Any school is a many-faceted phenomenon, and Georgia Tech is no exception. There are parties, hobbies, games, sports, clubs, and fraternities: a bewildering number of ways to spend time and energy. Above all else, though, a school is school, and especially here. Even before Tech had a football team, it was recognized nationally as a leading educational institution. The student body is notably gifted. Figures show that Tech has a higher percentage of National Merit Scholars than any other university in the United States, and fifteen percent of the students here attained a perfect 4.0 G.P.A. in high school. The faculty, too, is quite talented: researchers enjoy grants from many major firms and foundations in recognition of the high quality of work carried on here. Academics are, indeed, important at Georgia Tech, as any student will attest as he spends a precious Saturday morning studying for that upcoming midterm.
Manual Registration Persists
on the Computerized Tech Campus

Every other quarter it’s bound to happen. The student arrives on campus fresh from his vacation, ready to face any hardship the coming weeks will bring except for one — registration. He nervously opens his P.O. box and takes out all the necessary paraphernalia, glances at his computer schedule, and realizes that only half the courses for which he pre-registered came through. Suddenly, all the good-will and determination he had stored up over break vanishes. His friends say, "Too bad," and attempt to console him, but it is of no use. This poor fellow must suffer the ordeal of manual registration.

Armed with catalog, final course offering sheet, and a sketchy knowledge of what courses he actually needs, the student pushes into the Old Gym. He gasps at the crowd and winces at how many of his desired courses are closed out. Finally, after what seems like decades (but what actually is thirty or forty minutes) the student manages to plan a tolerable schedule. Now he has reached the point where he would have been if his first schedule had succeeded, yet the unbelievable hassle of paying fees remains. But eventually even this is over.

Days later, the student gets a notice that he has paid a dollar too much for his fees, and so must pay a ten dollar fine. He writes out his check and slowly strolls toward the Cashier’s Office, a broken man.
Cuts in budgeting from the state, increasing costs, and faculty and staff pay raises combined to place the University System of Georgia in serious financial difficulties. The controversy raged throughout the year as Tech prepared to cut back allocations to her departments. In a last desperate move, the Board of Regents voted for the second tuition hike in less than a year.

Protests began immediately at various colleges and universities, notably Georgia and Georgia State. Tech students, always less likely to raise their voices, mumbled and unwillingly accepted the hike. Student Government even passed a resolution supporting the Regents on the grounds that, although the increase was unwanted, Tech students were still satisfied with the education they received for their money.

Following quickly the tuition uproar came the news of a new “beautification” project on the Tech campus, a fountain. Having witnessed the construction of a $17,000 bus stop and an expensive steam engine monument, most students felt that Tech surely couldn’t outdo herself. But Ma Tech proved to be as mystifying as ever. The news of the construction of a $70,000 fountain in front of a library confronted with cuts in the buying of periodicals and books mystified even the most weathered Tech students. But, for once, there was an explanation. The money was donated for a fountain and for nothing else.
<table>
<thead>
<tr>
<th>CHECK ONE</th>
<th>PART TIME</th>
<th>GEORGIA RESIDENT</th>
<th>NON RESIDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation @ $14.00/hr.</td>
<td>1 Hr. 5 hours</td>
<td>$168.00</td>
<td>$354.00</td>
</tr>
<tr>
<td>Tuition @ $29.50/hr.</td>
<td>6 thru 11 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Fee</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Student Activity</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Health Service</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Total Fees</td>
<td></td>
<td>$208.50</td>
<td>$562.50</td>
</tr>
</tbody>
</table>

*These fees are mandatory for Part-Time Students registering for at least six hours but less than 12. These fees are voluntary for less than six hours.

Please do not fold, mark, or crumple this card.

SURDELL GEORGE P.

<table>
<thead>
<tr>
<th>CHECK ONE</th>
<th>PART TIME</th>
<th>GEORGIA RESIDENT</th>
<th>NON RESIDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation @ $15.00/hr.</td>
<td>1 Hr. 5 hours</td>
<td>$185.00</td>
<td>$389.00</td>
</tr>
<tr>
<td>Tuition @ $32.00/hr.</td>
<td>6 thru 11 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Fee</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Student Activity</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Health Service</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Total Fees</td>
<td></td>
<td>$225.50</td>
<td>$614.50</td>
</tr>
</tbody>
</table>

*These fees are mandatory for Part-Time Students registering for at least six hours. These fees are voluntary for less than six hours.

Please do not fold, mark, or crumple this card.
Labs: Long Hours for Few Credits

Labs are many things to many people. They are cold winter afternoons in Lyman Hall, and long tedious hours in the Physics building. Labs are the cause of that insidious middle number in course descriptions: Nuclear Bioastronomy 1001, 3-12-7. Every student at Tech is subjected to labs, some fascinating, others considerably more mundane. Whatever their content, location, or interest level, everyone has labs, and sooner or later, learns to form a peaceful coexistence with these "practical learning experiences."
If the average Tech student were given a choice between three hours of a most excruciating physical torture or twenty minutes of intensive study, he might just pull a coin out of his pocket (if he has a coin) and flip it. Nevertheless, day after day, quarter after quarter, the libraries and dorms are full of serious people poring over dry, thick texts. A handful of them really like the material and some simply want to be on top of the subject for a coming lecture. The majority, however, are in desperate fear of tomorrow's quiz. These poor wretches experience an ordeal of worry and work, and sometimes they cannot believe that they have spent so much money to suffer so much. But, as they know, most worthy goals are attained only at great sacrifice, and a degree from Tech is just another one of them.
To the student who has struggled through ten torturous weeks of eight o'clock classes, late night lab report writing, and persistent testing, nothing he could imagine would seem worse. He thought. The quarter's devastating finale, exam week, yet remains as a barrier before the glorious days of quarter break.

Following all too quickly on that last week of class when no teachers are supposed to give tests but most somehow manage to, the week captures students weary and unprepared. Those five chapters of econ which somehow never got read must suddenly be memorized before eight the next morning; that theory in physics which has defied hours of endeavor must speedily be understood. In desperation, students evoke a muse of studying, or perhaps just brew a pot of coffee, to guide them through long nights, but only sleep calls. In every corner of the library a tired head has collapsed over a notebook of material that never will be learned in time.

The exams themselves have been compared to torture of every kind. For three hours a student functions as a computer grinding out all the material it knows. Somehow, that knowledge is never enough. Exhausted and frustrated, one must leave only to start cramming for the next session.

But exam week also comes when, in the spring, the weather suddenly breaks out of the continuous winter rain. Students can be found outside, cramming still, but enjoying the sun and dreaming of a trip to Florida in the coming week.
Ma Tech Gets Last Word

The anguish and anxiety mounts as the student climbs the steps. It has been two days since that dreadful exam and now, supposedly, the grades are posted. At last, he reaches the correct floor and sees those little strips of paper which bear his alpha number and his hopes hanging, waiting in the dim light. The teacher had been so infamous that his nickname ranked with those of "Death Wray" and "Steamboat Fulton," and, struggle though he did, the student could never slide down the right side of the meager ten point curves on that man's tests. So much ended up depending on the exam, but, as the saying goes, it was a shaft.

Slowly, the student approaches the hall's end where the grades are taped to the wall. Desperately, he looks for a last good omen, any omen, before glancing up. No penny heads up, no lost dollar bill can be seen; courage alone must suffice. The grades are up; every F catches the eye as he searches for his number. It's there, stuck between two more F's. The halls reverberate with an echoing, "I PASSED!!"
After four years at Georgia Tech I should be ready to graduate! But, I like it here, and I think I'll stay around.

I've had the privilege of meeting many Tech students and working with five groups of student officers and editors. Among Tech's greatest strengths are its people, especially the students who choose to come here and who later become alumni. I like their attitude toward their work, their recreation and their college. I even like the way they tell me what they don't like!

I am glad to have had a role in the start of SAC-70 this year. It has been our only major building during my first four years and, except for the Architecture addition, is the only one in sight. SAC-70 will add so much to student recreation and intramurals.

Congratulations to all for your accomplishments during 1975-1976.
Vice Presidents and Deans of Colleges

TOP, LEFT TO RIGHT: Richard Fuller, Assistant to the President; Vernon Crawford, Vice President for Academic Affairs; Clyde Robbins, Vice President for Campus Planning; Henry Valk, Dean of the College of Sciences and Liberal Studies. BOTTOM, LEFT TO RIGHT: William Sangster, Dean of the Engineering College; Ferdinand K. Levy, Dean of the Industrial Management College; Frank Roper, Registrar; Ewell Barnes, Vice President for Financial Affairs.
Deans of Students

TOP LEFT: Jerry Gallups, Dean of Fraternity Affairs. TOP RIGHT: James Dull, Dean of Students. BOTTOM, LEFT TO RIGHT: Edwin Kohler, Associate Dean of Students; Miller Templeton, Dean of International Students; Judith Priddy, Dean of Women Students.
Directors of Schools and Departments
Dr. John W. Crenshaw Jr.
Biology

Dr. Joseph L. Pentecost
Ceramic Engineering

Dr. G. L. Bridger
Chemical Engineering

Dr. David B. Comer, III
English

Dr. Charles Weaver
Geophysical Sciences

Dr. Harold Smalley
Health Systems

Dr. John D. Neff
Mathematics

Dr. Stoth P. Kezios
Mechanical Engineering

Dr. Gerald S. Giaugue
Modern Language

Capt. Gezler L. Sims
Navy R.O.T.C.

Dr. James R. Stevenson
Physics

Dr. Edward H. Loveland
Psychology

Dr. Patrick Kelly
Social Sciences

Dr. W. D. Freeston
Textile Engineering
A.E. Participates in Solar Energy Projects

CERAMIC ENGINEERING
The Ceramic Engineering curriculum provides a broad background in the processing and use of materials. Since many ceramics are among the lowest costing materials, a strong emphasis is placed on the economic aspects of processing and material selection. Current shortages of raw materials and increasing concern for productivity gains are being met in the curriculum through this concern for costs as well as through revisions to keep pace with recent technical advances in the industry. Because the school is small, a cordial family atmosphere is maintained among the students and faculty members which promotes strong ties to the profession and its professional society.

AEROSPACE ENGINEERING
Research directed toward the solution of societal problems has become a significant part of the Aerospace Engineering's overall research program. Some examples of this research are: fire safety wherein the toxicity of buildings and furnishing materials are being studied; design of instrumentation for the detection of arteriosclerosis by non-surgical techniques; solar energy projects focusing on design and analysis of current facilities in Atlanta; and installation of a windmill to study the feasibility of wind power generation.

CHEMICAL ENGINEERING

Attracting an extremely large freshman class, the School of Chemical Engineering has grown rapidly to satisfy increased demands on campus and in industry. Graduates and professors have continued research in biomedical engineering, environmental engineering, and other fields. In the summer of 1975, the school also initiated a program in cooperation with Iowa State University for senior students to study abroad at the University College of London for several weeks.

CIVIL ENGINEERING

Continuing its instruction in fields varying from sanitation to engineering graphics, the School of Civil Engineering has especially increased its emphasis on construction materials research this year. Under the sponsorship of the U.S. Department of Transportation, three new programs have been started to discover means of lowering the costs of methods and materials of highway construction.
Chemical Engineering Initiates European Study Session
E.E. Develops Skill in Analysis

ELECTRICAL ENGINEERING

The programs offered by the School of Electrical Engineering are designed to develop skills in analysis, design, mechanization, and computation and to teach the specialized language and techniques of electrical engineering. Graduates are well prepared to accept roles in business, education, industry, or government. In a highly developed, technical society, the need for electrical engineers to transmit energy under controlled conditions and to process and transfer information even over long distances will always be pressing.
New developments in the School of Engineering Science and Mechanics are primarily in the following four areas: biomechanics, finite element methods of analysis, fracture mechanics, and structural optimization techniques. New graduate courses have been developed and taught in each of these areas during the past two years. A new bio-mechanics lab designed primarily for the study of mechanics of soft biomaterials and the heart muscle has been established. Research efforts of the faculty and graduate students in all the above areas are financially supported by several governmental and industrial organizations.
Health Systems Offers Work Experience

HEALTH SYSTEMS

The program in Health Systems continues to grow. The 1975 enrollment of 116 has doubled that of the previous year. Fifteen graduate students are now in the new MSHS curriculum introduced in the fall quarter of 1975. The B.S. curriculum provides career preparation for health systems analysts and planners and serves as an excellent pre-med or pre-dental program.

The research arm, Health Systems Research Center, is engaged in sponsored research relating to the improvement of health care delivery systems.

MECHANICAL ENGINEERING

Mechanical Engineering is a broad and flexible field of engineering activity encompassing careers in industry, business, government, and universities. The thrust of the ME school at Tech is to provide a fundamental background to allow the graduate engineer to cope with the important problems of our time and those in the immediate future — transportation and conversion of energy for the production and distribution of goods, the utilization of services, and control and protection of the environment.

Graduate students work in fundamental as well as applied areas, some of which deal with such problems as acoustics and noise control, energy and energy conversion, flammability of fabrics and fire hazards, and bioengineering and medical instrumentation.

I.Sy.E. Promotes New Programs

INDUSTRIAL AND SYSTEMS ENGINEERING

The School of Industrial and Systems Engineering, the largest such school in the U.S., continues to develop innovative changes to its curriculum and research programs.

A completely new B.I.E. and B.E.E.S. undergraduate curriculum commenced operation in the fall of 1975. Changes in 30% of the I.Sy.E. courses will allow B.I.E. students to emphasize more than ever applications of Industrial Engineering tools and techniques to real world design problems. Additionally, they allow the B.E.E.S. students to develop more completely a major tract of emphasis as he prepares for activities in governmental or service industry environments.

The continually expanding development of research opportunities by a broad segment of the faculty has given increasing support to graduate student programs. Emphasis on research activities have contributed greatly to these students' abilities to apply the advanced theories of Industrial and Systems Engineering to a broad spectrum of industrial and governmental research challenges.
Funds Granted for N.E. Research

NUCLEAR ENGINEERING

Over the past year the School of Nuclear Engineering has realized a substantial increase in its research program, receiving in excess of one-quarter million dollars additional outside funds to support research in energy. The school will publish through Pergamon Press the "Georgia Institute of Technology Series in Nuclear Engineering," which will be comprised of several volumes of studies on areas of interest to the public and technical community. These volumes are being generated from the Research and Continuing Education activities within the school. The current concern over the energy situation in this country has stimulated interest in nuclear energy resulting in a substantial increase in enrollment at all levels.

T.E. Reduces Pollution

The School of Textile Engineering is conducting research programs relevant to current societal problems. The depleting energy sources have driven the department toward developing ways to reduce energy consumption in textile and carpet processing.

Some textile professors are also involved in decreasing the level of pollutants in North Georgia streams attributable to carpet finishing.
The School of Architecture, which administers the curricula in Architecture, Building Construction, Industrial Design, and City Planning, was elevated to the status of a College on July 1, 1975, culminating a long period of exceptional growth and change. During the past several years the primary effort has been directed toward the transition in Architecture from a 5-year to a 6-year program, awarding the Master of Architecture as the first professional degree. Developing and strengthening the graduate programs, building a specialized faculty, and initiating additional research will be a continued goal of the administration together with a reassembly of the scattered facilities of the College with better accommodations for the student body; this will require a new addition, approved as the next building on the Campus, but not yet funded by the Building Authority. As a special feature of the curriculum in Architecture, the College expects to continue its Study Abroad Program for 4th year students offered at the Grand Palais in Paris in conjunction with the Unité Pédagogique d'Architecture #7 at the Ecole Nationale Supérieure des Beaux-Arts. The appointment of a permanent Dean in 1976, as yet undesignated, will initiate a new phase in the history and progress of the College.

BUILDING CONSTRUCTION

The Building Construction Program provides the practical and applied link between the hard engineering disciplines at one corner of the building industry triangle and the softer architectural and planning professions at the other. The successful physical culmination of the design professions efforts depends on knowledge of construction technology and techniques, and construction management — part and parcel of the Tech program.

INDUSTRIAL DESIGN

Industrial Design concentrates on the form and function of the many articles manufactured for home and industrial uses. Students in this field must learn to recognize and satisfy the human needs that must be filled by their products. The curriculum reflects this variety of needs by demanding courses ranging from design to psychology.
BIOLOGY
Continuing the expansion of the last several years, the School of Biology has concentrated its efforts on improving the curriculum and on instituting a Ph.D. program in the near future. Research, especially in the areas of environmental impact, plays a major role in the school. Presently, it is working with the Florida Power and Light Company to test the effects of thermal pollution. But all research is not restricted to this field. In a more exotic area, Dr. Hubbard is studying the possibilities of life on Mars.

AIR FORCE
The Air Force ROTC program at Georgia Tech is a challenging experience for men and women of all disciplines and interests. The program prepares students in the fields of Air Force history and organization, political science, and management. These studies lead to a commission upon graduation and entry into the Air Force in a variety of career areas. AFROTC hosts a 4-year program for entering freshmen and a three or two-year program for more advanced students. In addition to academic instruction, the corps features a leadership laboratory as well as intramural sports and social activities. Participation across a wide range of curricular and extra-curricular activities prepares all officer candidates for eventual duty in the U.S. Air Force.

ENGLISH
In required courses and in a variety of electives, the English Department guided Tech students in increasing their ability to write precisely and cogently, to speak clearly and persuasively, and to read with understanding and pleasure.

The Department strives to make all its offerings add a refreshing dimension to the specialized character of the science, engineering, and management curricula predominant on the Tech campus.

This year saw the end of Dr. David E. Comer’s long service to the school: a head of the English Department for the past seven years and as a professor since 1937. Under his guidance, emphasis on the mechanics of grammar has given way to popular electives ranging from science fiction to the Bible.

CHEMISTRY
The undergraduate curriculum in Chemistry was designed to meet the needs of students who will seek employment as B.S. chemists, students who will enter medical schools, and students who will seek advanced degrees in chemistry. The curriculum provides a strong common background and considerable flexibility through electives. The program is continually reviewed and revised to keep up with new developments and new directions in industry, medicine, and basic research.
Cyber — 70 Arrives at ICS

INFORMATION AND COMPUTER SCIENCES

To most engineering students, the word "computer" refreshes the despised memory of long nights spent running programs to compute such fascinating material as bowling scores. However, Georgia Tech's School of Information and Computer Science bears little resemblance to this popular conception. Established in 1963 with the sponsorship of the National Science Foundation, it was the world's first academic program in information science. Today, ICS remains among the largest computer science schools in the United States. Its rapid growth has reflected the increasing importance of computers in business, government, and industry. With the replacement during spring of the Univac 1108 by a Cyber 70, the school has continued to expand the resources it offers to both students and the engineering community.

MATHEMATICS

The School of Mathematics at Georgia Tech offers a curriculum that has appeal to both the practical-minded student and the student with a theoretical bend. Logic, algebraic structures, and topology courses satisfy those with an interest in "purer" mathematics; transform, analysis, and statistics courses cater to those interested in applications. Indeed, this latter class included almost all of the student body, for as the forefront of technology becomes increasingly distant, the Math Department makes sure that every Georgia Tech engineer has the tools to reach and perhaps even further it.
Geophysical Science Curriculum Expands

GEOPHYSICAL SCIENCES

The School of Geophysical Sciences is attempting to increase the exposure of its undergraduate curriculum. To accomplish this, the Bachelor of Science program is operated in conjunction with the Schools of Chemistry, Physics, and Chemical Engineering. Of special interest to the students is the program in oceanography. The school works with the Skidway Institute of Oceanography in providing an opportunity for students interested in this field to spend time studying at Skidway Island on the Georgia Coast.

MILITARY SCIENCE

Army ROTC continues to prepare Georgia Tech men, and a growing number of women, for commissions in the United States Army and Army Reserve. The department's curriculum and programs have been revised and expanded to offer several options for cadets to fulfill requirements for a commission. Leadership development remains a primary objective of Army ROTC and today's ROTC graduate is more well rounded and better prepared than ever before for leadership in a modern society.

MODERN LANGUAGE

Fall enrollment in Modern Languages saw a fifty percent increase over last year. In one new course, students who speak a foreign language learn professional procedures of translating, interpreting, and tutoring. In another, they learn techniques of foreign language drama presentation. The department anticipates offering a minor in language study in the near future which will integrate language with the student's major and make it possible for him to interact with his discipline on an international basis.

MUSIC

The existence of the Department of Music remains unknown to most students. However, in order to reflect the increasing importance of music on campus, the department was created to give course credit to band and Glee Club members and to expand the programs of these organizations. With headquarters now in the renovated Couch School, the department has at last been able to move from decrepit practice areas in the old YMCA and Church of God buildings. This year, the Music Department came under the directorship of Dr. E. Bridges, previously on staff at the University of Georgia.

NAVAL ROTC

The NROTC program at Georgia Tech enables men and women to qualify as commissioned officers in the U.S. Navy and Marine Corps upon graduation. Courses are taken to familiarize the perspective officer with the Naval environment and role in national security.

ABOVE, FAR RIGHT: Modern Language lab.
BOTTOM, FAR RIGHT: AROTC "Slide for Life."
RIGHT: Language Lab.
Under New Directorship

Music Department
Under New Directorship
PHYSICAL EDUCATION

During the past year the Department of Physical Education and Recreation continued to provide the best possible services to the Georgia Tech community within the framework of its limited resources. Enrollments in all credit courses have been steadily increasing, and participation in the intramural program was at an all time high this year. Completion of the SAC 70 Complex in the near future will provide the needed environment to allow the Department to expand all phases of its instructional and recreational programs.

PHYSICS

The School of Physics has recently embarked on two new degree programs — B.S. and M.S. in Applied Physics. The programs are designed to recognize the different career objectives of physics majors. The implementation of the new programs is receiving national recognition in the physics community. Biophysics is an increasingly popular option among students, and Georgia Tech has been fortunate in attracting some outstanding faculty in this emerging area.

PSYCHOLOGY

Relatively new at Georgia Tech, the School of Psychology is continuing to expand its curriculum. In order to attract students, the school offers three flexible options with an abundance of electives. And for the average student, surveying and testing one’s friends makes psychology courses popular.

SOCIAL SCIENCE

History, philosophy and history of science, political science, and sociology are the four disciplines from which coursework is drawn for the Department of Social Sciences. Each teaches the student how to temper a technical education with consideration of ethical, philosophical, and historical issues and to cultivate a critical awareness and perspective on problems that arise between society and its developing technology.

ABOVE LEFT: Dr. Thorton lectures social science class. ABOVE CENTER: Physical Education class. ABOVE RIGHT: Psychology experiment. RIGHT: Physics research. FAR RIGHT: Sophomore physics lab.
Offering courses in management, management science, and economics, the College of Industrial Management continues to attract a large proportion of students. Each of these programs offers the student a large degree of flexibility. Courses in the humanities, science, and social sciences are required to complement those in business and management. With such courses as accounting, computer applications, and marketing, the curriculum does not match its supposed ease.

In this year, however, the Industrial Management College did suffer a setback by again failing to obtain approval for their own building. Although a large proportion of the student body is enrolled in this college, the undergraduates still remain on two floors of Skiles.
Solar Energy: Power for the Future

With mirrors, reflectors, and solar collectors sprouting from the roofs of its academic buildings, Georgia Tech has become one of the largest participants in solar energy research in the country. Grants from the federal government and cooperation from private industry have caused over fifteen projects to proliferate, making this area of research the most dominant on campus.

The individual projects range from generating electricity from sunlight to increasing greenhouse efficiency. With assistance from the School of Aerospace Engineering, a heating and cooling system using solar energy for power was designed for Towns Elementary School. The Mechanical Engineering school has developed such facilities for the Shenandoah City project. In the near future, the world’s largest solar energy steam generator will be built in the area behind the physics building for the continuation of these research endeavors.
ANAK
HIGHEST SENIOR HONORARY

Selection to ANAK is the highest honor a student can receive while at Georgia Tech. Founded in 1908, ANAK recognizes student leaders who have made outstanding contributions to Tech. Students are chosen on the basis of their leadership abilities, personal achievement, and strong character.

Wally Bloom
Dave Dinkins
Steve Fox
Robert Kennedy
Henry Paris
Clint Tompson
Bruce Toth
Jim Winters

Order of Omega
FRATERNITY HONORARY

The Order of Omega was established to recognize outstanding leadership in IFC activities. Junior and Senior fraternity and sorority members are chosen on the basis of high leadership qualities and academic achievement.

Jennie Lee Colosi
Dean Alford
Ken Box
Jan Keoning
Cathy Mohun
Gary Reed
Sue Sikora
Jim Winters
Beau Armsstead
Frank Cook
George Fricks
Mike Jordan
Steve Mahan
Cathy Simmons
Scott Strickland
Jim Dull
Jimm Dodd
Carmen Pinette
Omicron Delta Kappa National Leadership Honorary was founded in 1914 at Washington and Lee University. The Alpha Eta Circle of ODK was founded at Georgia Tech on May 28, 1930.

The purpose of Omicron Delta Kappa is to recognize individuals who have attained a high standard of leadership in college activities. Membership is based on achievement in five areas: scholarship, athletics, social services, journalism, and the creative and performing arts. To qualify for membership, students must have a Junior or Senior standing with at least a 2.8 GPA.

Omicron Delta Kappa
NATIONAL LEADERSHIP HONORARY

Carol A. Burtz Ray Campbell Steven Fox

Colleen M. Hogan William W. Kaduck Robert Kennedy Robert C. Moeller

Dianna Shelander Clinton Thompson Bruce A. Toth James W. Winters

NOT PICTURED: Preston Campbell Alexander T. Hunt
Phi Eta Sigma
FRESHMAN SCHOLASTIC HONORARY

Phi Eta Sigma is a national college scholastic honor society for freshmen. Founded at the University of Illinois on March 22, 1923, Phi Eta Sigma's Georgia Tech Chapter was chartered on January 7, 1930. The goal is to encourage and reward high scholastic attainment among freshmen in institutions of higher learning. All students who attain a grade point average of 3.5 or better during the first quarter of the freshman year or who attain a 3.5 average or better after three freshman quarters are eligible to join.

Julia M. Adkins
Thomas N. Albright
Kevin B. Atkinson
Calvin H. Babcock
Lisa Barnhart
Benjamin G. Beasley
Robert F. Bell, Jr.
Eric C. Berkin
Mary Jayne Bizub
Bryant D. Blansit
Charles R. Blaylock
Robert E. Blyth, Jr.
Nanette E. Bordeaux
Jacquelynn K. Bosley
Kevin C. Boteler
Patsy I. Braden
Barry J. Brown
Carolyn R. Brown
Catherine J. Bruner
Frank T. Campos
Robert J. Christiansen
Roy W. Chu
Michael C. Cook
Edward T. Corn
Daniel H. Craft
Lindsay J. Crawford, III
Robert G. Crouch
Stephen A. Davisin
Ralph L. Day
Peter H. Decher
Michael R. DeFatta
Kenneth A. Domeshek
Irene G. Doris
Kenneth R. Drake
Robert W. Elder
David H. Ellison
David B. Etzkorn
David W. Faasse
Thomas A. Fanning
Thomas J. Farish
Kendall T. Faulk
Manuel F. Fernandez
Joel F. Finley
Eugene P. Foeckler, Jr.
Robert M. Ford
Michael L. Fuller

John T. Gentry
John A. Gibby
Sandra A. Gould
S. Gordon Green, Jr.
James T. Grosch
William K. Haley
Kenneth S. Hall
Jenny L. Ham
James F. Hansley, Jr.
John A. Harsch
Marsha A. Hartman
William G. Hartman
Joseph F. Hartwood
Robert S. Hasty
Lynne C. Hoatson
George R. Hovanec
Lester D. Howell
Fred S. Hybart
Richard B. Jacobs
Elizabeth S. Jarnagin
George J. Kafetzakis
Michelle Kascak
Samuel B. Kemp
Scott B. Laible
Nancy F. Lazarus
Charles A. Lindsey
Robbin A. Little
Richard A. Luettich, Jr.
Don E. Lundkovsky
Michael D. Mathney
Ralph B. Merck
John T. Milloway, III
Peter A. Minderman, Jr.
Robert P. Mobley
Gerald L. Moody, Jr.
James A. Musser
Ricky W. Oakley
Steven R. Oliver
Philip A. Opsal
James S. Patton
Wesley G. Petty
George C. Pippis
John R. Proctor
Charles J. Pruszynski
Joseph T. Putnal, III
William A. Pye

Robert L. Rabun, III
Ansley E. Ray
Mickey R. Reynolds
Udp P. Rodermann
Ned E. Rossetti
Eva M. Rovira
Linda J. Ruis
Jonathan M. Rutland
Paul E. Samson
Mark S. Sanchez
Brent A. Saylor
Ross D. Schlueter
Richard C. Schnorf, Jr.
Michael W. Shannon
Laura S. Short
David C. Silker
Cindy E. Smith
Douglas W. Smith
Brenda C. Snead
Walter H. Stamper, III
Michael E. Stanley
Philip A. Staton
Michael R. Stevens
Laird P. Steverango
David R. Sutton
Doyle B. Thompson
Robert P. Thorn, Jr.
Steven A. Touchton
Carlisle C. Trimble
Richard E. Uhlmam, Jr.
Ronald A. Veith
George P. Walker
Thomas M. Ward, II
John T. Watson, III
David L. Watts
John M. Weil
Robert M. Welch, Jr.
Arthur W. Wiggins, Jr.
Franklin P. Williams
Tricia D. Williamson
Michael F. Williamson
Kel D. Winters
Don W. Woodward
James D. Woomer
Linda S. Worsham
Scott Paul Wuerfel
Scabbard and Blade
MILITARY HONORARY

The National Society of Scabbard and Blade was founded in the early 1900's to honor cadets and midshipmen in the Army and Navy Reserve Officer Training Corps units on college campuses. With the initiation of the Air Force as a separate service after World War II, cadets in Airforce ROTC also became eligible. Scabbard and Blade is open to upper-class men and women in these various ROTC units. The cadet or midshipman must be nominated by his commanding officer and then must pass a strict screening by current members in order to be initiated.

The activities of Scabbard and Blade at Georgia Tech include providing assistance in organizing the annual Tri-Service Military Ball and directing a speaker program for cadets and midshipmen.

H. Allen Boyd
K. Scott Brandenburg
Timothy A. Carrigan
Gary Crews
Bernard L. Flank
Carl Froehlich
Robert A. Frost
Edwin G. Fulkerson
William P. McBride

Richard Ostrander
Joseph Price
James Tahler
David J. Shaw
John T. Sweat
James Tahler
Thomas A. Tullia
Charles T. White

Briaerean Society
CO-OP SCHOLASTIC HONORARY

The Briaerean Society is officially designated as an honorary society for the co-operative students of Georgia Tech. To be eligible for election to membership in the society, a student must have an overall scholastic average of at least 3.0 and must have completed five quarters or more of academic study in the co-operative department.

William Askew
Marion Berryman
Peter Berzanski
David Bullen
Thomas Champion
Michael Duling
William Dunn
Paul d'Entremont
Steve Farrow
David Flanagan
Martine Flanagan
Thomas Garrett
Charles Harris

Mike Jobe
Michael Kaplan
James Keba
Bruce Kelly
David Lefebvre
Harold Lindsey
Steve Lubs
Robert Maddox
Wayne McGinnis
Wayne Moore
Patrick O'Rourke
Richard Rogers
Russell Rose

George Rosenberger
Arthur Smart
Barry Smith
Paul Springer
Mitchel Teague
Clint Thompson
Michael Thurmond
Karl Weidner
G. R. Wetherington
Thomas Wilhite
Henry Williams
Max Williams
Donald Wood

Founded at Georgia Tech on July 16, 1922, the Briaerean Society is the oldest co-operative honorary society in existence. Present campus activities include tutoring freshmen during summer, mailing Techniques to co-op students on work quarter, and aiding the Co-op Club in campuswide entertainment activities.
The Georgia Tech Chapter of Phi Kappa Phi was established in 1914, as the twelfth chapter of the national organization.

The purpose of this honor society is the recognition and encouragement of superior scholarship in all academic subjects. Although good character is an essential supporting requirement, the principal basis for electing students to membership is academic achievement. In addition, students elected must be in the upper ten percent of their class.

Gary L. Allman
Sharon M. Bailey
Warren E. Bedell
Robert D. Bernstein
Donald K. Berry
Lynne H. Bollinger
James L. Bouldin
Joy L. Bouldin
Roger B. Bryant
John T. Butler
Kevin R. Cantley
James A. Classen
Douglas E. Cobb
William A. Conley
Phillip H. Cook
Jack H. Corley
Joseph M. Craven
Carolyn R. Crawley
Alan D. Davis
Richard L. Davis
Thomas J. Dempsey
John P. Duke
Dwight E. Duncan
Clarence Dwiggin
Jr.
Greg M. Dyches
Abbas Emami-Naeini
John W. Endsly
Margaret L. Fisher
Bernard L. Flann
Arthur Flatau
Sanford L. Fleisher
Carl E. Flinn
James P. Gammanas
Richard L. Gilbert Jr.
Gary G. Ghormley
William H. Green
Dan P. Griggs

Timoth M. Gunn
David H. Hafner
Douglas D. Hamilton
John A. Harris
Steven L. Harris
James M. Hatfield
Jerry H. Heaton
Gary L. Heoing
Michael E. Hoffman
Colleen M. Hogan
David A. Hood
Deryl W. Israel
Terry C. Jackson
Barbara A. Jaindl
Richard S. John
William W. Kaduck Jr.
Jan A. Koenig
Marc J. Kornfield
Wade A. Krull
Cristopher P. Kurt
Thomas D. Lee
David M. Lefebvre
Stephen T. Linskey
Donald K. Lorenzo
Wayne C. McGinnis
Mary E. Metzler
Eddy P. Minchew
Edward J. Miron
C. Thomas Morrison
James W. Niehoff
David B. O'Neal
R. J. Ostrander Jr.
H. R. Pagano Jr.
Steve N. Payne
David A. Phillips
William T. Rainey III
Edward T.

Rasmussen
Thomas W. Rogers
Dan E. Rowe
H. F. Sakalauks Jr.
Milton O. Schreiber
Cliffrd P. Settle
Stuart B. Shacter
Barry R. Sharp
Soren Shia
Mark Shropshire
Barry C. Smith
Martin K. Smith
Edward O. Sopher
Michael A. Staiger
Arthur W. Stelson
Michael W. Tabb
Ronny L. Taff
James W. Tahler
Samuel W. Thomas
Clinton E. Thompson
Charles P. Tidd
Bruce A. Toth
Deborah L. Wagnon
B. A. Waterworth
Ronald M. Watts
Thomas A. Weber
Robert S. Weir
Wilbur A. Wenger Jr.
William R. Westbrook
Norman K. Whitaker
Charles T. White
Paula F. Winn
Gregg D. Wilensky
Donald A. Wood Jr.
Elinor J. Workman
Frank E. Wyatt
Who's Who Among Students in American Universities and Colleges has provided national recognition for outstanding campus leaders since 1934. Selected by a committee of administration, faculty, and students, the nominees are judged on academic standing, service to community, and leadership in extracurricular activities. Candidates must be college seniors, juniors, or graduate students in a four year undergraduate institution or graduate school.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth Lee Box</td>
<td>Mark Jensen Henly</td>
<td>Arthur John Schroeder, Jr.</td>
</tr>
<tr>
<td>Herchell Allen Boyd</td>
<td>Colleen Mary Hogan</td>
<td>Martin Keith Smith</td>
</tr>
<tr>
<td>Sidney Thomas Burns, Jr.</td>
<td>Lee Allen Martin</td>
<td>Robin Patricia Steel</td>
</tr>
<tr>
<td>Carol Ann Burtz</td>
<td>Robert Charles Moeller</td>
<td>Clinton Earl Thompson</td>
</tr>
<tr>
<td>John Thomas Butler</td>
<td>Walter Frederick Morrison</td>
<td>Frank Amos Thompson</td>
</tr>
<tr>
<td>N. Regan Campbell, Ill</td>
<td>Richard James Ostrander, Jr.</td>
<td>Bruce Alan Toth</td>
</tr>
<tr>
<td>Dawn Marie Carrico</td>
<td>David Calin Paris, Jr.</td>
<td>Robert Austin Vogel</td>
</tr>
<tr>
<td>Myron Edward Desing, Jr.</td>
<td>Diana Marie Percich</td>
<td>Thomas A. Weber</td>
</tr>
<tr>
<td>Carl Edwin Flinn</td>
<td>David Randolph Pierson</td>
<td>Pamela Kaye Wilkinson</td>
</tr>
<tr>
<td>Steven William Fox</td>
<td>William Thomas Rainey</td>
<td>James William Winters</td>
</tr>
<tr>
<td>Victoria M. Gordon</td>
<td>Donna Ruth Rambo</td>
<td>Scott Bryan Zolke</td>
</tr>
<tr>
<td>Dan Philip Griggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tau Beta Pi</td>
<td></td>
</tr>
<tr>
<td>Tau Beta Pi was founded at Lehigh University in 1885 by Dr. Edward Higin-</td>
<td>the top eighth of their class in their junior year, or the top fifth in their senior year</td>
<td>the highest engineering honorary</td>
</tr>
<tr>
<td>son Williams, J.R., to encourage and recognize superior scholarship,</td>
<td>are eligible for membership consideration. They are further judged for personal integrity and breadth of interest both inside and outside of engineering.</td>
<td></td>
</tr>
<tr>
<td>leadership and achievement. Undergraduate students whose scholarship places them in</td>
<td></td>
<td>James E. Arnold</td>
</tr>
<tr>
<td>John P. Duke</td>
<td>Jon D. Jeffries</td>
<td>Norman J. Bau</td>
</tr>
<tr>
<td>Weyman H. Dunaway, Jr.</td>
<td>Foy E. Johnston</td>
<td>Brent E. Beasley</td>
</tr>
<tr>
<td>Thomas K. Duncan</td>
<td>Virginia Jory</td>
<td>John Beath</td>
</tr>
<tr>
<td>James W. Dunlap</td>
<td>William W. Kaduck, Jr.</td>
<td>Robert D. Bernstein</td>
</tr>
<tr>
<td>Greg M. Dyches</td>
<td>Jan A. Koenig</td>
<td>Lynne H. Bollinger</td>
</tr>
<tr>
<td>Abbas Emani-Naeini</td>
<td>Marc J. Kornfield</td>
<td>James L. Bouldin</td>
</tr>
<tr>
<td>Bernard L. Flank</td>
<td>Donald K. Lorenzo</td>
<td>Roger B. Bryant</td>
</tr>
<tr>
<td>James P. Gammans</td>
<td>Steven A. Lubs</td>
<td>David L. Bullen</td>
</tr>
<tr>
<td>Richard L. Gilbert, Jr.</td>
<td>James D. Marr</td>
<td>Michael B. Burke</td>
</tr>
<tr>
<td>James W. Gore</td>
<td>Wallace S. McLemore</td>
<td>Anne J. Bushyhead</td>
</tr>
<tr>
<td>Dan P. Griggs</td>
<td>Eddie P. Minchew</td>
<td>John T. Butler</td>
</tr>
<tr>
<td>Timothy M. Gunn</td>
<td>William J. Minschwaner</td>
<td>Dennis C. Byrd</td>
</tr>
<tr>
<td>Paul A. Hakemenwerth</td>
<td>Edward J. Miron</td>
<td>Laurence G. Byrnes</td>
</tr>
<tr>
<td>Steven L. Harris</td>
<td>Richard Myers</td>
<td>Glenn N. Caplin</td>
</tr>
<tr>
<td>Thomas C. Harter</td>
<td>R. J. Ostrander, Jr.</td>
<td>David B. Chastani</td>
</tr>
<tr>
<td>James M. Hatfield</td>
<td>Harkan E. Pettit</td>
<td>Fred L. Cox</td>
</tr>
<tr>
<td>Jerry H. Heaton</td>
<td>William T. Rainey, Ill</td>
<td>Bruce R. Dabbs</td>
</tr>
<tr>
<td>Veldon D. Holaday, Jr.</td>
<td>Edward T. Rasmussen</td>
<td>Alan D. Davis</td>
</tr>
<tr>
<td>David A. Hood</td>
<td>Rand Renfroe</td>
<td>Paul D. Dentremont</td>
</tr>
<tr>
<td>James P. Hulsey</td>
<td>Mario R. Rodriguez</td>
<td>Myron E. Desing, Jr.</td>
</tr>
<tr>
<td>Carlos A. Isaza</td>
<td>Thomas W. Rogers</td>
<td>John B. Draper, Jr.</td>
</tr>
<tr>
<td>Deryl W. Israel</td>
<td>George Rosenberger</td>
<td></td>
</tr>
</tbody>
</table>