certificate program allows undergraduate majors in other schools to take 18 hours in psychology in either Engineering Psychology, Industrial Psychology, Experimental Psychology, Biopsychology, or Social and Personality Psychology.

Other accomplishments during the year include Dr. Maple’s appointment as Director of Zoo Atlanta, Dr. Payne’s election as President of the Southern Society of Psychology, two graduate students receiving NSF fellowships, and Dr. Herzog receiving a Career Development Award from the National Institute on Aging.

The School of Psychology offers the undergraduate degree in Applied Psychology, and doctoral degrees in Engineering, Experimental, and Industrial/Organizational Psychology. The Georgia Tech environment provides a unique context for continued development in these programs in Scientific and Applied Psychology. The school is also developing research focus areas in the Psychology of Aging, Human Performance Measurement, and Cognitive Science. More and more, there is an appreciation of the complexities of human behavior and the need for a clear understanding of these complexities. The School of Psychology is dedicated to the development and maintenance of excellent educational and research programs in the areas of concentration uniquely represented at Georgia Tech.
SOCIAL SCIENCE

Undergrads Increase Certificate Program Enrollment

During 1985-86, the School of Social Sciences continued its efforts to provide Georgia Tech undergraduate and graduate students alike with the opportunity to understand where and how their scientific, engineering, management, and architectural skills fit into broader realms of human endeavor. The school's efforts were most apparent in the classroom, in faculty members' research, and in a series of conferences and meetings sponsored by the school.

As in past years at the undergraduate level, the school offered certificates in history, philosophy, political science, sociology, international relations, urban affairs, and science, technology, and society. More Tech students than ever availed themselves of these certificate programs. At the graduate level, the school's Technology and Sciences Policy Master's degree program continued its slow but steady growth as well.

For the future, the school intends to improve the educational opportunities available to each student. The school will continue to emphasize quality undergraduate teaching; it will move forward with the rest of Tech in graduate education; its research pursuits will continue to be in both areas where scientific-technical endeavors interface with other societal concerns and in areas beyond science and technology and the school will continue to sponsor conferences and panels on major issues of topical interest to students and faculty. As Georgia Tech begins its second century, the school of Social Sciences looks forward to beginning its fifth decade.
Tech and Industry Work Together

As Georgia Tech closes the observance of its 100th birthday, the Cooperative Division is looking ahead to 1987, when the cooperative program at Georgia Tech will be seventy-five years old. Only three other schools in the world will have reached that point prior to 1987, and none by more than six years. Age alone does not produce greatness, but we are proud that the State of Georgia, the University System, and the faculty and staff of Georgia Tech have given uninterrupted and increasing support to cooperative education since 1912.

The program has grown steadily through the years, and this year twenty-five percent of the undergraduates are enrolled as co-ops and pursuing the Cooperative Plan degree. With the decision to control enrollment at Georgia Tech, it is not expected that co-op enrollment will grow as rapidly as in the past, but it is expected that the percentage of undergraduate students who are co-ops will continue to increase. The staff of the Cooperative Division is planning new approaches to establish more effective communications among the three parties participating — the student, the employer, and the school. It is a triangular relationship, and it must be an equilateral triangle, or the program will not work. Cooperative education is the name, and cooperation is the principle that makes it work.

TOP, LEFT TO RIGHT: Billy Courson checks boiler pressure at Georgia Power’s Plant Atkinson. Randy Ruark sends a teletyped message to another division office. BOTTOM, LEFT TO RIGHT: Generator maintenance requires immediate attention. Mr. Hitch, Director of Cooperative Division. General Motors co-op, Kim Roche, at work.
A major goal of the Institute is to increase the enrollment of graduate students, particularly at the doctoral level. Financial assistance for graduate students is a critical factor in attaining this goal. Major support for graduate students comes from research and teaching assistantships and to a lesser extent fellowships.

Enrollment of graduate students in the fall of 1985 increased to 2272 with an additional 24 students on graduate co-op work assignment. At the same time, the number of research assistantships increased to 659. A General Electric forgiveable loan program for doctoral students who plan an academic career was initiated. Six new Graduate and Professional Opportunity Program Fellowships for minorities and women were also awarded.

TOP, LEFT TO RIGHT: Walter Cox demonstrates Microelectronics Lab equipment. Dr. Carlson, director. BOTTOM, LEFT TO RIGHT: City Planning professor explains the central limit theorem. Scanning electron microscopy instrument in use. P-chem student pipes reagents in lab.
The Centennial brought many changes to the Georgia Tech Reserve Officer's Training Corps. Air Force ROTC dedicated over 10,000 square feet of new office, classroom, and lounge space. Midshipmen were allowed for the first time to participate in the Co-op program. Six new members were added to the Army ROTC faculty.

Air Force ROTC activities are varied and intensive. Dining out (the annual formal banquet), visits to Air Force bases, drill and ceremonies, and classroom activities provide an additional challenge to rigorous Tech requirements. Colonel Winston K. Pendleton and his staff of five officers and four noncommissioned officers anticipate continued growth as the need for well educated technically oriented Air Force officers increases over the next several years.

Tech's Navy ROTC Unit helped celebrate Homecoming in several ways. They participated in all events, and especially worked hard on their display. They also volunteered as student ambassadors to show off our fine institution.

The battalion had a well rounded schedule of activities. This year's social calendar included pre-game parties, various mixers, and the Naval Ball. The unit also participated in a number of intramural and sporting events.

Army ROTC teaches the organization of the Army, map reading, tactical design making, and military ethics. New faculty members in the department include LTC Patrick H. Linhares, MAJ James L. Elliot, MAJ Napoleon Wright, CPT Timothy J. Miller, SGM Marvin L. Kelly, and MSG Vard Hutchinson. The department faculty will continue to provide dynamic and challenging leadership and management training that complements the overall academic curriculum. In addition, an effective writing and speaking program is being incorporated into each of the Military Science classes.

Georgia Tech's fine ROTC program will continue its tradition of excellence in the years ahead. Because of the need for more trained officers, and the increased number of benefits, ROTC participation is expected to grow in the future.
Tau Beta Pi
HIGHEST ENGINEERING HONOR

Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of engineering, are recognized by Tau Beta Pi. Undergraduate students who rank in the top eighth of their junior class or the top fifth of their senior class are considered for membership.

Glen Abad
Lance Abbott
Debra Adams
John Adams
John A. Adams
Luka Adams
Biil Ahmed
Thomas Alexander
Hiram Allen
Scott Allison
Charles Anderson
David Anderson
Paul Anderson
Stephanie Anderson
Russell Anderson
Thomas Anthopoulos
David Anthony
James Aponte
Gregory Angelos Apostolides
Jose Antonio
Jorge Aristarbal
Godfrey Augustine
Raymond Baer
Karen Balasoff
Anthony Bamberger
David Barnes
Barry Barchard
 Preston Bates
Allia Bauman
Robert Bean
David Beissinger
Ron Beise
Paul Bishop
Donald Bleck
Floyd Blackburn
William Blackstock
Kim Blankenship
Barry Blumenthal
Karen Boba
Glenn Bochner
Doug Bodner
Joellen Carter
Willie Caraway
Edward Cape
James Cannella
Gerald Cameron
James Cantrell
Edward Capes
Wille Caraway
Beth Carlson
Margaret Carrington
Daniel Carroll
Joel Carlow
Peter Castron
Kevin Castiglione
Kristina Catlin
Alessandro Cedeno
John Chabey
Nancy Chamberlain
Alan Chapo
Timothy Chasteen
Kenneth Chia
Andrew Chung
Michael Clarke
Leslie Clay
Lee Cledenhenn
Richard Cledenhenn
Ralph Cleveland
Philip Cohen
Charles Cole
Gregory Cole
Jon Coleman
Rob Colman
Dana Collins
Gregory Compton
John Conway
Gregory Cook
Jean Cook
Linda Cook
Patrick Copeland
Donald Corbett
Thomas Corbo
Ricardo Core
Harold Council
Norman Cowd
Scott Cowl
John Cox
Steve Cox
Finnoula Cross
John Curtis
John Curtis
Alex Danion
Bradley Daley
Albert Daniel
Keith Daniel
Mark Danielson
Jeffery Danesensa
Donald Davidson
Carlos Davis
Dale Davis
Jerry Dawson
Michela Delamaide
Robert Delp
Brian Derhyster
William Doodi
Angela Dominy
William Dore
Michael Drago
James Drews
John Dryden
Chet Duffee
Glen Edwards
Wendy Edwards
Clifford Eubanks
Lee Evans
Thomas Facon
David Farmer
Brian Fans
Gabe Finkel
Nancy Fathery
Neal Fanagan
Karrin Fletcher
Robert Flowers
Brian Fogle
James Ford
Patrick Forsey
Christopher Fouts
Amy Gable
James Galle
John Gallo
James Gammon
Steven Gambon
Sergio Garcia
Charles Geiger
Pietro Gelsbert
Thomas Gentay
Eric George
Kevin Gibson
Steven Gieseking
David Gillam
Jose Gomez
Juan Gonzalez
Saul Gonzalez
Steven Good
Jon Goodman
Mark Goodwin
Glenn Greatheart
Susan Gregory
William Gregory
Gregory Gurski
Patrick Guy
Shahn Hadian
Samuel Haines
Mark Hapag
Charles Hare
Cynthia Harte
Stephen Hall
Laura Haller
Troy Halverson
Anita Hamlyk
John Hamilton
Steven Hansen
Venon Handley
Jeff Harding
Heather Handri
David Harris
Robyn Harrison
Juliet Hastings
Michael Heiges
Gerald Helms
Marta Henderson
Randolph Henderson
Patrick Henry
Andrew Henshaw
John Hicks
Evelo Hernandez
Christopher Henning
John Hoss
Ann Hillig
Quynh Hoang
Gregory Hodgdon
Joanne Holland
William Holloay
Edgar Holman
Gary Holpen
William Hood
Jeffrey Howe
Chen Hua
Billy Hudgens
Keith Hugenberg
Timothy Hunt
Mehmudul Huq
Curlekie
Luis Ingwelsen
Steven Isabelle
Jon Jenkins
Larry Jens
Jeffrey Jenall
Randall Johnstone
Walter Johnson
Elizabeth Jones
William Joyce
Gregory Judzalis
Greg Jung
Tracey Kahn
Robert Kauffman
Douglas Kaye
Anne Koester
Eric Keller
Kiyung Kim
John Kimney
Teri King
Stacey Kinney
John Kingsley
Thomas Konter
Bernard Kural
 Omar Kurdi
Anne Lai
Naga Lao
Robert Laurens
Joseph Layden
Susan Leathers
Richard Leon
Jeffrey Leppa
David Leroy
Martin Levine
David Levy
Paul Li
Leonard Lianey
Laura Lindsay
Curtis Lisle
Don Livingston
Ronald Lizz
Elizabeth Logan
Michael Lucas
Janet Luthh
Bruce Maclean
Cecil Macoy
Bruce Marcu
Michael Maddon
Ida Malvasato
James Makinen
Raymond Mann
David Marne
Michael Marino
Brian Markwater
Gary Matthews
William Martin
Brian Mathewson
Elizabeth Matthews
Gary May
Brian McCary
Sean McManahen
Edward McDonald
John McGrath
Mark McMaster
John McMichen
Michael McMichael
Maureen Milici
Anne Miller
Jeffery Milthaps
Brian Miska
Mark Mitchell
Joeseph Mitri
John Mische
Paula Mogan
Dr. Daniel Monahan
Michael Morgan
John Morin
Tracey Neffing
Steven Nonen
Robert Northrup
Nerog Oberin
Neil Ol
Donna Olszowka
David Owen
James Owens
Scott Owen
Mary Palmer
John Parker
Teresa Parsons
Robert Patrick
Thomas Patrick
Mary Patterson
Rusulf Pake
John Poci
Debra Peak
Michael Perelman
Gregory Perrin
William Persyn
Jose Perlieta
Teri Phin
Th Phin
Steven Pinsky
Eric Pohl
James Powell
Wanda Puckett
Richard Rader
Kimberly Ragdale
Fernando Ramos
Balsaubrana Ravichandran
Barbara Reiler
Ruth Reiner
Carlos Restrepo
Raymond Ribes
Keith Richardson
Joseph Roberts
Elizabeth Robinson
William Rodgers
John Rodriguez
David Rollins
Samuel Russ
Julio Sanjurjo
Elizabeth Sarana
Marcel Sarzen
Yannakis Savoulis
Frank Sawyer
Ruth Schaefer
Richard Schaffer
Jean Schramm
Mary Sellers
Nancy Shaler
Andrew Shen
Keith Stultz
Michael Siewke
Sunanda Singh
Romus Slupen
John Slavinsky
Jeffrey Smart
Charles Smith
Eric Smith
Steven Smith
William Smith
Lyn Smith
Eric Snyder
Ivan So
Jeffrey Sophani
Lori Somor
Michael Soule
Shannon Soupleet
Glen Spavak
Scott Spavak
Kenneth Spratlin
Kristen Todd
Shivram Spruwans
Gerald Staniquel
Michelle Stecklin
Eric Steiger
Laura Steele
Johal Stein
Carol Stetzenburger
Kenneth Stephenson
William Stiglet
Howard Strong
Kevin Stotz
Daniel Stubbs
Terry Styles
Timothy Studer
Karl Swensen
David Sykes
Stuart Ryder
Daniel Szkybalo
Christ Tan
Wei Tan
Tanya Targonsky
John Taylor
Katherine Taylor
Jeff Terr
Kend Unit
Bruce Thompson
Mark Thompson
Nola Thompson
Michael Thrift
Daniel Tennan
William Timmons
Samuel Todd
Charles Tommasso
Ruben Travesoo
Wayne Tremper
Mark Turner
Stephen Turpin
David Vanhooy
Siva Viter
Enrique Vizca
Antonio Vizzio
Lisa Voeller
Alfred Von-Campe
Michael Walker
Richard Wallace
William Wallace
Cflectron Ward
Stanley War
Jeffrey Warner
Anthony Weathers
Thomas Wechsler
William Wooleman
Kenneth Weinhaus
James Weisch
Malcolm Wells
Stephen Wellich
Neil Woo
Timothy Whiten
Terence White
Jeffrey Wyman
David Whitney
Rebecca Winkel
Clay Wilkie
Jennifer Williams
Carleton Williams
Jeffrey Whitten
William Wolfe
John Young
Marlane Zehri
Robert Zimmerman
David Zue
Waren Zyl

224 / Tau Beta Pi
Gamma Beta Phi

The Gamma Beta Phi Society is an honor and service organization for students ranking in the top fifteen percent of their class. Its motto is “Progress Through Education,” and its watchwords are Scholarship, Service and Character. The Society works to promote these ideals through a number of service projects benefitting Georgia Tech and the Atlanta community.
Who's Who Among Students In American Colleges and Universities

Since 1936, Who's Who Among Students in American Colleges has been providing recognition for outstanding campus leaders. Candidates must be juniors, seniors, or graduate students and are judged on academics, community service and leadership in extracurricular activities.

Arthur E. Arrington, Jr.
Preston Ray Bates
Paul Douglas Carey
Vincent Alfred Castiglione
Joseph Warren Daniel
Michele Denise Delamaide
Charles F. Easley, Jr.
Stephen Douglas Eckhart
Peter T. Finlay
Caroline Emmons Galt
Samuel Joseph Haines
Grace Ellen Hammond

Pamela Hatch
William Robert Hollaway
Angela Yolanda Jones
Steven William Kester
Richard Alan Lawson
Elizabeth Logan
Patricia Ruth McClatchey
John Joseph McGrirr, Jr.
Marc Alan Montgomery
Christian Enoch Moore
Ronald Jensen Pettis
Alan Goodwin Poindexter

Douglas Alan Reynolds
Timothy Wayne Rice
Jose Rafael Rodriguez
Douglas Donald Selph
George Charles Shields
Romans Skujins
Melanie Jane Stanley
Michelle Louise Stecklein
Susan Holmes Tyler
Sandra Elizabeth Weaver
Kelly Patricia Westbrook

Omicron Delta Kappa

NATIONAL LEADERSHIP HONORARY

For fifty-three years, Georgia Tech's chapter of Omicron Delta Kappa has honored juniors and seniors who have proven themselves outstanding in academics, athletics, social service, journalism and creative and performing arts. Candidates must have a 2.8 cumulative grade point average for consideration.

John Adams
Kelly Adams
Philip Adler, Jr.
Carlyle Bernard
W. Carl Biven
Keith Boland
Fran Bonner
Henry C. Bourne, Jr.
Mark Bowers
Sam Bracken
John A. Brighton
James J. Bynum
Carolyn C. Cannon
Vince Castiglione
Andrew Chung
Susan Cochran
Joseph A. Connelly
Wister J. Cook
Bobby Cremins
William Curry
Bruce Datziel
Joe Daniel
Sam Davis
Andrew Delany
John Dewberry
Bobby Dodd
William Dodd
Renee Dominey
James E. Dull
Charles Easley

Ben Eazzetta
Jack Eckles
James Evans
David Farmer
William L. Fash
Peter Finlay
Richard Fuller, Jr.
Chris Gaffney
William J. Gamble, Jr.
Thomas K. Gaylord
John H. Gibson
John J. Goda
Barry Goodno
James N. Gordon
Robert E. Green
Helen E. Grenga
Tim Hall
Sally Hammock
Pam Hatch
Marion Herkert
James V. Herod
Beth Hinnen
Kent Holding
Mark Hornich
Jo Ivey
Sarah E. Jackson
Sharon Jadnak
Jon Jenkins
Harold L. Johnson
Les A. Karlovitz

Robert F. Kelly
John Knight
Edwin P. Kohler II
Nan Kuntzer
Mark Lane
Father M. Di Lella
William J. Lnenicka
Beth Logan
Mike Martin
Gary May
Paul G. Mayer
Ruth McClatchey
Robert C. McMath
Nelson McRay
John Mize
James W. Morris III
Helen H. Naugle
Alyce Novak
Catherine O'Donnell
John Peatman
Joseph L. Pencost
Joseph M. Pettit
G. Alvin Pierce
Milton E. Raville
Bo Reddick
Scott Ribes
Homer C. Rice
Tim Rice
G. Peter Rodriguez
Jose Rodriguez

Nelson K. Rogers
William M. Sangster
William F. Sayle
Peter B. Sherry
George Shields
Melanie Stanley
Michelle Stecklein
James R. Stevenson
Frank Sullivan
Karl Swensen
Richard D. Teach
W. Miller Templeton
Michael E. Thomas
Daniel Tiernan
Douglas Turner
Maxine Turner
Susan Tyler
Lisa Volmer
James W. Walker
Jeff Warner
John A. White
Karen Witcher
Frank Williams
David Womble
William E. Woolf
Robert Wysocki
James D. Young
Dorothy C. Yancy
ANAK

Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

Phi Kappa Phi

The Georgia Tech chapter of Phi Kappa Phi was established in 1914. Recognition of superior scholarship in all academic subjects is the purpose of this society. Candidates rank in the top ten percent of their class as well as display a good character and academic record.

Outstanding Professors of the Year Awards

Nominations for this award are solicited by the Institute’s Faculty Honors Committee from faculty, staff, students, and alumni. The awards are in recognition of excellence in teaching, extraordinary effort in the classroom, the degree and quality of inspiration transmitted to the students, direct impact involvement with students, and the intellectual integrity and scholarship of the professor.

Dorothy Yancy, Outstanding Teacher
John Neff, Superior Service Award
James Young, ANAK Award
Ronald Schafer, Distinguished Professor
Phi Eta Sigma

FRESHMAN SCHOLASTIC HONORARY

Superior Scholastic Achievement among college freshmen is recognized through the society of Phi Eta Sigma. Founded in 1923 and chartered at Tech in 1930, the society rewards freshman academic excellence. All students who attain a 3.5 GPA or better during their first freshman quarter or by the end of their freshman year are eligible to join.

Edward F. Allen
Thelesia O. Allen
Stephanie J. Anderson
Christopher L. Ayers
Rajeev Bahri
Teresa M. Ball
Cheryl L. Barksdale
John E. Barnett, II
James R. Barnett, Jr.
Andrew A. Barr
Jim C. Bonner, Jr.
James L. Bradshaw
David M. Brewer
Jonathan A. Brinson
Benjie B. Brown
Roland G. Caldwell, Jr.
Eric F. Carbonell
Thomas H. Chan
Roy C. Coffman
Victor A. Cohen-Levy
Jon M. Coleman
Jonathan S. Colsky
Mark J. Conner
Gregory L. Cook
John B. Cooper, Ill
Pablo J. Costas
Joseph S. Cox
Kathleen E. Cummings
Steven A. Daneman
Dhaval Davé
Eric A. Davis
Douglas F. Desrochers
Jerald B. Dotson
John R. Dubberley
James F. Durkin, Jr.
Robert T. Dyal
James A. Friedman
Debra J. Gazzuolo
Richard P. Genet, Jr.
Steve Giffin
James R. Graves
Janice F. Gravley
Jan G. Glott
Keith A. Haas
Michael K. Halligan
Richard S. Hall
Bo Sook Han
Debrill E. Harley
Michelle L. Harrell
Frank A. Headley, Jr.
Alan K. Hornick
Joseph H. Hsu
Sharon R. Just
William M. Kalifelz
Patrick W. Kane
Charles N. Kelley, Jr.
Moigan Khatami
Michael C. Kirksey
John O. Kitchens
John J. Klein
Lynley S. Knox
Laura A. Kowalewski
Darin E. Krasle
Karen E. Landreth
William Lanham, III
David D. Lasater
Kwok T. B. Lo
Owen J. Loftus, III
Tracey L. Lord
Kathleen A. McCune
William V. McLure
Joel C. McMahon
David A. McNamara
Katherine A. McVay
Marlene E. Mainland
William H. Marsh, IV
Vernon L. Mavloin
David C. Mayfield
Tonya D. Mayweather
Lisa G. Merritt
Leslie A. Mongin
Jose F. Montes
John M. Morris
Nancy E. Mueller
Edward F. Murphy, III
Carl B. Newell
James H. Pak
Jennifer L. Parks
James D. Perrin
David G. Posz
Barry E. Powell
Anthony J. Priest
Angel M. Ramos
Samuel B. Ransbotham, IV
Mark A. Ranta
Shawn G. Rao
Teresa R. Redfoot
Richard T. Remski
Thomas C. Rich
Karen Y. Rodum
Dale E. Rogerson
Gary C. Saliba
Stuart A. Sanders
Susan E. Schultz
Mark D. Sen Gupta
Ram M. Shetty
Christopher J. Shriver
Elia G. Skoufis
Richard C. Staten
Scott W. Stevens
Phillip S. St. Germain
David C. Swift
Anis M. W. Jarrar
Brett S. Taylor
Kelly B. Thomason
Clark W. Tollerson
Karen L. Toy
Patricia S. Uceda
Alexander S. Wan
An-Ti Wang
Hung-Chung Wen
David R. Williams
Karen L. Woolsey
Steven P. Yelpo
David G. Young
Matt P. Zakarian
Gaspar A. Zuniga
Briarean Society

CO-OP SCHOLASTIC HONORARY

Founded at Georgia Tech on July 16, 1922, the oldest co-operative honorary society in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative GPA and have completed five quarters of academic study in the Co-operative Department.

Thomas Adsitcutz
Scott Allison
Jorge Armand
Pam Amalo
Mike Amend
Paul Anderson
Joi Arne
Mary Ann Arnette
Scott Arnold
Art Arrington
Richard Ashley
Gladys Augustine
William Avera
Ruth Bailey
Ralph Bailey
Glenn Ballard
Ilsa Barkett
Kent Barkow
Greg Beasley
Tom Belsley
M. Joyce Bender
Lois Benedict
Philip Berggren
Doug Betts
Catherine Bianchi
Mark Beckhoff
Keith Blankenship
Deborah Brown
Bradley D. Bolster
Fran L. Bonner
Bryant Bostater
Pat Bournes
Roger Bowers
Jack Braden
Barry Bradie
Dennis Bailey
George Brown
James Brown
Mary Brown
Bill Bryan
James Bryan
Timothy W. Calvin
David Camp
Cagan Cappella
Gina Cari
Will Carraway
Patrick Carrell
Kristina Catlin
Tim Chadman
Carol Chastin
Carol Chasnutt
Kenneth Chin
Hank Chow
Joseph Cohen
Mark Cole
Mary Collier
Gordon Connelly
Michael Cooper
Bill Couch
Hartford Council
David Cowart
Doug Cox
Myles Crawford
Elizabeth Crilly
Philip Crowder
Connie Cumbus
Dale Danger
Albert大蒜
Mark Dammer
Jeff Daneserau
Dany Davio
Walter David
Eric Dawson
Jill Deardorff
Donald Deemer
Marc Deiss
Olga Desdin
Laura Devlin
Doyle M. Dilard
Alden Dina
William Dodd
Melissa Dotson
William Doty
Kevin Driscoll
William Duggleby
Steve Duke
Dennis D. Duncan
Steven L. Duncan
David Giffetta
Judith Ecker
Brian Edwards
Lee Monroe Evans
Jeff Farmer
Brian Ferrie
Abigail Fenman
Colin Field
Peter Finlay
David Fletcher
Shenni Footner
Rob Franz
Rob Frederick
Eric Fox
Stephen Fuis
Katherine Funk
Richard Gaeta
Daniel Garbrait
James Garmen
Dwight Garrison
David Garcia
Corey Geiger
Mieloa Ghuman
Steve Griffin
Glenn Gilbert
Juan Gonzalez
John Goodman
Lance W. Godfreyson
David Gough
Glenn Greathouse
E. Annette Greene
David Gruen
Vincent Groff
Brian Gravensfelder
Mike Gubert
Janice Guettar
Karla Hagans
Dave Hahn
Mike Hahn
Denise Halder
Jeffrey Alan Hall
Timothy Hall
Louis Haller
David Hamm
James Hanes
John Hammond
Chris M. Hancock
Jerry Hancock
Michelle N. Harber
Bill Hargen
James P. Harrel
Riley Hawkins
John Haynes
Pat Henry
Marion Herbert
Christopher Hering
Mark Herrington
F. George Henschel
Stephen Hicks
Mary Jane Hinton
Bill Hitch
Quynh Hoang
Albert Holder
Vince Holsteinbavek
Nancy Holt
Jim Holton
Wayne Honschel
Glen Hopkins
Anita House
Dean R. Hudadof
Keith Hugenburg
Todd Hugenberg
Patrick W. Hunter
Robin Hutchens
Steven Jacobs
Bill Jennings
Glen Johnson
Brad Johnson
Jeff Johnson
Jerry Johnson
Marilyn Johnson
Angela Jones
Julie Jordan
Mark Jones
Dwayne C. Kearns
Matthew Kearns
Mark Kehne
Todd Kielb
Christopher Kemple
Kris Linnetting
Ruth W. Khan
Henry Kim
Kenneth Kolpittch
Tom Konnerth
Paul Krell
Karl Krul
Kurt Kutz
Nan Kunzer
Judith Lampert
Cord Lamphere
Brendan Lane
Zob Laut
Robert Laureruns
Jere Layden
Jennifer Leise
Edward Lee
Yong Lee
Michael Lehr
Richard Leon
Mark Lesser
Chris Lowery
Janet Luth
Douglas Lyons
Thomas Lyons
Mike Madden
Ida Malawenda
Michael Mairin
Diniz Mann
Mike Manno
Mike Marin
Gary Martin
Heather Martin
Joseph Martin
Joe Massan
Brian Mathewson
Gray May
Mary McAndrew
Edward McCall
George S. McCall
Ed McDonald
Kelly Johnson
Tom McGough
Jeff McKinney
Mark McMaster
Brian McNair
Michelle Mairn
Jana Miles
Thomas Mitchell
John Mize
James Moore
Mark Morelli
Scott D. Morgan
Rebecca Moore
Ken Morosemet
Bill Murphy
Larry Naylor
Bret Neeble
Scott Nelson
Gene New
Eric Nielsen
Steve Norman
Richard Norris
Anthony Nislo
Alyce Novak
Catherine O'Donnell
Neil O. Ottar
Andreas Otter
James Owens
Philip Perdan
Graciela Perez-Cruet
Bryan Pierce
Janet Pierce
James Ritchie
Ernest T. Politiz
Robert Poeveye
William Ewart
Don Prado
Anne Proudy
Robert Raboud
Kimberly Ragsdale
Jim Reaugh
Mike Rene
Michael Rice
Ronald Rice
Timm Richey
C. Harold Robbins
Greg Roberts
Charles Rodaba
David Robinson
Julie Rogers
Virginia Rogers
Robert Rowlund
Leon Rountree
Karen Ruben
Kenneth Rubin
Johnna Ranke
Carl Rush
James Alan Sanders
Julio Salgado
Cathy Saphe
Ruth Schawler
Karen Schey
Bill Schmidt
Sharon Schnicki
Kevin Schutz
John Schureck
Chris Schwalb
Mark Selman
Eric B. Seng
Scott Oelgen
Herald B. Simmons
Curtis Shaw
John Sivak
Bill Solak
Eric G. Smith
Elizabeth Smith
Jim Smith
Ken Smith
Mary Lynn Smith
Phillip Stackeim
Durand Standard
William Stark
Michael Steele
Laura Steele
Carol Steitzennimer
Kevin Stoltz
Terry Strickland
Daniel Stubbs
Terry Styles
Brian Svec
Karl Swensen
Kerry Tyrone
Carole Theeders
Daniel Tener
Keith Todd
Mark Tong
Annette Toy
Hao Ho Tran
Ruben True
Robert Trebaugh
Douglas D. Turner
Carolyn Tullof
Carla P. Varedoe
Todd Vaughan
Lee Veal
Lisa Volmar
Larry Walker
Jim Wallace
Cathy Walters
Alan Ward
Jian Wang
Joe Wilkwood
Heidi Wiegaf
Glenn Wells
J. Raymond Wells
Hung Chung Wen
Kelly Westbrook
Marcus Whaley
Robert Whiting
James Williams
J. Derek Williams
Sandra Williams
William Williams
Royce Williamsen
Jeffrey Wingard
Mark S. Winkler
Mark Wolaver
Nancy Wolf
Karen Wolfe
Andrew Wood
Joel K. Wood
Dean Wright
Robert Wysocki
Jeffrey Youmans
Mark Zimmerman