DEGREES

The Georgia Institute of Technology at present offers curricula leading to the following degrees which are shown in the order of the establishment of the school in which the work is given:

Undergraduate Degrees

- Bachelor of Mechanical Engineering
- Bachelor of Electrical Engineering
- Bachelor of Civil Engineering
- Bachelor of Textile Engineering
- *Bachelor of Science in Textile Chemistry
- Bachelor of Science in Textiles
- Bachelor of Chemical Engineering
- Bachelor of Science in Chemistry
- *Bachelor of Architecture
- Bachelor of Ceramic Engineering
- Bachelor of Aerospace Engineering
- Bachelor of Science in Industrial Management
- Bachelor of Science in Physics
- Bachelor of Industrial Engineering
- Bachelor of Science in Applied Mathematics
- *Bachelor of Science in Building Construction
- *Bachelor of Science in Industrial Design
- Bachelor of Science in Engineering Mechanics
- Bachelor of Science in Applied Psychology
- *Bachelor of Science in Applied Biology

To graduates who have completed their courses under the Cooperative Plan, the degree is awarded with the designation "Cooperative Plan."

Graduate Degrees

The degree of Master of Science (with or without designation) is offered in all fields shown above (with the exception of those marked*) and also in:

- Information Science
- Metallurgy
- Nuclear Engineering
- Nuclear Science
- Public Health
- Public Health Engineering
- Safety Engineering
- Sanitary Engineering

Also offered are the degrees:

- Master of Architecture
- Master of City Planning

The degree of Doctor of Philosophy is offered in:

- Aerospace Engineering
- Chemical Engineering
- Chemistry
- Civil Engineering
- Electrical Engineering
- Engineering Mechanics
- Industrial Engineering
- Mathematics
- Mechanical Engineering
- Nuclear Engineering
- Physics
- Sanitary Engineering
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees</td>
<td>3</td>
</tr>
<tr>
<td>Calendar of Events</td>
<td>6</td>
</tr>
<tr>
<td>Board of Regents</td>
<td>8</td>
</tr>
<tr>
<td>Administration</td>
<td>9</td>
</tr>
<tr>
<td>General Information</td>
<td>17</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>17</td>
</tr>
<tr>
<td>Summary of Expenses</td>
<td>28</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>35</td>
</tr>
<tr>
<td>Air Science</td>
<td>42</td>
</tr>
<tr>
<td>Applied Biology</td>
<td>46</td>
</tr>
<tr>
<td>Architecture</td>
<td>51</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>63</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Chemistry</td>
<td>79</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>85</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>94</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>101</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>103</td>
</tr>
<tr>
<td>English</td>
<td>110</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>121</td>
</tr>
<tr>
<td>Information Science</td>
<td>132</td>
</tr>
<tr>
<td>Mathematics</td>
<td>134</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>142</td>
</tr>
<tr>
<td>Military Science</td>
<td>150</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>158</td>
</tr>
<tr>
<td>Music</td>
<td>165</td>
</tr>
<tr>
<td>Naval Science</td>
<td>167</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>173</td>
</tr>
<tr>
<td>Physical Training</td>
<td>175</td>
</tr>
<tr>
<td>Physics</td>
<td>178</td>
</tr>
<tr>
<td>Psychology</td>
<td>186</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>191</td>
</tr>
<tr>
<td>Textiles</td>
<td>195</td>
</tr>
<tr>
<td>Co-operative Division</td>
<td>204</td>
</tr>
<tr>
<td>Graduate Division</td>
<td>206</td>
</tr>
<tr>
<td>Engineering Experiment Station</td>
<td>210</td>
</tr>
<tr>
<td>Engineering Extension Division</td>
<td>212</td>
</tr>
<tr>
<td>Student Health Service</td>
<td>218</td>
</tr>
<tr>
<td>Library</td>
<td>221</td>
</tr>
<tr>
<td>Water Resources Center</td>
<td>223</td>
</tr>
<tr>
<td>Dean of Students</td>
<td>224</td>
</tr>
<tr>
<td>Student Activities</td>
<td>225</td>
</tr>
<tr>
<td>Scholarships and Loan Funds</td>
<td>232</td>
</tr>
<tr>
<td>Medals and Prizes</td>
<td>245</td>
</tr>
<tr>
<td>Athletics</td>
<td>250</td>
</tr>
<tr>
<td>Alumni</td>
<td>252</td>
</tr>
<tr>
<td>Georgia Tech Foundation, Inc.</td>
<td>254</td>
</tr>
<tr>
<td>Administrative Council</td>
<td>256</td>
</tr>
<tr>
<td>Faculty</td>
<td>259</td>
</tr>
<tr>
<td>Alphabetical Index</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>1965</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td>1966</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td>1967</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

CALENDAR 1965-66

Summer Quarter 1965

- **June 25**: New students report for orientation.
- **June 28**: Registration.
- **June 29**: Classes begin.
- **June 30**: Late registration fees apply.
- **July 2**: Last day for registration. Last day for adding a subject.
- **July 5**: Holiday.
- **July 6**: Last day for payment of tuition and fees.
- **July 19**: Last day for dropping a subject without penalty.
- **Aug. 6**: End of deficiency report period.
- **Sept. 10**: End of term.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 13</td>
<td>Summer Surveying Course, first session starts.</td>
</tr>
<tr>
<td>July 10</td>
<td>Summer Surveying Course, first session ends.</td>
</tr>
<tr>
<td>July 11</td>
<td>Summer Surveying Course, second session starts.</td>
</tr>
<tr>
<td>Aug. 7</td>
<td>Summer Surveying Course, second session ends.</td>
</tr>
</tbody>
</table>

Fall Quarter 1965

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 20</td>
<td>All entering freshmen report for orientation.</td>
</tr>
<tr>
<td>Sept. 23</td>
<td>Transfer students report for schedule conferences.</td>
</tr>
<tr>
<td>Sept. 27</td>
<td>Registration.</td>
</tr>
<tr>
<td>Sept. 28</td>
<td>Classes begin.</td>
</tr>
<tr>
<td>Sept. 29</td>
<td>Late registration fees apply.</td>
</tr>
<tr>
<td>Oct. 1</td>
<td>Last day for registration. Last day for adding a subject.</td>
</tr>
<tr>
<td>Oct. 4</td>
<td>Last day for payment of tuition and fees.</td>
</tr>
<tr>
<td>Oct. 18</td>
<td>Last day for dropping a subject without penalty.</td>
</tr>
<tr>
<td>Nov. 5</td>
<td>End of deficiency report period.</td>
</tr>
<tr>
<td>Nov. 25-28</td>
<td>Thanksgiving recess.</td>
</tr>
<tr>
<td>Dec. 17</td>
<td>End of term.</td>
</tr>
<tr>
<td>Dec. 18</td>
<td>Christmas recess.</td>
</tr>
</tbody>
</table>

Winter Quarter 1966

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 3</td>
<td>Registration.</td>
</tr>
<tr>
<td>Jan. 4</td>
<td>Classes begin.</td>
</tr>
<tr>
<td>Jan. 5</td>
<td>Late registration fees apply.</td>
</tr>
<tr>
<td>Jan. 7</td>
<td>Last day for registration. Last day for adding a subject.</td>
</tr>
<tr>
<td>Jan. 10</td>
<td>Last day for payment of tuition and fees.</td>
</tr>
<tr>
<td>Jan. 24</td>
<td>Last day for dropping a subject without penalty.</td>
</tr>
<tr>
<td>Feb. 11</td>
<td>End of deficiency report period.</td>
</tr>
<tr>
<td>Mar. 18</td>
<td>End of term.</td>
</tr>
</tbody>
</table>

Spring Quarter 1966

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 28</td>
<td>Registration.</td>
</tr>
<tr>
<td>Mar. 29</td>
<td>Classes begin.</td>
</tr>
<tr>
<td>Mar. 30</td>
<td>Late registration fees apply.</td>
</tr>
<tr>
<td>Apr. 1</td>
<td>Last day for registration. Last day for adding a subject.</td>
</tr>
<tr>
<td>Apr. 4</td>
<td>Last day for payment of tuition and fees.</td>
</tr>
<tr>
<td>Apr. 18</td>
<td>Last day for dropping a subject without penalty.</td>
</tr>
<tr>
<td>May 6</td>
<td>End of deficiency report period.</td>
</tr>
<tr>
<td>June 10</td>
<td>End of term.</td>
</tr>
<tr>
<td>June 11</td>
<td>Commencement.</td>
</tr>
</tbody>
</table>

Summer Quarter 1966

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 27</td>
<td>Registration.</td>
</tr>
<tr>
<td>June 28</td>
<td>Classes begin.</td>
</tr>
<tr>
<td>Sept. 9</td>
<td>End of term.</td>
</tr>
<tr>
<td>June 12</td>
<td>Summer Surveying Course, first session starts.</td>
</tr>
<tr>
<td>July 9</td>
<td>Summer Surveying Course, first session ends.</td>
</tr>
<tr>
<td>July 10</td>
<td>Summer Surveying Course, second session starts.</td>
</tr>
<tr>
<td>Aug. 6</td>
<td>Summer Surveying Course, second session ends.</td>
</tr>
</tbody>
</table>
The University System of Georgia

BOARD OF REGENTS

S. WALTER MARTIN, Acting Chancellor, Atlanta, Georgia

*JAMES A. DUNLAP, Gainesville, State-at-Large
 (Feb. 19, 1960-Jan. 1, 1967)

JACK ADAIR, Atlanta, State-at-Large
 (Jan. 13, 1965-Jan. 1, 1971)

ROY V. HARRIS, Augusta, State-at-Large
 (Feb. 19, 1960-Jan. 1, 1967)

DR. JOHN A. BELL, JR., Dublin, State-at-Large

CAREY WILLIAMS, Greensboro, State-at-Large

ANTON F. SOLMS, JR., Savannah, First Dist.

JOHN I. SPOONER, Donalsonville, Second Dist.
 (Jan. 1, 1961-Jan. 1, 1968)

T. HIRAM STANLEY, Columbus, Third Dist.
 (Jan. 13, 1965-Jan. 1, 1971)

H. G. PATTILLO, Decatur, Fourth District
 (Feb. 5, 1965-Jan. 1, 1970)

JESSE DRAPER, Atlanta, Fifth Dist.
 (Jan. 1, 1961-Jan. 1, 1968)

JAMES C. OWEN, JR., Griffin, Sixth Dist.
 (Feb. 5, 1965-Jan. 1, 1971)

ERNEST L. WRIGHT, Rome, Seventh Dist.
 (Feb. 6, 1959-Jan. 1, 1966)

JOHN W. LANGLEY, Valdosta, Eighth Dist.
 (Jan. 13, 1964-Jan. 1, 1971)

MORRIS M. BRYAN, JR., Jefferson, Ninth Dist.
 (Feb. 3, 1959-Jan. 1, 1966)

G. L. DICKENS, JR., Milledgeville, Tenth Dist.
 (Feb. 5, 1965-Jan. 1, 1972)

LEONARD ROBERT SIEBERT, Executive Secretary, Atlanta, Georgia

JAMES A. BLISSIT, Treasurer, Atlanta, Georgia

J. H. DEWBERRY, Director, Plant and Business Operations,
 Atlanta, Georgia

**JOHN E. SIMS, Assistant to Chancellor, Atlanta, Georgia

DR. JOHN R. HILLS, Director of Testing and Guidance, Atlanta, Georgia

*Chairman
**On leave.
ADMINISTRATION

Office of the President
EDWIN DAVIES HARRISON, Ph.D.
President

ELIZABETH KOENIG
Executive Secretary

JANICE GOSDIN, B.S.
Senior Secretary

Office of Development
JOE W. GUTHRIDGE, B.S.
Assistant to the President,
Director of Development

CLYDE D. ROBBINS, M.C.P.
Campus Planner

ELOISE FOWLER, A.B.
Principal Secretary

Office of the Dean of Faculties
PAUL WEBER, Ph.D.
Dean of Faculties

DORIS M. DEAN
Administrative Secretary

MARIO J. GOGLIA, Ph.D.
Associate Dean of Faculties

ROBERT E. STIEMKE, M.S.
Associate Dean of Faculties

NORMA P. MANLEY, A.B.
Assistant to Director of Evaluation Studies

The Graduate Division
MARIO J. GOGLIA, Ph.D.
Dean of the Graduate Division

Engineering College
JESSE W. MASON, Ph.D.
Dean of Engineering College

ROCKER T. STATON, JR., Ph.D.
Associate Dean (Academic)

THOMAS W. JACKSON, Ph.D.
Associate Dean (Research)

MRS. FRANCES NORTON
Administrative Assistant

MRS. JOYCE B. CALDWELL
Principal Secretary

MRS. ESTHER OSMAN
Senior Secretary

General College
RALPH A. HEPNER, Ph.D.
Dean of the General College

MRS. LOCKIE MORTON
Administrative Secretary

Administrator of Research
ROBERT E. STIEMKE, M.S.
Administrative of Research

M. J. HELMS, M.S.
Assistant to the Administrator

ANN F. EDWARDS
Administrative Secretary

Engineering Experiment Station
WYATT C. WHITLEY, Ph.D.
Director

MRS. CLAUDINE TAYLOR
Administrative Secretary

HOWARD E. BEDELL, M.S.
Assistant to the Director

MRS. BETTY C. YARBOROUGH, B.S.
Principal Secretary

Co-operative Division
JAMES GORDON WOHLFORD, M.S.
Director of Co-operative Division

Army R.O.T.C.
COLONEL C. B. DRENNON, JR., B.S.
Commandant

Air R.O.T.C.
LT. COLONEL ALEXANDER K. JOHNSON, B.S.
Commandant

Naval R.O.T.C.
CAPTAIN RICHARD HENRY WOODFIN,
B.S.
Commanding Officer

Office of the Dean of Students
JAMES E. DULL, M.Ed.
Acting Dean of Students

GEORGE C. GRIFFIN, M.S.
Dean of Students-Emeritus

Young Men's Christian Association
ROBERT CARLTON COMMANDER,
B.D.
General Secretary

Department of Health
JOHN B. RIGGSBEER, M.D.
Director of Health

LESLEY MORRIS, M.D.
Director of Health—Emeritus
Library

MRS. J. HENLEY CROSLAND
Certificate in Library Science
Director of Libraries

Department of Public Relations

FRED W. AJAX, A.M.
Director of Public Relations
A. P. DeRosa, B.I.E.
Placement Director

ROBERT B. WALLACE, Jr., B.S.
Publications Director

MARIAN VAN LANDINGHAM, M.A.
Science News Editor

JOSEPH TROWER, B.I.M.
Radio-TV News Editor

ALICE CHASTAIN
Administrative Secretary,
Public Relations

MARY JANE REYNOLDS
Senior Editorial Asst., Publications

JOYCE E. FOWLER
Editorial Assistant, Publications

MARY CARMICHAEL
Principal Secretary, Placement

MARY ALICE LESURE
Secretary, Placement

GLADELLE B. MONCRIEF
Clerk-Typist, Placement

Office of the Registrar

WILLIAM LAWSON CARMICHAEL,
M.S.
Registrar and Director of Admissions

ESTELLE ALLEN, B.C.S.
Associate Registrar (Retired)

HORACE W. STUROIS, Ph.D.
Associate Registrar

RICHARD J. MANLEY, B.C.S.
Statistician

NORMA M. JOHNSON, A.B.
Assistant Registrar

ROBERT B.. KIMMEL, B.S.
Assistant Registrar

FRANK E. ROPER, Jr., M.S.
Assistant Registrar

NEVA JOSEPHINE HESTER, B.B.A.
Assistant Registrar

VIRGINIA PEED
Secretary of the Registrar (Retired)

MARTHA GRANT
Senior Secretary

ISABEL W. MCBath
Senior Clerk

ALICE KEEL
Senior Clerk

BETTY SMITH
Senior Secretary

JAMES W. WOODS
Sr. Tabulating Equipment Operator

GERALD MCCRAVEY
Tabulating Equipment Operator

MARLINE TOLSON
Secretary

VIRGINIA L. TILLEY
Secretary

VICKI VOS KOETTER
Secretary

VONDERLEITH McWHIRTER
Clerk

RUTHIE PARDEN
Clerk

JANET STEPHENSON
Key Punch Operator

SUE FENN
Clerk

LINDA TOLLESON
Clerk-Receptionist

JUDITH CALHOUN
Clerk-Receptionist

FAY CRAWFORD
Clerk

Office of the Controller

JAMIE R. ANTHONY
Controller

EWELL I. BARNES, B.S.
Associate Controller

HARRY L. BAKER, B.S., L.L.B.
Assistant Controller

WILLIAM N. PERRY, B.S.C.
Chief Accountant

TONEY W. BRYANT, B.S.C.
Chief Accountant,
Engineering Experiment Station

JAMES L. JACKSON, B.S.
Procurement Officer

HOWARD J. FRETWELL, B.B.A.
Director of Non-Academic Personnel

MARTIN R. LYNN, B.B.A.
Internal Auditor

DANIEL P. TOMASULO
Payroll Supervisor

PAUL BLUMENSAADT, B.S.
Collections Supervisor

WALTER D. ADCOCK, B.B.A.
Accounts Payable Supervisor
ROYCE L. BRANDON, B.S.
Inventory and Machine Room Supervisor

EVERETT L. ALFORD
Senior Accountant

DANIEL B. CONNER, B.B.A.
Senior Accountant

BESSIE J. BAILEY
Senior Accountant

FURMAN L. EDMONDS, B.S.
Administrative Secretary

DORIS S. WILCOX
Principal Clerk

MARGARET A. SCHEIDLER, A.B.
Principal Clerk

Physical Plant
T. H. CUSHMAN, JR., M.C.E.
Director

DAVID O. SAVINI, B.S., B.A.
Campus Architect

PHILIP G. RECTOR, B.M.E.
Plant Engineer

R. A. HILL
Superintendent, Buildings and Grounds

ARTHUR S. HARRELL
Office Manager

MARY L. LINDHOLM
Secretary

W. HENRY FIELD
Assistant Superintendent, Maintenance

R. LAMAR VANCE
Assistant Superintendent, Operations

S. H. CULPEPPER, B.S.
Assistant Superintendent, Grounds

PHIL L. SLAUGHTER, B.S.
Accounting Clerk

HUBERT B. THOMAS
Cost Estimator

Auxiliary Services
ROBERT B. LOGAN
Director

NITA SUE LUND
Senior Secretary

T. H. EDWARDS
Manager, College Inn

FRANK B. WILSON, B.S.
Manager, Book Store

A. M. BARBER
Postmaster

C. W. BOYD
Director, Dining Halls

IRMA MORRIS
Married Housing

Security Department
M. M. COPPENGER
Captain

MARCELLE SIMPSON
Senior Clerk

Engineering Extension Division

Office of the Director
LAWRENCE V. JOHNSON, M.S.
Director

Continuing Education
RICHARD WIEGAND, M.A.
Director

Industrial Education
DALLAS B. COX, B.S.
Director

Southern Technical Institute
HOYT L. McCULRE, M.S.
Director

Alumni Relations
GEORGIA TECH NATIONAL ALUMNI ASSOCIATION
W. ROANE BEARD, B.S.
Executive Secretary

GEORGIA TECH FOUNDATION, INC.
JOE W. GUTHRIDGE, B.S.
Executive Secretary

WGST Radio Station
JACK COLLINS
General Manager

GEORGIA TECH ATHLETIC ASSOCIATION
ROBERT L. DODD
Athletic Director

DEPARTMENT OF PHYSICAL TRAINING
ARTHUR M. COLEMAN, M.A.
Head

GEORGIA TECH RESEARCH INSTITUTE
HARRY L. BAKER, JR., B.S., L.L.B.
President

ROBLEY H. TATUM, B.S.
Assistant to the President

MILTON W. BENNETT, M.S.
Contract Administrator

MRS. ANNABELLE H. BRAGG
Administrative Assistant

MRS. M. SUE CORBIN
Secretary
HISTORICAL SKETCH

A May, 1882, conversation between two Confederate veterans initiated the drive to open a technological school in Georgia. The two men were Major J. F. Hanson, a publisher and manufacturer who became president of a great railroad, and Nathaniel E. Harris, a Macon attorney who eventually became Governor of Georgia. Hanson had the vision for the need for such a school and he called on Harris to make the dream a reality. Harris immediately ran for the State Legislature on the need for a technological school. He was elected and during the next three years all of his efforts were directed toward getting a bill creating such a school passed by the Legislature. After several failures, the bill was finally passed by the narrowest of margins in the summer of 1885.

In April, 1888, Dr. Isaac Hopkins, then president of Emory College at Oxford, Georgia, and a rare combination of a physicist and theologian, was chosen Tech’s first president by the Board of Trustees, headed by founder Harris.

Two buildings, both financed by the State, were erected during the Hopkins administration. The Administration Building, which cost $43,250, was completed in 1888 and was the major academic building of the early Georgia Tech. It was used for teaching and administrative offices until December, 1959, when it became purely an administrative office building. The Old Shop Building was also completed in 1888 at an initial cost of $20,000. In 1892 it was badly damaged by fire but was rebuilt the same year at a cost of $10,000. It is still used for classes, laboratories, and offices by the School of Applied Biology and the Department of Social Sciences.

Dr. Lyman Hall, professor of mathematics and a West Point graduate, succeeded Hopkins in 1896. Hall was well-known as a tough disciplinarian. But, he was also a dedicated man who literally worked himself to death in nine years trying to build a decent physical plant for the struggling young school.

In 1896, he added two small temporary dormitories at a cost of $4,000 from State funds.

First major building in his administration was Knowles Dormitory, completed in 1897 at a cost of $20,000, of which $15,000 came from the State. Named for Clarence Knowles, Fulton County legislator who worked so diligently to secure the funds from the Legislature, the building now houses administrative offices.

Next building erected under Hall was the A. French Textile Building, completed in 1898 at a cost of $20,000. Funds for this building and its equipment came from the State ($10,000), Aaron French, Pennsylvania manufacturer for whom the building and Textile Department were named, and from textile manufacturers throughout the State. This building now houses the School of Industrial Engineering.

By late 1901 both the Electrical Building and Swann Dormitory were added to the growing plant. Money for the Electrical (now called the old EE Building) Building came from the State ($16,000) and from private contributions ($2,500), and Swann Hall was financed by a grant of $20,000 from Mr. James
Swann providing Hall could raise an additional $15,000 and would name the dormitory for Swann’s late wife. Both conditions were met by Hall within a year. The Electrical Building now houses several research groups, and Swann Hall is headquarters for the Engineering Extension Division and the Modern Languages Department.

Hall’s last act was securing a matching grant for a Chemistry Building in 1905. The State had given $10,000 for the building in 1904 and Hall managed to secure the additional $10,000 before he died in August, 1905. The building—named for Lyman Hall—was completed in 1906 and is still used for the teaching of chemistry and for offices.

Dr. Kenneth G. Matheson, professor of English, was named chairman of the faculty on August 23, 1905. Less than a year later, he was named president.

Matheson was the founder of a school library for Tech, operating it in his office and finally expanding it into three rooms in the Administration Building. It came as no surprise then that the new president’s first move was toward a library building for the campus. On March 12, 1906, Andrew Carnegie donated $20,000 for a building providing that the school guarantee an annual appropriation of at least $2,000 a year to support the library. The terms were met and by September, 1907, the Carnegie Building, now an administrative office building, was open for student and faculty use.

In November, 1909, Mrs. Joseph Whitehead made an initial gift of $5,000 towards an infirmary for Tech. Within a year, other gifts brought the total of this fund up to $15,000 and construction began on the Joseph Brown Whitehead Memorial Hospital, now called the Dean of Students Building.

Matheson followed this with his February, 1910, announcement that John D. Rockefeller had offered Tech $50,000 for a YMCA Building if the school could raise $25,000. Less than a year later, a fund drive met these terms and in June, 1912, the YMCA Building was dedicated. The building is still in use.

In August, 1910, the Legislature appropriated $35,000 for a Mechanical Engineering Building on the omnipresent condition that $15,000 be raised by the school. Through the aid of the Atlanta Chamber of Commerce, $22,000 was subscribed within two months. The first three units of this building were completed in 1912. After the Legislature appropriated $100,000 in 1919, the remaining units of the Mechanical Engineering Building were completed.

Matheson also initiated the first Greater Georgia Tech campaign of 1914 to raise money to build a Power Plant to house $100,000 worth of equipment donated by manufacturers. The Power Plant Building was completed in 1917.

During Matheson’s administration, several important parcels of land were added to the school’s property. Included was the land that now holds Grant Field, Tech’s 52,000-seat football stadium. This land was purchased in two segments, the first two-thirds in 1906 for $16,000 and the remainder in 1913. The State furnished the money for the initial purchase, while two gifts from John W. Grant were used for the second parcel and to build the West stands in 1913 and 1915. The field was named for Grant’s son. The East and South stands were erected during the 1924-25 year through the use of Athletic Association funds. Since then there have been four additions to the stadium all of them built without the use of state money.
The pressures of running Tech finally began to break down Matheson's health and on orders of his physician, he resigned in October, 1921 (effective April, 1922) to accept the less-taxing position of president of Drexel Institute. For four months after Matheson's departure, N. P. Pratt, chairman of the executive committee of the Trustees, ran the school as administrative executive ad interim.

On July 14, 1922, the Trustees selected Dr. Marion Luther Brittain, the state superintendent of schools, as Tech's fourth president. Brittain's first goal as president was to rebuild the faculty decimated by World War I and the financial crisis in Georgia that followed it. The politically astute Brittain went to the Legislature for more money for Tech and managed to convince the politicians to push through a deficiency bill of $39,000 which he used to raise salaries.

He then approached the Carnegie Foundation for the $150,000 it had pledged to Tech providing the Greater Georgia Tech campaign of 1918-1921 had reached over $1,500,000 in pledges. He received the grant even though less than 40% of the campaign pledges had been paid. With this money and the Greater Tech money, he began construction on the Physics Building which was completed in 1923. It was this building that set the architectural style for the Tech campus for the next 20 years.

The next building on the list was a Ceramic Engineering Building. Brittain, with the help of the State's top ceramics industrialists, raised $500,000 for this new department in less than six months. The building was completed in November, 1924.

Then Brittain's building program began to pick up steam. In 1925, Brown Dormitory was completed at a cost of $85,000 with the funds coming from the Brown Estate and the Greater Georgia Tech campaign. The same year, the $100,000 Emerson addition to the Chemistry Building and Harris Dormitory were completed with the funds again coming from the campaign.

With the help of the money still left from the campaign, federal monies from various agencies (including the WPA and PWA), private donations, and a stronger State support, Brittain managed to add a total of 22 buildings to the growing Tech campus. Included in this group were the Army Headquarters Building (1927), the Brittain Dining Hall (1928), Rose Bowl Field (1929), Cloudman Dormitory (1931), the Naval Armory (1934), Techwood Dormitory (1935), another addition to the Chemistry Building (1936), the Old Gym (1937), the Civil Engineering Building (1938), the Engineering Drawing Building (1938), the Clark Howell Dormitory (1939), the George W. Harrison, Jr. Dormitory (1939), the Engineering Experiment Station Building (1939), the Athletic Office Building (1941), and the Chemistry Annex (1942). At the close of Brittain's term in 1944, the entire campus was valued at $4,500,000 with over $3,460,000 of that being vested in buildings.

But Marion Luther Brittain's proudest accomplishment was the securing of the Guggenheim award in 1930 which made possible the establishment of the Guggenheim School of Aeronautics.

When Dr. Brittain retired in 1944 at the age of 78 after setting a longevity record of 22 years for a Tech president, the Board of Regents (Tech became
part of Georgia's University System in 1933) named Colonel Blake R. Van Leer as his successor. One of Van Leer's first projects was the expansion of Tech. In his 11 years as president, Van Leer saw the campus expand from 50 acres of land to over 130 and the physical plant value rise from $4,500,000 to over $25,000,000.

First new buildings added during the Van Leer administration were the Burge and Callaway Apartments for the faculty and married students. Both were completed during the 1946-47 year and were financed by bonds amortized by rentals. Still more housing followed in September, 1947, when Glenn and Towers dormitories were opened. They, too, were made possible through a self-liquidating bond issue.

First of the major academic structures to go up during the Van Leer administration was the Harrison Hightower Textile Building named for one of the school's great alumni benefactors. The building, financed by the State and equipped by the Textile Education Foundation, Inc., was started in October, 1947, and completed two years later. During 1949, Van Leer's continuing efforts to expand the campus paid off with a $65,000 remodeling of Brittain Dining Hall, another dormitory (Smith), and a new campus lighting system (paid for by the City of Atlanta, Fulton County, and the State of Georgia).

In 1951, the Thomas P. Hinman addition to the Research Building was completed and ground was broken for the Price Gilbert Memorial Library. In September, 1952, the new Architecture Building, funded by the University System Building Authority, was dedicated. In November, 1953, the new library, costing $2,200,000 of the Building Authority money and initiated through a gift from the late Judge Price Gilbert, was dedicated. The Building Authority also financed Tech's $1,000,000 modernization of the heating and electrical switching plant and the $800,000 modernization of the Carnegie Building in 1954.

By 1955, the Rich Electronic Computer Center—financed by the Rich Foundation, the State of Georgia, and the Georgia Tech Research Institute—was in operation.

On January 23, 1956, Van Leer died suddenly in an Atlanta hospital and Dean of Faculties Paul Weber was named acting president while the Regents searched for a successor. During Weber's 17 months in office, the Joint Research and Laboratory Building of the State Highway Department and Georgia Tech was dedicated (February 29, 1956) and the Alexander Memorial Building, financed by gifts from the alumni and friends of the school and by Radio Station WGST and the Georgia Tech Athletic Association, was dedicated (November, 1956).

Dr. Edwin D. Harrison became Tech's sixth president on August 15, 1957. On January 7, 1959, Tech's Radioisotopes and Bioengineering Laboratory was dedicated. The $500,000 building was financed by State funds, National Institutes of Health, and the Atomic Energy Commission which provided $250,000 worth of equipment.

In November of the same year, Tech accepted the $2,300,000 New Classroom Building which was financed by the University System Building Authority.
The new Joseph Brown Whitehead Memorial Infirmary financed by the estate of Lettie Pate Evans, was dedicated on June 23, 1960. It was followed by five new dormitories which were dedicated in August, 1961. They were Field, Hanson, Hopkins, Matheson, and Perry. During May of 1962, Southern Technical Institute's $2,000,000 campus near Marietta, funded by the State, the City of Marietta, and Cobb County, was dedicated.

In the summer of 1961, the new Physical Plant Building was opened. It was built with funds from the State as was the Crenshaw Field House, opened in the fall.

In January, 1962, the new $3,300,000 Electrical Engineering Building which was funded by the University System Building Authority was occupied by the School of Electrical Engineering. This building was named for Tech’s fifth president, the late Blake Ragsdale Van Leer, in special ceremonies held on February 18, 1964. During 1963 dedication services were held for the largest single building project in Tech’s history, the Frank H. Neely Nuclear Research Center which was supported by grants from the State of Georgia, the National Science Foundation, and national loans from the Atomic Energy Commission.

The new $2.5 million Chemical Engineering-Ceramic Engineering Building was completed in the closing months of 1964. It was also financed by the University System Building Authority.

Two other buildings are now under construction—a $3.5 million new Physics Building and a $1 million Electronics Building. The Electronics Building should be completed during 1965 and the Physics Building may be ready for use by the fall of 1966.

Already in the blueprint stage are a major addition to the Price Gilbert Memorial Library, a new Chemistry Building, another facility for the Engineering Experiment Station, and a second floor for the Radioisotopes—Bioengineering Building. Plans are completed and construction should start sometime during 1965 on the first of three buildings in a proposed space sciences complex made possible by a $1 million grant received last year from the National Aeronautics and Space Administration.

A long-range pattern of growth for the campus has been developed during recent months because of the expected acquisition of 90 acres of land through an urban renewal program. In the spring of 1964, Tech administrators asked the consulting firm of Perkins and Will of Chicago to conduct a study to plan current and future development of the campus. The report has been completed and presents a broad-stroke picture of what the campus might look like in 1975 and in 1985.

The plans envisioned by Perkins and Will anticipate a student body of 10,000 by 1975 with 7,800 undergraduates and 1,950 graduate students, and 12,500 by 1985 of which 9,000 will be undergraduates and 3,200 graduate students.
GENERAL INFORMATION

The Georgia Institute of Technology operates on the quarter plan with the fall, winter, and spring quarters normally constituting the academic year. A summer quarter is also offered and many students accelerate their program by attending four quarters per year. The requirements for a degree may be completed at the end of any quarter, although only one annual commencement is held.

Courses are offered in Aerospace, Ceramic, Chemical, Civil, Electrical, Industrial, Mechanical, and Textile Engineering; Engineering Mechanics; Applied Biology, Applied Mathematics; Applied Psychology; Architecture; Building Construction; Industrial Design; Chemistry; Physics; Industrial Management; Textile Chemistry; and Textiles. The curricula in these various fields are listed on the following pages and work submitted for credit must be checked against these basic requirements.

ADMISSION REQUIREMENTS

If you are interested in applying for admission to Georgia Tech you should write to the Director of Admissions, Georgia Tech, Atlanta, Ga., and request application forms. Freshman students are accepted at Georgia Tech for the quarters beginning in September, March, and June. Transfer students are accepted for the quarters beginning in September, January, March, and June. An application cannot be considered until the application blank has been properly executed and returned to the Institute. The application form, together with a transcript of the applicant's previous academic work, must be submitted to the Director of Admissions at least 35 days before the registration date for the quarter for which the applicant wishes to enroll. It is advisable for candidates to the freshman class to make application not earlier than one year or later than six months prior to the date of the beginning of the quarter for which he is applying.

The Institute reserves the right to refuse to accept applications at any time when it appears that students already accepted for the quarter which the applicant wishes to enroll will fill the Institute to its maximum capacity. The Institute also reserves the right to reject an applicant who is not a resident of the State of Georgia.

FRESHMEN

The Georgia Institute of Technology has two different sets of requirements as far as high school units are concerned: one for students planning to major in engineering or science (Group I), and one for those planning to major in architecture, industrial management, or textiles (Group II).
<table>
<thead>
<tr>
<th>Group I (Engineering or Science)</th>
<th>Group II (Arch., I.M., Textiles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Algebra</td>
<td>Algebra</td>
</tr>
<tr>
<td>Plane Geometry</td>
<td>Plane Geometry</td>
</tr>
<tr>
<td>Trigonometry</td>
<td>History</td>
</tr>
<tr>
<td>Advanced Algebra</td>
<td>*Science</td>
</tr>
<tr>
<td>History</td>
<td>Optional Units</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Optional Units</td>
<td>5 to 7</td>
</tr>
</tbody>
</table>

*Science units may be met with courses in General Science, Biology, Chemistry and/or Physics.

Georgia Tech does not require a foreign language for admission, but recommends two years of study of a modern language in high school. Other recommended courses for high school study include extra courses in mathematics and science. Students planning to major in an engineering field will find a mechanical drawing course helpful. The total number of high school units presented should be sufficient to insure graduation under local requirements. Students who have been unable to schedule required courses should write to the Director of Admissions for information regarding entrance by examination or for other ways of making up missing high school credits. Ordinarily not more than three units will be allowed from the group including drawing, commerce, agriculture, military and shop work.

Special attention is called to the required one-half unit in advanced algebra in Group I. Suggested topics to be included in this course include the following: the system of real numbers, functions, complex numbers, theory of equations, systems of equations, permutations, combinations, and the binomial theorem. More detailed information regarding these suggested topics may be secured on request. Solid geometry is not an acceptable substitute for this algebra requirement but honors programs or other advanced courses including mathematical analysis or analytic geometry will be acceptable.

The Institute reserves the right to reject the credits from any high school or other institution notwithstanding its accredited status, where the Institute determines from investigation that the quality of instruction available at such high school or institution is for any reason deficient or unsatisfactory.

In addition to the scholastic units mentioned above, Georgia Tech uses the following criteria to judge its high school applicants:

1. The applicant must have graduated from an accredited school with a record high enough to indicate that he is prepared for college work.

2. The applicant must take the College Entrance Examination Board Tests. All applicants must take the Scholastic Aptitude Tests and the Achievement Tests in English and mathematics. In addition those students planning to major in engineering or science (Group I) must take the Achievement Test in either chemistry or physics.
(3) All applicants must be at least 16 years of age and of established good moral character. The Institute reserves the right to examine and investigate the moral worth, character, and personality of the applicant.

(4) The applicant must have a predicted grade-point average which indicates that he has the potential to pursue effectively the educational program of the Institute.

Each applicant will be required to take a physical examination and forms for this purpose will be sent with the notice of acceptance. (Additional information regarding physical examinations may be found on page 29.)

A deposit of $25.00 (in addition to the $25.00 dormitory room deposit mentioned on page 31) is required of each accepted applicant for admission to the Fall Quarter within two weeks after notification of acceptance has been issued. After enrollment, this fee will be credited to the student's fee account. If the applicant decides not to enter, his deposit may be refunded by application to the Director of Admissions not later than June 1st. Thereafter, the deposit is forfeited except for instance of an act of Providence.

Advanced Placement and Honors Programs
Superior students entering Georgia Tech may receive college credit for courses completed in high school if their grades and scores on the advanced placement tests or the achievement tests of the College Board indicate a satisfactory knowledge of college course work. In addition, honors programs, some of which excuse a student from basic freshman courses, are available. Departments which offer advanced placement credit and/or honors programs include mathematics, English, chemistry, physics, modern languages, and social sciences. Participation in the honors programs is voluntary.

Mathematics Credit by Examination
Matriculating freshmen who do not qualify for the Honors Program in mathematics (see page 134) may nevertheless have had special mathematical training in high school. If they can show to the satisfaction of the School of Mathematics that they have had such training and if their previous test scores (Scholastic Aptitude, etc.) are high enough, they may take an examination for advanced standing from 6:00 to 9:00 p.m. on the first day of classes. Arrangements to do so must be made with the School of Mathematics at least twenty-four hours in advance. The examination will not normally be given at any other time in the fall quarter. Transfer students who have had training which cannot be accepted without further validation may also apply to the School of Mathematics for an examination at the same hour. Such applications must also be made at least twenty-four hours in advance.

TRANSFER STUDENTS
Applicants who have made satisfactory records in scholarship and in conduct at other colleges may be considered for admission with advanced standing.

Transfer students wishing to enter the School of Architecture are generally confronted with a difficult problem because of the highly specialized nature of the curriculum in this school (starting with the first quarter of the fresh-
These specialized courses may not ordinarily be obtained in other colleges unless in a School of Architecture.

(1) All regulations applicable to students entering college for the first time shall be applicable to students transferring from other colleges, insofar as the regulations are pertinent to the applications of transfer students.

(2) A student transferring from another college shall ask the Registrars of the colleges that he has previously attended to send official transcripts to the Director of Admissions. A transcript of high school work is not ordinarily needed but may be required in certain cases.

(3) The Institute reserves the right to deny admission to any transfer student when, in the opinion of the Director of Admissions, the academic standards or the admission procedures of the institution(s) previously attended are not equivalent or comparable to those existing at this institution.

(4) Courses completed in other colleges must have an over-all average of "C" or better and grades must be satisfactory for the last term prior to transferring. Credit for specific courses will not be allowed unless grades received are above the lowest passing grade. It is ordinarily impossible to give an official statement regarding transfer credit without having an interview with the applicant.

(5) Courses used as credits for a degree must have been completed in a period of ten years, counted from the time the first credits were acquired until the time all requirements for the degree have been met. Courses not falling within this time limit may be validated by examination. Transfer students should realize that credits six years (or more) old at the time of transferring are in danger of being voided by this regulation.

(6) The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades in other accredited colleges providing the courses correspond in general in time and content to courses in the curriculum they expect to enter at the Georgia Institute of Technology.

(7) Transfer students must take the College Entrance Examination Board Achievement Tests in English composition, mathematics, and either chemistry or physics. (Applicants for Architecture, Industrial Management, or Textiles, may omit the test in chemistry or physics.) Candidates for admission to the fall quarter should plan to take the required Achievement Tests within six months of the planned date of enrollment. Other standardized aptitude tests and/or achievement tests may be required prior to admission. The tests required will depend upon the level at which the transfer is being made and the program which the applicant desires to enter.

(8) Transfer students must comply with such other procedures, including personal interviews and psychological or other tests, as may be necessary to determine the applicants sense of social responsibility, adjustment of personality, sturdiness of character, and general fitness for admission to the Institute.

TRANSIENT STUDENTS

A student who has taken work in another college or university may apply for the privilege of temporary registration in the Georgia Institute of Technology.
Such registration is generally for the summer quarter and the student will ordinarily be one who expects to return to the institution in which previously enrolled.

(1) An applicant for admission as a transient student must have a transcript sent from the institution that he last attended stating that the student is in good standing.

(2) An applicant will be accepted as a transient student only when it appears that the applicant's previous academic work is of a satisfactory or superior quality.

(3) The Director of Admissions must have evidence that the institution the student previously attended was an accredited or approved institution.

(4) Even though the institution that the student last attended is accredited, the Director of Admissions may reject the application if he has reason to believe that the quality of the educational program of the institution that the applicant last attended is mediocre or unsatisfactory.

(5) In case of doubt about the qualifications of an applicant who seeks admission as a transient student, the Director of Admissions may classify the applicant as a transfer student and require the applicant to comply with all regulations regarding the admission of transfer students.

(6) Applicants for admission as transient students are not normally required to take the College Entrance Examination Board Tests.

(7) Since the primary obligation of the Georgia Institute of Technology is to its regularly enrolled students, it will consider the acceptance of transient students only when the acceptance will cause no hardship or inconvenience to the Institute or its regularly enrolled students.

GRADUATE STUDENTS

All correspondence relative to admission to graduate study should be directed to the Dean of the Graduate Division. Necessary application forms may be obtained from his office. These forms, together with letters of recommendation and official transcripts of previous academic work, should be on file in the office of the Dean at least four weeks before the beginning of the quarter for which the applicant plans to register if he is to be assured consideration for acceptance. The Graduate Bulletin may be obtained on request.

AUDITORS

Any officially enrolled student who has obtained the approval of his adviser and the departments of instruction concerned may audit courses. However, no credit is granted for courses scheduled on an auditing basis, and students are not permitted to change to or from an auditing status except through the regular procedures for schedule changes and during the period for changes as published in the college calendar for each given quarter.

All students registered as auditors are required to pay tuition at the regular rate.

Members of the faculty or staff of the Georgia Institute of Technology may audit a course providing permission is obtained from the Department concerned and the Registrar.
SEMINARS, SHORT COURSES, AND INSTITUTES

Applicants seeking admission to seminars, short courses, and institutes with programs of work that carry academic credit shall be required to meet all requirements prescribed for admission of students to undergraduate or graduate programs of work.

Applicants who wish to enroll in non-credit seminars, short courses, and institutes shall present evidence to prove:

1. That the applicant has the educational background and the ability to pursue successfully the program of work that he or she wishes to take.

2. That the applicant is of good moral character; that he or she possesses a sense of social responsibility, and that he or she has a capacity for growth and development in the program for which he or she seeks admission.

In the case of an applicant who is seeking admission to a non-credit seminar, short course, or institute, the Georgia Institute of Technology shall have the right to prescribe the types of evidence that an applicant must submit in order to establish qualifications for admission.

SPECIAL STUDENTS

Special students shall be required to meet all requirements prescribed for admission to undergraduate or graduate programs of work as the case may be and to meet any additional requirements that may be prescribed by the Institute. Special students are not considered as degree candidates.

INSTITUTE POLICIES REGARDING ADMISSIONS

When the application, necessary transcripts, College Board scores, and any other required information on an applicant are found to be complete and in order, the applicant will be evaluated in terms of his test scores and grades, scholastic aptitude, social and psychological adjustment, and the probability of his completing the requirements for the desired degree. The Institute reserves the right, in every case, to reject any applicant whose general records and attitude do not indicate a probability of success in college in the Institute environment, notwithstanding the satisfaction of other requirements. Applicants must comply with such other procedures, including personal interviews and psychological or other tests, as may be necessary to determine the applicants' sense of social responsibility, adjustment of personality, sturdiness of character, and general fitness for admission to the Institute.

In order that the appraisal of a student's ability and fitness for college work may be as nearly accurate as possible, officials of the Institute will study carefully all the information, including biographical data that is submitted by the applicant. The officials of the Institute shall have the right to require each applicant for admission to appear for an interview before his application is finally accepted or rejected. If an interview is required, the Director of Admissions will notify the applicant of the time and place at which the interview will be conducted.

The ultimate decision as to whether an applicant shall be accepted or rejected will be made by the Director of Admissions, subject to the applicant's right of appeal as provided by the bylaws of the Institute and of the Board of Regents of the University System.
Admission of Women

By action of the Board of Regents, March 10, 1965, qualified women students were ruled eligible for admission in all programs of study offered at Georgia Tech with the exception of Industrial Management. The requirements for admission and the regulations governing students apply alike to men and women but for certain exceptions as listed below:

Physical Training. Women students will not be required to schedule physical training and will not have to make up the credit hours.

Residence Accommodations. See page 32. Due to the very limited residence hall facilities on the campus for women, incoming freshmen students should make reservations with the Housing Office as early as possible prior to registration.

Special Students. Women students will be enrolled as full time degree candidates only.

College Entrance Examination Board Tests

During the academic year 1965-66, the College Entrance Examination Board will hold tests on each of the following dates: December 4, 1965, January 8, March 5, May 7, and July 9, 1966.

The Bulletin of Information obtainable without charge from the College Entrance Examination Board, contains rules regarding applications, fees, reports, and the conduct of the tests; lists of examination centers; and an application blank bound in. This application blank may be used for any College Board examination.

Candidates applying for examination should write to College Entrance Examination Board, P. O. Box 592, Princeton, N. J., or P. O. Box 1025, Berkeley, Calif. Each application submitted for registration must be accompanied by the appropriate examination fee. All applications and fees should reach the appropriate office of the Board at least 30 days before the examination date for those living in the United States, Canada, Alaska, Hawaii, The Canal Zone, Mexico, or the West Indies, and 60 days before for those in Europe, Asia, Africa, Central and South America, and Australia.

The Board will report the results of the tests to Georgia Tech and other institutions indicated on the candidates’ applications. The college will in turn notify the candidates of the action taken upon their applications for admission. Candidates will not receive reports upon their tests from the Board.

Veteran's Program

Any veteran desiring to further his education under veterans benefits at the Georgia Institute of Technology should first be accepted as a student of Georgia Tech by the Director of Admissions. This acceptance has no direct connection whatsoever with the Veterans' Administration. After being accepted by Georgia Tech, the new veteran student must secure from the Registrar instructions on how to register on registration day. The veteran who is a resident of Georgia will pay resident fee costs, and the veteran who is a resident of another state will pay non-resident fee costs.
At least one month before entering Georgia Tech, the veteran should go in person to the nearest Veterans' Administration Office to make application under the Public Law 634 (War Orphans Educational Assistance for Sons and Daughters of Deceased Veterans), or Public Law 894 (Disabled Veterans' Bill). After the Veterans' Administration has issued a certificate of eligibility, any questions regarding procedure for enrolling under either of these bills should be directed to the Coordinator of Veterans' Affairs located in Room 107, Dean of Students Building on the Georgia Tech campus.

The 3-2 Plan of Engineering Education

With more and more engineers occupying positions of leadership in the business, manufacturing, and governmental fields, there has developed a need for a plan of engineering education that will provide more courses in liberal arts, physical sciences, and mathematics than is possible under the regular engineering curriculum. Recognizing this need, the Georgia Institute of Technology in 1954 arranged a combined plan with a limited number of outstanding liberal arts colleges in the South to offer to qualified prospective engineers a more complete and well-rounded form of training for the world of today and tomorrow.

Under this plan the student may attend one of these liberal arts colleges for three years and then one of the nine engineering schools of the Georgia Institute of Technology for two years. Upon satisfactory completion of his two years at the school of engineering, he is eligible for the appropriate bachelor's degree from his original college and the bachelor of engineering in his particular field from the Georgia Institute of Technology.

Colleges and universities associated with the Georgia Institute of Technology in offering the 3-2 Plan of Engineering Education include:

The University of The South—Sewanee, Tennessee

The University of the South, founded in 1856 and popularly called Sewanee, is a small institution, with an enrollment of approximately 700 men students. Sewanee is under the jurisdiction of 22 dioceses of the Protestant Episcopal Church in the Southeast, but it welcomes men of all faiths. For further information, including admission requirements, write to Director of Admissions, The University of the South, Sewanee, Tennessee.

Davidson College—Davidson, North Carolina

Davidson College, founded in 1837 by Presbyterians, is a liberal arts college with an enrollment of about 1,000. It is a church-related college without being narrowly sectarian. Since enrollment is limited, an applicant should request necessary information and forms from the Director of Admissions as early as possible.

University of Chattanooga—Chattanooga, Tennessee

The University of Chattanooga is a privately controlled and endowed university for men and women. A successor to two older institutions founded in 1866 and 1886, it today through its various colleges and divisions has an enrollment of over 2,500. For further information, write to Dean of Admissions, Scholarships and Guidance.

Southwestern at Memphis—Memphis, Tennessee

Southwestern at Memphis, with an enrollment of about 800, originated in 1848
at Clarksville, Tenn., and in 1900 was relocated in Memphis. Identified with the Presbyterian Church for almost a hundred years, it provides a Christian liberal education program. Complete information is available from the Registrar.

University of Georgia—Athens, Georgia

The nation's oldest state-chartered university, the University of Georgia was chartered in 1785. Like Georgia Tech it is a member of the State's University System. Today, through its 11 schools and colleges it has a total enrollment of 12,000 students. For further information, write to the Director of Admissions.

Special Information for International Students

Over the years, the Georgia Institute of Technology, more popularly known as Georgia Tech, has been fortunate in having students from countries all over the world. The number of international students enrolled at Georgia Tech is one of the largest of any engineering and scientific college in the United States.

In order for a student from outside the United States to attend Georgia Tech, certain requirements must be met. These are as follows:

1. As a student at Georgia Tech, you must have a good, basic knowledge of the English language, both written and spoken, in order to attend the classes which are conducted in English. It is suggested that before coming to Georgia Tech you study English in your own country or at a school in the United States. International students whose native language is Spanish are urged to enroll in the special, non-credit, intensive review course in English which is offered by the Department of Modern Languages each summer. Classes are limited to 15, and the minimum enrollment required for establishing a class is 10. Inquiries concerning this special course should be addressed directly to the Department of Modern Languages. If after beginning your studies at Georgia Tech it is determined by the faculty that you need further training in the language, you will be given an opportunity to broaden your knowledge of the English language the first two years through special English courses 131, 132, 133, 231, 232, 233. These courses not only give you extra credit towards graduation, but also a greater understanding of American life and ideals.

2. Make application on or before March first for admission to Georgia Tech for the Fall Quarter as per instructions in this Bulletin. With the application, the student is required to submit official documents covering work taken in high school as well as any taken in a college or university. If accepted, the Registrar will send you a Letter of Acceptance bearing the official seal of the Georgia Institute of Technology.

3. Obtain a passport from your country giving you permission to go abroad.

4. Make application for a visa at the local office of the American Consul. One of the requirements for such visa is the Letter of Acceptance from Georgia Tech. If you are coming as an Exchange Student, apply for visa through the agency handling your particular program.

5. The applicant must submit the results of College Entrance Examination Board Tests. All applicants must take the Scholastic Aptitude Tests and the Achievement Tests in English and mathematics. In addition those students planning to major in engineering or science (Group 1) must take the Achievement Test in either chemistry or physics.
International students will only be accepted for initial admission to Fall Quarter classes starting in September.

If there are any other details on which information is desired, please write to: International Student Advisor, Georgia Institute of Technology, Atlanta Georgia, U.S.A.

Definition of Legal Residence

To be considered a bona fide legal resident of Georgia for the purpose of registering at an institution of the University System of Georgia a student must establish the following facts to the satisfaction of the registering officer:

1. A student who is under 21 years of age at the time he seeks to register or re-register at the beginning of any quarter will be accepted as a resident student only upon a showing by him that his supporting parent or guardian has been legally domiciled in Georgia for a period of at least twelve months immediately preceding the date of registration or re-registration.

2. In the event that a legal resident of Georgia is appointed as guardian of a non-resident minor, such minor will not be permitted to register as a resident student until the expiration of one year from the date of appointment, and then only upon proper showing that such appointment was not made to avoid payment of the non-resident fee.

3. If a student is over 21 years of age, he may register as a resident student only upon a showing that he has been domiciled in Georgia for at least twelve months prior to the registration date.

4. A full-time faculty member in an institution of the University System, his wife, and minor children may register for courses on the payment of resident fees, even though the faculty member has not been in residence in Georgia for a period of twelve months.

5. If the parents or legal guardian of a minor changes residence to another state following a period of residence in Georgia, the minor may continue to take courses for a period of twelve consecutive months on the payment of resident fees. After the expiration of the twelve months' period the student may continue his registration only upon the payment of fees at the non-resident rate.

6. Military personnel stationed in Georgia, and their dependents, may become eligible to enroll in institutions of the University System as resident students provided they file with the Institution in which they wish to enroll the following materials:

(a) A statement from the appropriate military official as to the applicant's "home of record";
(b) Evidence that applicant, if over 21 years of age, is eligible to vote in Georgia;

(c) Evidence that applicant, if under 21 years of age, is the child of parents who are eligible to vote in Georgia;

(d) Evidence that applicant, or his parents filed an income tax return in Georgia during the preceding year;

(e) Other evidence showing that a legal domicile has been established in Georgia.

7. Foreign students who attend institutions of the University System under the sponsorship of recognized civic or religious groups may be enrolled upon the payment of resident fees, provided the number of such foreign students in any one institution does not exceed the quota approved by the Board of Regents for that institution.

8. All aliens shall be classified as non-resident students; provided, however, that an alien who is living in this country under a visa permitting permanent residence or who has filed with the proper federal immigration authorities a Declaration of Intention to become a citizen of the United States shall have the same privilege of qualifying for resident status for fee purposes as has a citizen of the United States.

9. Teachers in the public schools of Georgia and their dependents may enroll as students in University System institutions on payment of resident fees, when it appears that such teachers have resided in Georgia for nine months, that they were engaged in teaching during this nine months' period, and that they have been employed to teach in Georgia during the ensuing school year.

10. In the event that a woman who is a resident of Georgia and who is a student in an institution of the University System marries a non-resident of the State, the woman will continue to be eligible to attend the institution on payment of resident fees, provided that her enrollment is continuous.

11. If a woman who is not a resident of Georgia marries a man who is a resident of Georgia, the woman will not be eligible to register as a resident student in a University System institution until she has been domiciled in the State of Georgia for a period of twelve months immediately preceding the date of registration.

12. Non-resident graduate students who hold assistantships that require at least one-third time service may register as students in the institution in which they are employed on payment of resident rates.

PLEASE NOTE: In order to avoid delay and inconvenience upon arrival for registration, if there is any question in your mind concerning your residence status, application for clarification should be made immediately or not later than two weeks prior to the registration date. Applications should be addressed to Residence Committee, Office of the Controller, Georgia Institute of Technology, Atlanta, Georgia.
Tuition and Fees

The rates for fees, board and room are subject to change at the end of any quarter.

<table>
<thead>
<tr>
<th>Matriculation Fee per Quarter</th>
<th>Tuition Fee per Quarter</th>
<th>Student Activity Fee per Quarter</th>
<th>Medical Fee per Quarter</th>
<th>Total Fees per Quarter</th>
<th>Total Fees per Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident of Georgia</td>
<td>$80.00</td>
<td>none</td>
<td>$8.00</td>
<td>$12.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Non-Resident of Georgia</td>
<td>80.00</td>
<td>230.00</td>
<td>$8.00</td>
<td>12.00</td>
<td>330.00</td>
</tr>
</tbody>
</table>

Note: (a) An extra fee may be charged in special courses.

(b) A deposit of $25.00 (in addition to the $25.00 dormitory room deposit mentioned on page 31) is required of each accepted applicant for admission to the Fall Quarter within two weeks after notification of acceptance has been issued. After enrollment, this fee will be credited to the student's fee account. If the applicant decides not to enter, he may be refunded his deposit by application to the Director of Admissions not later than June 1. Thereafter, the deposit is forfeited except for instance of an act of Providence.

(c) Any student who withdraws during the first quarter of his attendance shall have his admission deposit deducted before any computation is made of the refund to which he may be entitled.

Summary of Expenses

(Estimated for Academic Year)

<table>
<thead>
<tr>
<th></th>
<th>Resident of Georgia</th>
<th>Non-Resident of Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation, Tuition and Fees</td>
<td>$300.00</td>
<td>$990.00</td>
</tr>
<tr>
<td>Board, Room, and Laundry</td>
<td>800.00</td>
<td>800.00</td>
</tr>
<tr>
<td>R.O.T.C. Uniform (if required)</td>
<td>75.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Books and Equipment</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total for Academic Year</td>
<td>$1,275.00</td>
<td>$1,965.00</td>
</tr>
</tbody>
</table>

Other Fees

Each member of the Senior Class must pay a diploma fee of $5.00 before graduating.

Examinations at other than regular examination times will be granted in exceptional cases only and by Faculty action. A fee of $2.00 will be charged in all such cases.

A LATE REGISTRATION FEE OF NOT MORE THAN SIXTEEN DOLLARS ($16.00) IS CHARGED AT THE RATE OF TEN DOLLARS ($10.00) FOR THE FIRST DAY AFTER REGULAR REGISTRATION, AND AN ADDITIONAL TWO DOLLARS ($2.00) FOR EACH OF THE NEXT THREE DAYS.
Refund of Fees
Refunds of tuition and other educational fees may be made only upon written application for withdrawal. Student activity and medical fees are not refundable.

Students who formally withdraw during one week following the scheduled registration date are entitled to a refund of 80% of the fees paid for that quarter.

Students who formally withdraw during the period between one and two weeks after the scheduled registration date are entitled to a refund of 60% of the fees paid for that quarter.

Students who formally withdraw during the period between two and three weeks after the scheduled registration date are entitled to a refund of 40% of the fees paid for that quarter.

Students who formally withdraw during the period between three and four weeks after the scheduled registration date are entitled to a refund of 20% of the fees paid for that quarter.

Students who withdraw after a period of four weeks has elapsed from the scheduled registration date will be entitled to no refund of any part of fees paid for that quarter.

Student Motor Vehicles
Students who are classified as freshmen or sophomores and are living within the defined campus boundaries are not allowed to own or operate a motor vehicle on the campus. Any exception to this regulation will be granted only by special permission by the Dean of Students.

Any student (day, evening, graduate, or co-operative) who drives a vehicle to the campus must register it for either ON CAMPUS or OFF CAMPUS parking. ON CAMPUS registration will allow student parking in designated institutionally-owned areas. OFF CAMPUS registration will allow student parking in areas not institutionally controlled nor restricted.

An annual registration fee of $6.00 must be paid to register each vehicle for ON CAMPUS parking. This fee is applicable regardless of which quarter the vehicle is registered and will cover an entire academic year from September until registration the following September.

Freshmen and upperclassmen granted student parking permits are required to observe all parking regulations on the campus. The Georgia Institute of Technology reserves the right to limit in any way whatsoever the issuance of student parking privileges at the beginning of any quarter.

Physical Examinations
Entrance physical examination forms are mailed to students with the notice of their acceptance for enrollment. These forms are to be completed by the prospective student and his personal physician and mailed to the Director of Health in sufficient time to be received prior to the date of initial registration. After review of the medical history and physical examination report, the school physicians determine the assignments to ROTC and physical training. Any student who desires special consideration because of mental or physical disability should have his physician write an explanatory letter to the Director of Health.
giving full details of the disability and any desired limitations on physical activity. This letter is to be attached to the physical examination form. Any special examinations or reports needed to determine eligibility for enrollment or assignment are at the expense of the student, not the school. Any student who fails to submit the required physical examination and immunization record prior to registration will have the examination ordered by the school at the expense of the student.

ROTC

The entire Georgia Tech ROTC program is now on a voluntary basis. Tech now offers both the four-year and the two-year programs as provided for in the 1964 ROTC Vitalization Act.

Each applicant for formal enrollment in the basic course of the Air Force, Army or Navy ROTC shall be required to execute a Certificate of Loyalty Oath in such form as shall be prescribed by the Secretary of Defense.

Students who have successfully completed the basic course on a college level (senior division) and who are selected, may pursue the advanced course in the junior and senior years. However, not more than six hours of basic and nine hours of advanced ROTC may be used as elective credit towards a degree.

For further details regarding the Army ROTC, see page 150, the Naval ROTC, see page 167, and for Air ROTC, see page 42.

Selective Service Deferments

A student who is qualified for and enrolled in the ROTC while matriculating at Georgia Tech may be deferred from induction until after his graduation provided he possesses certain qualifications and meets the prescribed requirements. Such an individual, if required to report for active duty, would report as an officer after having received his reserve commission through the ROTC.

Any student who is not eligible for the ROTC deferment may apply for a II-S (student deferment) provided he is taking ten quarter hours or more. He applies for this deferment through Tech's Selective Service Office at the beginning of his academic year; upon the receipt of a new classification; or when he is ordered for a physical examination by his local draft board.

Dormitory Housing

It is Institutional policy to require all single freshmen, men and women, who do not reside with their parents, near relatives, or bona fide guardians, to live in the dormitories. All Freshmen (except those from the Atlanta area) are given FIRST PRIORITY in making dormitory assignments, as follows:

1st Priority—Freshmen
2nd Priority—Sophomore
3rd Priority—Junior
4th Priority—Senior
5th Priority—Evening School Students, Co-ops on work period and Atlanta area students.

TRANSFER STUDENTS will be placed according to class status, as above. (Class status should not be taken for granted, as this is determined after credits have been evaluated by the Registrar's Office.) Sophomore classification requires 50 acceptable credit hours.

GRADUATE STUDENTS are placed in reserved sections of Matheson and Perry Dormitories. In addition, a limited number of single rooms are available for
graduate students, on a first come—first serve basis, in Harrison and Howell Dormitories.

FRESHMEN and SOPHOMORE dormitories consist of BROWN, CLOUDMAN, GLENN, HARRIS, HARRISON, HOWELL, SMITH, and TOWERS, rent is $75.00 per quarter. (Limited number single rooms in Harrison and Howell reserved for Graduate Students.) **TECHWOOD is reserved for students in the Co-operative Plan—rent is $75.00 per quarter.** Junior and Senior dormitories (all double rooms) consist of FIELD, HANSON, HOPKINS, MATHESON and PERRY, rent is $85.00 per quarter. (One section of Matheson and Perry Dormitories reserved for Graduate Students.)

Each Georgia Tech dormitory is staffed with: a mature Graduate Student as Resident Advisor, who is assisted by a Senior Counselor and a staff of upperclass Student Counselors, who advise and counsel student residents. The dormitory organization and operation is intended to express the individual student’s personal responsibility for the development of social competence, the values of group living and practice in democratic processes, the elevation of scholastic standards and the fostering of a high academic atmosphere.

The Dormitories provide housing for 2,742 students. Most of the rooms accommodate two students. There are a few three-man rooms, also some four-man rooms consisting of two connecting rooms. Students are encouraged to indicate their roommate preference and it is usually possible to grant such requests. However, your application is for accommodations in the Dormitories and NOT for a specific room or roommate.

Changes between dormitories are not permitted after registration day. However, room changes may be made within the dormitory, to which assigned **PROVIDED the change has been APPROVED by the Resident Advisor of that dormitory and then officially arranged in the Dormitory Housing Office BEFORE the change is made.**

All rooms are equipped with beds, study desks, dressers, clothes locker, book cases, chairs, mirrors and waste baskets. The student should provide himself with a mattress pad or cover, blankets, bedspreads, sheets (36” x 76” fitted, freshman and sophomore dormitories and 39” x 82” fitted for junior and senior dormitories—top and bottom fitted sheets as per these sizes are available in the College Inn), pillow and pillow cases, towels, and a good study lamp.

Dormitory regulations prohibit the installation and use of such electrical appliances as hot-plates, toasters, irons, coffee makers, heaters, radio transmitters and television. The only electrical appliances permitted are electric razors, radios, clocks and a fan not to exceed 2.5 amp. power rating.

DORMITORY APPLICATIONS should be sent to the Controller’s Office within two (2) weeks after you receive your Notification of Acceptance and Dormitory Application from the Registrar.

A $25.00 Room Deposit (in addition to the admission deposit mentioned on page 28) must be returned with the dormitory application. No dormitory application will be honored except when accompanied by the required deposit. This deposit may be refunded at the end of the school year, or at such time a student leaves school, provided the resident checks out properly, the key is returned, and there is no damage for which a resident is responsible. The refund must be requested, it is not automatically refunded.
ASSIGNMENTS: Dormitory Room Assignments are mailed a minimum of forty (40) days prior to the first day of registration, for the quarter applied for. Those applying after the beginning of this 40-day period, will receive a room assignment, as available, and be held responsible for acceptance. If it is too late to mail the assignment, it may be secured at the Dormitory Housing Office upon arrival at Tech.

THE DORMITORY HOUSING OFFICE will send instructions as to shipment of baggage and other information with the ROOM ASSIGNMENT.

CANCELLATIONS: If, for any reason, the Dormitory Application, or an assignment to a room, is to be cancelled, it should be done as soon as possible. Cancellations must be recorded in the DORMITORY HOUSING OFFICE at least thirty (30) days prior to registration day, or the deposit is forfeited (excepting Fall Quarter freshman and transfer students whose cancellations must be on record prior to June 1st, or the deposit is forfeited). On Applications received after June 1st, the thirty (30) days clause will apply.

A receipt for the key and security deposit will be promptly returned to the student, along with helpful preliminary instructions. Dormitory keys are issued at the Key Office in Smith Dormitory.

DORMITORY RENT is payable as follows:
(a) On or before the last day of scheduled registration, for assignments made before the beginning of a quarter, unless otherwise indicated on assignment notice.
(b) Within two (2) days from date the room is assigned (when assignment is made after the beginning of a quarter).

A penalty fee will be charged for failure to pay rent on or before the last date due. The penalty fee will be five dollars ($5.00) for the first day following the date due, and one dollar ($1.00) for each of the next three days, the total not to exceed eight dollars ($8.00).

Students who fail to pay their room rent, including penalty fees, according to the conditions in above paragraphs (a) and (b), will be reported to the proper authority for disciplinary action, four days after the deadline stated in the notice of assignment.

Residents once having paid rent, will receive no refund of room rent should they decide to move from the dormitories during any given quarter, UNLESS disenrolling from school in good standing.

COED DORMITORY ACCOMMODATIONS: The Girls' Dormitory, located at 171 Fifth St., N. W., has six bedrooms, two baths, a large living room and a study room. Quarterly rent is $90.00. The housemother lives in the dormitory at all times, and she will make your room assignment upon your arrival.

The $25.00 deposit is refundable upon request at the end of the school year, or at such time a student may leave school, provided the key is turned in and there is no damage for which she is responsible.

Any student who withdraws from school and is in good academic and disciplinary standing should receive a dormitory rent refund in accordance with the Institution tuition refund policy.

Any student who moves from a dormitory to an apartment, fraternity house, private home, or is removed from the dormitory for disciplinary reasons, or leaves the Institution without proper notification should not receive a room rent refund and should forfeit his room deposit.
Apartments
The school has approximately 220 apartments for married students. These apartments range in size from efficiency to three-bedroom units. Detailed information and the apartment application blanks will be supplied upon request to the Housing Office. It is not necessary to be accepted as a student before application may be made. As apartments are vacated they are reassigned according to the date of application in the following order: 1. Freshmen, 2. Sophomores, 3. Juniors, 4. Seniors, 5. Graduate Students.

Food Services
Brittain Dining Hall, recently redecorated and air conditioned, is located in the center of the dormitory area. Two cafeteria lines are provided as well as table service in the "T" Room and ODK Room. Meals may be paid for in cash or with coupon books. Books of coupons may be purchased for $20.00 and contain coupons valued at $22.00.

In addition, two board plans are now offered. One plan provides three meals per day six days per week, for the entire quarter exclusive of holidays and is available for $140.00 per quarter. Under this plan the total cost of food amounts to approximately $2.00 per day. The alternative plan provides for any two meals per day six days per week for the entire quarter, exclusive of holidays, for $110.00 per quarter.

An additional facility in the Administration Building provides a cafeteria serving breakfast and lunch as well as a snack bar.

College Inn
A supply store is also located in the Administration Building to provide the students with all of the equipment and supplies needed for classroom work and study. In addition, the store carries shaving supplies and other items needed for dormitory living. It also has a complete supply of stationery and other school spirit merchandise.

Book Store
The Tech self-service book store is located in the Vernon Skiles Classroom Building. All textbooks required for class work are available in this store as well as technical and reference books, study aids, and approved novels.

Public Relations and Placement
The Department of Public Relations is a service organization handling public relations, placement, press relations and publications.

For the benefit of the seniors and graduate students, continuous contact is maintained with industrial concerns throughout the nation. An accurate knowledge of the personnel needs of these industries enables this office to be of great assistance in placing students upon their graduation. Many industries send representatives to the Georgia Tech campus for individual interviews. A similar service is provided for alumni who desire to change positions.

The Office of Publications is responsible for publishing all official publications of the Institute.

Other Information
Class Attendance: Students are expected to attend all of the classes on their official schedules unless exemptions are granted under specific provisions of the Student Rules and Regulations. Students may be dropped from the class rolls in any course when they neglect their studies to the extent that they can-
not possibly earn credit in the course. No fees are refunded under such circumstances.

Examinations and Grade Reports: Final examinations are scheduled during the last week in each quarter and reports of the student's academic progress are issued after the close of the quarter.

Constitution and History Examinations: A Georgia law, amended March 4, 1953, requires all students to pass examinations on United States and Georgia history and the United States and Georgia constitutions or pass comparable courses before graduation. Courses which may be substituted for the United States and Georgia constitutions examination are S.S. 113 or S.S. 323; courses which may be substituted for the United States and Georgia history examination are: S.S. 319, S.S. 324, S.S. 325, S.S. 327, or S.S. 328.

Limitations on credit for ROTC courses: Six (6) quarter hours in Basic ROTC courses and nine (9) quarter hours in Advanced ROTC courses are the maximum credits allowed toward meeting the requirements for any degree.

Grading System:
A—excellent (4 quality points)
B—good, above average (3 quality points)
C—satisfactory (2 quality points)
D—unsatisfactory, but passing (1 quality point)
F—failure, must be repeated if in a required course (no quality points)
S—Credit by transfer, examination for advanced standing, or satisfactory completion of a non-credit course (not included in calculation of scholastic average).

A grade of D is passing in a single subject but a general average of C is required for graduation.

More detailed information regarding the academic regulations of the Institute is contained in the handbook of student rules and regulations which is available to all students in the Public Relations Office.

Curricula
In the following pages there will be found in alphabetical order a tabulation of the work required for degrees in the curricula offered by the Georgia Institute of Technology.

At least 24 credit hours of humanities and social science must be included in all curricula leading to an undergraduate degree. The following courses have been approved as meeting this requirement:

I.M. 201, 202, 203, 204, 486, 487, 490.
Music 201, 202, 203.
Psy. 303, 304, 402, 410.

From time to time additional courses may be added to this list.
School of Aerospace Engineering
(Daniel Guggenheim School of Aeronautics)
(Established in 1930)

General Information
The School of Aerospace Engineering includes the Daniel Guggenheim School of Aeronautics that was established in 1930, by a gift from the Guggenheim Foundation, to establish opportunities at the Georgia Institute of Technology for study and research of the highest order in the field of aeronautics. The inclusion of space in the name indicates the broadening of the school's activities into this area. The scope of the work extends from the field of hydrodynamics to the area of rarefied gasdynamics and the design of vehicles to operate in the oceans, in the air, or in outer space. The rapidly expanding fields of aircraft and missile aerodynamics; high temperature phenomena both in the gasdynamics field and the structural dynamics and materials field; propulsion; and aircraft, missile and space vehicle design make the courses in aerospace engineering especially significant.

The number of students accepted as candidates for the Aerospace Engineering degree is limited. The selection will be made at the beginning of the junior year on the basis of the student's ability as demonstrated during his previous two-years' work.

Satisfactory completion of the four-year curriculum leads to the degree Bachelor of Aerospace Engineering. Students with marginal background preparation will probably find it necessary to spend more than twelve quarters. It is usually possible for applicants who already possess the degree of Bachelor of Science in Mechanical, Electrical, or Civil Engineering to complete the additional work toward the degree of Bachelor of Aerospace Engineering in one additional year if they so desire.

The School offers work leading to both the Master of Science degree and the Doctor of Philosophy degree and these programs prepare the student for research, high-level design, or teaching.

Equipment
The School of Aerospace Engineering is well equipped for offering laboratory work to augment and lend interest to the theoretical courses. Most of this equipment is also suitable for research projects conducted by graduate students and members of the staff. The School is housed in three buildings; a three-
story structure, erected in 1930; a one-story temporary annex, completed in 1947; and a new two-story permanent annex, completed in 1957. The principal building contains, in addition to classrooms and offices, a nine-foot wind tunnel, and a reference library on aerospace subjects. The annex houses the School's own machine and wood-working shop, in which all its models and special apparatus for research and routine programs are constructed; an aircraft structural testing laboratory, containing electric strain-gauge equipment, a fatigue testing machine, a special universal testing machine, and a low turbulence wind tunnel. The permanent annex houses the expanded compressible flow laboratory including a water table, smoke flow tunnel, supersonic wind tunnel, and the associated air compressors, dryers and storage tanks. Funds have been allocated for a new four-story research building (65,000 gross square feet) which will supplant the temporary annex. This building will house a high-pressure air system (3000 psi), a vacuum system, shock tubes, aerelasticity equipment, equipment for studying the behavior of materials at high temperatures, laboratories for studying atmosphere and space environments plus the equipment now existing in the temporary annex. The completion date for the new building is anticipated to be late 1966.

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 100</td>
<td>Algebra and Trigonometry</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry and Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. *</td>
<td>Modern Language OR</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Totals (excluding ROTC) **...15-13-18 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Choice of M.L. 101 2 3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.E. 322</td>
<td>Aerodynamics of the Airplane</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Survey of Principles of Economics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 305</td>
<td>Statics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Totals (excluding ROTC) *...16-7-18 16-7-18 16-7-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.E.</td>
<td>325</td>
<td>Aero and Hydro Mechanics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>331</td>
<td>Theory of Structures I</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>421</td>
<td>Aerodynamics - Elementary Supersonics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E.</td>
<td>424</td>
<td>Aerodynamics - Perfect Fluids</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>430</td>
<td>Theory of Structures II</td>
<td></td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>495</td>
<td>Engineering Analysis</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>E.E.</td>
<td>325</td>
<td>Electric Circuits and Fields</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>412</td>
<td>Advanced Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E.</td>
<td>322-23</td>
<td>Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Mech.</td>
<td>308</td>
<td>Dynamics</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Mech.</td>
<td>421</td>
<td>Mechanical Vibrations</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17-0-17</td>
<td>19-0-19</td>
<td>17-6-19</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.E.</td>
<td>323</td>
<td>Aerodynamics of the Airplane II</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>410</td>
<td>Thermal Stresses OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>426</td>
<td>Viscous Flow</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>435-37</td>
<td>Theory of Structures III, IV</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>440-41</td>
<td>Airplane Design I, II</td>
<td>0-9-3</td>
<td>0-9-3</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>456</td>
<td>Vibration and Flutter</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>457</td>
<td>Static and Dynamic Stability</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>467</td>
<td>Seminar</td>
<td></td>
<td></td>
<td>1-0-1</td>
</tr>
<tr>
<td>A.E.</td>
<td>471</td>
<td>Internal Aerodynamics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E.</td>
<td>481</td>
<td>Jet Propulsion</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>E.E.</td>
<td>326</td>
<td>Elementary Electronics</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Eng.</td>
<td>320</td>
<td>Technical Writing</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys.</td>
<td>319</td>
<td>Modern Physics for Engineers</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-12-16</td>
<td>14-12-18</td>
<td>15-3-16</td>
</tr>
</tbody>
</table>

NOTE: Three (3) hours of electives must be chosen from the approved humanities list which appears in the preceding pages of the catalog. All other electives are to be considered as free electives. Not more than nine (9) hours of advanced ROTC may be counted for credit.
Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

A.E. 322. Aerodynamics of the Airplane I.
3-0-3. Prerequisites: Math. 203 and Physics 209 or concurrently.
Applied aerodynamics including properties of air, airfoil theory, Reynolds Number, airfoil characteristics, induced drag and downwash, aspect ratio corrections, effects of wing platform, and auxiliary lift devices.

A.E. 323. Aerodynamics of the Airplane II.
Drag; horsepower; basic performance; special performance problems; load factors and maneuvers; compressibility effects.

A.E. 325. Aero and Hydro Mechanics
3-0-3. Prerequisites: A.E. 322 or consent of instructor; Math. 412 or concurrently.
Fluid mechanics, hydrodynamics, including continuity, circulation and curl, irrotational flow, velocity potential, vortex theorems, Euler equations, momentum theory, Bernoulli equation.
Text: Kuethe and Schetzer, *Foundations of Aerodynamics*.

A.E. 331. Theory of Structures I.
Basic theory of aircraft and missile structural design including: a review of plane stress and strain theory; loads, shears, and moments in wings and fuselages; inertia loads and load factors; section properties of aircraft components, space structures; bending of beams; materials properties and testing.

0-9-3. Prerequisites: Third Quarter Junior or Senior Standing and approval of A.E. School Director.
A clearly stated program prepared by the student describing in detail the nature, purpose and scope of the proposed problem, carrying the endorsement of the sponsoring A.E. staff member, must be submitted to the A.E. School Director for approval. Library, experimental, or theoretical work will be considered.

A.E. 410. Thermal Stresses
3-0-3. Prerequisites: A.E. 435, or consent of instructor.
Origin of thermal stress; external constraints; determination of temperatures—the heat transfer problem; fundamental equations of uncoupled isotropic thermoelasticity; some solutions of typical thermoelastic problems; properties of materials at high temperatures; problems in creep analysis.
Text: Gatewood, B.E., *Thermal Stresses*.

A.E. 415. Missile Aerodynamics
The aerodynamics of airborne missiles including slender body theory at subsonic and supersonic speeds. Wing-body-tail interference and extended study of drag with particular application to slender body configurations, Mathematical methods and general formulas are emphasized.
A.E. 419. Hypersonic Flow
3-0-3. Prerequisite: A.E. 421.

General flow equations, the hypersonic similarity law; slender body theory; approximate methods; methods using shock and simple wave relations; leading edge bluntness effects.

A.E. 421. Aerodynamics—Elementary Supersonics
3-0-3. Prerequisites: A.E. 325, M.E. 323.
The equations of motion, energy and continuity, thermodynamic principles, one-dimensional flow. Mach waves, shock waves, Prandtl-Meyer flow.
Text: Liepmann and Rosko, Elements of Gas Dynamics.

A.E. 424. Aerodynamics—Perfect Fluids
5-0-5. Prerequisites: A.E. 325, Math. 412.
Flow about a body; finite thickness airfoils and three-dimensional wing theory; complex variable theory; conformal mapping and transformations.
Text: Rauscher, Introduction to Aeronautical Dynamics.

A.E. 426. Viscous Flow
3-0-3. Prerequisites: A.E. 421, A.E. 430.
A study of the momentum and energy equations as applied to viscous flows with applications. Boundary layer equations with applications.
Text: Kuethe and Schetzer, Foundations of Aerodynamics.

A.E. 428. Experimental Methods
The methods, equipment, and instrumentation used in experimental aerospace engineering. The technique of recording and interpreting experimental data from selected laboratory tests is emphasized.

A.E. 430. Theory of Structures II
3-3-4. Prerequisites: A.E. 331, Math. 412.
Stress relations for an arbitrary continuous body; strain-displacement and compatibility relations; introduction to the theory of isotropic elasticity; strain gauges and strain measurements; illustrative elasticity solutions for beams; application to thin sheet-stringer aircraft structures; shear centers; unsymmetrical bending; tapered sections; shear flows in closed box beams.
Text: Peery, Aircraft Structures; Sechler, Elasticity in Engineering.

A.E. 435. Theory of Structures III
3-3-4. Prerequisite: A.E. 430.
General discussion of strain energy in elastic structures; application to rods, webs, beams, and shafts; virtual work and generalized virtual work; structural deflections by virtual work, Rayleigh-Ritz, and double integration; introduction to stability analysis; use of energy methods; long and short columns; elastic and plastic buckling of plates; the pure tension field beam; the semi-tension field beam.
Text: Peery, Aircraft Structures; Mil HNBK-5.

A.E. 437. Theory of Structures IV
3-3-4. Prerequisite: A.E. 435.
Statically indeterminant structures by energy methods and special methods; torsion on multicell sections; elastic axis of multicell sections; elastic axis of wing sections, warping of box beams; correlation of theory and practice by experiments in laboratory.
Text: Peery, Aircraft Structures.

A.E. 439. Advanced Structures
3-0-3. Prerequisites: A.E. 435.
Detailed study of beam columns, shear webs with cut-outs; shear lag, bending in the plastic range; miscellaneous thin metal structural problems.
Text: Peery, Aircraft Structures; Niles and Newell, Airplane Structures, Vol. II.
A.E. 440. Airplane Design I.
0-9-3. Prerequisites: Parallels A.E.
323 and A.E. 435.
Design of stressed skin type airplane
in accordance with the U. S.
Civil Aeronautics Administration or
Air Force requirements including a
stress analysis for several important
loading conditions. Three view,
weight and balance, performance re-
port, and structural loading report.
Text: Notes.

A.E. 441. Airplane Design II.
0-9-3. Prerequisites: A.E. 440,
Parallels A.E. 437.
Continuation of A.E. 440 to a
stress of the basic wing components.
Text: Notes; Mil HANBK-5.

A.E. 442. Airplane Design III.
0-9-3. Prerequisites: A.E. 441 and
A.E. 437.
Continuation of A.E. 441 to unit
and critical loadings on other parts
of the structure.
Text: Notes; Mil HANBK-5.

A.E. 456. Vibration and Flutter
3-0-3. Prerequisites: Mech. 421, A.E.
437.
Historical sketch, influence of
aeroelasticity in designs of aircraft
and missiles, matrices, structural
dynamics, solution of wing diver-
gence and flutter problems. Experi-
mental considerations, lab demonstra-
tions.
Text: Scanlon and Rosenbaum, Air-
craft Vibration and Flutter.

A.E. 457. Static and Dynamic Stability
5-0-5. Prerequisites: Mech. 421,
A.E. 424, A.E. 323.
Airplane and missile static lateral
and longitudinal stability and a study
of the equations and methods used
in the analysis of dynamic stability
of airplanes and missiles.
Text: Perkins and Hage, Airplane
Performance, Stability and Control.

A.E. 467-468. Seminar
1-0-1. Prerequisites: A.E. 323, A.E.
440, Engl. 320 concurrently.
Scheduled meetings at which in-
dividual students present technical
papers on important current aero-
nautical developments, the reading
of each paper being followed by
group discussion.

A.E. 471. Internal Aerodynamics
3-0-3. Prerequisites: A.E. 421.
One dimensional, internal aero-
dynamics. Flow characteristics of
wind tunnels, diffusers and exhaust
nozzles. Flow in ducts with friction,
energy change and mass addition.
Text: Shapiro, The Dynamics and
Thermodynamics of Compressible
Fluid Flow. Volume I.

A.E. 473. Introduction to Propeller and
Rotor Theory
3-0-3. Prerequisites: A.E. 323.
A study of the theory and equa-
tions used in the design of propellers
and helicopter rotors.

A.E. 481. Jet Propulsion
3-0-3. Prerequisite: A.E. 471.
Theory of jet propulsion. Cycle
analysis and performance character-
istics of gas turbine, turbo-prop, tur-
bo-fan, turbo-jet, and rocket engines.
Text: Keenan, J. H. and Kaye, Jr.,
Gas Tables.

A.E. 482. Jet Propulsion and Rocketry
3-0-3. Prerequisite: A.E. 481.
Continuation of A.E. 481. Com-
ponent matching and off-design per-
formance of air-breathing, jet-pro-
pulsion engines. Rocket engine per-
formance characteristics. Rocket
multi-staging principles and the dy-
namics of rocket and orbital motion.
Text: To be selected.

A.E. 495. Engineering Analysis
3-0-3. Prerequisites: A.E. 421, A.E.
435, Math. 443, ALGOL Seminar
concurrently.
Introduction to programming for
digital computer; numerical analysis
for digital computation; problem
solution on an analog computer; ap-
plications to problems in aerospace
engineering. Students have the op-
portunity to work with both analog
and digital computers.
Text: Notes.
Graduate Courses Offered

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.E. 621</td>
<td>Elements of Viscous Fluid Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 622</td>
<td>Elements of Compressible Flow Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 630</td>
<td>Elasticity</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 631</td>
<td>Advanced Structural Analysis I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 632</td>
<td>Advanced Structural Analysis II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 633</td>
<td>Advanced Structural Analysis III</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 634</td>
<td>Advanced Structural Analysis IV</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 635</td>
<td>Advanced Structural Analysis V</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 640</td>
<td>Molecular Gasdynamics I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 641</td>
<td>Molecular Gasdynamics II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 650</td>
<td>Advanced Potential Flow I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 651</td>
<td>Structural Dynamics I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 676</td>
<td>Aerodynamics of the Helicopter I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 677</td>
<td>Aerodynamics of the Helicopter II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 680</td>
<td>Rocket Propulsion Principles I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 682</td>
<td>Jet Propulsion Principles I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 683</td>
<td>Rocket Propulsion Principles II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 684</td>
<td>Rocket Propulsion Principles III</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 690</td>
<td>Aerospace Engineering Analysis I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 691</td>
<td>Aerospace Engineering Analysis II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 692</td>
<td>Aerospace Engineering Analysis III</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 693</td>
<td>Engineering Analysis</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 700</td>
<td>Master's Thesis</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 704, 5, 6</td>
<td>Special Problems in Aerospace Engineering (credit to be arranged)</td>
<td></td>
</tr>
<tr>
<td>A.E. 710</td>
<td>Aerodynamic Heating</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 717</td>
<td>Three-Dimensional Vortex Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 718</td>
<td>Turbulent Flow</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 719</td>
<td>Hypersonic Flow Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 721</td>
<td>Advanced Viscous Flow Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 725</td>
<td>Introduction to Theory of Turbulence</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 726</td>
<td>Advanced Compressible Flow Theory I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 729</td>
<td>Advanced Compressible Flow Theory II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 740</td>
<td>Molecular Gasdynamics III</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 741</td>
<td>Rarefied Gasdynamics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 742</td>
<td>Reacting Boundary Layer Theory I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 743</td>
<td>Reacting Boundary Layer Theory II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 750</td>
<td>Advanced Potential Flow II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 751</td>
<td>Structural Dynamics II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 752</td>
<td>Applied Aeroelasticity I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 753</td>
<td>Applied Aeroelasticity II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 754</td>
<td>Experimental Aeroelasticity</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 756</td>
<td>Special Topics in Aeroelasticity I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 757</td>
<td>Special Topics in Aeroelasticity II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>A.E. 800</td>
<td>Doctor's Thesis</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>
Department of Air Science
(Established in 1950)

Commandant and Professor of Air Science—Lt. Colonel Alexander K. Johnson; Assistant Professors—Major William A. Howington, Major Joseph L. McCarter, Major Wallace C. Ryan, Captain George R. Fessler, Jr., Captain Harold W. Holady, Jr., Captain Gordon J. Milliken, Captain Harold Sattler; Staff—Master Sergeants Kenneth J. Gellins, Dale C. Hoffman, Technical Sergeant William H. Tomlinson, Staff Sergeants Melvin C. Amerman, Robert C. Daniel, Paul M. Richardson; Mrs. Elizabeth W. Cerulli, Secretary.

Air Force Officers' Training Corps
The Department of Air Science was established in 1950 to select and prepare students, through a permanent program of instruction, to serve as officers in the Regular and Reserve components of the United States Air Force. The curriculum emphasizes the uniformly high level of military understanding and knowledge required to all Air Force officers.

AFROTC training is divided into two phases: The first two years constitute the General Military Course; the last two the Professional Officer Course. The Department offers a four year and a two year program. Each of these options leads to a commission in the Air Force. The four year program requires completion of both the General Military Course and Professional Officer Course. Students with prior active military service or previous training at Military schools may, on the basis of their experience, receive a waiver for portions of the General Military Course. The two year program requires, as a substitute for the General Military Course, completion of a six week Field Training Course at an Air Force Base prior to formal enrollment in the Professional Officer Course. The two year program is designed primarily to accommodate transfer students.

The ROTC Vitalization Act of 1964 provides for Financial Assistance Grants to AFROTC cadets. Cadets receiving Financial Assistance Grants are selected on a competitive basis. Only cadets enrolled in the four year program are eligible for Financial Assistance. These Grants pay the cost of tuition, books, fees, supplies and equipment, plus a monthly retainer of $50.

General Military Course
Primarily a study of World Military Systems, the General Military Course is designed to acquaint the student with the causes of the present world conflict as they affect the security of the United States. It includes an introductory analysis of the military aspects of Democracy and Communism; the United States' power position in World affairs; and the fundamental aspects of aerospace operations. In addition to exploring western military forces and alliances, it also includes an up-to-date familiarization with the communist and satellite forces.

During the first two quarters of the freshman year students take substitute institutional courses for the classroom portion of the General Military Course. Similarly, the sophomore takes substitute work in his third quarter of the General Military Course. This substitution includes: the satisfactory completion of any two of the following courses during his freshman year and one of the remaining courses during his sophomore year—SS 111, 112, 113, Modern Languages, English 101, 102, 103, 105, 131, 132, 133, 201, 202, and 203.
Air Science / 43

The Professional Officer Course

Enrollment in the Professional Officer Course is limited to applicants who demonstrate a high officer potential. Applicant must: (1) be able to fulfill all requirements for a commission prior to his 28th birthday; (2) have two years of academic training remaining in order to obtain a degree; (3) sign a written contract agreeing to complete the course; (4) be a citizen of the United States; (5) pass the Air Force Officers' Qualification Test; (6) pass the Officer physical examination; (7) terminate membership (if a member) of Air Force Reserve, secure release if a member of other reserve component, enlist in Air Force Reserve (Ineligible Reserve Section); and (8) be accepted by a board of Air Force Officers.

All Professional Officer Course cadets receive retainer pay amounting to about $840. This is in addition to the pay received for the four week Field Training which is accomplished between the junior and senior year. Field Training pay is at the rate of $120 a month. Cadets also receive compensation for travel expenses and are furnished food, housing, uniforms and medical care while attending Field Training, which is conducted at regularly established Air Force Bases.

Completion of the Professional Officer Course, including Field Training, and receipt of a degree make a cadet eligible for a commission as a lieutenant in the United States Air Force Reserve. Cadets receiving commissions will be ordered to active duty shortly after graduation. The active duty requirement for those who enter and satisfactorily complete pilot training is four years after graduation from the flying school. For others, the requirement is four years after initial call to active duty.

The Professional Officer Course is a recognized elective in all departments at Georgia Tech to the extent that nine hours of credit may be applied toward a degree providing the entire course is completed. If the student does not complete the entire program, ROTC credits may not be used as electives unless the student has been relieved of his contractural obligations by the Secretary of the Air Force.

Uniforms

The Air Force ROTC uniform is identical to the regulation Air Force uniform except for insignia. Air Force ROTC cadets are required to wear the uniform during drill periods.

Newly entering students in the Air Force ROTC are required to purchase a new uniform through Georgia Institute of Technology. The cost for the General Military Course uniform is approximately $75.00. The Professional Officer Course uniform costs $108.00.

A cadet receives reimbursement for the General Military Course uniform while he remains enrolled in AFROTC at Georgia Tech. Upon completion of Freshman year he receives $25, and Sophomore year an additional $25.

A cadet who transfers to another institution prior to completion of the General Military Course will be governed by the gaining institution's uniform system as to whether or not he will receive reimbursement for the remainder of the General Military Course.

An additional $100 allowance is provided for the Professional Officer Course cadet upon his completion of the course or upon discharge without prejudice.
Texts
Textbooks are furnished by the Air Force (except for those subjects of the regular curriculum which may be substituted in lieu of Air Force subjects).

Grading System
Letter grades are awarded as in other departments. However, the grade is not based entirely on classroom recitations, oral or written, but includes aptitude and ability as a leader during leadership laboratory periods. A cadet's potential value as a leader is demonstrated to an important degree by his response to the entire scope of military instruction and military procedure, as portrayed by his interest, conduct, alertness, neatness, attendance and similar related matters. Final grades for each quarter will be based on evidence of those attributes combined with his academic standing.

Academic Credit
Academic credit is granted for the completion of Air Science courses as indicated in the sections that follow, however, not more than 6 hours in General Military Courses and not more than 9 hours in Professional Officer Courses may be applied toward a degree.

<table>
<thead>
<tr>
<th>Courses of Instruction</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Military Course:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st year</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2nd year</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Professional Officer Course:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st year</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2nd year</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Note: 2-1-2 means 2 hours class, 1 hour laboratory, 2 hours credit.

GENERAL MILITARY COURSE

AIR SCIENCE I — World Military Systems

A.S. 131—Laboratory
0-1-0.

Basic instruction and practice in military formation and drills. No outside preparation is required and no quizzes will be given. The grade of “S” will be given for satisfactory completion.

A.S. 132—Laboratory
0-1-0.

Continuation of A.S. 131 and in addition instruction and practice in parades, reviews and ceremonies. No outside preparation is required and no quizzes will be given. The grade of “S” will be given for satisfactory completion.

A.S. 133—U.S. Aerospace Power as an Instrument of National Policy
2-1-2.

An introductory course exploring the causes of the present world conflict, the role and relationship of military power to that conflict as it affects the security of the United States. Military aspects of democracy and communism, the Armed Forces as an instrument of National Policy, with emphasis on the missions and functions of the United States Air Force.

A.S. 231—Free World Land, Naval, and Air Forces
2-1-2.
A comparison of the mission, organization, functions and characteristics of the land, naval, and air forces of the free world.

2-1-2.
A study of the mission, organization, functions and characteristics of Communist land, naval, and air forces. Exploration of the trends in the development and employment of military power and their impact on world affairs.

A.S. 233—Laboratory
0-1-0.
Continuation of previous laboratory work and in addition training in leadership, military customs and courtesies to develop cadet officers who can be given command responsibility for the administration and operation of the Cadet Wing during the Professional Officer Course. No outside preparation is required and no quizzes will be given. The grade of “S” will be given for satisfactory completion.

PROFESSIONAL OFFICER COURSE

AIR SCIENCE III — The Growth and Development of Aerospace Power.

A detailed study of the nature of war with emphasis on the Air Force role, Mission and Organization of the Department of Defense; development of Air Power in the United States; the Air Force mission, concepts, doctrine and employment.

A.S. 312—Astronautics and Space Operations—1
3-1-3.
The national organization for the conduct of space operations. Division of responsibilities and the joint responsibilities between the NASA and the Air Force with regard to the designs, development, and operation of space vehicles.

A.S. 313—Astronautics and Space Operations—2
3-1-3.
Characteristics of present day systems including the vehicle and associated ground support equipment. Concepts of space operations and their application to future aerospace power.

AIR SCIENCE IV — THE PROFESSIONAL OFFICER

A.S. 411—Foundations of Military Professionalism
3-1-3.
A study of professional responsibilities, the military justice system, leadership theory, functions and practices. Command positions in leadership laboratory.

A.S. 412—Application of Human Relations in Air Force Leadership
3-1-3.
A study of military discipline, personnel policies, and written and oral communications. Also to include modern techniques and concepts and practice in problem solving.

A.S. 413—Air Force Management and the Junior Officer
3-1-3.
Principles and concepts of command and staff activities. The junior officer as a manager. Briefing for commissioned service.
School of Applied Biology
(Established 1960)

Director—Robert Fetner; Professor-emeritus—Hugh A. Wyckoff; Professors—Robert S. Ingols, Thomas W. Kethley, Carlyle J. Roberts; Associate Professors—Allen B. Eschenbrenner, Peter E. Gaffney; Assistant Professors—Hong S. Min, Nancy W. Walls; Secretary—Mrs. Agnes Varble.

General Information
The purpose of the School of Applied Biology is principally to prepare students for a career in Biology with emphasis on the basic sciences and applications of Biology. The Biology courses in the curriculum stress the functioning of organisms as dynamic systems and the physical and chemical changes resulting from interaction with their environment. The intensity of the biological studies coupled with a broad background in the other sciences prepares the graduates for professional careers in Biology with employment opportunities in government (Public Health, or related medical fields, agriculture, space systems, food and drug) or in industry (pharmaceutical, food, fermentation).

Completion of the curriculum with the degree of Bachelor of Science in Applied Biology also prepares students who wish to continue their studies in graduate schools in advanced biological specialties or in medicine. Pre-Medical students have the guidance of a special committee of the faculty.

The School also offers programs leading to the Masters Degree in Public Health or Public Health Engineering.

Since the faculty are actively engaged in research in such fields as radiobiology, cytology, microbiology, aerobiology, limnology, waste treatment, and water pollution, student majors will be encouraged to realize the challenges and opportunities in these and related areas of interest.

In addition, the courses in the Biology curriculum are offered as an integral part of the broad technical background of students in the other sciences or engineering curricula at Georgia Tech.
Curriculum in Applied Biology

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>101-2-3</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr.</td>
<td>113</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Introduction to Literature</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>Algebra-Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytical Geometry-Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L.</td>
<td>*</td>
<td>Modern Language or S.S.</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>R.O.T.C.</td>
<td>**</td>
<td>Basic R.O.T.C. (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding R.O.T.C) 15-13-18 14-7-16 14-7-16

*NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

**Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required.

**R.O.T.C. is an optional requirement and those students not scheduling R.O.T.C. courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic R.O.T.C. may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio.</td>
<td>201-2-4</td>
<td>Introduction to Biology</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio.</td>
<td>307</td>
<td>Microbiology</td>
<td></td>
<td></td>
<td>3-4-4</td>
</tr>
<tr>
<td>Chem.</td>
<td>214-15</td>
<td>Analytical Chemistry</td>
<td>2-6-4</td>
<td>2-6-4</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>201-2-3</td>
<td>Survey of Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys.</td>
<td>207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>R.O.T.C.</td>
<td>*</td>
<td>Basic R.O.T.C. (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
</tbody>
</table>

Totals (excluding R.O.T.C) 13-16-18 13-16-18 14-14-18

*ROTC is an optional requirement and those students not scheduling R.O.T.C. courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic R.O.T.C. may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio.</td>
<td>407</td>
<td>Bacteriology or</td>
<td></td>
<td></td>
<td>3-4-4</td>
</tr>
<tr>
<td>Bio.</td>
<td>203</td>
<td>Comparative Anatomy</td>
<td></td>
<td></td>
<td>2-6-4</td>
</tr>
<tr>
<td>Bio.</td>
<td>333</td>
<td>Biostatistics</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio.</td>
<td>334</td>
<td>Genetics</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem.</td>
<td>340-1-2</td>
<td>Organic Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem.</td>
<td>343-4-5</td>
<td>Organic Chem. Lab.</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>M.L.</td>
<td>*</td>
<td>Modern Language or S.S.</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psych.</td>
<td>303-4</td>
<td>General Psychology</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives **</td>
<td></td>
<td></td>
<td>0-0-4</td>
<td>0-0-4</td>
<td>0-0-7</td>
</tr>
</tbody>
</table>

Totals 12-9-19 12-9-19 11-16-23

*At least six quarters of Modern Language and/or Social Science shall be taken during Freshman and Junior year.

**Not more than 9 hours of Electives in the Junior and Senior Years may be advanced R.O.T.C. The remaining electives must be chosen from acceptable courses in Biology, Mathematics, Physics, Chemistry, Chemical Engineering, or Civil Engineering. The courses must be chosen in conference with a staff advisor to provide a sequence or group of courses which is interrelated to a specific field of interest.
Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio.</td>
<td>415</td>
<td>Radiation Biology</td>
<td></td>
<td></td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio.</td>
<td>431</td>
<td>Microscopy</td>
<td>3-6-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio.</td>
<td>435-6</td>
<td>Applied Biology</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Bio.</td>
<td>443-4-5</td>
<td>General Physiology</td>
<td>3-6-5</td>
<td>3-6-5</td>
<td>3-6-5</td>
</tr>
<tr>
<td>Bio.</td>
<td>450</td>
<td>Seminar</td>
<td></td>
<td></td>
<td>2-0-2</td>
</tr>
<tr>
<td>Electives *</td>
<td></td>
<td></td>
<td>0-0-6</td>
<td>0-0-10</td>
<td>0-0-7</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>9-12-19</td>
<td>6-6-18</td>
<td>8-9-18</td>
</tr>
</tbody>
</table>

*Not more than 9 hours of Electives in the Junior and Senior Years may be advanced ROTC. The remaining electives must be chosen from acceptable courses in Biology, Mathematics, Physics, Chemistry, Chemical Engineering, or Civil Engineering. The courses must be chosen in conference with a staff advisor to provide a sequence or group of courses which is interrelated to a specific field of interest.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Bio. 201. Introduction to Biology
3-3-4. Prerequisite: None.
Fundamental principles and theories of biology.

Bio. 202. Introduction to Biology
3-3-4. Prerequisite: Bio. 201.
Study of invertebrate and vertebrate animal forms.
Text: Storer and Usinger, General Zoology.

Bio. 203. Comparative Anatomy
Study of the comparative anatomy of the vertebrates with laboratory dissection of several vertebrate forms.

Bio. 204. Introduction to Biology
Fundamental principles and theories of botany.
Text: Beaver, General Biology.

Bio. 307. General Bacteriology
3-4-4. Prerequisite: Bio. 201.
An elementary course to familiarize the student with the characteristics of bacteria and their relation to disease and sanitation, and the place they occupy in everyday life.
Text: Sarles, Frazier, Wilson and Knight, Microbiology.

Bio. 316. Industrial Hygiene
3-0-3. Prerequisite: None.
Problems of health in industry; industrial poisons, occupational hazards and diseases, industrial fatigue, ventilation, and accident prevention.
Text: Cannon, Outline of Industrial Hygiene.
References.

Bio. 333. Biostatistics
3-3-4. Prerequisites: Math. 201, Bio. 204.
An introduction to statistical methods and their use in the preparation and interpretation of biological experiments.
Text: Croxton, Elementary Statistics with Emphasis in Medical and Biological Sciences; Goldstein, Biostatistics.

Bio. 334. Genetics
3-3-4. Prerequisite: Bio. 333 or consent of instructor.
The effect of hereditary units in dynamic interplay with the environment on the development and function of organisms.
Text: Srb and Owens, General Genetics.

Bio. 407. Advanced Microbiology
3-4-4. Prerequisite: Bio. 307, Chem. 341.
Advanced discussion and laboratory procedures in Mycology, Virology, and bacterial Physiology.
Text: To be selected.

Bio. 411. Sanitation
3-0-3. Prerequisite: Bio. 307.
The principles of sanitation, water supplies, sewage and refuse disposal, food sanitation and inspection methods.

Bio. 413. Air and Water Pollution
An introduction to the technical and legal problems of air and water pollution by industry and its control, for those engineers working in industry (for non-Sanitary Engineers).
Text: References.

Bio. 415. Introductory Radiation Biology
3-3-4. Prerequisite: Consent of instructor.
A general survey of biological systems and their responses to various kinds of radiations.

Bio. 420. Water and Sewage Analysis
1-6-3. Prerequisite: Chem. 103.
A laboratory course to acquaint the Sanitary Engineer with the techniques of standard methods for the analysis of water and sewage.
Text: Committee—A.P.H.A. Standard Methods for the Examination of Water and Waste Water; Sawyer, Chemistry for Sanitary Engineers.

Bio. 425. Microbiological Fermentations
3-0-3. Prerequisites: Bio. 307 and/or Chem. 342.
A study of the nutritional and environmental requirements for, and the mechanisms involved in the production of useful chemicals, foods and drugs by microbiological agencies.
Text: Steel, Biochemical Engineering.

Bio. 428. Survey of Sanitary Microbiology
2-6-4. Prerequisite: None.
A lecture and laboratory course to acquaint the sanitary engineer with the agents of disease and with the agents of sewage treatment.
Text: Kreuger, Principles of Microbiology.

Bio. 431. Cytology
3-6-5. Prerequisite: Bio. 204.
Modern aspects of the morphologic, functional and cytochemical organization of the cell. Preparative techniques and principles for observations in light, phase and electron microscopy.
Text: DeRobertis, Nowinski, and Saez, General Cytology.

Bio. 435, 436. Applied Biology
3-0-3. Prerequisite: Bio. 307.
Methods of applying basic biological principles and techniques to contemporary problems in the fields of public health and bioengineering with emphasis on their economic and environmental importance.
Text: References.

Bio. 443, 444, 445. General Physiology
3-6-5, 3-6-5, 3-6-5. Prerequisites: Bio. 307, Chem. 342.
The chemical, physical and biological responses and functions of living systems. The study of cellular biochemistry and metabolism, tissue and organ function, interrelationship of organ systems and the response of the whole organism to its environment.
Text: Giese, Cell Physiology; Other texts to be selected.
Bio. 450. Seminar

2-0-2. Prerequisite: Bio. 340 and senior status.

Student and staff presentations of reports on laboratory or literature searches.
Text: References.

Bio. 460, 461, 462. Special Problems

Hours to be arranged. Prerequisite: Bio. 204.
A course for the study of special laboratory problems in biology, to be given any quarter with credits (not to exceed 6) to be arranged.
Text: References.

Graduate Courses Offered

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio. 630</td>
<td>Biological Effects of Radiation</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio. 632</td>
<td>Design of Experiments in Quantitative Biology</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio. 633</td>
<td>Selected Topics in Radiobiology</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio. 634</td>
<td>Selected Topics in Experimental Cell Biology</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Bio. 703</td>
<td>Public Health Administration and Organization</td>
<td>4-0-4</td>
</tr>
<tr>
<td>Bio. 704, 5, 6</td>
<td>Special Problems</td>
<td></td>
</tr>
</tbody>
</table>

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
School of Architecture

(Established in 1908)

General Information

The School of Architecture was established as a degree granting department of the Institute in 1908 and now offers the following courses of study—(1) the five-year curricula in Architecture with options in Architectural Design or Structural Design both leading to the degree Bachelor of Architecture, (2) a four-year curriculum in Building Construction leading to the degree Bachelor of Science in Building Construction and (3) a four-year curriculum in Industrial Design leading to the degree Bachelor of Science in Industrial Design. In addition, the graduate program in Architecture* prepares for the degree Master of Architecture, and the graduate program in City Planning* leads to the degree Master of City Planning.

Architecture

The original objective and first aim of the School is to prepare students for the profession of Architecture. The scope of the field is of such breadth in current practice that need is felt not only for men who are strong in design but for others whose interests will be closely integrated with design in structural and mechanical techniques. The training in Architecture is uniform for the first four years with two areas of specialization, Architectural Design and Structural Design, strongly emphasized in the final year. The central core of the curriculum in Architecture is the study of design, with related exercises in drawing, graphics, visual composition and model building. The student is given an opportunity in these courses to develop his creative as well as his analytical powers by finding solutions to programs employing the requirements of contemporary buildings and paralleling the conditions to be encountered in later practice. Instruction is generally in the form of guidance and suggestion on the part of the instructor to each student individually, accompanied by group discussions, lectures, and demonstrations. Solutions are submitted as drawings or models for review and judgment by a jury of teachers, practicing architects, and such designers or specialists as the occasion may require.

Closely allied to design and, insofar as possible, integrated with it are the courses in construction which, in turn, are dependent on the basic requirements of mathematics, physics, and mechanics. Courses in the history and theory of

*For the graduate program in Architecture and City Planning, see Graduate Bulletin.
architecture supply a fuller understanding of our architectural heritage, its meaning and impact on contemporary problems. Work of technical importance is offered in building materials, mechanical plant (plumbing, heating, air-conditioning and electrical installations), office and field practice.

The National Architectural Accrediting Board has officially accredited the five-year course leading to the degree Bachelor of Architecture at the Georgia Institute of Technology.

The National Council of Architectural Registration Boards and the Georgia State Board for the Examination, Qualification and Registration of Architects, recognize the Bachelor of Architecture degree at the Georgia Institute of Technology as adequate preparation for practice, with the exception of experience requirements. After three years internship in the office of a registered architect, Bachelor of Architecture graduates may apply for examination and registration as licensed architects.

All work executed in classes administered by the School becomes the property of the School and will be retained, or returned at the discretion of the faculty. The faculty reserves the right to refuse for credit any project executed outside the precincts of the School of Architecture, or otherwise executed without proper coordination with the instructor.

Standards for Advancement

All students entering the School of Architecture are required during the first term of residence to take interest and aptitude tests with the Office of Guidance and Testing.

Curriculum in Architecture

In order for students to obtain the greatest benefit from courses offered concurrently in the curriculum, progress will be noted at several intervals as follows:

a) Averages in drawing and design will be checked at the end of each year group of three courses (151-52-53; 251-52-53, etc.). A student will not be permitted to enter a more advanced group until his record in the previous group equals 2.0 or better.

b) Admission to the third year of architecture will be based on Faculty approval plus the completion of all required and prerequisite courses, both academic and departmental, in the first two years of the curriculum. A point average in design of 2.0 and an overall average not less than 1.9 are required. The student on entering the third year must be prepared to schedule his primary subjects concurrently (Arch. 351, 361 371).

c) Admission to the 5th year of Architecture will be based on Faculty approval plus the completion of all required and prerequisite courses, both academic and departmental, in the first four years of the curriculum. A point average of 2.0, both overall and in design courses is required. The student must be prepared to schedule his primary subjects concurrently (Arch. 551 or 554, 561 and C.E. 400); in addition he must present an affidavit confirming at least three months practical experience in the office of a registered architect or approved construction company.
d) Admission to the thesis in architecture requires Faculty approval and a minimum average of 2.0 in Arch. 551-52 (Option I) or 554-55 (Option II).

Curriculum in Building Construction

a) Requirements for the first two years are identical with those for architectural students.

b) Admission to the third year of Building Construction will be based on Faculty approval plus the completion of all required and prerequisite courses, both academic and departmental, in the first two years of the curriculum. An overall average not less than 1.9 is required. The student must be prepared to schedule his primary subjects concurrently (Arch. 322, 337, 371).

c) To become a candidate for a degree, the student must present an affidavit confirming at least three months practical experience with an approved construction or materials concern.

Curriculum in Industrial Design

a) Requirements for the first four quarters are identical with those for architectural students.

b) Averages in Industrial Design will be checked at the end of each year's group of courses (I.D. 202-3, I.D. 301-2-3, etc.). A student will not be permitted to enter a more advanced group until his record in the previous group equals 2.0 or better.

ARCHITECTURE

Freshman Year

(Uniform for Architecture, Building Construction and Industrial Design)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 151-52-53</td>
<td>Arch. Drawing</td>
<td>0-9-3</td>
<td>0-9-3</td>
<td>0-9-3</td>
</tr>
<tr>
<td>Arch. 162-63</td>
<td>Arch. Orientation</td>
<td>1-0-0</td>
<td>1-0-0</td>
<td>1-0-0</td>
</tr>
<tr>
<td>Arch. 171-72-73</td>
<td>Graphics</td>
<td>1-3-2</td>
<td>1-3-2</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Eng. 101-2-5</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>College Algebra and Trig.</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytic Geom. and Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*M.L. 101-2-3</td>
<td>Modern Language</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 13-16-17 13-16-17 13-16-17

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Chemistry is required in place of M.L. for the curricula in Building Construction and Industrial Design.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Sophomore Year

(Uniform for Architecture and Building Construction)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202</td>
<td>Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 211-12-13</td>
<td>Mech.; Elec.; Heat, Light & Sound</td>
<td>4-0-4</td>
<td>4-0-4</td>
<td>4-0-4</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Arch. 351 is required in place of Arch. 253 for the curriculum in Building Construction.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 361-62-63</td>
<td>History and Theory</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Arch. 371-72-73</td>
<td>Structures</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Arch. 322-23-24</td>
<td>Building Materials</td>
<td>2-0-2</td>
<td>2-0-2</td>
<td>2-0-2</td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Sciences</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

*Electives: 8 hours must be chosen from the restricted list of the School of Architecture, Group I or Group II corresponding to option.

9 hours must be chosen from the list of general electives approved by the School of Architecture.

9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 451-52-53</td>
<td>Arch. Design</td>
<td>0-18-6</td>
<td>0-18-6</td>
<td>0-18-6</td>
</tr>
<tr>
<td>Arch. 461-62-63</td>
<td>History and Theory</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Arch. 471</td>
<td>Structures</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 306, 406</td>
<td>Structural Analysis, Reinforced Concrete</td>
<td></td>
<td>3-3-4</td>
<td>2-3-3</td>
</tr>
<tr>
<td>M.E. 334-35</td>
<td>Mech. Equip. Bldgs.</td>
<td>3-0-3</td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>E.E. 315</td>
<td>Mech. Equip. (Elec.)</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 12-18-18 11-24-19 11-21-18

*Electives: 8 hours must be chosen from the restricted list of the School of Architecture, Group I or Group II corresponding to option.

9 hours must be chosen from the list of general electives approved by the School of Architecture.

9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.
Fifth Year *(Option I—Architectural Design)*

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 561-62-63</td>
<td>Seminar</td>
<td>2-0-2</td>
<td>2-0-2</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Arch. 581-82-83</td>
<td>Professional Practice</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 400</td>
<td>Reinforced Concrete</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>Group I Electives</td>
<td>4-0-4</td>
<td>4-0-4</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>8-27-17</td>
<td>9-27-18</td>
<td>9-27-18</td>
</tr>
</tbody>
</table>

*Electives: 8 hours must be chosen from the restricted list of the School of Architecture, Group I or Group II corresponding to option. 9 hours must be chosen from the list of general electives approved by the School of Architecture. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Fifth Year *(Option II—Structural Design)*

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 554-55-56</td>
<td>Structural Design</td>
<td>0-27-9</td>
<td>0-27-9</td>
<td>0-27-9</td>
</tr>
<tr>
<td>Arch. 561</td>
<td>Seminar</td>
<td>2-0-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch. 581-82-83</td>
<td>Professional Practice</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Arch. 522</td>
<td>Structural Design: Integration</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 400</td>
<td>Reinforced Concrete</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>Group II Electives</td>
<td>2-0-2</td>
<td>6-0-6</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>8-27-17</td>
<td>8-30-18</td>
<td>9-27-18</td>
</tr>
</tbody>
</table>

*Electives: 8 hours must be chosen from the restricted list of the School of Architecture, Group I or Group II corresponding to option. 9 hours must be chosen from the list of general electives approved by the School of Architecture. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Building Construction

As one of the major industries in the country, Construction has need of many men who are trained in the field of materials, products, manufacture, sales and general contracting. The Building Construction curriculum at Georgia Tech is designed to supply graduates for these varied building activities which, with the architect and engineer, help to coordinate all building projects. The course parallels the curriculum in Architecture for the first two years, then specializes in technical studies in construction, materials, personnel and management problems. The degree, Bachelor of Science in Building Construction, is awarded on the completion of four years of study.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 322-23-24</td>
<td>Building Materials</td>
<td>2-0-2</td>
<td>2-0-2</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Arch. 337-38-39</td>
<td>Arch. History</td>
<td>2-0-2</td>
<td>2-0-2</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Arch. 371-72-73</td>
<td>Structures</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 206</td>
<td>Elem. Surveying</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 306</td>
<td>Structural Analysis</td>
<td></td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Tech. Writing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Economics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 336</td>
<td>Accounting Survey</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>M.E. 353</td>
<td>Materials Laboratory</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>M.L. or S.S. 111-12-13</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>
Electives | | 3-0-3 | 3-0-3 | 3-0-3 |
| **Totals** | | 19-0-19| 16-6-18| 18-3-19|

Electives: 12 hours must be chosen from the approved list of the School of Arch. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 471</td>
<td>Structures</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch. 581-82-83</td>
<td>Professional Practice</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Arch. 584</td>
<td>Cost Analysis</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 406, 400</td>
<td>Reinforced Concrete</td>
<td>2-3-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>M.E. 334-35</td>
<td>Mech. Plant</td>
<td>3-0-3</td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>E.E. 315</td>
<td>Mech. Plant (Elec.)</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M. 316-17</td>
<td>Fin. Survey; Ind. Mkt.</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M. 325</td>
<td>Survey of Bus. Law</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 443</td>
<td>Principles of Investment</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>6-0-6</td>
</tr>
</tbody>
</table>
Electives | | 3-0-3 | 3-0-3 | |
| **Totals** | | 18-0-18| 15-9-18| 18-0-18|

Electives: 12 hours must be chosen from the approved list of the School of Arch. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Industrial Design

Industrial Design deals with the development of those products of industry with which man, in utilizing them, has direct visual physical relationship, such as utensils, appliances, equipment, and furnishings for the home, industry, commercial and public places.

The specialized curriculum in Industrial Design begins with the second term of the Sophomore Year. It is comprised of two design series which are taken concurrently.

The Industrial Design Series deals with the nature of objects, the design processes, the different fields of design, and the types and groups of objects. In this series the student deals with the actual design and execution of test models as well as with the theoretical aspect of design for mass-production.
The Material and Technique Series covers the relationship of design to various industrial materials and processes. In this series the student designs and executes objects, but is limited in each assignment to specific materials and/or processes.

The degree, Bachelor of Science in Industrial Design, is awarded on the completion of four years of study.

Freshman year—see Architecture.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 251</td>
<td>Arch. Design</td>
<td>0-15-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch. 254-55</td>
<td>Color Theory</td>
<td></td>
<td>1-3-2</td>
<td>1-3-2</td>
</tr>
<tr>
<td>I.D. 202-3</td>
<td>Design</td>
<td></td>
<td>1-12-5</td>
<td>1-12-5</td>
</tr>
<tr>
<td>I.D. 215-16</td>
<td>Material and Technique</td>
<td></td>
<td>1-3-2</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202</td>
<td>Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 211-12-13</td>
<td>Physics</td>
<td>4-0-4</td>
<td>4-0-4</td>
<td>4-0-4</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 12-19-18 10-22-17 10-22-17

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 354-55</td>
<td>Arch. Rendering</td>
<td>0-3-1</td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Arch. 337-39-39</td>
<td>Arch. History</td>
<td>2-0-2</td>
<td>2-0-2</td>
<td>2-0-2</td>
</tr>
<tr>
<td>I.D. 301-2-3</td>
<td>Design</td>
<td>1-12-5</td>
<td>1-12-5</td>
<td>1-15-6</td>
</tr>
<tr>
<td>I.D. 314-15-16</td>
<td>Material and Technique</td>
<td>1-3-2</td>
<td>1-3-2</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Met. 325</td>
<td>General Metallurgy</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.E. 311</td>
<td>Manufacturing Processes</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.L. or S.S. 111-12-13</td>
<td>Electives</td>
<td>6-0-6</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

*Electives: 14 hours must be chosen from the approved list of the School of Arch. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch. 530</td>
<td>Art History</td>
<td></td>
<td>2-0-2</td>
<td></td>
</tr>
<tr>
<td>I.D. 401-2-3</td>
<td>Design</td>
<td>1-15-6</td>
<td>1-18-7</td>
<td>1-21-8</td>
</tr>
<tr>
<td>I.D. 414</td>
<td>Material and Technique</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Tech. Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.E. 490</td>
<td>Legal and Ethical Phases of Engr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 317</td>
<td>Industrial Marketing</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Psy. 303-4</td>
<td>General Psychology A and B</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>S.S. 313</td>
<td>Problems of Public Opinion</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>*Electives</td>
<td></td>
<td>4-0-4</td>
<td>3-0-3</td>
<td>4-0-4</td>
</tr>
</tbody>
</table>

Totals 12-18-18 12-18-18 11-21-18

*Electives: 14 hours must be chosen from the approved list of the School of Arch. 9 hours may be used as free electives. If advanced military is elected, 9 hours only will be credited toward a degree.
ELECTIVES

General Electives: See humanities list on page 34 plus the following: C.E. 201 or 206; Eng. 315, 320; Geol. 101, 201; I.D. 215, 216; I.M. 316, 317, 325, 443; Math. 203, 304; Text. 231, 232.

Restricted Electives: Group I: Arch. 254, 255, 354, 355, 416, 430, 444, 510, 511, 512, 522, 530, 540, 541. Group II: Arch. 540, 541, 584; C.E. 201 or 206, 460; I.M. 443; M.E. 353; I.E. 460.

Courses of Instruction: Architecture

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Arch. 151, 152, 153. Architectural Drawing 0-9-3.
 Introductory studies in drawing and the principles of visual expression; includes one laboratory period per week in creative drawing.
 Texts: Ramsey and Sleeper, Architectural Graphic Standards; Martin, Architectural Graphics; and Collier, Form, Space, and Vision.

Arch. 162, 163. Orientation 1-0-0.
 An introduction to the field of architecture and design; a requirement for all students in the School of Architecture.
 Texts: Danby, Grammar of Architectural Design; Rasmussen, Experiencing Architecture.

Arch. 171, 172, 173. Graphics 1-3-2.
 Lectures and laboratory exercises in descriptive geometry; shades and shadows; perspective.

Arch. 251, 252, 253. Design 0-15-5. Prerequisites: Arch. 153, 163, 173.
 Basic composition, architectural problems and presentation methods; includes one laboratory period per week in creative drawing.
 Text: Collier, Form, Space, and Vision.

Arch. 254, 255. Color Theory 1-3-2. Prerequisite: Arch. 251 or Soph. Standing.
 Lecture and laboratory experiments on the properties of color and its use in design.

Arch. 310, 311, 312. Freehand Drawing 0-3-1.
 For non-architects and architects entering under catalogs previous to June, 1961. Creative drawing from compositions by students.

Arch. 322, 323, 324. Building Materials 2-0-2. Prerequisite: Arch. 253 or consent.
 A study of materials of construction, their properties and use in modern construction, with special attention to their effect upon architectural design.

Arch. 337, 338, 339. Architectural History 2-0-2. Prerequisite: Arch. 252 or consent.
 A survey course in architectural history for non-architectural students. In non-technical language, it covers architectural development from ancient times to the present. Lectures, supplemented by slide projection, notes and reading assignments.
 Text: Hamlin, Architecture Through the Ages.
Arch. 351, 352, 353. Design
0-15-5. Prerequisites: Arch. 253 and admission to the third year curriculum.

Elementary problems in architectural design and presentation methods; includes one laboratory period per week in creative drawing.
Text for 351: Burbank and Shaftel, *House Construction Details*.

Arch. 354, 355. Architectural Rendering
0-3-1. Prerequisite: Arch. 251.

 Rendering of architectural subjects in various media.

Arch. 361, 362, 363. History and Theory
3-0-3. Prerequisite: Admission to the third year curriculum or consent.

History of architecture in ancient Egypt and Mesopotamia, Greece and Rome; Medieval Europe; the Renaissance in continental Europe.

Arch. 371, 372, 373. Structures
3-0-3. Prerequisites: Mech. 343 and admission to the third year curriculum.

Introduction to methods of construction, proportioning and qualitative explanation of behavior; theory and design of ordinary timber structures; theory and design of metal structures (Part I).

Arch. 381, 382. Design and Graphic Presentation
1-12-4. Prerequisite: Senior standing.

A basic course in drawing and design for students preparing for the Master's program in City Planning.
Not open to architectural students.

Arch. 410. Freehand Drawing
0-6-2.

For non-architects, and architects entering under catalogs previous to June, 1961.

Pencil sketching.

Arch. 411. Freehand Drawing
0-3-1.

For non-architects, and architects entering under catalogs previous to June, 1961.

Pen and ink sketching.

Arch. 412. Freehand Drawing
0-6-2.

For non-architects, and architects entering under catalogs previous to June, 1961.

Water color sketching.

Arch. 416. Introduction to Landscape Architecture
2-0-2. Prerequisite: Arch. 451 and Arch. 461.

A brief history of landscape architecture followed by a study of the principles of landscape design as applied to contemporary problems.

Arch. 430. Art History
2-0-2. Prerequisite: Junior standing.

A short history of Pre-Columbian and Oriental art and architecture.

Arch. 435. Art History
2-0-2. Prerequisite: Junior standing.

A survey course in the history of artistic manifestations from primitive times to our own day.
Text: Janson, *History of Art*.

Arch. 444. Housing Seminar
2-0-2. Prerequisite: Junior standing.

Lecture and discussion broadly covering the housing field and the home building industry, housing
This course brings together the information obtained in previous courses in Structural Design and presents the subject matter as an integrated whole.

Arch. 530. Art History
2-0-2. Prerequisites: Arch. 339, 462 or consent.

Arch. 540, 541. Research
0-6-2, 0-9-3 or 1-9-4.

A clearly stated program by the student describing in detail the nature, purpose and extent of the proposed problem must be submitted for approval. The major portion of the work will be conducted in library, drafting room, or shop.

Arch. 551, 552, 553. Design

Group I. Advanced problems in architectural design with emphasis on the solution of complex building programs and site planning, terminating in an independent major problem submitted as a thesis for the degree Bachelor of Architecture (Option I).

Arch. 554, 555, 556. Design

Group II. Advanced Problems in architectural design with emphasis on structural solutions, computations and details, terminating in an independent problem submitted as a thesis for the degree Bachelor of Architecture (Option II).

Arch. 561, 562, 563. Seminar
2-0-2. Prerequisites: Arch. 453, 463.

Preparation of thesis programs and research; lectures and discus-
Architectural Practice

Arch. 581, 582, 583. Professional Practice
3-0-3. Prerequisites: Arch. 453, 463 or Senior standing.
Conduct of architectural practice, office organization, competitions, contracts, legal and ethical problems; specification writing; estimating and supervision of construction.

Arch. 584. Cost Analysis
2-3-3. Prerequisite: Senior standing.
Principles and methods of cost analysis in the construction industry. Methods of compiling and analyzing material, labor and equipment production costs. Exercises in office and field management procedures.

Courses of Instruction: Industrial Design

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

I.D. 202. Design
1-12-5. Prerequisite: Arch. 251. Concurrent with I.D. 215.
Introduction to Industrial Design.
A series of abstract problems dealing with the elements of a design process.

I.D. 203. Design
Analytical approach to design.

I.D. 215. Material and Technique
1-3-2. Prerequisite: Arch. 153 or consent.
The standard joints and hand operated machines. Exercises, execution and development of joints.

I.D. 216. Material and Technique
1-3-2. Prerequisite: I.D. 215 or consent.

I.D. 301. Design
1-12-5. Prerequisite I.D. 203. Concurrent with I.D. 314.
Design of structural objects.

I.D. 302. Design
1-12-5. Prerequisite I.D. 301. Concurrent with I.D. 315.
Design analysis of specific groups of objects.

I.D. 303. Design
Continuation of I.D. 303.

I.D. 314. Material and Technique
1-3-2. Prerequisite: I.D. 216.
Casting and fabricating techniques — plaster, plastic-casting, blowing, sand casting, ceramics, paper, rubber, etc.
Design of objects for the various techniques.

I.D. 315. Material and Technique
1-3-2. Prerequisite: I.D. 314.
The industrial pre-formed materials — extrusion, rolled and drawn profiles, mouldings, etc.
Design of objects for the various techniques.
I.D. 316. Material and Technique
1-3-2. Prerequisite: I.D. 315.
Semi-automatic and mass-production techniques—forging, stamping, heading, screw machining, wire forming.
Design of objects for various techniques.
DuMond, *Fabricated Materials and Parts.*

I.D. 401. Design
Design of appliances and equipment for the commercial, industrial and public fields (such as machines, store and office appliances). Design of packaging for industrial products.

I.D. 402. Design
1-18-7. Prerequisite: I.D. 401.
Design of groups of objects which comprise larger functional units.

I.D. 403. Design
1-21-8. Prerequisite: I.D. 402.
Continuation of I.D. 402 comprising more complex units such as home, public, and commercial interiors, exhibitions and displays.

I.D. 414. Material and Technique
1-3-2. Prerequisite: I.D. 316.
The mass-production techniques—die casting, impact extrusion, compression — transfer — injection — molding, etc.
Design of objects for various techniques.
DuMond, *Fabricated Materials and Parts.*

GRADUATE COURSES

(Complete details about graduate courses in Architecture and City Planning are contained in the *Graduate Bulletin*, a copy of which is available upon request.)
School of Ceramic Engineering
(Established 1924)

Director—Lane Mitchell; Professors—Willis E. Moody, Harrison W. Straley, III; Associate Professors—William C. Hansard, John E. Husted, Charles E. Weaver, *Charles F. Wysong; Assistant Professor—J. M. Wampler; Special Lecturers—Jerry Johnson, Jas. Neiheisel, R. A. Young; Principal Secretary—Thelma Saggus; Secretaries—Brenda Hamrick, Madelyn B. Watson; Laboratory Mechanic—Thomas Mackrovitch.

General Information

A four-year curriculum leads to the degree of Bachelor of Ceramic Engineering. Graduate work leading to the Master of Science in Ceramic Engineering is also offered. A broad basic training is given in the fundamental and engineering courses, thus preparing the student to enter successfully any division of ceramic engineering. However, the necessary cultural courses are included. The classroom, laboratory and library work are coordinated to combine theoretical and practical knowledge. Periodic contracts with the non-metallic mineral and clay-working industries of the State enlarge the practical viewpoint of the student.

The school is vitally concerned with future development of the ceramic and mineral industries in the South. Through research, the use of Georgia minerals has been extended so that almost every ceramic industry may find the greater proportion of its raw materials within the state boundaries. Demonstration of a stable market and the many industrial advantages of Georgia are encouraging the establishment of new industries. In this program the School is using its facilities to aid proper development.

The school also offers to non-ceramic majors a survey course in Ceramics and service courses in Geology and Geography. The courses in Geology are designed to give the student a thorough grounding in the basic principles of Geology and Mineralogy and their application to the particular field of engineering the student is preparing to enter. The school has type collections for Mineralogy and Geology; a collection of building stones, ceramic clays and fossils; maps and folios; and the usual Mineralogy laboratory equipment. Those students majoring in Ceramic Engineering and Civil Engineering and the Geophysical option in Physics are required to take Geology subjects. Students in other major curricula may elect Geology courses. Degree offerings in Earth Science Engineering are contemplated in the near future. Students desiring such degrees are invited to consult with the Director.

Students wishing to emphasize geology and geological processes in their ceramic training or in their training in other branches of engineering might arrange for certain substitutions of courses in the program, after conference with the Director.

*Deceased, July 22, 1964.
Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem*</td>
<td>101-2-3 General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Draw.</td>
<td>113-14-15 Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2 Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>105 Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>100 College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104 Analytical Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201 Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>M.L.</td>
<td>** Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13 Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3 Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101 Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab, 4 hours credit.

*Chem. 107-108-109 is a recommended substitution for Chem. 101-2-3. A grade of C or better in Chem. 103 is a prerequisite for Chem. 214.

**Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish.

Three quarters of either M.L. or S.S. are required. A student having had two years of a

***ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer.E.</td>
<td>202 Products and Materials</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>Cer.E.</td>
<td>203 Equipment and Tests</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Cer.E.</td>
<td>208 Ceramic Survey</td>
<td>2-0-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer.E.</td>
<td>209 Ceramic Survey Laboratory</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem.</td>
<td>214 Analytical Chemistry</td>
<td>2-6-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>201 Survey of the Humanities</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Geol.</td>
<td>201 General Geology</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol.</td>
<td>202 General Geology Laboratory</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>202-3 Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>304 Differential Equations</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys.</td>
<td>207-8-9 Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3 Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 14-16-19 15-13-19 15-10-18

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer.E. 305</td>
<td>Phase Equilibria for Ceramists</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer.E. 311</td>
<td>Processing and Forming</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer.E. 315</td>
<td>Solid State Ceramics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Cer.E. 318</td>
<td>Pyrometry and Instruments</td>
<td></td>
<td>1-3-2</td>
<td></td>
</tr>
<tr>
<td>Cer.E. 320</td>
<td>Glass</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>Cer.E. 409</td>
<td>Microscopy</td>
<td></td>
<td></td>
<td>3-6-5</td>
</tr>
<tr>
<td>Chem. 331-32-33</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 334-35-36</td>
<td>Physical Chemistry Laboratory</td>
<td>0-3-1</td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Eng. 202-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Geol. 414</td>
<td>Mineralogy</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 306</td>
<td>Applied Mechanics</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Electives *</td>
<td></td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals: 17-9-20 14-9-17 17-9-20

*If Advanced Air or Military is the elective, credit will be 4-1-3. If Advanced Navy is the elective, credit will be 3-2-3.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer.E. 418</td>
<td>Drying and Psychrometry</td>
<td>2-0-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer.E. 419</td>
<td>Firing and Combustion</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer.E. 422-23-12</td>
<td>Thesis</td>
<td>1-0-1</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Cer.E. 425-26</td>
<td>Physical Ceramics</td>
<td></td>
<td>3-3-4</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Cer.E. 431-32-34</td>
<td>Design and Construction</td>
<td>1-3-2</td>
<td>0-6-2</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Cer.E. 440</td>
<td>Glaze and Enamel Coatings</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electric Circuits and Fields</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Met. 325</td>
<td>General Metallurgy</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Hum. **</td>
<td>Humanities</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>L.E. 416</td>
<td>Motion and Time Study</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>M.E. 320</td>
<td>Thermodynamics</td>
<td>4-0-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 331</td>
<td>Elementary Quantum Theory of Solids</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives *</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
</tbody>
</table>

Totals: 17-6-19 14-18-20 9-15-14

*Not more than 9 hours electives may be in advanced ROTC.

**At least 6 hours electives must be in Humanities from approved list on page 34.
Recommended Electives

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer.E. 406-7-8</td>
<td>Seminar</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Cer.E. 421</td>
<td>Cements</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Cer.E. 450</td>
<td>Engineering Materials in Nuclear Engineering</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 204</td>
<td>Elementary Surveying</td>
<td>1-3-2</td>
</tr>
<tr>
<td>C.E. 438</td>
<td>Elementary Aerial Photogrammetry</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Geol. 305</td>
<td>Historical Geology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Geol. 307</td>
<td>Historical Geology Laboratory</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Geol. 310</td>
<td>Crystallography and Tests</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Geol. 311</td>
<td>Economic Geography</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Geol. 312</td>
<td>Economic Geology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Geol. 313</td>
<td>Economic Geology Laboratory</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Geol. 418</td>
<td>Petrography</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Geol. 421</td>
<td>Geological Processes</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Geol. 422</td>
<td>Structural Geology</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Geol. 423</td>
<td>Introduction to Geophysics</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Geol. 424-5-6</td>
<td>Field Methods in Geology</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Geol. 431</td>
<td>Petrology of the Igneous Rocks</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Geol. 432</td>
<td>Petrology of the Sedimentary Rocks</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Geol. 433</td>
<td>Petrology of the Metamorphic Rocks</td>
<td>1-3-2</td>
</tr>
<tr>
<td>Geol. 443</td>
<td>Advanced Engineering Geology</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Geol. 445</td>
<td>Mining of Ceramic Materials</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Geol. 450</td>
<td>Special Problems in the Earth Sciences</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Geol. 460</td>
<td>Introduction to Geochemistry</td>
<td>3-3-4</td>
</tr>
</tbody>
</table>

Check quarterly schedule of course offerings to determine if offered. Ordinarily a request for a course by eight or more students will be honored. Also, check prerequisites required.

Courses of Instruction

Note: 3-4-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Cer.E. 202. Products and Materials
2-3-3. Prerequisites: Chem. 103, Cer.E. 208.

An engineering survey of ceramics; relationship between industrial service requirements and the properties of ceramic products. The common ceramic materials are classified according to mineralogical character; their influence on each other, the effects of size, and the physical properties of particles are stressed.

Cer.E. 203. Equipment and Tests
2-3-3. Prerequisite: Chem. 103, Cer.E. 208.

Testing of ceramic raw materials and products; requirements of proper test methods and practical applications to industry.
Interpretation of results and writing of formal reports. Uses, operation, and calibration of machinery, apparatus, and equipment for ceramic manufacture of testing. Mathematical analysis of data; inherent errors.
Text: Wilson, *An Introduction to Scientific Research.*

Cer.E. 208. Ceramic Survey
2-0-2. Prerequisite: None. General Elective for non-ceramic majors.

A survey is made of the classification and physical properties of ceramic products. The physical properties of raw materials are studied briefly with emphasis on qualities and limitations which relate to design and manufacturing processes.
Text: Mitchell, *Ceramics — Stone Age to Space Age.*

Cer.E. 209. Ceramic Survey Laboratory
0-3-1. Prerequisite or Corequisite: Cer.E. 208.

Plant trips to local ceramic plants. Production of molds and pottery.
Cer.E. 305. Phase Equilibria for Ceramists
3-0-3. Prerequisite or Corequisite: Chem. 331.

Heterogeneous equilibria of inorganic systems. One, two, and three component systems. Solid solutions and isomorphous replacement. Alkenaed lines. Metastable equilibrium. Paths of crystallization.

Cer.E. 311. Processing and Forming
3-3-4. Prerequisite: Cer.E. 203.

Winning, refining and preparation of ceramic raw materials, methods and mechanism of processing and forming ceramic products; their effect on the control of the properties of the products and adaptation to service requirements.

The relation of laboratory technique to plant practice including properties of materials, machines, processing and products. Commercial raw materials and products are provided and analyzed and, where practical, the corresponding plants are visited.

Text: Kingery, *Ceramic Fabrication Processes*.

Cer.E. 315. Solid State Ceramics
3-0-3. Prerequisite: Cer.E. 311.

The physical and chemical properties of earthy materials throughout common processes used in the production of ceramic wares. Control of phases of manufacture to introduce in the product those properties service conditions require. Sintering, melting, and crystallization processes and their effects on structure and density are discussed. Whitewares, terra cotta, heavy clay products, glass, and body, mold, and sagger composition and processing are studied.

Text: Kingery, *Introduction to Ceramics; Course Notes*.

Cer.E. 318. Pyrometry and Instruments
1-3-2. Prerequisite: Physics 208.

The principles of heat measurement by shrinkage rings, melting points, color, pyrometric cones, expanding metals, thermocouples and resistance bridges. The factors governing choice of thermocouples. The principles behind construction of couples, CO$_2$ meters, temperature controls, and other control instruments.

Cer.E. 320. Glass
2-3-3. Prerequisite or Corequisite: Cer.E. 305.

The fundamentals of glass structure, composition, manufacture, properties and applications. Phase relations of the important oxides. Reasons for glass formation instead of crystallization. Melting, quenching, annealing, tempering, fracturing, devitrification and modification are phenomena studies. Techniques of forming and basis of selection of ingredients for glass forming, fluxing, color, refractive index, and other properties are carefully considered.

Cer.E. 406-7-8. Seminar
2-0-2. Prerequisite: Senior standing in Cer.E.

Discussion of current ceramic and scientific literature and reports of investigation. Course may be repeated with different numbers.

Text: *Journal of American Ceramic Society*.

Cer.E. 409. Microscopy
3-6-5. Prerequisites: Physics 209, Geology 414.

Involves the use of the microscope in the study and control of composition and structure of ceramic bodies and raw materials. Nature of light
and crystallography are briefly studied.

Text: Kerr, *Optical Mineralogy*.

Cer.E. 422-23-12. Thesis

1-0-1, 0-6-2, 0-6-2. Prerequisite: Senior standing in Ceramic Engineering.

Each senior conducts an original investigation on an approved ceramic subject under the supervision of the instructor in charge. The object of this course is to place the student upon his own initiative and to coordinate the knowledge that he has previously received.

Cer.E. 418. Drying and Psychrometry

2-0-2. Prerequisites: Cer.E. 315, Physics 209.

Fundamental consideration of water removal from unfired ceramic products by heat and air. Control of humidity, temperatures, air velocity and volume; economy and efficiency of drying and driers; problems to be met in safe drying.

Cer.E. 419. Firing and Combustion

2-3-3. Prerequisites: Physics 209, M.E. 320 or equivalent.

Objectives of firing; combustion behavior of gaseous, liquid and solid fuels; the mechanics of heat transfer; physical and chemical properties of clay and other raw materials under heat treatment; design, operation and heat accounts of periodic and continuous kilns. The utilization of refractories in industry; the control of properties of refractories through raw materials and all phases of manufacture to best meet industrial requirements; fundamentals of aggregate packing and photo-elastic study of expansion and contraction.

Cer.E. 421. Cements

2-3-3. Prerequisites: Chem. 332; Cer.E. 305.

Includes the required properties of raw materials, processing and the hydraulic properties of cements. Portland, magnesia, high alumina, dental, and gyspiferous cements are included. This is an elective course for seniors and graduates. This course is offered periodically upon demand of six or more students.

Cer.E. 425-426. Physical Ceramics

3-3-4, 2-0-2. Prerequisites: Cer.E. 315, Chem. 331, and Physics 209.

Application of Physical Chemistry, Crystal Chemistry, Colloid Chemistry, and Solid States Physics to Ceramics. Dispersion, viscosity, plasticity, grain size, crystal structure as related to properties, densification with additives to fill holes in structure, and theory of clay as a colloidal electrolyte are studied. Differential thermal analysis, thermal shock, thermal expansion, electrodialysis, viscosity measurement, X-ray analysis, and other techniques of analysis are studied in the laboratory. Sintering, melting, and recrystallization.

Text: Kingery, *Introduction to Ceramics*; Course notes.

Cer.E. 431-32-34. Design and Construction

1-3-2, 0-6-2, 0-3-1. Corequisite: Cer.E. 418. Prerequisite: Drawing 109 (or 103).

Design and working drawings of ceramic manufacturing equipment and plant layouts for specified products. The student makes his own selection under the supervision and with the approval of the instructor.

Cer.E. 440. Glaze and Enamel Coatings

3-3-4. Prerequisite: Cer.E. 320.

The fundamental methods for calculating, compounding, manufacturing and using vitreous and crystal-
line protective coatings as well as the methods commonly employed to correct faults. The prior preparations of frits, and ceramic bodies for glazing, or metals or glass for enameling are also considered. Compositions of low, moderate, and high temperature coatings are studied to learn bases of glass properties, adherence, color, opacification, and texture.

Cor.E. 450. Engineering Materials in Nuclear Engineering
2-3-3. Prerequisites: Senior or graduate standing and consent of instructor.

The basic principles of ceramic and metallurgy with particular emphasis on problems inherent in reactor technology. Engineering aspects of the structure and constitution of materials used in reactors including ceramic materials, cermets, metals and alloys. The behavior of these materials under conditions involving elevated temperatures, corrosion, and irradiation.

Text: Hausner, *Materials of Nuclear Reactors; Notes*.

Geol. 101. Introduction to Earth Science
3-0-3. Prerequisite: None.

A survey of both celestial and earthly environment surrounding humanity; utilizing nature's storehouse of raw materials.

Geol. 201. General Geology
3-0-3. Prerequisite: None.

An introduction to geological processes, including lectures on historical and economic geology, with special emphasis upon the needs of the engineer.

Geol. 202. General Geology Laboratory
0-3-1. Prerequisite or Corequisite: Geol. 201.

An introduction to the study of minerals, rocks, topographic and geological maps, with special emphasis upon the needs of the engineer.

Text: Ellison, *General Geology Laboratory Workbook*.

Geol. 203. Physical Geology
3-3-4. Prerequisite: None.

Elementary study of the earth, particularly materials, structure, internal condition, physical and chemical processes at work upon it. Laboratory includes study of rocks, minerals, dynamic models, and topographic maps.

Text: To be selected.

Geol. 305. Historical Geology
3-0-3. Prerequisites: Chem. 103; Phys. 207, Geol. 201, 202.

A course of recitations and lectures in Historical Geology.

Text: Moore, *Introduction to Historical Geology*.

Geol. 307. Historical Geology Laboratory
0-3-1. Prerequisite or Corequisite: Geol. 305.

Recognition and classification of fossils.

Text: Notes.

Geol. 310. Crystallography and Tests
1-3-2. Prerequisites: Math. 104; Geol. 201-2.

A study of crystal systems, Miller indices and other systems of notation; blowpipe analysis procedures; other tests for classifying crystals.

Geol. 311. Economic Geography
3-0-3. Prerequisite: None.

The effects of climate, location, power, soil types, mineral deposits, agriculture and manufacture upon nations, peoples, civilization, and trade routes.

Text: Jones and Darkenwald, *Economic Geography*.
Geol. 312. Economic Geology
3-0-3. Prerequisites: Geol. 201-2.
A geographical and economic study of all commercially valuable minerals and rocks.

Geol. 313. Economic Geology Laboratory
0-3-1. Corequisite or Prerequisite: Geol. 312.
The laboratory study of metallic and non-metallic minerals useful to man; it is intended to supplement and accompany Geology 312. Special emphasis is placed upon minerals with important engineering uses. The course will cover the most important ore and non-metallic minerals, especially those used by and for engineers with particular emphasis upon ceramic raw materials, as well as other industrial raw materials.
Text: Dana and Ford, *Textbook of Mineralogy; Notes*.

Geol. 320. Mineralogy
1-3-2. Prerequisite: Math. 104; Chem. 103.
Principles of crystallography and mineralogy; crystal measurement and projection; occurrence, uses, and identification of native elements, oxides, sulfides, and sulfosalts; mineral identification using blowpipe, spectroscope, and wet chemical techniques.
Text: To be selected.

Geol. 321. Mineralogy
1-3-2. Prerequisite: Geol. 320.
Crystal structure, properties, occurrences, uses, and identification of silicates, carbonates, halides, phosphates, sulfates; modern methods of mineral identification, including x-ray diffraction and study.
Text: To be selected.

Geol. 414. Mineralogy
2-3-3. Prerequisites: Geol. 201, 202.
A course in descriptive and determinative mineralogy which includes the determination of important minerals and rocks by their chemical and physical properties.

Geol. 418. Petrography
2-6-4. Prerequisite: Geol. 414, Senior standing.
A general survey of the origin, descent, and recognition of rocks, with special emphasis upon engineering considerations and applications. This course will cover the composition, texture, origin, and relationships of rocks. Stress will be laid upon utility in engineering structures and as a raw material for engineering products.

Geol. 421. Geological Processes
2-6-4. Prerequisites: Geol. 201-2, Senior standing.
An advanced treatment of geological processes, with emphasis upon applications to engineering. The course will cover the more detailed phases of geological processes, graduation, volcanism, and diastrophism, with special emphasis upon those phases which have the greatest bearing in the various fields of engineering.

Geol. 422. Structural Geology
2-6-4. Prerequisites: Geol. 201-2.
A general survey of diastrophism and tectonic phases of volcanism and metamorphism, with emphasis upon application to engineering.
Text: DeSitter, *Structural Geology; Notes*.

Geol. 423. Introduction to Geophysics
3-3-4. Prerequisites: Physics 207-8-9, Geology 201, 202, Senior standing.
A general survey of terrestrial physics, with emphasis upon applications to engineering.

Geol. 424-25-26. Field Methods in Geology
0-6-2, 0-6-2, 0-6-2. Prerequisites: Geol. 201-2, Senior standing.
Methods and procedures of areal
and subsurface geological mapping, with special emphasis upon structures and problems that arise in connection with engineering work. The development of the techniques of geological surveying as applied to field study and map work in which various aspects of processes are interpreted and mapped in terms of engineering utility. Lithological unity and petrographic types are likewise studied, calculated, and mapped. Text: Lahee, Field Geology; Notes.

Geol. 430. Petrology of the Igneous Rocks 1-3-2. Prerequisites: Geol. 201, 321; Cer.E. 409 or consent of instructor.

The hand specimen and microscopic study, classification, physical chemistry, genesis, and evolution of the igneous rocks. Text: To be selected.

Geol. 431. Petrology of the Sedimentary Rocks 1-3-2. Prerequisites: Geol. 201, 321; Cer.E. 409 or consent of instructor.

The hand specimen and microscopic study, classification, texture, genesis and depositional environments of sedimentary rocks. Introduction to methods of graphical and statistical analysis of data, analysis of modern environments. Text: To be selected.

Geol. 432. Petrology of the Metamorphic Rocks 1-3-2. Prerequisites: Geol. 430, 431.

The hand specimen and microscopic study, classification, and chemical and phase changes induced in sedimentary and igneous rocks upon contact and regional metamorphism. Text: To be selected.

Geol. 443. Advanced Engineering Geology 2-6-4. Prerequisites: Geol. 201-202.

Applications of geological science to problems of civil and other engineering. The course will cover mechanical properties of rocks, their failure under stress, their behavior under the action of fluids, and suitability for foundations. Bending, breaking and abrasion of rock plates, the movement of igneous bodies and fluids, and applications to problems in Civil, Ceramic, and other engineering will form an integral part of the course.

Geol. 445. Mining of Ceramic Materials 2-0-2. Prerequisites: Geol. 312, Senior standing.

Methods of developing and producing fuel and mineral deposits, with emphasis upon application to Ceramic engineering and tunneling. Development and production of mineral properties together with the methods used to extract the minerals and transport them to the surface. Some attention will be devoted to safety. Stress will be laid upon the extraction of those materials used in ceramic industries and to methods of tunneling as used by the civil engineer.

Geol. 450. Special Problems in the Earth Sciences 0-6-2. Prerequisite: Junior or senior standing.

Literature, laboratory or field investigation and preparation of a written or oral report or both covering some branch of earth science. Text: To be selected.

Geol. 460. Introduction to Geochemistry 3-3-4. Prerequisite: Geol. 203; Chem. 103 or 109.

Application of elementary chemical and physical chemical principles to geologic problems. Element and isotope distribution and associations in earth, ocean, ground water; crystal chemistry; geochemical processes, cycles, measurements, prospecting; biogeochemistry.
School of Chemical Engineering
(Established in 1901)

Director—H. V. Grubb; Regents' Professor—W. T. Ziegler; Professors—G. L. Bridger, Niels N. Engel, H. C. Lewis, J. W. Mason, W. M. Newton, Clyde Orr, Jr., Henderson C. Ward; Associate Professors—J. D. Fleming, R. F. Hochman, H. A. McGee, Jr.; Assistant Professor—E. A. Starke, Jr.; Graduate Assistants—D. J. Bueker, P. R. Caruthers, F. M. Gilbert, W. D. Holland, C. Tsonopoulos; Secretary—Eva K. Browning; Clerk-Typist—Donna Linn; Machinist—Clarence A. Mayes.

General Information

The degree, Bachelor of Chemical Engineering, may be obtained upon the completion of the following curriculum. The number of students who will be permitted to register for the Junior and Senior work in Chemical Engineering will be strictly limited. The selection will be made on the basis of the student's ability as demonstrated in two years of previous work.

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 107-8-9*</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>—</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>—</td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry and Calculus</td>
<td>—</td>
<td>5-0-5</td>
<td>—</td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td>—</td>
<td>—</td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. **</td>
<td>Modern Language OR</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Sciences</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>ROTC ***</td>
<td>Basic ROTC (optional)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 14-13-18 14-13-18 14-7-16

*Chem. 101, 102, 103 may be scheduled. A minimum grade of C is required for Chem. 101 and 102. The prerequisite for Chem. 214 is Chem. 109 or Chem. 103 with a grade of C or better.

**German recommended.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 214-15</td>
<td>Analytical Chemistry</td>
<td>2-6-4</td>
<td>2-6-4</td>
<td>—</td>
</tr>
<tr>
<td>Ch.E. 202</td>
<td>Stoichiometry and Material Balance</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>—</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>—</td>
<td>—</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC ***</td>
<td>Basic ROTC (optional)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-19 15-13-19 16-7-18

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch.E. 302</td>
<td>Chemical Engineering Calculations</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Ch.E. 314-15</td>
<td>Unit Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.E. 311</td>
<td>Chemical Eng. Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 340-1-2</td>
<td>Organic Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 343-6-7</td>
<td>Organic Chemistry Laboratory</td>
<td>0-6-2</td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Chem. 331-2-3</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 334-5-6</td>
<td>Physical Chemistry Laboratory</td>
<td>0-3-1</td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Mech. 306</td>
<td>Applied Mechanics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 331</td>
<td>Mechanics of Materials</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 17-12-21 15-9-18 15-9-18

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch.E. 435-36</td>
<td>Chem. Engineering Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Ch.E. 446</td>
<td>Comprehensive Problems</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Ch.E. 407-8</td>
<td>Chemical Process Analysis</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Ch.E. 411</td>
<td>Nuclear Engineering Fundamentals</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.E. 413</td>
<td>Unit Operations</td>
<td></td>
<td>3-0-3</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Met. 401-2</td>
<td>Engineering Materials</td>
<td>1-0-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.E. 339</td>
<td>Chem. Eng. Literature</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Ch.E. 431</td>
<td>Chemical Engineering Economics</td>
<td></td>
<td></td>
<td>1-6-3</td>
</tr>
<tr>
<td>Ch.E. 434</td>
<td>Chemical Plant Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electrical Circuits and Fields</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 326 or Electrical Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 327</td>
<td>Electric Power Conversion</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>Phys. 319</td>
<td>Modern Physics for Engineers</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Ch.E. 341</td>
<td>Process Instrumentation</td>
<td></td>
<td>2-3-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 15-6-17 17-3-18 15-12-19

*Not more than 9 hours electives may be in advanced ROTC. At least 6 hours of electives must be humanities from list on page 34.

Courses of Instruction

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours laboratory, 4 hours credit.

Ch.E. 202. Stoichiometry and Material Balance

Stoichiometric principles and calculations and material balances are applied to chemical processes.

Ch.E. 302. Chemical Engineering Calculations

3-3-4. Prerequisites: Ch.E. 202 and Math. 304.

Fundamental principles of momentum and energy transfer are developed. Applications of these principles are stressed.

Ch.E. 311. Chemical Engineering Analysis
3-0-3. Prerequisites: Ch.E. 314.
The analyses of chemical engineering processes and operations involving fluid and heat transfer.
Texts: McCabe and Smith, *Unit Operations of Chemical Engineering*; Perry, *Chemical Engineer's Handbook*.

Ch.E. 314. Unit Operations
3-3-4. Prerequisites: Ch.E. 302 and Chem. 331.
The development of Ch.E. 302 is extended to include mass transfer. Major emphasis is placed on applications involving heat and mass transfer.

Ch.E. 315. Unit Operations
3-3-4. Prerequisite: Ch.E. 302.
Stagewise operations.

Ch.E. 328. Chemistry of Engineering Materials
3-0-3. Prerequisite: Chem. 103.
A survey of materials of construction with emphasis on nonmetallics. The fundamental properties of plastics, and all types of surface coatings are studied.

Ch.E. 329. Survey of Chemical Engineering
3-0-3. Prerequisites: Chemistry 103, Mathematics 103 and Physics 209 or 213.
A general survey of chemical engineering including processes, equipment and calculations. Not open to students in the School of Chemical Engineering.

Ch.E. 339. Chemical Engineering Literature
1-0-1. Prerequisites: Ch.E. 302, Chem. 340, 331.
This course has as its objective the training of students in the use of the sources of information and an introduction to the finding of information in the library.
Text: Notes.

Ch.E. 341. Process Instrumentation
2-3-3. Prerequisite: Ch.E. 314; E.E. 326 recommended.
A study of the methods and technology associated with chemical process systems analysis and the application of measurement and control devices and techniques to these systems.

Ch.E. 350. Elementary Heat and Mass Transfer
3-0-3. Prerequisites: Math. 203, Physics 209, M.E. 320, and Senior standing or consent of instructor.
Elementary heat and mass transfer primarily designed for Textile students. Not open to students in the School of Chemical Engineering. Offered in the fall quarter only.
Text: Notes.

Ch.E. 407. Chemical Process Analysis
3-0-3. Prerequisites: Ch.E. 315, Chem. 342 and Chem. 333. Fall and Spring.
Introduction to the engineering of chemical reaction involving colloidal and amorphous materials.

Ch.E. 408. Chemical Process Analysis
Introduction to applied chemical kinetics.
Ch.E. 411. Nuclear Engineering Fundamentals
3-0-3. Prerequisites: Ch.E. 314, Met. 401, Phys. 319 recommended.
Survey of the principles of design and analysis of nuclear reactor systems stressing the relation of chemical engineering to the nuclear industry.
Text: Jacobs, Kline, and Remick, Basic Principles of Nuclear Science and Reactors.

Ch.E. 413. Unit Operations
3-3-4. Prerequisite: Ch.E. 314.
Diffusional processes, including combined mass and heat transfer.
Text: Perry, Chemical Engineer's Handbook; McCabe and Smith, Unit Operations of Chemical Engineering.

Ch.E. 431. Chemical Engineering Economics
3-0-3. Prerequisite: Ch.E. 315.
A study of techniques required in project analysis in areas of systems cost analysis and the use of the economic balance for design and optimization.
Text: Happel, Chemical Process Economics.

Ch.E. 434. Chemical Plant Design
1-6-3. Prerequisites: Chem. 333, Ch.E. 413, Mech. 302. Fall and spring.
A comprehensive problem in plant design.

Ch.E. 435-436-437. Chemical Engineering Thermodynamics
3-0-3. Prerequisites: Chem. 333 and Ch.E. 315.
A study of the principles of thermodynamics with applications to the problems of industry. The areas covered include flow of compressible fluids, estimation and use of thermodynamic properties, charts and tables, power and refrigeration cycles, phase equilibria, chemical equilibria and properties of solutions.
Text: Hougen and Watson, Chemical Process Principles, Parts I and II; Weber and Meissner, Thermodynamics of Chemical Engineers.

Ch.E. 443-444-445. Special Problems
0-3-1. Prerequisite: Ch.E. 314.
The student is given an opportunity to develop initiative and to apply fundamental principles by doing semi-original laboratory investigation of a chemical engineering research nature.

Ch.E. 446. Comprehensive Problems
3-0-3. Prerequisites: Ch.E. 408, 431, 436.
The integration of the professional work of the previous courses by means of a series of comprehensive problems.
Text: To be selected.

Ch.E. 447. Comprehensive Problems
3-0-3. Prerequisites: Ch.E. 446, 413, 407, 435, Met. 402.
Continuation of Ch.E. 446. Emphasis on Unit Operations.
Text: Perry, Chemical Engineer's Handbook.

Ch.E. 448. Comprehensive Problems
3-0-3. Prerequisites: Ch.E. 447, 408, 436, Met. 402.
A continuation of Ch.E. 447, with emphasis on thermodynamics.
Text: Perry, Chemical Engineer's Handbook.
the engineering significance of static and dynamic properties of metals and alloys.

Met. 327. General Metallurgy
(Formerly Ch.E. 327)
3-0-3. Prerequisite: Met. 325.
A study of the characteristics and engineering applications of the more widely used nonferrous alloys. Consideration is given to powder metallurgy as a tool in the fabrication of metallic materials and also to some of the new alloys for ultra high temperature service.
Text: Raudebaugh, Nonferrous Physical Metallurgy.

Met. 401. Engineering Materials
(Formerly Ch.E. 425)
3-0-3. Prerequisite: Chem. 333.
Principles of physical metallurgy including binary phase diagrams and mechanical testing methods as applied to metallic materials. Production of iron, steel, and nonferrous metals is surveyed.
Text: Guy, Elements of Physical Metallurgy.

Met. 402. Engineering Materials
(Formerly Ch.E. 426)
3-3-4. Prerequisite: Met. 401.
A study of the properties and application of carbon and alloy steels, cast irons, and nonferrous alloys. Some time is devoted to corrosion as an engineering problem and methods utilized in minimizing its effects. Laboratory work consists of metallographic observation of common ferrous and nonferrous alloys in various conditions.
Text: Guy, Elements of Physical Metallurgy and Notes.

Met. 411. Basic Extractive Metallurgy
3-0-3. Prerequisite: Chem. 333 or equivalent.
Theory and practice of extraction and refining of ferrous and nonferrous metals. Calculations and reactions related to pyrometallurgical and hydro-metallurgical extractive processes will be emphasized.
Text: Newton, Extractive Metallurgy.

Met. 421. Nonferrous Metallography
(Formerly Ch.E. 428)
2-3-3. Prerequisite: Met. 441 or 402, or equivalent.
The use of the microscope to study the influence of processing variables on the structure and properties of metals and alloys. Pyrometric instrumentation as applied to heat treating operations and thermal analysis of metals and alloys is also covered.
Text: Kehl, Metallographic Laboratory Practice.

Met. 422. Ferrous Metallography
3-3-4. Prerequisites: Met. 401 and 402.
The influence of processing variables on the microstructure and properties of steels and ferrous alloys. Heat treat operations and thermal analysis of ferrous materials.

Met. 423. Metallurgical Fabrication
3-0-3. Prerequisite: Met. 401.
Primary forming techniques and secondary fabrication and joining processes will be discussed. Some of the processes to be considered are casting, rolling, forging, welding, etc.
Text: Semans, Engineering Materials, the ASM Handbook and Notes.

Met. 441. Theoretical Physical Metallurgy
(Formerly Ch.E. 427)
3-0-3. Prerequisites: Met. 402 and Chem. 333 or equivalent.
A study of the physical and mechanical properties of metals and alloys in the light of their structure.
Chem. 613 Technology of Fine Particles
Chem. 619 Chemical Engineering Calculations
Chem. 620 Applied Mathematics in Chemical Engineering
Chem. 622 Applied Chemical Kinetics
Chem. 630 Radiochemical Separations Processes I
Chem. 631 Radiochemical Separations Processes II
Chem. 632 Nuclear Process Kinetics
Chem. 646 Economic Analysis of Chemical Engineering Processes
Chem. 701, 2, 3 Seminar
Chem. 704, 5, 6 Special Topics in Chemical Engineering (Credit to be arranged)
Chem. 707, 8, 9 Organic Chemistry and Industry
Chem. 713 Fluid Flow
Graduate Courses in Metallurgy

Met. 601, 2, 3 Seminar ... 2-0-1
Met. 604 Special Topics in Metallurgy
Met. 614 Electrometallurgy 2-3-3
Met. 621 Metallurgical Design Problems 1-6-3
Met. 625 Powder Metallurgy 1-3-2
Met. 633 High Temperature Metallurgy 2-0-2
Met. 700 Master's Thesis ...
Met. 741 Advanced Physical Metallurgy 3-0-3
Met. 751 Advanced Mechanical Metallurgy 3-0-3
Met. 781 Metallurgical Thermodynamics 3-0-3
Met. 785 Metallurgical Kinetics 3-0-3

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
School of Chemistry
(Established in 1906)

General Information

Included in the School are:

1. The courses in chemistry required in the various engineering curricula.
2. A curriculum leading to the degree of Bachelor of Science in Chemistry.
3. Graduate courses and research leading to the degree of Master of Science in Chemistry, and Master of Science in Nuclear Science.
4. Graduate courses and research leading to the degree of Doctor of Philosophy in Chemistry.

The degree of Bachelor of Science in Chemistry will be awarded upon the completion of the following prescribed courses and 51 quarter hours of elective work. No elective course will be given for less than six applicants. A student must have had the prerequisites for any course he elects.

A prerequisite for senior courses is a minimum grade-point average of 2.0 in the following junior courses: Chem. 331, 332, 333, 334, 335, 340, 341, 342, 343, 344, and 345.
Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 107-8-9*</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytic Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. 101-2-3**</td>
<td>Elementary German OR</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC ***</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)*** 15-13-18 14-7-16 14-7-16

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Chem. 101, 102, 103 may be scheduled. However, a minimum grade of C is required for Chem. 101 and 102 and the prerequisite for Chem. 214 is Chem. 103 with a grade of C or better or Chem. 109.

**The School of Chemistry recommends that German be taken in the Freshman year. However, should Social Science be taken in the freshman year, German must be elected in the junior year.

***ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 214-15</td>
<td>Analytical Chemistry</td>
<td>2-6-4</td>
<td>2-6-4</td>
<td></td>
</tr>
<tr>
<td>Chem. 340</td>
<td>Organic Chemistry</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 343</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
<td></td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>ROTC*</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
<td>0-0-3</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 15-13-19 15-13-19 11-13-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 341-2</td>
<td>Organic Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Chem. 344-5</td>
<td>Organic Chemistry Laboratory</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td></td>
</tr>
<tr>
<td>Chem. 410</td>
<td>Organic Analysis</td>
<td></td>
<td></td>
<td>2-9-5</td>
</tr>
<tr>
<td>Chem. 331-2-3</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 334-5-6</td>
<td>Physical Chemistry Laboratory</td>
<td>0-3-1</td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Chem. 450</td>
<td>Chemical Bibliography</td>
<td></td>
<td>2-0-2</td>
<td></td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td>0-0-9</td>
<td>0-0-6</td>
<td>0-0-9</td>
</tr>
</tbody>
</table>

Totals 6-9-18 8-9-17 5-12-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>400</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem.</td>
<td>403</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem.</td>
<td>405-6</td>
<td>Instrumental Analysis</td>
<td></td>
<td>1-6-3</td>
<td>1-6-3</td>
</tr>
<tr>
<td>Chem.</td>
<td>434-5</td>
<td>Inorganic Chemistry</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem.</td>
<td>437-8</td>
<td>Special Problems</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td></td>
</tr>
<tr>
<td>Chem.</td>
<td>443-4</td>
<td>Organic Reactions</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td></td>
<td>0-0-6</td>
<td>0-0-6</td>
<td>0-0-12</td>
</tr>
</tbody>
</table>

Totals 9-6-17 7-12-17 4-6-18

*Not more than 9 hours of electives may be in the advanced ROTC. At least 15 hours of electives must be selected from the humanities electives on page 34. Among these electives the second year of German and the first year of French or Russian are recommended. For non-technical electives the school of Chemistry recommends Math. 304 (or 305 & 306), 309, 412, and 415. Physics 319, and the sequence 308, 320, 409, and 313.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

ADDITIONAL NOTE: All students are required to wear safety glasses while working in the laboratories. The glasses will be provided at the students’ expense.

Chem. 101, 102, 103. General Chemistry
3-3-4. Prerequisite: Entrance Requirements.

A lecture and laboratory study of the fundamental laws and theories of chemistry with abundant descriptive matter included to illustrate them. This course includes an introduction to qualitative analysis.

Texts: Sienko and Plane, Chemistry; Smith and Wood, Laboratory Manual for General Chemistry.

Chem. 107, 108, 109. General Chemistry
3-3-4. Prerequisites: Chem. 107: Satisfactory Placement Examination; Chem. 108: Chem. 107 or B or better in Chem. 101, and consent of staff.

This series of courses is designed for those students planning to pursue advanced courses in chemistry. The approach is more quantitative and less descriptive than in Chem. 101, 102, and 103.

Text: To be selected.

Chem. 110. General Chemistry
3-6-5. Prerequisite: Satisfactory Placement Examinations.

This is an accelerated course with emphasis on chemical equilibrium. The laboratory work will consist mainly of qualitative analysis.

This course makes it possible for the well prepared student to complete freshman chemistry in one quarter. If a grade of C or better is made, credit for Chemistry 108, 109 will be granted. If a grade of D is made, Chemistry 108, 109 or 102, 103 must be taken.

Text: Hogness and Johnson, An Introduction to Qualitative Analysis and Ryschkewitsch, Chemical Bonding and the Geometry of Molecules.

Chem. 214, 215. Analytical Chemistry
2-6-4. Prerequisites: Chem. 109, Chem. 110 or Chem. 103 with a grade of C or better.

A classroom and laboratory study of the laws, theories, and techniques of analytical chemistry. Problem work is stressed.

Text: To be selected.

Chem. 305, 306. Survey of Organic Chemistry
3-3-4. Prerequisite: Chem. 103.

A study of the various classes of organic compounds at an elementary level with emphasis on applications to the textile field.

Text: Seymour, Introduction to Organic Chemistry.

Physico-chemical properties of matter in the gaseous, liquid, and solid states; solutions; equilibrium, kinetics and thermodynamics of chemical reactions, electrochemistry.

Text: To be selected.

Chem. 334, 335, 336. Physical Chemistry Laboratory 0-3-1. Prerequisite: Chem. 214.

To be taken concurrently with or following Chem. 331, 332, 333.

Text: Eberhardt, Physical Chemistry Laboratory Notes.

Chem. 338. Physical Chemistry Laboratory 0-6-2. Prerequisite: Chem. 334, 335. To be taken concurrently with or following Chem. 333.

Applications of vibration—rotation and electronic spectroscopy, electric and magnetic susceptibility, and resonance techniques to the study of molecular structure. This course may be elected in lieu of Chemistry 336. Enrollment is limited—and subject to the approval of the instructor.

Text: Notes.

The principal classes of organic compounds, aliphatic and aromatic, are studied.

Text: Morrison and Boyd, Organic Chemistry.

Chem. 343, 344, 345. Organic Chemistry Laboratory 0-6-2. Prerequisite: Chem. 103 or 109. To be taken concurrently with or following Chem. 340, 341, and 342 respectively. But Chem. 343 is prerequisite to Chem. 344, 345.

Chem. 346, 347. Organic Chemistry Laboratory 0-3-1. Prerequisite: Chem. 343. To be taken concurrently with or following Chem. 341 and 342, respectively.

Application of molecular spectroscopy, electron diffraction, X-ray diffraction, neutron diffraction, and magnetic methods to the determination of molecular structure.

Text: Wheatley, The Determination of Molecular Structure.

Chem. 403. Physical Chemistry 3-0-3. Prerequisite: Chem. 333.

A study of the relation of atomic and molecular structure to the physical properties of matter and the nature of chemical bonding.

Text: Cartmell and Fowles, Valency and Molecular Structure.

Chem. 405-406. Instrumental Analysis 1-6-3. Prerequisite: Chem. 333.

This is an introductory course in both the theory and practice of modern instrumental methods; spectroscopy, polarography, colorimetry, microscopy, polarimetry, measurement of hydrogen ion concentration.

Text: Willard, Merrit, and Dean, Instrumental Methods of Analysis.

The methods of identification of compounds and characteristic groups are studied.

Lectures, recitation, and laboratory work on the preparation, properties, and practical application of
colloidal substances.
Text: Jirgensons and Strautmanis, A Short Textbook of Colloid Chemistry.

Chem. 432. Synthetic Inorganic Chemistry 0-6-2. Prerequisites: To be taken concurrently with or following Chem. 434.
The preparation and characterization of inorganic compounds, with special emphasis on the apparatus and techniques employed in modern synthetic inorganic chemistry.
Text: Jolly, Synthetic Inorganic Chemistry.

A classroom study of selected topics with emphasis on laws, principles and generalizations; the periodic classifications, atomic structure, natural and artificial radioactivity, valence, complex compounds, and other topics.

Chem. 437, 438, 439. Special Problems 0-6-2. Prerequisites: Chem. 333, Chem. 345.
The instruction will be individual and will include library, conference, and laboratory work.

A study of the scope and usefulness of some important reactions and theories in organic chemistry.

Chem. 445. Biochemistry 3-0-3. Prerequisite: Chem. 342, and consent of the instructor.
Lectures, independent reading, and discussion of topics relating to the chemistry and metabolism of plant and animal products.
Text: Comm and Stumpf, Outlines of Biochemistry.

Chem. 450. Chemical Bibliography 2-0-2. Prerequisites: Chem. 341 or concurrently.
A study of the chemical library with instruction in the use of chemical journals, reference books, and other sources of information.
Text: Notes.

Chem. 461. Chemistry of Nuclear Technology 3-3-4. For students in Nuclear Engineering only.
A course for non-chemist, covering principles of inorganic chemistry, radiation chemistry, radiochemistry, separation methods for actinide elements and fission products, and other topics related to the production and utilization of nuclear energy.
Text: Notes.

Chem. 475. Physical Chemistry for Engineers 3-0-3. Prerequisite: M.E. 320 or equivalent.
This course is designed to familiarize students who have had some thermodynamics in other areas with the applications of thermodynamics to chemical systems and with a foundation of the modern theory of chemical bonding.
Text: Barrow, Physical Chemistry.

Applications of the concepts developed in Chemistry 475 to the structure of solids and their chemical and physical properties.
Text: Barrow, Physical Chemistry.

Graduate Courses Offered
Chem. 631, 2 Organic Chemistry 3-0-3
Chem. 633, 4, 5 Reactivity, Mechanism, and Structure in Organic Chemistry 3-0-3
Chem. 639 Organic Chemistry ____________________________ 3-0-3
Chem. 644, 5 Molecular Structure and Chemical Principles ______ 3-0-3
Chem. 657 Radiochemistry _______________________________ 3-0-3
Chem. 658 Experimental Radiochemistry ___________________ 1-3-2
Chem. 661, 2, 3 Chemical Thermodynamics __________________ 3-0-3
Chem. 664, 5, 6 Advanced Inorganic Chemistry ____________ 3-0-3
Chem. 674 Organic Reagents in Analytical Chemistry ________ 3-0-3
Chem. 675 Electroanalytical Chemistry ______________________ 3-0-3
Chem. 677 Advanced Analytical Chemistry _________________ 3-0-3
Chem. 679 Special Topics in Analytical Chemistry __________ 2-3-3
Chem. 700 Master's Thesis _________________________________
Chem. 701, 2, 3 Seminar __________________________________ 1-0-0
Chem. 710-1 Polymer Chemistry ____________________________ 3-0-3
Chem. 733, 4 Organic Chemistry ____________________________ 3-0-3
Chem. 735, 6 Special Topics in Organic Chemistry ____________ 3-0-3
Chem. 747, 8, 9 Organic Chemistry __________________________ 3-0-3
Chem. 757 Chemical Kinetics ______________________________ 3-0-3
Chem. 760, 1 Special Topics in Physical Chemistry __________ 3-0-3
Chem. 764 Statistical Thermodynamics ______________________ 3-0-3
Chem. 767, 8 Principles of Quantum Mechanics _____________ 3-0-3
Chem. 780, 1, 2 Molecular Spectra __________________________ 3-0-3
Chem. 800 Doctor's Thesis _________________________________

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
School of Civil Engineering
(Established in 1896)

General Information

The civil engineer conceives, designs and builds projects coordinating and utilizing natural and human resources for urban and regional development. He works in the following broad fields of specialization within the profession: structural and construction engineering, hydraulic engineering, sanitary engineering, transportation, soils engineering, municipal and regional engineering and management, surveying and mapping.

The functional phases of civil engineering are research and development, planning and design, construction, and operation and maintenance. In addition to specific civil engineering courses, the curriculum provides training in the physical and social sciences and selected subjects from the other engineering professions.

It is not the purpose of the four-year curriculum to cover in detail all that is known or considered in the profession or in any one of its branches. Rather, emphasis is placed on fundamental laws and concepts to enable the students to attack problems in a logical manner and to draw conclusions from principles and facts.

Satisfactory completion of the four-year curriculum leads to the degree of Bachelor of Civil Engineering. Honor seniors are allowed extra electives. Better students often continue on for graduate study.

Laboratories

The School of Civil Engineering occupies all of the Civil Engineering Building, the Civil Engineering Annex, and a portion of the Joint Highway Research Laboratory. Modern laboratories provide for practical experience and research in air pollution, building materials, fluid mechanics, foundation models, highway materials, hydraulics, hydrology, photogrammetry, radiological health, sanitary engineering, soil mechanics, stress analysis, structural models, and surveying.

*On leave.
Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>101-2-3</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr.</td>
<td>113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>___</td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Introduction to Literature</td>
<td>___</td>
<td>___</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytic Geometry and Calculus</td>
<td>___</td>
<td>5-0-5</td>
<td>___</td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td>___</td>
<td>___</td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. *</td>
<td></td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>ROTC **</td>
<td></td>
<td>Basic ROTC (optional)</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC) 15-13-18 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E.</td>
<td>201-2</td>
<td>Surveying</td>
<td>3-3-4</td>
<td>___</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E.</td>
<td>211</td>
<td>Digital Computers</td>
<td>___</td>
<td>1-3-2</td>
<td>___</td>
</tr>
<tr>
<td>C.E.</td>
<td>302</td>
<td>Civil Engineering Seminar</td>
<td>___</td>
<td>0-3-1</td>
<td>___</td>
</tr>
<tr>
<td>Eng.</td>
<td>201-2</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>___</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>___</td>
</tr>
<tr>
<td>Mech.</td>
<td>305</td>
<td>Statics</td>
<td>___</td>
<td>3-0-3</td>
<td>___</td>
</tr>
<tr>
<td>Mech.</td>
<td>308</td>
<td>Dynamics</td>
<td>___</td>
<td>___</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys.</td>
<td>207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td></td>
<td>Basic ROTC (optional)</td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC) 16-10-19 14-13-18 16-10-19

C.E. 203. Surveying Camp—6 hours credit—(Offered during summer on the campus of West Georgia College, Carrollton, Georgia. Course lasts 4 weeks. Students who are exempt from C.E. 203, Surveying Camp, take C.E. 312. See course description for C.E. 203 and C.E. 312.)

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E. 309</td>
<td>Materials of Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 311</td>
<td>Structural Analysis I</td>
<td></td>
<td></td>
<td>5-3-6</td>
</tr>
<tr>
<td>C.E. 313-14</td>
<td>Fluid Mechanics I, II</td>
<td>3-0-3</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>C.E. 320</td>
<td>Fluid Mechanics Laboratory</td>
<td></td>
<td></td>
<td>0-3-1</td>
</tr>
<tr>
<td>C.E. 431</td>
<td>Hydrology</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 457</td>
<td>Sanitary Engineering I</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 203</td>
<td>Survey of the Humanities</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Geol. 203</td>
<td>Physical Geology</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Economics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 329</td>
<td>Survey in Business Law</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. 320</td>
<td>Thermodynamics</td>
<td>4-0-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives *</td>
<td>Humanities</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives **</td>
<td>Elective or ROTC</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 19-3-20 16-6-18 17-6-19

*Selected from list on page 34.
**See note on approved electives following Senior Year.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E. 312*</td>
<td>Advanced Surveying I</td>
<td>(3-3-4)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 451-52</td>
<td>Metal and Concrete Structural Components</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>C.E. 455</td>
<td>Transportation Engineering I</td>
<td></td>
<td>4-0-4</td>
<td></td>
</tr>
<tr>
<td>C.E. 458</td>
<td>Sanitary Engineering II</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 460</td>
<td>Behavior of Soil and Rock</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electrical Circuits and Fields</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 315 or</td>
<td>Public Speaking</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 425</td>
<td>Engineering Economy</td>
<td>3-0-3</td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives **</td>
<td>Electives or ROTC</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Group Electives ***</td>
<td>Group Electives or Honors</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Totals 15-6-17 15-6-17 12-0-12

*Students who take C.E. 203, Summer Surveying Camp, 6 credits, omit C.E. 312. See course description for C.E. 203.

**Nine hours of elective course work in Civil Engineering or another field must be chosen when preregistering for the first quarter of the senior year or before taking the first of such electives. Forms for use in requesting approval of an elective sequence are available in the office of the School of Civil Engineering. The elective sequence must lead to some goal chosen by the student and approved by the Director of the School of Civil Engineering.

Group Electives—Senior C.E. Design Courses. Each C.E. senior must choose 4 of the following 7 courses:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E. 403</td>
<td>Construction</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 433</td>
<td>Applied Hydraulics</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 453</td>
<td>Structural Design</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 454</td>
<td>Advanced Surveying II</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 456</td>
<td>Transportation Engineering II</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>C.E. 459</td>
<td>Sanitary Engineering III</td>
<td>1-6-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.E. 461</td>
<td>Applied Soil and Rock Mechanics</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
</tbody>
</table>

"Honors Students" may substitute approved electives (not ROTC) for any of the Group Electives. An "Honors Student" is a first quarter senior who has an overall grade point average which places him in the upper 25 percent of all students at Georgia Institute of Technology and has a minimum grade point average of 2.5 on all courses taken during the period he was classified as a junior. Exceptions will be made to this definition to allow for students who have shown improvement in their scholastic performances during their sophomore and junior years.
Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

C.E. 201. Plane Surveying
3-3-4. Prerequisites: Math. 100 or 102, E.Gr. 113.

The theory and practice of surveying; care and use of transit, level and tape; traverse computations; areas; stadia; topographic mapping; construction surveys; error analysis. Text: Davis and Foote, Surveying.

C.E. 202. Route Surveying
3-3-4. Prerequisite: C.E. 201.

Planning and construction surveys for route location; computation of circular, reverse, compound, parabolic and spiral curves; slope stakes; earthwork; mass diagram; grade and curvature effects. Text: Meyer, Route Surveying.

C.E. 203. Surveying Camp, 4 weeks course during summer*. 6 hours credit
Prerequisite: C.E. 202.

Field Astronomy; precise tape, level, theodolite, sub-tense bar; figure and net adjustments; plane table; division of areas and curved boundaries, elements of photogrammetry; route location.

*This course should be scheduled between the Sophomore and Junior years. It is required to all Civil Engineering students except as follows:

Students who graduate under the Cooperative Plan and students who graduate under the Regular Navy R.O.T.C. program. These students may substitute C.E. 312 for C.E. 203.

Texts: Davis and Foote, Surveying; Meyer, Route Surveying; Eichler and Tubis, Photogrammetry Lab Kit.

C.E. 206. Elementary Surveying
2-3-3. Prerequisite: Math. 100 or 102. For non-C.E. students. Not offered winter quarter.

Use of tape, transit and level with applications to planimetric and topographic mapping; traverse and area computations; stadia; plane table; construction surveys; optical tooling. Text: Brinker and Taylor, Elementary Surveying.

C.E. 211. Civil Engineering Applications of Digital Computers
1-3-2. Prerequisite: Math. 104.

A study of the application of digital computers to the solution of Civil Engineering problems. Exercises will use an algebraic compiler language and selected numerical methods. Text: To be selected.

C.E. 302. Civil Engineering Seminar
0-3-1. Prerequisite: Sophomore standing.

Lectures, discussions and reports on current Civil Engineering projects and problems, including engineering ethics, professionalism, introductions to the specialties in civil engineering and introductions to civil engineering contemporary literature. Text: Fogel, Introduction to Engineering Computations.

C.E. 306. Structural Analysis II
3-3-4. Prerequisite: Mech. 343. No credit for C.E. students.

Analysis of structures to find reactions, deflections and internal forces with emphasis on methods of analysis for statically indeterminate structures. Text: Norris & Wilbur, Elementary Structural Analysis, 2nd Ed.

C.E. 309. Materials of Construction
3-3-4. Prerequisite: C.E. 302, C.E. 211, Mech 334.

Basic principles of the properties of materials. Physical, chemical and mechanical properties of metals, concrete, timber, masonry and asphalt. The laboratory period is for tests, demonstrations and writing reports. Text: Committee on Engineering Materials, Engineering Materials.
C.E. 311. Structural Analysis I
5-3-6. Prerequisite: Mech. 334.
Determination of internal forces in statically determinate and indeterminate structures including influence lines with applications to beams, frames and trusses.
Text: Norris & Wilbur, Elementary Structural Analysis, 2nd Ed.

C.E. 312. Advanced Surveying I
3-3-4. Fall Quarter. Prerequisite: C.E. 202. For C.E. students exempt for C.E. 203, Surveying Camp.
Field astronomy. Precise taping, leveling, triangulation, sub-tense bar, adjustments of level nets and triangulation figures; special problems in land division; photogrammetry, history and fundamental principles.
Text: Eichler and Tubis, Photogrammetry Lab Kit; Davis and Foote, Surveying; Meyer, Route Surveying.

C.E. 313. Fluid Mechanics I
3-0-3. Prerequisite: Mech. 308.
Elementary mechanics of fluids with emphasis on analysis, fluid statics; fluid kinematics; equations of motion; momentum and energy principles; surface and form resistance.

C.E. 314. Fluid Mechanics II
3-3-4. Prerequisite: C.E. 313.
Elementary mechanics of fluids with emphasis on engineering applications. Enclosed conduit flow; open-channel flow; hydraulic machinery; fluid measurements; dynamic similarity.
Text: Morris, Applied Hydraulics in Engineering.

C.E. 320. Fluid Mechanics Laboratory
0-3-1. Prerequisite: C.E. 314.
Experiment, demonstration and analysis of basic fluid phenomena and exercise in laboratory techniques.

C.E. 324. Elements of Fluid Mechanics
3-3-4. Prerequisite: Mech. 306. For non-C.E. students.
Elementary mechanics of fluids in a single comprehensive course. Hydrostatics; fluid kinematics; equations of motion; momentum and energy principles; flow in pipes, fluid measurements.

C.E. 400. Reinforced Concrete Design II
Analysis and design of reinforced concrete foundations, slabs and building frames.
Text: Winter, Urquhart, O'Rourke, Nilson, Design of Concrete Structures, 7th Ed.

C.E. 403. Construction
2-3-3. Prerequisites: C.E. 460, I.E. 425. Restricted to C.E. students.
The relations of construction to design and ultimate use; the construction contract; basic machinery and construction operations; job planning, estimating; cost accounting; preparation of bids. The laboratory is for supervised problems and inspection trips.

C.E. 406. Reinforced Concrete Design
2-2-3. Prerequisites: Mech. 343, and Arch. 324. No credit for C.E. students.
Principles of behavior of reinforced concrete beams and columns with application to the design of elementary structures.
Text: Winter, Urquhart, O'Rourke, Nilson, Design of Concrete Structures, 7th Ed.

C.E. 413. Structural Analysis III
3-3-4. Prerequisites: C.E. 211, C.E. 311.
Structural analysis using electronic digital computers with flexibility
Numerical methods presented include matrix notation.

C.E. 431. Hydrology
3-0-3. Prerequisites: C.E. 302, 314.
Occurrence and movement of water on the earth as expressed in the hydrologic cycle; elementary meteorology; precipitation, evapotranspiration and runoff; infiltration and groundwater; hydrograph analysis.
Text: Wisler and Brader, *Hydrology*.

C.E. 433. Applied Hydraulics
3-0-3. Prerequisites: C.E. 314, C.E. 431.
Analysis and design of hydraulics works and structures. Typical exercises; stability of dams; spillway design; stilling basins; culverts; pipe systems; sediment transport, erosion, and erosion control.

C.E. 438. Elementary Aerial Photogrammetry
2-3-3. Prerequisite: C.E. 203 or C.E. 312 or consent of instructor.
Principles of stereoscopy and stereoscopic instruments. Analysis solutions of altitude, base line, line of flight and parallax. Radial line plotting for planimetric and topographic maps.

C.E. 440. Water Treatment
3-0-3. Prerequisite: C.E. 457.
Quality and conditioning of municipal and industrial water supplies.

C.E. 441. Sewage and Industrial Waste Treatment
3-0-3. Prerequisite: C.E. 458.
The theory and principles of municipal and industrial waste treatment for water pollution control.

C.E. 442. Applied Hydrology
3-0-3. Prerequisites: C.E. 311, 431.
Winter Quarter.
Applications of hydrology in the design of hydraulic structures for water supply, irrigation, power, drainage and flood control facilities.

C.E. 443. Water Resources Development
2-2-3. Prerequisites: C.E. 431.
Spring Quarter.
Identification and evaluation of problems related to comprehensive water resources development; flood management, power, navigation, water quality, irrigation, conservation, and other objectives. Socio-economic and policy implications.

C.E. 444. Special Problems
1 Credit.

C.E. 445, 446. Special Problems
2 Credits. Prerequisite: Senior standing.
Minor research or special problems involving analytical or experimental investigations to develop student initiative and technique under general supervision.

C.E. 447. Engineering Astronomy
2-3-3. Prerequisite: Math. 203.
Spring Quarter.
Study of the celestial sphere including horizon and equator systems. Study of the Sun, Moon, Earth and planets, including man's early theories of the universe.

C.E. 448. Design in Timber and Prestressed Concrete
2-3-3. Prerequisite: C.E. 452.
Principles of behavior of timber and of prestressed concrete structural members; application to the design of elementary structures.
C.E. 449. Engineering Aspects of Environmental Health
3-0-3. Prerequisite: C.E. 458 or consent of instructor.
Sanitary Engineering in public health administration and the control of environmental health problems.

C.E. 450. Groundwater Hydrology
3-0-3. Prerequisites: C.E. 431, Geol. 203. Spring Quarter.
Occurrence, distribution and movement of water below the surface of the earth; groundwater resources and dependable supply rates from wells; artificial recharge and waste disposal.
Text: Todd, *Groundwater Hydrology*.

C.E. 451. Metal Structural Components
3-3-4. Prerequisites: C.E. 309 and C.E. 311.
Principles of behavior of tension and compression members, beams, and connections with application to the design of elementary structures.
Text: Beedle et al., *Structural Steel Design*.

C.E. 452. Concrete Structural Components
3-3-4. Prerequisites: C.E. 309 and C.E. 311.
Principles of behavior of reinforced concrete beams, columns and slabs with application to the design of elementary structures.
Text: Winter, Urquhart, O'Rourke, Nilson, *Design of Concrete Structures*, 7th Ed.

C.E. 453. Structural Design
2-3-3. Prerequisites: C.E. 451, C.E. 452, and C.E. 460.
Design of structures in metal and concrete with emphasis on buildings and bridges.
Text: Beedle et al., *Structural Steel Design*; Winter, Urquhart, O'Rourke, Nilson, *Design of Concrete Structures*, 7th Ed.

C.E. 454. Advanced Surveying II
2-3-3. Prerequisites: C.E. 203 or C.E. 312.
Errors and adjustments of surveying and photogrammetric instruments; analysis of measurement errors; computations on transverse Mercator and Lambert projections; plane table traversing; special control problems.

C.E. 455. Transportation Engineering I
4-0-4. Prerequisites: C.E. 202, 211, 309 and I.E. 425.
The history and economics of transportation systems; traffic and planning problems and techniques: design and maintenance of air, rail, highway and water transportation facilities as a system.

C.E. 456. Transportation Engineering II
2-3-3. Prerequisite: C.E. 455 and C.E. 460.
Review of traffic planning techniques and general features of design of transportation systems; flexible and rigid pavement design; and construction materials for pavements. The laboratory period shall be used for supervised design problems.

C.E. 457. Sanitary Engineering I
3-0-3. Prerequisite or Co-requisite: C.E. 314, C.E. 431.
Introduction to water treatment. The evaluation of water quality as related to public water supplies. The engineering theory and application of disinfection, chemical precipitation, coagulation, adsorption, sedimentation, and filtration to water treatment.
C.E. 458. Sanitary Engineering II
3-0-3. Prerequisite: C.E. 457, C.E. 431.
Introduction to waste treatment. The analysis of the waste assimilative capacity of a stream. The engineering theory and application of sedimentation, chemical processes, bio-kinetics, and aerobic and anaerobic fermentation techniques to the treatment of waste water.
Text: Babbitt and Baumann, Sewerage and Sewage Treatment.

C.E. 459. Sanitary Engineering III
1-6-3. Prerequisite: C.E. 458.
The layout and the hydraulic, process, and operational design of water and waste water systems. The laboratory period is for supervised design problems and inspection trips.

C.E. 460. Physical Behavior of Soil and Rock
3-3-4. Prerequisite: C.E. 309 or Arch. 322, 323, 324, and Mech. 343.
An introduction to the engineering properties of soil and rock. The origin composition and structure of soils. The effect of water and its control. The physical properties of soil and rock affecting engineering design and construction. Boring and sampling. Laboratory is for making of soil tests.

C.E. 461. Soil and Rock Engineering
2-3-3. Prerequisite: C.E. 460.
The mechanics of soil and rock masses as applied to civil engineering design and construction: footing and pile foundations, retaining walls, bulkheads, fills, embankments and the control of landslides.

Graduate Courses Offered

<p>| C.E. 601 | Advanced Aerial Photogrammetry | 2-3-3 |
| C.E. 602 | Photographic Interpretation | 1-3-2 |
| C.E. 603 | Geodetic Engineering | 2-3-3 |
| C.E. 604 | Legal Principles of Land Surveying | 2-3-3 |
| C.E. 605 | Dock, Harbor and Shore Structures | 3-0-3 |
| C.E. 607 | Physical and Physico-Chemical Properties of Soils | 3-0-3 |
| C.E. 608 | Soil Testing | 1-3-2 |
| C.E. 611 | Advanced Soil Mechanics | 3-3-4 |
| C.E. 613 | Reinforced Concrete Structures I | 4-0-4 |
| C.E. 614 | Structural Planning | 3-0-3 |
| C.E. 617 | Experimental Analysis I | 3-0-3 |
| C.E. 621 | Indeterminate Structural Theory I | 4-0-4 |
| C.E. 622 | Indeterminate Structural Theory II | 3-0-3 |
| C.E. 625, 6 | Steady Flow in Open Channels I and II | 3-0-3 |
| C.E. 627 | Flow in Enclosed Conduits | 3-0-3 |
| C.E. 628 | Sedimentation and Sediment Transport | 3-0-3 |
| C.E. 629 | Mechanics of Flow in Porous Media | 3-0-3 |
| C.E. 632 | Water Power Engineering | 3-0-3 |
| C.E. 633 | Intermediate Fluid Mechanics | 3-0-3 |
| C.E. 635 | Design and Construction of Airports | 2-3-3 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E. 636, 7, 8</td>
<td>Highway Transportation, I, II, and III</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 639, 40</td>
<td>Sanitary Engineering Design I and II</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 641</td>
<td>Concrete Mix Design</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 649</td>
<td>Urban Sanitary Facilities</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 650</td>
<td>Urban Transportation Facilities and Policies</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 652</td>
<td>Air Pollution, Measurements and Control</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 653</td>
<td>Analytical Methods for Air Pollution Studies</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 654</td>
<td>Highway Transportation IV</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 655</td>
<td>Asphalt Mix Design</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 656</td>
<td>Pavement Design</td>
<td>2-0-2</td>
</tr>
<tr>
<td>C.E. 657</td>
<td>Advanced Topics in Hydromechanics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 663</td>
<td>Technology in Water Resources Development</td>
<td>2-2-3</td>
</tr>
<tr>
<td>C.E. 664</td>
<td>Economics of Water Resources Development</td>
<td>2-2-3</td>
</tr>
<tr>
<td>C.E. 665</td>
<td>Seminar in Water Resources Engineering</td>
<td>2-2-3</td>
</tr>
<tr>
<td>C.E. 666</td>
<td>Flood Management</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 670</td>
<td>Advanced Structural Mechanics</td>
<td>4-0-4</td>
</tr>
<tr>
<td>C.E. 671</td>
<td>Plastic Design in Steel</td>
<td>4-0-4</td>
</tr>
<tr>
<td>C.E. 672</td>
<td>Reinforced Concrete Structures II</td>
<td>4-0-4</td>
</tr>
<tr>
<td>C.E. 677</td>
<td>Soil Construction</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 678</td>
<td>Advanced Foundation Engineering</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 682</td>
<td>Basic Radiological Health</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 683</td>
<td>Environmental Radiation Surveillance</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 684</td>
<td>Industrial Waste Treatment and Disposal</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 685</td>
<td>Sanitary Engineering Processes I</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 686</td>
<td>Sanitary Engineering Processes II</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 687</td>
<td>Stream Analysis</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 700</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>C.E. 704, 5, 6</td>
<td>Special Problems</td>
<td></td>
</tr>
<tr>
<td>C.E. 716</td>
<td>Structural Dynamics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 727</td>
<td>Theoretical and Applied Soil Mechanics I</td>
<td>4-3-5</td>
</tr>
<tr>
<td>C.E. 728</td>
<td>Theoretical and Applied Soil Mechanics II</td>
<td>3-3-4</td>
</tr>
<tr>
<td>C.E. 730</td>
<td>Engineering Hydrodynamics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 735</td>
<td>Reinforced Concrete Structures III</td>
<td>4-0-4</td>
</tr>
<tr>
<td>C.E. 737</td>
<td>Gravity-Wave Phenomena</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 750, 1, 2</td>
<td>Special Problem</td>
<td></td>
</tr>
<tr>
<td>C.E. 753, 4, 5</td>
<td>Special Course</td>
<td></td>
</tr>
<tr>
<td>C.E. 756, 7, 8</td>
<td>Research Topic</td>
<td></td>
</tr>
<tr>
<td>C.E. 760</td>
<td>Hydrologic Models</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 761</td>
<td>Watershed Analysis</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 762</td>
<td>Hydrometeorology and Flood Synthesis</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 763</td>
<td>Urban Hydrology</td>
<td>2-3-3</td>
</tr>
<tr>
<td>C.E. 800</td>
<td>Doctor's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
School of Electrical Engineering

General Information

Almost every part of our society is influenced by the work of electrical engineers. They have long pioneered the fields of control, power, and communication and without controlled electricity, industry as we know it simply could not exist. Today electricity and electronics are expanding anew into the non-industrial world — into commerce, medicine, astronomy, and a seemingly endless array of diverse areas. The large-scale computer is becoming almost as familiar a sight in the insurance company office as it is in the scientific laboratory. The revolutionary achievements of the past have made electricity the servant of society. There is every reason to believe that the achievements of electrical engineering will be even more revolutionary in the future.

The School of Electrical Engineering offers a program that prepares its graduates to enter any phase of electrical engineering. Accordingly, all students are required to master the fundamentals of mathematics, physics, and electrical theory. Mastery of these fundamentals enables the student to learn quickly the techniques that are necessary for any special job. Moreover, a thorough mastery of fundamental concepts puts the student in a position to help extend knowledge in his own special field or even originate new fields that are unknown at the present.

Laboratory work is included, where appropriate, in the electrical engineering program to accustom the student to the use of electrical equipment and to develop his skill in practice as well as theory. Finally, a broad range of humanistic studies is included to help the engineer recognize and fulfill his responsibilities as a citizen and at the same time to prepare him for the day when he may leave strictly engineering work to assume administrative responsibilities.

The School of Electrical Engineering requires a scholastic average of C in the prescribed courses in mathematics, physics and electrical engineering. Students who fail to meet this requirement may continue in the School only on a probationary status.

*On leave.
Courses of Instruction

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 100</td>
<td>Algebra-Trigonometry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry-Calculus</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.L. *</td>
<td>Modern Language OR</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S.</td>
<td>Social Science</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>1-0-0</td>
<td>1-0-0</td>
<td>1-0-0</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td>1-0-0</td>
<td>1-0-0</td>
<td>1-0-0</td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td>1-0-0</td>
<td>1-0-0</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-18 14-13-18 14-13-18

*Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required.

**ROT C is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 205-6</td>
<td>Elements of Elec. Engineering</td>
<td>2-3-3</td>
<td>2-3-3</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Economics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>PhysicalTraining</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td>1-0-0</td>
<td>1-0-0</td>
<td>1-0-0</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 16-7-18 15-10-18 15-10-18

**ROT C is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 311-12-13</td>
<td>Electric Circuits</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 304-5-6</td>
<td>Engineering Electronics</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 308, 409</td>
<td>Electric Fields and Waves</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 342</td>
<td>Electrical Measurements</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 306</td>
<td>Applied Mechanics</td>
<td>5-0-5</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 331</td>
<td>Mechanics of Materials</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives*</td>
<td>Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives ***</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 17-6-19 15-6-17 15-9-18

*Humanities elective must be selected from the approved list on page 34 of this bulletin.
Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 411-12-13</td>
<td>Electric Energy Conversion</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 410</td>
<td>Electric Fields and Waves</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 414</td>
<td>Electric Circuits</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 315</td>
<td>Public Speaking</td>
<td>3-0-3</td>
<td>4-0-4</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 320</td>
<td>Thermodynamics</td>
<td>4-0-4</td>
<td>10-0-10</td>
<td>10-0-10</td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td>10-0-10</td>
<td>10-0-10</td>
<td>10-0-10</td>
</tr>
<tr>
<td>Electives ***</td>
<td></td>
<td>16-6-18</td>
<td>17-3-18</td>
<td>16-3-17</td>
</tr>
</tbody>
</table>

Totals

***Of the 36 hours of electives in the junior and senior years, at least 11 hours must be in electrical engineering courses at the 400 level or above. A maximum of nine hours of these electives may be in advanced ROTC courses.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

E.E. 205. Elements of Electrical Engineering
3-3-3. Prerequisites: Physics 207, Math. 201.
Text: Scott, *Electric Circuits* and *Notes*.

E.E. 206. Elements of Electrical Engineering
An introduction to the theory of electric and magnetic fields.
Text: *Notes*.

E.E. 304. Engineering Electronics
3-3-4. Prerequisite: E.E. 206.
A basic study of the electronic structure of matter related in particular to the conduction process and other processes which govern the behaviour of solid state electronic devices and of electron tubes.

E.E. 305. Engineering Electronics
3-3-4. Prerequisites: E.E. 304, 311.
An introduction to electronic circuits. Includes a study of equivalent plate circuits, amplifiers, rectifier systems, thyatron and phototube circuits. Lectures, recitation, computing, and laboratory periods.

E.E. 306. Engineering Electronics
3-3-4. Prerequisite. E.E. 305.
A continuation of E.E. 305. Includes a study of oscillators, modulation and detection, transistors, and transistor circuits. Lectures, recitation, computing and laboratory periods.

E.E. 308. Electric Fields and Waves
3-0-3. Prerequisites: E.E. 206, Math. 304.
An introduction to electromagnetic theory including the study of vector analysis, Maxwell's equations, static electric and magnetic fields, and fields and matter.

E.E. 311, 312, 313. Electric Circuits
3-3-4. Prerequisites: E.E. 205, Math. 304 or parallel.
A study of the transient and steady-state responses of RLC networks to a variety of types of forcing functions. Solutions of the differential equations for dynamic equilibrium lead to the concepts of com-
plex impedance and complex frequency. These results are used to analyze single-phase and three-phase circuits, resonant circuits, coupled circuits and others of special interest. Introductions to Laplace transforms and Fourier integrals are included. Text: Scott, *Electric Circuits* and *Notes*.

E.E. 315. Mechanical Plant of Buildings
3-0-3. Prerequisite: Senior Architecture standing. Not to be scheduled for credit if credit for E.E. 331 has been earned.

A study of the design of wiring and lighting systems for buildings. Text: To be selected.

E.E. 325. Electric Circuits and Fields
2-3-3. Prerequisite: Physics 208. For non-Electrical Engineering students. Not to be scheduled for credit if credit for E.E. 320 or E.E. 316 has been earned.

A study of magnetic and electric fields; electric circuits with a-c or d-c excitation. Lectures, recitations, computation and laboratory periods. Text: *Notes*.

E.E. 326. Elementary Electronics
2-3-3. Prerequisite: E.E. 325. For non-Electrical Engineering students. Not to be scheduled for credit if credit for E.E. 322 has been earned.

This course is an introduction to electronic and semiconductor devices and includes a study of circuits containing these elements, such as amplifiers and oscillators. Text: *Notes*.

E.E. 327. Electric Power Conversion
2-3-3. Prerequisite: E.E. 325. For non-Electrical Engineering students. Not to be scheduled for credit if credit for E.E. 321 or E.E. 317 has been earned.

Conversion of electrical power by means of motors, generators and rectifiers. Instruments for electrical measurements. Text: *Notes*.

E.E. 328. Electronic Control
3-3-4. Prerequisites: E.E. 326 and E.E. 327. For non-electrical Engineering students. Not to be scheduled for credit if credit for E.E. 322 has been earned.

A study of electrical control components and systems as utilized in industrial processes. Text: *Notes*.

E.E. 342. Electrical Measurements
3-3-4. Prerequisite: E.E. 312, or concurrently.

This course includes the modern methods of measuring resistance, current, capacitance, inductance and iron losses, and the calibration of electrical instruments. Lectures, recitations, computing and laboratory periods. Text: Stout, *Basic Electrical Measurement*.

E.E. 409. Electric Fields and Waves

E.E. 410. Electric Fields and Waves
3-3-4. Prerequisite: E.E. 409.

3-3-4. Prerequisites: E.E. 308 and E.E. 313.

A study of the fundamental principles of energy conversion. Generalized machine theory. Analysis of spe-
Specific electromechanical devices, Elementary feedback control principles. Coordinated laboratory experiments and demonstrations.

Text: Fitzgerald and Kingsley, *Electric Machinery.*

E.E. 414. Electric Circuits
3-0-3. Prerequisite: E.E. 313.
A continuation of E.E. 313. The behavior of image-parameter filters, electrical systems, and analogous electromechanical systems are studied by means of Laplace transform and Fourier transform methods.

Text: Cheng, *Analysis of Linear Systems.*

E.E. 415. Principles of Feedback Control
3-3-4. Prerequisite: E.E. 414.
A basic study of closed-loop systems utilizing frequency response analysis. Synthesis techniques are developed for desired performance criteria. Electrical, mechanical and hydraulic systems are considered.

Text: Thaler and Brown, *Servomechanism Analysis.*

E.E. 416. Electronic Computation
3-3-4. Prerequisites: E.E. 306 and E.E. 313.
A study of the basic principles of analog computation.

Text: Johnson, *Analog Computer Techniques.*

E.E. 417. Pulse Circuits
3-0-3. Prerequisites: E.E. 306 and E.E. 313.
A study of the theory and design of pulse circuits with applications to electronic computers, radar and television circuits.

Text: Strauss, *Wave Generation and Shaping.*

E.E. 419. Power System Analysis
3-0-3. Prerequisites: E.E. 313 and E.E. 308.
A study of power system parameters, fault currents, stability and protective relaying.

Text: Stevenson, *Power System Analysis.*

E.E. 422. Industrial Electronics
3-3-4. Prerequisites: E.E. 306 and E.E. 313.
Theory and operating characteristics of electronic power conversion and industrial electronic control devices. Laboratory and problem work are included.

Text: To be selected.

E.E. 428. Communication Engineering
3-3-4. Prerequisites: E.E. 306 and E.E. 313.
A study of circuit components in the radio-frequency region below one kilo-megacycle. The theory and operating characteristics of low-pass and band-pass amplifiers at radio frequencies. Distortion in amplifiers and the application of feedback are included in the study. Laboratory and computation are included.

Text: Terman, *Electronic and Radio Engineering.*

E.E. 429. Communication Engineering
3-3-4. Prerequisites: E.E. 306 and E.E. 313.
The theory of modulation, modulators, and detectors for AM and FM systems are studied. Also included is the study of oscillators, mixers, and power supplies.

Text: Terman, *Electronic and Radio Engineering.*

E.E. 430. Communication Engineering
3-3-4. Prerequisites: E.E. 306 and E.E. 313.
A study of relaxation oscillators, wave shaping techniques, pulse generation, and kindred subjects. Noise, interference, propagation, antenna systems, and the problem of frequency allocation is studied. Receivers and transmitters for radio and television are also studied.

Text: Terman, *Electronic and Radio Engineering.*
E.E. 432. Communication Circuits
3-3-4. Prerequisite: E.E. 313.
A study of communication circuits and electric filters. Lectures, recitations, computing and laboratory periods.

E.E. 434. High-Frequency Measurements
3-0-3. Prerequisites: E.E. 342 or parallel.
A study of the techniques employed in the measurement of voltage, current, power, inductance, resistance and capacitance at audio and radio frequencies.
Text: To be selected.

E.E. 435. Transistor Circuit Analysis
3-3-4. Prerequisites: E.E. 306, 313.
After a short review of transistor parameters and equivalent circuits, quiescent-point and stability considerations are discussed. The analysis and design of both small-signal and large-signal amplifiers, transistor oscillators, modulators and pulse circuits are studied.

E.E. 436. Ultra-High-Frequency Techniques
3-3-4. Prerequisite: E.E. 409.
Elective for undergraduates and first-year graduate students. Primarily concerned with rectangular and cylindrical waveguides and resonators; qualitative study of klystrons, magnetrons, and travelling wave tubes; introduction to ferrite devices, such as gyrators and ferrite isolators. Laboratory experiments are concerned with basic measurements of frequency, SWR, attenuation, etc., at microwave frequencies.

E.E. 437. Antennas
3-3-4. Prerequisite: E.E. 410, or concurrently.
An introductory course in antenna theory and practice for senior students. Topics emphasized are the linear antenna, antenna arrays, aperture antennas, antenna patterns and antenna gain. The important characteristics of specialized antennas such as the helix, the rhombic, and the log-periodic, etc. are presented.
Text: Kraus, *Antennas*.

E.E. 442. Electrical Design
3-3-4. Prerequisites: E.E. 306, 313.
Design problems of various types of electrical and electronic systems. Lectures and computation periods.
Text: To be selected.

E.E. 443. Linear Graph Theory
3-0-3. Prerequisites: E.E. 312, Math. 304.
Text: Seshu and Reed, *Linear Graphs and Electrical Networks*.

E.E. 450. Special Topics
3-0-3. Prerequisite: Senior standing.
Special topics of unusual current interest; introductory treatments of new developments in Electrical Engineering technology.
Text: To be selected.

E.E. 452-453-454-455. Special Problems
0-3-1. Prerequisite: Senior E.E. standing.
Special engineering problems will be assigned to the student according to his needs and capabilities.
Graduate Courses Offered

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 605</td>
<td>Symmetrical Components</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 608</td>
<td>Power System Relaying</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 622, 3</td>
<td>Advanced Electrical Transients</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 624</td>
<td>Advanced Electrical Measurements</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 625, 6, 7</td>
<td>Feedback Control Systems</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 633</td>
<td>Digital Systems Engineering Laboratory</td>
<td>0-3-1</td>
</tr>
<tr>
<td>E.E. 634</td>
<td>Antenna Systems</td>
<td>4-3-5</td>
</tr>
<tr>
<td>E.E. 635, 6, 7</td>
<td>Digital Systems Engineering I, II, III</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 638</td>
<td>Random Processes</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 639</td>
<td>Electromagnetic Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 640</td>
<td>Wave Guides and Cavity Resonators</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 647</td>
<td>Communication Circuits and Signals</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 648</td>
<td>Modulation Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 649</td>
<td>Noise in Communications Systems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 650</td>
<td>Power System Stability</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 651</td>
<td>Electrical Properties of Materials</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 652</td>
<td>Magnetic and Dielectric Properties of Materials</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 659</td>
<td>Information Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 660</td>
<td>Optimum Linear Filters</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 661</td>
<td>Statistical Detection Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 662, 3, 4</td>
<td>Advanced Network Theory</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 668</td>
<td>Statistical Theory of Measurement Systems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 671</td>
<td>Hydromagnetics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 672</td>
<td>Gaseous Electronics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 673</td>
<td>Gaseous Discharges</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 677, 8, 9</td>
<td>The Physical Basis of Electronic Devices</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 680</td>
<td>Tenor Analysis of Circuits</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 681</td>
<td>Advanced Machinery I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 682</td>
<td>Advanced Machinery II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 684, 5, 6</td>
<td>Feedback Controls Systems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 694, 5, 6</td>
<td>Feedback Controls Systems Laboratory</td>
<td>0-3-1</td>
</tr>
<tr>
<td>E.E. 700</td>
<td>Master's Thesis</td>
<td>1-0-0</td>
</tr>
<tr>
<td>E.E. 701, 2, 3</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>E.E. 704, 5, 6, 7</td>
<td>Special Problems</td>
<td>Credit to be arranged</td>
</tr>
<tr>
<td>E.E. 709</td>
<td>Special Topics</td>
<td>Credit to be arranged</td>
</tr>
<tr>
<td>E.E. 718</td>
<td>Nonlinear Random Processes</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 734, 5, 6</td>
<td>Oscillators</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 745, 6, 7</td>
<td>Advanced Electromagnetic Theory</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.E. 750</td>
<td>Advanced Analysis and Synthesis of Automatic Control Systems</td>
<td>4-3-5</td>
</tr>
<tr>
<td>E.E. 751</td>
<td>Random Processes in Automatic Control Systems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 762, 3, 4</td>
<td>Advanced Network Theory II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 771, 2, 3</td>
<td>Advanced Feedback Control Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 800</td>
<td>Doctor's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

(Complete details about these courses are contained in the *Graduate Bulletin*, a copy of which is available upon request.)
Department of Engineering Graphics

General Information

Graphics has long been a language of the Engineer. It has endured through the years because it is the most flawless means of communication yet invented by man. Where the spoken word or the written document is always subject to misinterpretation, a well executed graphical analysis conveys the thought or plan exactly as intended.

As the line of demarcation between the efforts of engineers and scientists continues to diminish, it becomes increasingly imperative that rapid communication between them be extended and improved. Engineering Graphics, or Graphic Science, not only supplies the common language linking the closely oriented fields of engineering and science, it also takes on the added task of providing the engineer with means of expression in his newer role in the area of analysis and synthesis without relinquishing his command in design, which has long been his primary responsibility. This nowise ignores the cultural attainments arising from study in this discipline which, for many, initiates first steps into our modern and ever changing world of precise measurements, spatial relationships, and clear thinking.

To visualize in three dimensions and to express thoughts and ideas in concise form readily understood by those conversant with the common language is one of the essentials for growth in engineering and allied sciences. Setting a climate conducive to the student's development in this phase of his education is the aim and purpose of the department.

While all students at Georgia Tech do not pursue identical courses in Graphics, since the subject matter is suited to specific needs of the various disciplines, it is expected that the able student will reach that level of graphics literacy whereby he may live comfortably within his professional environment.

Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit. Students are expected to use drawing instruments approved by the Department of Engineering Graphics. Transfer students should present their drawings to the department when applying for credit.

E.Gr. 105. Managerial Graphics

0-6-2. Prerequisite: None. Not open, generally, to students with credit in E.Gr. 113.

Effective communication between manager, engineer, and technician through principles of orthographic projection, sections, dimensions, basic descriptive geometry; creation of graphs, charts, and nomograms presenting technical data and business trends.

*On leave.
E.Gr. 109. Applied Descriptive Geometry
0-6-2. Prerequisite: Draw. 101 or equivalent. Not open to students with credit in E.Gr. 113.
Topics of study include the solution of practical problems involving points, lines, and planes; simple intersections and developments of surfaces, and introduction to warped surfaces.

E.Gr. 113. Engineering Graphics
0-6-2. Prerequisite: None.
Topics of study include lettering (capital and lower case); the use of instruments; geometric construction; orthographic projection; emphasis on descriptive geometry concepts as applied to the solution of problems involving orthographic projection of solids, auxiliary views, and points, lines and planes.

E.Gr. 114. Engineering Graphics
0-6-2. Prerequisite: E.Gr. 113.
Topics of study include the solution of problems involving points, lines, and planes by use of the revolution method; intersection and development of surfaces; warped surfaces; Practical applications are emphasized.

E.Gr. 115. Engineering Graphics
0-6-2. Prerequisite: E.Gr. 114.
Topics of study include sections and conventions; dimensioning; shop processes, pictorial representation; detail sketches; assembly drawings from detail sketches; working pictorial sketches; introduction to charts and graphs; reproduction processes, ink tracing on cloth; graphical calculus.

E.Gr. 304. Graphic Statics I
0-3-1. Prerequisite: One of the following courses: Mech. 301, Mech. 305, Mech. 306, or Mech. 342.
Graphical solutions of coplanar force systems, resultants, equilibrium of simple structures, funicular polygon through three points, trusses, friction.
Text: *Notes and Departmental Work Sheets.*

E.Gr. 305. Graphic Statics II
1-3-2. Prerequisites: E.Gr. 114, E.Gr. 304 or consent of instructor.
Graphical solutions of three dimensional force systems and structures; graphical integration and funicular polygon solutions of area properties and beam slopes and deflections.
Text: *Notes and Departmental Work Sheets.*
School of Engineering Mechanics

General Information

Engineering Mechanics has long been recognized as a fundamental of engineering, and all engineering curricula include some courses in mechanics. Recent advances in science and technology are creating problems which are demanding for their solution the direct application of fundamental principles of mechanics in the hands of a trained analyst. The course of study offered here provides both breadth and depth through a strong foundation in mathematics, basic electricity and electronics, dynamics and vibration, advanced strength of materials, theoretical and experimental stress analysis. Successful completion of the program outlined should enable the graduate to enter upon a career in any one of a number of different phases of engineering or to fit into a research program. An excellent background is also provided for further study at the graduate level.

A minimum scholastic average of C is required in the prescribed courses in mathematics, physics and engineering mechanics. Students who fail to meet this requirement may continue only on a probationary status.

A modern well-equipped laboratory is maintained for experimentation and demonstration in the field of experimental stress analysis. There is an air conditioned dark room and the required equipment for photoelastic studies and experiments. The necessary machines for production of models and specimens are available.

The School of Engineering Mechanics offers a four year undergraduate program of study leading to the degree Bachelor of Science in Engineering Mechanics and graduate programs leading to the Master of Science and Doctor of Philosophy degrees. The requirements for the B.S. in Engineering Mechanics are listed on the following pages; the requirements for the M.S. and Ph.D. degrees may be found in the Graduate Bulletin.
Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L.*</td>
<td>Modern Language, OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-18 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>M.E. 208</td>
<td>Engineering Materials and Processes</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 305</td>
<td>Statics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Elective*</td>
<td>Humanities</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-10-18 16-7-18 16-7-18

*Humanities elective must be elected from the approved list on page 34.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.E. 310-11</td>
<td>Fluid Mechanics</td>
<td>3-0-3</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 411</td>
<td>Advanced Engineering Mathematics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 319</td>
<td>Modern Physics for Engineers</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 308</td>
<td>Dynamics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 421</td>
<td>Mechanical Vibrations</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. 322-3</td>
<td>Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electrical Circuits and Fields</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 326</td>
<td>Elementary Electronics</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective *</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Totals 16-3-17 16-3-17 18-3-9

*Of the 24 hours of undesignated electives in the junior and senior years, at least 9 hours must comprise a sequence of systems or design courses leading to some goal. A maximum of 9 hours of these electives may be in advanced ROTC.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. 401-2</td>
<td>Dynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Mech. 422</td>
<td>Mechanical Vibrations</td>
<td>3-0-3</td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 441</td>
<td>Advanced Strength of Materials</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 444</td>
<td>Stress Analysis</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 446</td>
<td>Continuum Mechanics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 471</td>
<td>Introduction to Experimental Stress Analysis</td>
<td>1-6-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 475</td>
<td>Physical Chemistry for Engineers</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 412-13*</td>
<td>Advanced Engineering Mathematics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>A.E. 410</td>
<td>Thermal Stresses</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 476</td>
<td>Chemistry of the Solid State</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Humanities</td>
<td>6-0-6</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 18-0-18 15-3-16 16-6-18

*Math. 491, Advanced Calculus, (3-0-3) may be substituted for Math. 413.
Courses of Instruction

Engineering Mechanics

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Mech. 305. Statics
3-0-3. Prerequisites: Phys. 207; Math. 203 or concurrently.
Topics of study include elements of statics in two and three dimensions; review of centroids and moments of inertia of areas; laws of equilibrium applied to machines and structures; friction.

Mech. 306. Applied Mechanics
5-0-5. Prerequisites: Phys. 207; Math. 203 or concurrently.
Elements of statics in two and three dimensions; laws of equilibrium applied to machines and structures; friction; centroids, centers of gravity, and moments of inertia; kinematics; kinetics of translation, rotation, and plane motion; work-energy and impulse-momentum principles.

Mech. 308. Dynamics
5-0-5. Prerequisites: Mech. 305; Math. 203 or concurrently.
Kinematics of rectilinear and curvilinear motion of particles; kinematics of rotation and plane motion of rigid bodies; kinetics of a particle; kinetics of translation, rotation, and plane motion of bodies; work and energy relations; impulse and momentum principles.

3-0-3. Prerequisites: Math. 203 or concurrently; Mech. 305 or Mech. 306.
Stress and strain analysis; stresses and displacements due to torsion, bending and axial loading; introduction to elastic stability and vibrations.

5-0-5. Prerequisites: Mech. 305 or Mech. 306; Math. 203 or concurrently.
Simple stresses and strains; membrane stresses; torsion; shear and bending moment diagrams; flexure stresses and shearing stresses in beams; introduction to plastic bending of beams; combined stresses; deflection of beams; statically indeterminate beams; introduction to strain energy; column theory.

Mech. 337. Mechanics of Materials
3-0-3. Prerequisites: Mech. 334; Math. 203.
Deflection of beams due to bending and shear; statically indeterminate beams; strain energy; theorems of Castigliano; impact loading; curved beams; thick-walled cylinders.

Mech. 342. Statics
Topics of study include two and three dimensional force systems; equilibrium of particles and rigid bodies; simple structures; review of centroids and moments of inertia of areas; load, shear and bending moment diagrams; parabolic and catenary cables.
Text: Beer and Johnson, *Statics*.
Mech. 343. Mechanics of Materials
5-0-5. Prerequisites: Mech. 342.
 Topics of study include Hooke's Law; simple stresses and strains; mechanical properties of materials; combined stresses; Mohr's circle; deflection of beams; columns.

Mech. 401. Dynamics
3-0-3. Prerequisite: Mech. 421, or consent of instructor.
 Topics of study include the two and three dimensional kinematics and kinetics of particles and systems of particles with application to motion in a resisting medium, central force motion, problems involving redistribution of mass and the motion of a particle allowing for the effects of the earth's rotation.
 Text: Halfman, *Dynamics*.

Mech. 402. Dynamics
3-0-3. Prerequisite: Mech. 401, or consent of instructor.
 Topics of study include the two and three dimensional motion of a rigid body, Euler's Equations, and an introduction to energy methods and Lagrange's Equations.
 Text: Halfman, *Dynamics*.

Mech. 404. Applied Vibration
3-0-3. Prerequisite: Mech. 421, or consent of the instructor.
 Topics of study include mobility method; geared systems; topics in applied vibration; introduction to the vibration of elastic bodies; tabular methods for vibration of beams.
 Text: To be selected.

Mech. 421. Mechanical Vibrations
3-0-3. Prerequisites: Math. 304 or Math. 305; Mech. 308, Mech. 334.
 Kinematics of vibration; free and forced vibrations of single and many degree of freedom systems, without and with damping; critical speeds.
 Text: Tse, Hinkle and Morse, *Mechanical Vibrations*.

Mech. 422. Mechanical Vibrations
3-0-3. Prerequisite: Mech. 421.
 Continuation of Mechanics 421. Complex representation; Fourier series; step and impulse loads; many degrees of freedom; influence coefficients; matrix method; stability of solution; beam vibrations; approximate methods.
 Text: Tse, Hinkle and Morse, *Mechanical Vibrations*.

Mech. 441. Advanced Strength of Materials
3-0-3. Prerequisites: Mech. 334.
 Comprehensive analysis of bending, transverse force transmission, and instability in structural sections; effect of non-symmetry, tapered sections, curved shear webs, multiple flanges.

Mech. 444. Stress Analysis
3-3-4. Prerequisites: Mech. 337 or Mech. 441 or A.E. 331 or equivalent; Math. 304 or equivalent.
 Stress relations for an arbitrary continuous body; introduction to the theory of isotropic elasticity; strain gages and strain measurements; illustrative elasticity solutions for beams; unsymmetrical bending; torsion; shear flows in closed box beams; practical applications to structures.

Mech. 446. Continuum Mechanics
3-0-3. Prerequisite: Mech. 444 or consent of instructor.
 Geometrical foundations; concept of stress and strain tensors; analysis of stress and strain; fundamental physical laws; constitutive equations; introduction to elasticity, plasticity, thermoelasticity, viscoelasticity, wave propagation.
Mech. 471. Introduction to Experimental Stress Analysis
1-6-3. Prerequisite: Senior standing.
Topics of study include the elements of two dimensional photoelasticity; the elements of electric resistance strain gage theory and practice; strain recording devices; measurement of damping in simple vibrating systems; introductory study of fatigue.

3-0-3. Prerequisite: Senior standing.
Topics of study include fatigue; creep; effect of shape, size, temperature, and microstructure of specimen; the more common stress-strain equations, hysteresis, after effect, etc.; theories of failure. Considerable reading and report writing required.

Graduate Courses Offered

Mech. 421 Mechanical Vibrations 3-0-3
Mech. 422 Mechanical Vibrations 3-0-3
Mech. 446 Continuum Mechanics 3-0-3
Mech. 603 Applied Vibrations 3-0-3
Mech. 604 Dynamics 3-0-3
Mech. 610 Theory of Oscillations 3-0-3
Mech. 611 Random Vibrations 3-0-3
Mech. 613 Vibration of Elastic Bodies 3-0-3
Mech. 615 Gyroscopic Motion and Devices 3-0-3
Mech. 618 Space Ballistics 3-0-3
Mech. 620 Theory of Experimental Stress Analysis 2-3-3
Mech. 622 Energy Methods in Mechanics 3-0-3
Mech. 635 Advanced Strength of Materials 3-0-3
Mech. 640 Introductory Photoelasticity 1-6-3
Mech. 643 Photoelasticity 1-6-3
Mech. 645 Theory of Elasticity 3-0-3
Mech. 646 Theory of Elasticity 3-0-3
Mech. 652 Theory of Plates 3-0-3
Mech. 653 Theory of Elastic Stability 3-0-3
Mech. 654 Theory of Shells 3-0-3
Mech. 662 Plasticity 3-0-3
Mech. 665 Continuum Mechanics — Fluids 3-0-3
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. 666</td>
<td>Continuum Mechanics — Solids</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 700</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Mech. 701, 2, 3</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Mech. 704, 5, 6</td>
<td>Special Problems in Engineering Mechanics</td>
<td></td>
</tr>
<tr>
<td>Mech. 710</td>
<td>Space Mechanics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 711</td>
<td>Dynamics of Space Vehicles</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 725</td>
<td>Continuum Mechanics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 750</td>
<td>Nonlinear Vibrations</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 751</td>
<td>Nonlinear Vibrations</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 760</td>
<td>Theory of Elasticity</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 762</td>
<td>Stability of Plates</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 763</td>
<td>Stability of Shells</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 800</td>
<td>Doctor's Thesis</td>
<td></td>
</tr>
</tbody>
</table>

(Complete details pertaining to these courses are contained in the *Graduate Bulletin*, a copy of which is available upon request.)
Department of English

General Information

Fundamental for effective study and successful communication with others is the ability to think logically, to organize material properly, and to express ideas in clear and appropriate English prose. Toward these ends the English courses of the freshman year are primarily directed.

Every student must achieve an acceptable minimum level of writing. Students of exceptional ability, as revealed by their scores on College Board tests, will be placed in Merit sections and challenged to secure credit for three courses in one quarter. Regular students will take three quarters of composition. Students beyond the freshman year whose composition is found to be unsatisfactory may be required to repeat a composition course, even though they have received credit for the course. Transfer students may be required to take a proficiency test in writing before credit is allowed.

In addition to the composition course for freshmen, the department offers courses in communication, written and oral, to students in the junior and senior classes. For students from foreign countries a special two-year program serves as an introduction to the American language and the American way of life.

The department offers to all sophomores a unified series of courses in the humanities aimed at a deeper appreciation of the value of the individual in society and a wider acquaintance with the great writers and great ideas basic to an understanding of western culture. Additional elective courses in literature and language are available for juniors and seniors.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Eng. 50. Reading for Speed and Comprehension
2-0-0. Prerequisite: None.
Mechanics of reading, exercises in increasing speed and improving comprehension. Recitation, tests, and individual practice.
Text: Brown, Efficient Reading.

Eng. 101, 102. Composition and Rhetoric
3-0-3. Prerequisite; None.
Analyzing and writing short units of composition efficiently and effectively, with emphasis on methods, relevancy, and adequacy of organization and development.
Texts: Perrin, Handbook of Current

Eng. 105. Introduction to Literature
3-0-3. Prerequisite: Eng. 102.
Guided analysis of humanistic ideas in selected literary works, with special attention to the relationship of content to form. Lectures, discussions, quizzes, papers.
Text: Perrine, *Story and Structure*.

Eng. 110. Vocabulary Building
3-0-3. Prerequisite: None.
Development of a useful vocabulary required in technical and scientific courses and general reading. Recitation, written exercises, individual practice and research, quizzes.

Eng. 131-2-3. English for International Students
5-0-5. Freshman year, consecutive quarters.
Admission by consent of the department.
A one-year course designed as an introduction to written and spoken English, stressing American pronunciation, idiomatic phrases, and language appropriate to basic social situations and customs of the American people.

Eng. 201-2-3. Survey of the Humanities
3-0-3. Prerequisite: Eng. 105.
A sequence of courses studying the contribution of several western civilizations from the Greeks to modern times as revealed in literature. Lecture, quizzes, reports, collateral reading.

Texts: Selected readings in each period.

Eng. 204. Creative Writing
3-0-3. Prerequisite: Eng. 105.
Study and practice in several forms and methods of composition, with emphasis on effective writing. Recitation, quizzes, compositions.

Eng. 221-2-3; 331-2-3. Acting and Producing the Play
0-3-1. Prerequisite: Admission by consent of instructor.
Participation in the production of various kinds of plays, including the presentation of one play before an audience.

Eng. 231-2-3. Literature for International Students
5-0-5. Sophomore year, consecutive quarters. Prerequisite: Eng. 133.
An introduction to American ideas as expressed in American literature, with continued training in writing and speaking the American language.
Texts: Selected texts as announced.

Eng. 301. Modern Drama
3-0-3. Prerequisite: Eng. 203.
Dramatic theory and technique as illustrated by a number of modern playwrights. Lectures, reports, collateral reading, quizzes.
Text: Reinert, *Modern Drama*.

Eng. 302. Shakespeare
3-0-3. Prerequisite: Eng. 203.
A brief statement of the life and times of Shakespeare and a careful study of certain of his principal works. Lectures, reports, collateral reading, quizzes.

Eng. 303. American Literature
3-0-3. Prerequisite: Eng. 203.
Reading of American writers for form and ideas. Lectures, reports, collateral reading, quizzes.
Text: Selected texts as announced.
Eng. 304. Contemporary Literature
3-0-3. Prerequisite: Eng. 203.
A careful study of major figures and movements in modern fiction. Lectures, reports, collateral reading, quizzes.

Eng. 306. The English Language
3-0-3. Prerequisite: Eng. 105.
Study of the origin of the English language, its relation to other languages, and its differentiation and development into modern English and American. Lectures, quizzes, term paper.
Text: Robertson and Cassidy, *Development of Modern English*.

Eng. 315. Public Speaking
3-0-3. Prerequisite: Eng. 203.
Instruction in the basic principles of effective public speaking, with emphasis on practice and criticism. The course is conducted as a laboratory.
Text: Dickens, *Speech Dynamic Communication*.

Eng. 318. Argumentation and Debate
3-0-3. Prerequisite: Admission by consent of the instructor.
Principles of argumentation and persuasion, with emphasis on issues of current public interest.
Text: To be announced.

Eng. 320. Technical Writing
3-0-3. Prerequisites: Eng. 203.
Study and practice of effective English in business letters, technical papers, engineering reports. Letters, reports, quizzes.

Eng. 360. The Literature of the Bible
3-0-3. Prerequisite: Eng. 203.
Study of a number of Biblical selections of unusual literary merit. Lectures, collateral reading, reports, quizzes.

3-0-3. Prerequisite: Consent of the Department.
Intensive study of individual writers, movements, periods or themes in literature, with the purpose of developing through discussion and critical papers knowledge in depth, critical independence, and expository skill.
Text: To be announced.
School of Industrial Engineering
(Established in 1945—Option in M.E., 1924-1945)

(Including a Program in Safety Engineering)

General Information

The study of Industrial Engineering prepares a student for a career in the manufacturing, research, and service industries. Based as it is on a broad engineering background, the professional courses taken in the last two years offer a perspective which enables the graduate to cope with complex problem situations encountered in modern industry and business.

The Industrial Engineer at this institution encompasses the areas of operations research, management science, and overall systems engineering. He is concerned with methods, organization, planning, coordination, equipment and personnel—all of the factors which play a role in the cost, quality and quantity of output. He deals with the top management, the engineering staff and the production force in achieving these goals.

New problems have arisen and new techniques have been developed during recent years which are peculiar to and characteristic of industrial engineering. These include the analysis of a proposed product with regard to the possible steps and sequences of operations involved in its manufacture, a selection of the most efficient machines to perform those operations, the layout of the plant and shops to provide for the flow of the product from one machine to another, organization of the material supply, avoidance or elimination of bottlenecks, together with the related problems of quality and cost control, testing, inspection and personnel relations.

Industrial engineering coordinates men, materials, machines, and methods, so as to solve problems met in the conversion, transformation and fabrication of raw materials into the products of industry.

The successful industrial engineer must possess special interests and abilities in the analysis of the human, technical, and cost problems of modern manufacturing. In addition, he must possess the essential personality and attributes
of character which will enable him to work with and direct others in the planning and operation of manufacturing enterprises.

Industrial engineering is a loosely defined occupational area. In its restricted usage it is usually limited to production organization, planning and methods. It may include the training and direction of personnel, specifications and purchasing of materials, cost and sales control, health and safety programs, accounting systems and traffic management. In some instances this occupation embraces the management of construction of new industrial enterprises and large scale public works. It may also include consultation in the area of finance and economics as these relate to mergers, reorganization, large scale modernization or retooling, etc.

Since this occupational area is concerned with the management aspect of professional engineering, it bears a reasonably close relationship with the activities of those men performing administrative functions in any of the other branches of engineering. There is a similar relationship with the work of consulting engineers and in many cases with works managers or plant superintendents in large enterprises. The work of the industrial engineer is likewise related to that of executives, directors, owners or managers of large manufacturing enterprises, particularly in those areas in which engineering problems and methods are important, and in which the executive has an engineering background, through education and/or experience.

Students desiring to include Systems Engineering courses in their program may do so (details of these courses are presented elsewhere in this bulletin). Individual programs may be arranged in consultation with the student’s advisor.

The successful completion of the curriculum leads to the degree of Bachelor of Industrial Engineering.

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>102-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr.</td>
<td>113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng.</td>
<td>102-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytical Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L.</td>
<td>*</td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>102-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC</td>
<td>**</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-18 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.
*Choice of M.L. 102-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish.
Three quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.E. 304</td>
<td>Organization for Production</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 201-2</td>
<td>Principles of Economics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 16-7-18 16-7-18 16-7-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.E. 339-40</td>
<td>Evaluation of Engineering Data</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>—</td>
</tr>
<tr>
<td>I.E. 415</td>
<td>Methods and Systems Analysis</td>
<td>3-6-5</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 425</td>
<td>Engineering Economy</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 439</td>
<td>Quality Control</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 336-7</td>
<td>Accounting and Cost Accounting</td>
<td>3-0-3</td>
<td>4-0-4</td>
<td>—</td>
</tr>
<tr>
<td>Psy. 324</td>
<td>Psychology & Elective</td>
<td>3-0-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C.E. 306</td>
<td>Fluid Mechanics</td>
<td>5-0-5</td>
<td>—</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Mech. 334</td>
<td>Mechanics of Materials</td>
<td>5-0-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Met. 325</td>
<td>Metallurgy</td>
<td>3-0-3</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 407</td>
<td>Linear Programming</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>6-0-6</td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Totals 20-0-20 18-6-20 18-3-19

*Free electives—a maximum of nine credit hours of advanced ROTC may be used.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.E. 306</td>
<td>Production Control</td>
<td>3-0-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I.E. 420</td>
<td>Cost and Production Estimating</td>
<td>3-0-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I.E. 411</td>
<td>Seminar</td>
<td>1-0-1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I.E. 424</td>
<td>Materials Handling</td>
<td>2-3-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I.E. 422</td>
<td>Job Evaluation & Wage Incentives</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 434</td>
<td>Research into Operations</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 447</td>
<td>Factory & Process Design</td>
<td>—</td>
<td>—</td>
<td>2-6-4</td>
</tr>
<tr>
<td>I.E. 490</td>
<td>Legal & Ethical Phases of Engineering</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S.E. 403</td>
<td>Industrial Accident Control</td>
<td>—</td>
<td>—</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 322-3</td>
<td>Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>—</td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electric Circuits & Fields</td>
<td>2-3-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E.E. 326</td>
<td>Elementary Electronics</td>
<td>2-3-3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M.E. 367</td>
<td>Machine Design</td>
<td>4-3-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Totals 14-3-15 12-9-15 14-6-16

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

I.E. 304. Organization for Production
3-0-3. Prerequisite: Math. 201.
The principles of organization and administration which are applicable to various engineering and industrial enterprises. An elective course for all engineering students.

I.E. 306. Production Control
A lecture and problems course covering production control systems, work routing, dispatching, inventory control, stores, etc.
Text: Biegel, Production Control.

I.E. 311. Manufacturing Processes
3-0-3. Prerequisite: None.
A study of modern manufacturing processes and production methods.
Text: Begeman, Manufacturing Processes.

I.E. 334. Optimization Methods
3-3-4. Prerequisite: Math. 304.
A study of optimization techniques employed in the solution of modern industrial engineering problems. Emphasis is on deterministic rather than random variation and on the utility of the analytical techniques in application. Mathematical foundation topics are presented in order to develop sufficient background to deal with the optimization topics in linear programming, dynamic programming, calculus methods, and other response surface search methods.
Text: Chung, Linear Programming.

I.E. 339. Evaluation of Engineering Data
3-0-3. Prerequisite: Math. 203 or concurrently.
Elementary probability theory, descriptive statistics, theoretical probability distributions, statistical inference, point and confidence interval estimation, simple regression and correlation analysis.
Text: Wine, Statistics for Scientists and Engineers.

I.E. 340. Evaluation of Engineering Data
3-0-3. Prerequisite: I.E. 339.
An introduction to the methods of industrial experimentation including the analysis of variance, multiple regression, and design of experiments.
Text: Wine, Statistics for Scientists and Engineers.

I.E. 349. Elementary Quality Control
3-0-3. Prerequisite: Math. 104. Not to be scheduled for credit if credit for I.E. 339 or I.E. 439 has been earned.
An introduction to industrial quality control by statistical methods. This course will include methods of data analysis, sampling, and control charts as applied to manufacturing processes.
Text: E. L. Grant, Statistical Quality Control.

I.E. 402. Production Problems
3-0-3. Prerequisite: Senior standing, I.E. 304 or instructor permission.
A case method study of modern production plant problems. A wide variety of problems are used but stress is laid on the consideration of original and unusual cases.
Text: To be selected.

I.E. 410. Industrial Surveys and Reports
1-3-2. Prerequisite: Senior standing.
A study of some of the problems which engineers encounter in investigating and reporting on various industrial operations.
Text: Staton and Groseclose, Industrial Reports.

I.E. 411-412. Seminar
1-0-1. Prerequisite: Senior standing in I.E.
To provide an hour for the Industrial Engineering students and fac-
ulty to join in discussions on current problems, professional responsibilities and opportunities.

I.E. 415. Methods and Systems Analysis
3-6-5. Prerequisite: I.E. 339 or Math. 416 or equivalent.
A study of methods engineering, work measurement, and systems design. This course provides an understanding of the principles of effective work and of the scientific method as applied to the analysis, measurement, and design of integrated systems of men, materials, and facilities. Applications of theory and principles are made by use of a term project.

I.E. 416. Motion and Time Study
2-3-3. Prerequisite: Junior standing; Non-Industrial Engineering students.
An introduction to the problems of work methods and work measurements associated with increasing productivity and decreasing the costs of producing goods and services.
Text: Barnes, *Motion and Time Study*.

I.E. 418. Industrial Engineering in Hospitals
3-0-3. Prerequisite: Senior Standing and consent of instructor.
A study of hospital management systems and the means by which such systems may be improved through the application of industrial engineering principles and techniques. The hospital as a managerial environment, characteristics of the management systems utilized in striving toward hospital goals, and the philosophies and approaches involved in improving hospital management systems. Establishing, operating, and evaluating the hospital industrial engineering program.

I.E. 420. Cost and Production Estimating
3-0-3. Prerequisite: I.E. 415.
A course in the development of estimating techniques for tool and equipment costs, production rates, costs ratios, establishment of basic time charts, etc.
Text: Doyle, *Tool Engineering*.

I.E. 422. Job Evaluation and Wage Incentives
3-0-3. Prerequisite: I.E. 415 or I.E. 416.
A course designed to give the student the principles used in establishing wage rates and salaries. The characteristics and objectives of different wage incentive plans and the design and analysis of incentive formulas and curves are considered.
Text: Brennan, *Wage Administration*.

I.E. 424. Materials Handling Equipment and Methods
The engineering and design aspects of materials handling equipment, methods of application, operations analysis and systems, including cost controls.

I.E. 425. Engineering Economy
3-0-3. Prerequisites: Math. 104 and Junior Standing.
The fundamental principles and basic techniques of economic analysis of engineering projects. Topics such as time value of money, economic measures of effectiveness, costs and their estimation, basic comparative models, breakeven analysis, and replacement analysis are included.
Text: Grant and Ireson, *Engineering Economy*.

I.E. 433. Electronic Data Processing
3-0-3. Prerequisites: Senior standing and I.E. 415 or I.E. 416.
Case studies of industrial applica-
tions of electronic data processing such as inventory control, production control, payroll, etc. Emphasis will be placed on systems analysis, flow charts, and methods and equipment used. Students will be given an opportunity to use electronic data processing equipment in operation at the Rich Electronic Computer Center.

I.E. 434. Introduction to Operations Research
3-0-3. Prerequisites: I.E. 339 and Math. 407 or Math. 238 or equivalents, and Senior Standing.

An introduction to the methodology of Operations Research in the solution of industrial, engineering, and other problems. Emphasis is placed on the development and use of mathematical decision models.

I.E. 439. Quality Control
3-0-3. Prerequisite: I.E. 339 or Math. 206 or Math. 416.

The theory and application of statistical control charts to the problems associated with the design, specifications and control of product quality. Also covered is the theory and application of attribute and variables sampling procedures and the problems associated with the reliability of complex equipment.

Text: Duncan, *Quality Control and Industrial Statistics*.

I.E. 441. Sales Engineering
3-0-3. Prerequisite: Senior standing in engineering.

A study of the problems involved in selling technical goods and services requiring engineering skill and knowledge in their application. Particular attention is given to the engineering application and service aspects of this work.

Text: Lester, *Sales Engineering*.

I.E. 447. Factory and Process Design
2-6-4. Prerequisites: I.E. 420 and I.E. 424 or Instructor permission.

The design, equipment selection and layout studies necessary for new or redesigned manufacturing plants or processes.

I.E. 451, 452, 453. Special Problems
0-3-1. Senior Year, First, Second and Third Quarters. Prerequisites: Senior standing and Special Permission.

The student is given an opportunity to develop initiative and to apply fundamental principles by doing semi-original laboratory or research work of an industrial engineering nature.

I.E. 460. Project Management Systems Design
2-3-3. Prerequisite: Senior standing.

A study of project planning and control using "Critical Path" techniques. Topics included are network logic, scheduling computations, resource scheduling under various constraints, time-cost trade-off algorithms, cost control, and multi-project resource allocation. Laboratory work provides practical applications and use of computer programs.

I.E. 490. Legal and Ethical Phases of Engineering
3-0-3. Prerequisite: Senior standing.

This course covers the subject of contracts, patents, copyrights and trademarks, agency, sales agreements, and engineering specifications. The engineer and his relations to the law, to the public and the ethics of his profession.

Text: Mead and Ackerman, *Contracts, Specifications and Engineering Relations*.
Graduate Courses Offered

I.E. 601 Modern Industrial Organizations 3-0-3
I.E. 603 Methods of Industrial Engineering Research 3-0-3
I.E. 606 Materials Control ... 3-0-3
I.E. 611 Industrial Engineering .. 3-0-3
I.E. 613 The Design of Manufacturing Enterprises 3-0-3
I.E. 615 Transportation Cost Analysis 3-0-3
I.E. 619 Quality Control ... 3-0-3
I.E. 624 Advanced Materials Handling 1-6-3
I.E. 625 Advanced Engineering Economy 3-0-3
I.E. 629 Reliability Theory and Practice 3-0-3
I.E. 639 Experimental Statistics .. 4-0-4
I.E. 640 Advanced Work Measurement 3-0-3
I.E. 641 Work Center Design .. 2-3-3
I.E. 642 Work Systems Design ... 3-0-3
I.E. 643 Job Evaluation and Incentives 3-0-3
I.E. 649 Design of Industrial Experiments 3-0-3
I.E. 655 Econometric Models in Engineering Economy 3-0-3
I.E. 700 Master's Thesis ...
I.E. 701, 2, 3 Seminar .. 1-0-0
I.E. 704, 5, 6 Special Problems in Industrial Engineering
I.E. 709 Evaluation of Design for Function & Use 3-0-3
I.E. 710 Automation ... 3-0-3
I.E. 734 Operations Research I .. 3-0-3
I.E. 735 Operations Research II ... 3-0-3
I.E. 736 Operations Research III ... 3-0-3
I.E. 745 Use of Computers in Industrial Engineering 3-0-3
I.E. 749 Advanced Industrial Statistics I 3-0-3
I.E. 750 Advanced Industrial Statistics II 3-0-3
I.E. 751 Advanced Industrial Statistics III 3-0-3
I.E. 755 Industrial Dynamics .. 3-0-3
I.E. 800 Doctor's Thesis .. 3-0-3

Program in Safety Engineering

Smaller industrial enterprises with limited staff functions will seldom have the services of safety engineering specialists. Even in larger companies where such specialists are present, sound organizational procedure dictates that practically every segment of the organization participate in the safety program. Increasing emphasis is being directed to this participation as accident costs mount and the nature of accident causes is more fully recognized.

Thus, our graduate can expect to be required to deal with problems of accident prevention regardless of his specialty or his work assignment at any
particular moment. The following courses are designed to enable one to accept such responsibilities effectively.

The development of the safety engineering specialist must necessarily be assigned to the graduate level, available only upon completion of a comprehensive undergraduate study program.

Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

S.E. 403. Elements of Safety Engineering
3-0-3. Prerequisites: I.E. 304, I.E. 339 or equivalent, I.E. 415 or I.E. 416 (Engineering students only).

The nature and extent of the industrial accident problem with particular emphasis on the role of the engineer in modern industrial operations. The identification and solution of technical accident problems using appropriate analysis procedures. Design principles and characteristics for accident prevention in the plant, the process, and the workcenter. Not to be scheduled for credit if credit for S.E. 401 or S.E. 404 has been earned.

Text: To be selected.

S.E. 404. Industrial Safety Administration
3-0-3. Prerequisites: I.M. 220, I.M. 324, and I.M. 345 (Non-engineering students only).

The nature and extent of the industrial accident problem. The selection and evaluation of data appropriate to accident control measurements and decisions, including realistic treatment of cost factors. Modern organizational relationships in the safety program. The control of industrial accidents by non-technical measures. Not to be scheduled for credit if credit for S.E. 401 or S.E. 403 has been earned.

Text: To be selected.

S.E. 405. Industrial Fire Prevention and Protection
3-0-3. Prerequisite: Senior Standing.

The economics of the industrial fire risk. Design of the plant, process, and work-center of optimum fire hazard. Design of fire protection facilities under varying industrial conditions. Credit is not given for both S.E. 405 and S.E. 402.

Text: To be selected.

Graduate Courses Offered

S.E. 603 History of Industrial Accident Prevention ___________ 3-0-3
S.E. 604 Indices of Safety Performance ________________________ 3-0-3
S.E. 605, 6 Safe Design and Utilization of Industrial Facilities __ 3-0-3
S.E. 607 The Comprehensive Safety Program _________________ 3-0-3
S.E. 615 Industrial Fire Control _______________________________ 3-0-3
S.E. 616 Safety Standards in Industry _________________________ 2-0-2
S.E. 618 Engineering Control of Industrial Health Hazards ___ 3-0-3
S.E. 704, 5, 6 Problems in Safety Engineering ________________
School of Industrial Management
(Established in 1923)

General Information

The principal objective of the School of Industrial Management is to provide collegiate education of the highest possible quality to prepare students for careers as industrial managers. The continuing growth of industry in Georgia, the South and the nation, and the increasing complexity of modern industrial operations have resulted in a great need for college graduates with formal preparation in industrial management. Georgia Tech’s industrial management program concentrates on long-range career objectives, rather than attempting to develop specific job knowledge. The emphasis in the program, therefore, is upon developing the student’s abilities to utilize the tools of analysis commonly required of industrial managers, to be responsive to his changing environment, and to both express and implement his ideas.

Undergraduate program. Georgia Tech’s School of Industrial Management has a single undergraduate degree program leading to the degree Bachelor of Science in Industrial Management. A student is not permitted a narrow field of specialization or major concentration, as is typical in schools of business.

In the first two years of the program, much of the required work is taken in other departments, including mathematics through introductory calculus and finite mathematics; two full years of laboratory science, chemistry or biology, and physics. In addition, the industrial management student acquires a sound background in the social and behavioral sciences, and the humanities.

Within the School, beginning in the sophomore year, the student is required to complete an integrated core of courses in the following areas: (1) organization and administration, including principles of management, human relations and organization theory; (2) economic analysis and managerial applications; (3) industrial relations, production, marketing and financial management; and (4) legal, political and social environment of industry. Required courses in analytical methods, statistics, managerial accounting and managerial applications of data processing are also included in the program.

Transfers to Industrial Management. Many students who enter Georgia Tech intending to major in one of the engineering or scientific areas become interested in transferring to the School of Industrial Management. Only students
who demonstrate their ability to successfully complete the requirements of
the program are permitted to transfer. It is therefore definitely to the student's
advantage to determine the requirements which must be met before transfer
will be permitted, as early as possible, in consultation with the Associate
Director of the School of Industrial Management.

Graduate Program. A brief description of the Master of Science in Indus-
trial Management program appears on page 131, together with a list of grad-
uate courses offered by the School.

Survey Courses for Non-Majors. In addition to courses offered primarily
for its own undergraduate and graduate programs, the School of Industrial
Management offers several courses designed expressly for non-majors, as
follows:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.M. 204</td>
<td>Survey of Principles of Economics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 316</td>
<td>Finance Survey for Engineers</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 317</td>
<td>Industrial Marketing</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 329</td>
<td>Survey in Business Law</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 336</td>
<td>Accounting Survey</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 337</td>
<td>Cost Accounting</td>
<td>4-0-4</td>
</tr>
<tr>
<td>I.M. 390</td>
<td>Survey of Statistics</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Curriculum in Industrial Management

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry OR</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Biol. 201-2-4</td>
<td>Introduction to Biology</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 101-2-5*</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science OR</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.L. **</td>
<td>Modern Language</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 101</td>
<td>Algebra</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 102</td>
<td>Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.Gr. 105</td>
<td>Graphic Presentation</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC ***</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-7-16 14-7-16 14-13-18

*Students are required to earn a minimum grade of "C" in both English 101 and 102.
**Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three
quarters of either M.L. or S.S. are required.
***ROTC is an optional requirement and those students not scheduling ROTC courses are required
to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC
may be applied toward the requirements for a degree.
Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng.</td>
<td>201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys.</td>
<td>211-12-13</td>
<td>Mechanics, Electricity, Heat,</td>
<td>4-0-4</td>
<td>4-0-4</td>
<td>4-0-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light and Sound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>201-2-3*</td>
<td>Economics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>235</td>
<td>Finite Mathematics OR</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>238</td>
<td>Finite Mathematics II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>215-16*</td>
<td>Accounting I, II</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>220*</td>
<td>Industrial Organization</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC</td>
<td>**</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**To receive credit towards the degree B.S. in I.M., a minimum grade of "C" must be earned in each of these courses, viz., I.M. 201, 202, 203, 215, 216, 220.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.M.</td>
<td>323-24</td>
<td>Statistics I, II</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>345-46</td>
<td>Cost Accounting and Control I, II</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>325-26</td>
<td>Business Law</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>352</td>
<td>Industrial Economic Analysis</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>320</td>
<td>Industrial Management Prin.</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>315</td>
<td>Public Speaking</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>310-11</td>
<td>Marketing I, II</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M.</td>
<td>338-39</td>
<td>Finance I, II</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy.</td>
<td>303</td>
<td>Introductory Psychology</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>391</td>
<td>Seminar</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.E.</td>
<td>416</td>
<td>Motion and Time Study</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>409</td>
<td>Analytical Methods in I.M., I</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>416</td>
<td>Management Applications of Data Processing</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC) 15-4-16 16-4-17 16-4-17

18-0-18 19-0-N 18-0-18
Senior Year*

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.M. 428-29</td>
<td>Industrial Relations</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M. 410</td>
<td>Analytical Methods in I.M., II</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 455</td>
<td>Marketing III</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 486</td>
<td>National Income and Fiscal Policy</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M. 418-19</td>
<td>Production Management I, II</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 422</td>
<td>Finance III</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Psy. 410</td>
<td>Social Psychology</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M. 420</td>
<td>Integrated Management Problems</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Electives **</td>
<td>Elective</td>
<td></td>
<td></td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Total | | 18-0-18 | 18-0-18 | 18-0-18 |

*Minimum grade average of "C" must be earned during the student's last three full-time quarters to qualify for graduation.

**At least (12) hours of electives, as approved by the School of Industrial Management and exclusive of advanced ROTC, must be taken outside the School.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

I.M. 201, 202, 203. Economic Principles and Problems
3-0-3. Prerequisite: Sophomore standing or permission of instructor.

This three course sequence begins with an examination of the scope and method of economics. It continues with a study of the theory of markets and distribution. It concludes with an examination of national income theory and international trade.

I.M. 204. Survey of Principles of Economics
3-0-3. Prerequisite: Sophomore standing. Not open to I.M. students

A survey and an introduction to economics. It includes an examination of the two major areas of economics: national income and employment theory, and the theory of markets, distribution, and the behavior of the firm.

Text: Ulmer, *Economics*.

I.M. 215, 216. Accounting I, II
3-0-3. Prerequisite: Sophomore standing.

This is a two-course sequence in the fundamentals of accounting. During the first quarter fundamental accounting concepts are introduced and their use in business decisions discussed. During the second quarter attention is given to various types of business organizations and the parallel effects on operations, taxes, and accounting procedures. These courses together are designed to emphasize the "tool aspect" of accounting for management.

Applications of accounting information to management decisions are stressed throughout the two-quarter sequence.

Text: Finney and Miller, *Principles of Accounting, Introductory*.

I.M. 220. Industrial Organization
3-0-3. Prerequisite: Sophomore standing.

Presents a fundamental understanding of the process, objectives and functional areas of business from the managerial viewpoint as well as the dynamic nature of business and the emerging tools and analytical approaches of modern business.

Text: Jucius and Terry, *Introduction to Business*.
I.M. 310, 311. Marketing I, II
3-0-3. Prerequisite: I.M. 203 or equivalent.
A critical examination of the activities involved in the movement of manufactured goods from the producer to the consumer. Basic functions of marketing and the institutions available for their performance are studied. Emphasis is placed on principles, policies, and trends relating to marketing efficiency.
Text: Beckman and Davidson, Marketing.

I.M. 312. Distribution Management
3-0-3. Prerequisites: I.M. 310, 311
An analysis is made of the functions and problems of the sales manager, particularly with reference to the characteristics of the sales organization and the selection, training, supervision and control of the personal selling force.
Text: To be selected.

I.M. 316. Finance Survey for Engineers
3-0-3. Prerequisite: Junior standing. Not open to I.M. undergraduates.
Designed to acquaint the student with the more popular types of business organizations, with special emphasis on the corporation, its organization, management and types of securities issued. Credit not given for both I.M. 316 and I.M. 338.
Text: Bonneville, Dewey and Kelly, Organizing and Financing Business.

I.M. 317. Industrial Marketing
3-0-3. Prerequisite: Junior standing. Not open to I.M. undergraduates.
A survey of marketing principles and policies, with emphasis on the functions that must be performed by manufacturers and marketing institutions to insure consumer satisfaction and profitable operation of the firm. Credit not given for both I.M. 317 and I.M. 310 or I.M. 311.
Text: Taylor and Shaw, Marketing.

I.M. 320. Industrial Management Principles
3-0-3. Prerequisite: I.M. 220.
A presentation of the evolving theory of management as a frame-work for the analysis of the interaction between the characteristics of humans, and the social-task environment created by complex industrial organizations and their objectives.

I.M. 322, 324. Statistics I, II
3-0-3. Prerequisite: Junior standing.
The first course deals with the collection, analysis and interpretation of quantitative data. Measures of central tendency, types of variation and index numbers are covered in detail.
The second course covers statistical inference, time series analysis and simple correlation as tools of control and forecasting in the fields of economics, business and industry.
Text: Freund and Williams, Modern Business Statistics.

I.M. 325, 326. Law I, II
3-0-3. Prerequisite: Junior Standing
The first course includes background of the law and legal procedures; a study of contracts, the problem of organizing a business; forms it may take and procedure of organization; financing the new business; acquiring the site and other problems involving property, both real and personal; agency and labor relations.
The second course deals with legal problems peculiar to particular forms of organization, distribution of goods, negotiable instruments, bailments and common carriers, insurance, taxes and business, competitive practices, patents and copyrights as business property, and bankruptcy.
Text: Dillavou, Business Law.

I.M. 329. Survey in Business Law
3-0-3. Prerequisite: Junior standing. Not open to I.M. undergraduates.
A study is made of those law cases which pertain strictly to legal questions arising out of engineering
operations. It is designed for students who are not able to take a more extended course in business law.

I.M. 336. Accounting Survey
3-0-3, Prerequisite: Junior standing. Not open to I.M. undergraduates.

This is a brief survey of the analysis and the recording on business transactions, the preparation of financial statements and their interpretations. Credit not given for both I.M. 336 and I.M. 215.

Text: Childs, *Accounting for Management Control.*

I.M. 337. Cost Accounting
4-0-4, Prerequisites: I.M. 336 and Junior standing. Not open to I.M. undergraduates.

A survey of the essentials of cost accounting. Emphasis is placed on the utilization of cost data and reports by management indicating management's control over industrial operations. Credit not given for both I.M. 337 and I.M. 345.

Text: Childs, *Accounting for Management Control.*

I.M. 338, 339. Finance I, II
3-0-3, Prerequisites: I.M. 203, 216.

This is a two-quarter study of the principles of corporation finance. It consists largely of lectures with brief illustrations of the following topics: forms of business organizations and conditions under which each might be used to the best advantage; corporate securities including stocks, bonds, mortgages, and notes; sources of capital and methods of financing; profits, reserves, surplus and dividend policies; expansion; refinancing and reorganization.

I.M. 343. Taxation
3-0-3, Prerequisite: I.M. 216.

This course deals with federal income taxes and is directed toward the management planning necessitated by various tax alternatives. The tax implications of business management are reviewed. Major emphasis is on the business income tax requirements, though some attention will be given to the personal incidence of income tax. Personal incidence is covered relative to tax applications in the partnership and proprietorship forms of business organization.

Text: Prentice-Hall Federal Tax Course.

I.M. 344. Cases in Management Control through Accounting Analysis
Prerequisites: I.M. 215 & 216 or 336 & 337 and I.M. 201, 202, and 203 or I.M. 204.

A case and problems course designed to stress the application of tool data to decisions in a management framework. Limitations as well as direct applicability of such Accounting type data will be studied.

I.M. 345, 346. Cost Analysis and Control, I, II
3-0-3, Prerequisite: I.M. 216.

This is a two-course sequence in cost accounting fundamentals and in the management application of cost data. The first quarter is concerned with the mechanics of cost determinations and the application of such data to budgetary applications. The second quarter includes such topics as: quantitative elements in decision-making, capital expenditure analysis, profit/volume analysis, product pricing. During the two-quarter sequence major emphasis is placed on management use of the cost accounting tool, more than on the mechanics of cost determination.

Text: Crowningshield, *Cost Accounting Principles and Managerial Applications.*

I.M. 347. Techniques of Industrial Communications
3-0-3, Prerequisite: Junior standing.

A study of the basic techniques of communication as employed in industry by management, by em-
employees and by the public. Internal and external functions of public relations are covered with emphasis on the application of practical media in achieving definite results.

Text: Cutlip and Center, Effective Public Relations.

I.M. 349. Economics of Industrial Demand 3-0-3. Prerequisite: Junior standing.

This is a course covering the principles, methods and procedures of purchasing goods for industrial use. Emphasis is placed on procurement as a management function.

Text: Lewis, Procurement.

An advanced course in microeconomics, concerned with the scope and methods of economics, production and distribution theory, and the structure of markets, which emphasizes managerial applications of economic theory.

Text: Stigler, Price Theory.

A survey of discrete statistics with special emphasis on economic and business applications. Includes sampling, the normal distribution, hypothesis testing, linear regressions and correlation, time series and index numbers.

I.M. 391. Seminar 1-0-0. Prerequisite: Junior Standing.

This course consists primarily of lectures, and question and answer periods with prominent business, government, labor and educational leaders concerned with aiding the student in making career decisions and preparing him for adjustment to the industrial world. Final grade assigned will be either "satisfactory" or "failure."

Credit not given for both I.M. 408 and I.M. 318.

This course concentrates on typical problems encountered by the personnel department in an industrial organization, such as selection, training and placement of workers, merit rating and promotion, and the development of sound personnel management techniques.

Text: Pigors and Myers, Personnel Administration.

This sequence of courses is an introduction to analytical models and their use in industrial management. The first quarter is concerned with decision theory and allocation methods. Included are discussions of the nature of decisions, objectives and utility, logic, goals, and the fundamental theories of decision making. Among the allocation methods discussed are linear programming; simplex and transportation algorithms. In the second quarter game theory and its application to management problems, queuing or waiting line theories, and inventory theory are covered. The emphasis in both courses is on the solution of managerial problems rather than the construction of mathematical models.

I.M. 415. Automation and Management 3-0-3. Prerequisite: Senior standing.

A survey of automatic and electronic processes, together with recent technological changes, and their impact on management standards, personnel displacement, private investment, productivity, and industrial organization.

I.M. 416. Management Applications of Data Processing
2-3-3. Prerequisite: I.E. 416, or concurrently.

The aim of the course will be to study and show how mechanical and electronic devices are meeting management's need for planning and control data. The first part of the course will consider the principles of data processing; the second part will deal with basic applications to management problems.

I.M. 418. Production Management, I
3-0-3. Prerequisites: I.M. 320, 352.

The objective of this course is to develop student understanding of the organizational, economic, and physical framework within which the manufacturing division functions and contributes to overall objectives. Students are expected to develop a philosophy of production management.

Text: Bowman and Fetter, Analysis for Production Management.

I.M. 419. Production Management, II
3-0-3. Prerequisites: I.M. 410, 418.

A course requiring students to apply quantitative and non-quantitative analytical methods to production management case problems.

Text: Bowman and Fetter, Analysis for Production Management.

I.M. 420. Integrated Management Problems
3-0-3. Prerequisites: I.M. 418, 422 and 455.

Comprehensive cases are used to integrate knowledge about the functional areas of industrial management—production, finance, marketing, industrial relations, human relations and administration.

Text: Selected cases.

I.M. 422. Finance III
3-0-3. Prerequisite: I.M. 339.

Analytical techniques of financial management are developed and then applied to case studies. Among the topics covered are flow of funds analysis, present value techniques, cost of capital, and capital budgeting analysis.

I.M. 425, 426. Law I, II
Re-designated I.M. 325, 326. Credit not given for both sequences.

I.M. 428, 429. Industrial Relations
3-0-3. Prerequisite: Junior standing.

The first course makes an examination of the trade-union as an economic institution and of issues in management-union relations.

The second course deals with the economics of the labor market, including analysis of labor mobility, unemployment, wage determination, and theories of wages.

Texts: Reynolds, Labor Economics and Labor Relations; Gitlow, Labor and Industrial Society.

I.M. 430. Management Decision Laboratory
0-3-1. Prerequisite: Senior standing.

This course gives statements practice in making certain management decisions. Use is made of computers and simulated operations of manufacturing firms in a competitive market.

I.M. 432. Intermediate Economic Analysis
Re-designated I.M. 352. Credit not given for both I.M. 432 and I.M. 352.

I.M. 443. Investments
3-0-3. Prerequisite: I.M. 339 or I.M. 316, or permission of the instructor.

A study of the sources of financial information and its interpretation, the operation of stock exchanges, over-the-counter markets, and methods of underwriting. A study is also made of the various types of securities available for investment and tests to determine their investment quality.

Text: Jordan and Dougal, Investments.
I.M. 454. Labor Relations Problems
3-0-3. Prerequisite: I.M. 428.
An analysis of public policy in labor relations as reflected in legislative enactments, court decisions, and the common law. Emphasis will be given to management-labor problems arising out of strikes, labor injunctions, picketing, union security, contract negotiation, and other matters as affected by and related to recent laws such as the Norris-LaGuardia Act, Wage-Hour Act, Wagner Act, Taft-Hartley Act and Landrum-Griffin Act.

I.M. 455. Marketing III
3-0-3. Prerequisite: I.M. 311.
This course consists of cases involving the management of marketing activities. Careful consideration is given to the functions of planning, organizing, and controlling the essential elements of the overall marketing program of the firm.

I.M. 456. Marketing Management Problems
3-0-3. Prerequisite: I.M. 455 or permission of instructor.
This is an advanced problems course in the field of marketing management.

I.M. 458. Contemporary Unionism and Collective Bargaining
3-0-3. Prerequisite: I.M. 428.
This is a study of the organization and structure of unions in the United States and includes such subjects as union policies and aims, the theory of collective bargaining, collective bargaining procedures and techniques, and analysis of union-management contracts with attention given to typical clauses such as provisions for grievance machinery, technological changes, lay-offs, and union security.
Text: Beal and Wickersham, Collective Bargaining.

I.M. 459. Industrial Relations in the Piedmont Region
3-0-3. Prerequisite: Senior standing.
Special attention is given to industrial relations in the Southeast, and its study will serve as an introduction to a method of regional industrial relations analysis.
Text: Gilman, Human Relations in the Industrial Southeast.

I.M. 465. Nonmarket Environment of the Firm
3-0-3. Prerequisite: Senior standing.
Analysis of the nature of and significance to management of the legal, social and political framework within which broad economic influences are generated, market transactions are conducted, and the firm is managed.
Text: Instructor's syllabus and selected readings.

I.M. 472. Management of Industrial Research and Development Programs
An analysis of the fundamental concepts underlying effective management of research and development programs within the industrial environment. Attention is directed to such problem areas as the role and integration of research and development in the industrial organization, project proposal and evaluation, staffing and organizing the project team, project administration, and transition of projects from development to production and marketing.

I.M. 474. Industrial Development in Latin America
3-0-3. Prerequisites: I.M. 203 or I.M. 204; knowledge of Spanish; and consent of the instructor.
A course designed to acquaint the student with the latest theories and principles of industrial development in developing countries. The student will prepare an analysis of the problems and opportunities in industrial development in a specific Latin American country.
Text: Bryce, Industrial Development.
I.M. 486. National Income and Fiscal Policy
3-0-3. Prerequisites: I.M. 201, 202, and 203.
An intermediate macroeconomic theory course designed to develop the student's understanding of the national economic environment within which the firm operates. Principal topics are: analysis of the national income model and its components, and contemporary fiscal and monetary theory.

I.M. 487. Comparative Economic Systems
3-0-3. Prerequisite: I.M. 203 or equivalent.
A critical study is made of the methods by which various economic systems meet common fundamental problems in production, exchange, distribution, consumption, and capital formation. Comparative analyses of the major theories underlying these methods are undertaken, and their efficacy considered in the light of modern technology.

I.M. 488. Economics of Industrial Competition
3-0-3. Prerequisite: Senior standing.
A study of the competitive structure of industry in terms of theoretical models and contemporary business organization, alternative public policy goals, and a critical review and appraisal of antitrust legislation.

I.M. 490. Contemporary Economic Theory
3-0-3. Prerequisite: I.M. 203 or equivalent.
This is a course in national economic policy. An analysis will be made of such problems as full employment, inflation, the relation of government to business, the farm situation, international trade conditions and the underdeveloped countries.

I.M. 491. Seminar
Re-designated I.M. 391. Credit not given for both I.M. 391 and I.M. 491.

I.M. 495. Economics of Industrial Location
3-0-3. Prerequisites: I.M. 203 and I.M. 311 or equivalent.
A survey of economic factors influencing industrial location. General consideration will be given to locational patterns, processes of economic growth, and the public policy aspects of managerial decisions. More particular attention will be directed to the impact of transfer and processing costs, land use competition and technological change on problems of plant location.
Text: Selected readings.

I.M. 496, 497, 498. Special Topics in Industrial Management
2-0-2. Prerequisite: Consent of the instructor.
A course designed to permit groups of students to pursue a common, specialized interest in an area of industrial management which is not extensively treated in other offerings of the School, or to engage in minor research or special problems involving analytical or experimental investigations.
Text: Selected readings.

I.M. 499. Industrial Management Honors Seminar
3-0-3. Prerequisite: Last or next to last quarter seniors by invitation of the Faculty of the School of Industrial Management.
This course is designed to give a selected group of outstanding seniors in the School of Industrial Management an opportunity to research, analyze and discuss current management and economic problems with specialists in the various areas.
Text: Selected readings.
Graduate Courses Offered

The program leading to the degree of Master of Science in Industrial Management provides an opportunity for graduates from a broad range of rigorous undergraduate curricula to prepare themselves for general management or challenging staff responsibility. Up to thirty hours of selected undergraduate courses provide a foundation for the advanced phase of the program, which is based on the graduate courses listed below. These courses are described in detail in the Graduate Catalogue.

Applicants should have had at least a year of college math and a year of laboratory science as part of their undergraduate preparation, and an overall undergraduate average of B or better. (Students who are well qualified in other respects may be permitted to remove undergraduate math and science deficiencies during their first year of graduate work.) The Admission Test for Graduate Study in Business is required of all applicants including foreign students. Inquiries about the graduate program should be addressed to The Graduate Committee, School of Industrial Management.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.M. 618</td>
<td>The Law of Market</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 620</td>
<td>The Theory of Industrial Organization</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 622</td>
<td>Development of Management Thought</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 624</td>
<td>Economics of Production</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 626</td>
<td>Development of Economic Thought</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 630</td>
<td>Production Management</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 632</td>
<td>Manufacturing Management Problems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 635</td>
<td>Managerial Accounting</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 636</td>
<td>Problems in Accounting Control</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 649</td>
<td>Financial Management I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 650</td>
<td>Financial Management II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 653</td>
<td>Industry and Government</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 654</td>
<td>Personnel Administration</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 656</td>
<td>Administrative Practices in Human Relations</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 657</td>
<td>Marketing Management</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 658</td>
<td>Cases in Marketing Management</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 659</td>
<td>Marketing Research and Analysis</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 660</td>
<td>Economic Forecasting</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 667</td>
<td>Labor Problems</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 671</td>
<td>Labor and the Economy</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 673</td>
<td>Macroeconomic Analysis</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 674</td>
<td>Application of Statistical Methods to Management Decision-Making</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 680</td>
<td>Executive Development and Motivation</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 700</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>I.M. 701, 2, 3</td>
<td>Seminar</td>
<td>1-0-0</td>
</tr>
<tr>
<td>I.M. 704, 5, 6</td>
<td>Industrial Management Research</td>
<td>Credit to be arranged</td>
</tr>
</tbody>
</table>
School of Information Science
(Established in 1963)

General Information
Information Science is the field of academic study and professional practice concerned with the investigation of the properties, structure, and functions of information, and with all aspects of its control and use in society. A central focus of interest in the field at present is upon the exploration and development of new methods of information representation and structuring, and upon the design of systems for the effective organization, storage, retrieval, dissemination, and use of information in all subject fields and for a variety of purposes.

The School of Information Science was established as a graduate degree granting department of the Institute in September of 1963 with the support of the National Science Foundation. The objectives of the present master’s programs of the School are (1) to prepare students with undergraduate scientific and engineering backgrounds for professional practice and research in the field of Information Science, and (2) to lay the foundations for advanced study and research in this area on the doctoral level.

Students entering these programs may elect one of two primary areas of specialization. The first is designed to prepare students for careers as specialists in science information service and technical literature analysis in industrial and research laboratories, science libraries, and technical information centers. It stresses the fundamentals of literature analysis in science and engineering, the languages used in these fields, and advanced study in a particular science or engineering field appropriate to the student’s interest. The second area of specialization is for students interested primarily in information problems as an area of scientific study and research, and in the design and operation of information systems as a field of applied engineering. It stresses the theoretical aspects of Information Science and the technological problems in developing and operating systems for the storage, processing, retrieval, use, and management of information of all kinds.

At present four courses in the Information Science curriculum are open to undergraduate students in their junior and senior years. These courses, which are described below, may be taken with profit by students who are not necessarily planning to enter one of the graduate Information Science programs. A Special Bulletin of the School of Information Science is available for students interested in the courses and requirements of the graduate degree programs.

Courses of Instruction

Note: 3-0-3 means 3 hours class, 0 hours laboratory, 3 hours credit.

I.S. 401, 402. Languages for Science and Technology
3-0-3. Prerequisite: Senior standing or consent of instructor. A survey of the chief languages of the scientific and technical literature, emphasizing the orthography, phonology, basic grammatical structure, and technical and bibliographic vocabulary of German, French, Russian, other major Germanic, Romance, and Slavic languages, with
limited examination of other important languages, primarily Japanese and Chinese.

I.S. 404. Topics in Linguistics
3-0-3. Prerequisite: Senior standing or consent of instructor.
A general outline of morphology, syntax, and lexicology, with emphasis on linguistic analysis of natural-language text as applied in or related to information processing.

I.S. 413, 414. Scientific and Engineering Literature
2-0-2, 0-3-1. Prerequisite: Senior standing or consent of instructor; to be taken concurrently.
Study of the reference and bibliographic sources of scientific and engineering literature, stressing the strategies of searching. Major search project in student's field of study.

I.S. 423. Mathematical Techniques for Information Storage and Retrieval
3-0-3. Prerequisite: Math. 309 or equivalent.
Survey of selected mathematical techniques from areas such as Boolean algebra, matrix theory, theory of graphs and networks, statistics, vectors, lattices, projective geometry, and probability, used in the representation of documents, relevancy of information, file organization, file search strategy, and other elements of information storage and retrieval systems.

2-2-3. Prerequisite: Senior standing or consent of instructor.
Logical organization of the computer. Functional units (memory, arithmetic units, control registers, etc.), machine instructions, and combined use of these elements to produce effective programs. Recent advances in computer organization. Laboratory.

I.S. 455. Non-Numeric Information Processing
2-2-3. Prerequisite: I.S. 451; I.S. 404
Introduction to computer-oriented techniques currently in use for modeling, simulating, and mechanizing non-numeric information processes. Discussion of structures for representing information; algorithms and heuristics for describing information processes; languages for facilitating process mechanization; desirable computer characteristics. Detailed study of selected applications. Laboratory.

Graduate Courses Offered
The School welcomes inquiries concerning the graduate programs in Information Science, and applications for admission will be considered from qualified students with undergraduate backgrounds in any of the major scientific and engineering fields. The courses of study for each student are planned individually in consultation with the Director of the School.

I.S. 607 Communication and Control of Information 3-0-3
I.S. 611 Information Representation and Structures 3-0-3
I.S. 613 Information Sources and Search Techniques 3-0-3
I.S. 614 Special Problems in Literature Analysis 3-0-3
I.S. 617 Methods of Information Control (1) 3-0-3
I.S. 618 Methods of Information Control (II) 3-0-3
I.S. 619 Theory of Classification and Indexing 3-0-3
I.S. 632 Equipment of Information Systems 2-2-3
I.S. 636 Information System Design (I) 3-0-3
I.S. 653 Computer Techniques for Information Storage and Retrieval 2-2-3
I.S. 673 Organization and Management of Information Systems 3-0-3
I.S. 700 Master's Thesis
I.S. 701, 2, 3 Seminar 1-0-0
I.S. 704, 5, 6 Special Problems in Information Science Hours and Credit to be arranged
School of Mathematics
(Established in 1952)

Director—Bertram M. Drucker; **Associate Director**—George C. Caldwell;
Professor (Retired)—Clarke W. Hook; **Professors**—Alson H. Bailey, John C.
Currie, Ralph A. Hefner, Eric R. Immel, Robert H. Kasriel, Rudolf Kurth,
Marvin B. Sledd, Austin L. Starrett, James W. Walker; **Associate Professors**—
Donald M. Friedlen, Chandler H. Holton, Roger D. Johnson, William J. Komer-
mer, John P. Line, William A. Martin, John D. Neff, James M. Osborn,
Daniel A. Robinson, William R. Smythe, Jr., Frank W. Stallard, C. Robert
Swenson, Joe W. Wray; **Assistant Professors**—Julio R. Bastida, James C.
Brooks, Arthur E. Fulton, Jamie J. Goode, John M. Gwynn, Jr., Dar-Veig Ho,
John W. Jayne, M. Zuhair Nashed, E. Juanita Pitts, John R. Vail, Howell K.
Wilson, Guy A. York; **Instructors**—Cloyd S. Goodrum, Jr., Alan G. Law,
Vaughn W. Morrison, Stanley J. Wertheimer; **Lecturers**—Sterling P. Lenoir,
Charles P. Reed, Jr.; **Secretaries**—Mrs. Eleanor R. Shearouse, Mrs. Frances
W. Fowler.

General Information

The School of Mathematics has two functions: (1) to train students in basic
mathematics and in its use as an effective tool in engineering and the natural
sciences; (2) to provide more advanced mathematical training for those who
plan to make mathematics their profession.

In addition to the usual undergraduate service courses, programs of study
are offered which lead to the degrees of

- Bachelor of Science in Applied Mathematics
- Master of Science in Applied Mathematics
- Doctor of Philosophy.

Numerous advanced undergraduate and graduate courses are offered which
may be used as electives by students in the schools of engineering and the
natural sciences. Close cooperation is maintained with the staff of the Rich
Electronic Computer Center, which is located on the campus.

Students of especial ability are invited to participate in an Honors Program
which extends through a large part of the freshman and sophomore years.

The requirements for the B.S. in Applied Mathematics are listed on the
following pages; the requirements for the graduate degrees may be found in the
Graduate Bulletin.

Departmental Degree Requirements

The following institutional regulation concerning degrees is quoted from the
publication *Student Rules and Regulations* as amended by the Faculty May 31,
1960:

"To be a candidate for a degree, a student must have passed all courses re-
quired for the degree, must have a scholastic average for his entire academic
program of at least 2.0 and must have done creditable work in his depart-
mental courses so as to merit the recommendation for the degree by the director of his school and by the dean of his college. (X, A2, p. 10)."

The School of Mathematics sets forth the following regulations as its interpretation of "creditable work in ... departmental courses."

1. A grade of C or better must be made on each mathematics course required in the curriculum.

2. An academic average of 2.3 or better must be made on all mathematics courses on the 400 level specified by number in the curriculum.

3. In cases where these rules appear to work unreasonably or unjustly, exceptions may be made by the Director or Associate Director of the School of Mathematics.

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E. Gr. 113</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytic Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L.</td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 238</td>
<td>Finite Mathematics II</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 305-6</td>
<td>Differential Equations</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Electives (Note 1)</td>
<td></td>
<td></td>
<td>0-0-3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 238</td>
<td>Finite Mathematics II</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 305-6</td>
<td>Differential Equations</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Electives (Note 1)</td>
<td></td>
<td></td>
<td>0-0-3</td>
</tr>
</tbody>
</table>

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit. **The School of Mathematics recommends that French, German or Russian be taken in the freshman year. Should this not be done, French, German or Russian must be elected in the junior year.**

ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Courses of Instruction

Math. 100. College Algebra and Trigonometry
5-0-5. Prerequisite: Entrance algebra and trigonometry.
Real and complex numbers; absolute values and inequalities; the function concept; trigonometric functions and equations. Text: Fisher and Ziebur, Integrated Algebra and Trigonometry.

Math. 101. College Algebra
5-0-5. Prerequisite: Entrance algebra.
The real number system, the concept of function, theory of equations, systems of equations, permutations, combinations, the binomial theorem, sequences, mathematical induction, progressions. Text: Fisher and Ziebur, Integrated Algebra and Trigonometry.

Math. 102. Trigonometry
5-0-5. Prerequisite: Math. 101.

Math. 104. Analytic Geometry and Calculus
5-0-5. Prerequisite: Math. 100 or 102.
Elements of analytic geometry, including the conic sections. Introductory calculus with emphasis on the concepts of limit, continuity, and derivative. Differentiation of algebraic and trigonometric functions, simple applications. Text: Fisher and Ziebur, Calculus and Analytic Geometry.
Math. 201. Calculus
5-0-5. Prerequisite: Math. 104.

The antiderivative and the definite integral. Area, volume, work. Differentiation and integration of transcendental functions. Techniques of integration.

5-0-5. Prerequisite: Math. 201.

Polar coordinates, vectors, solid analytic geometry, linear systems and matrices.

Math. 203. Calculus

Partial differentiation, multiple integrals, improper integrals, sequences, infinite series.

Math. 205. Elementary Statistical Analysis
3-0-3. Prerequisite: Entrance Algebra.

Construction of consistent probability measures for finite sequences of statistical experiments; independent trials; random variables, their means, variances and distributions; sampling; estimation and testing of hypotheses; nonparametric tests of association. Entire development restricted to finite sample spaces.

Text: Kurz, *Basic Statistics*.

Math. 206. Elementary Statistical Analysis
3-0-3. Prerequisites: Math. 205; Math. 201 or concurrently.

Motivation and definition of random variables with continuous distributions; normal distribution and the Central Limit Theorem; nonparametric tests; estimation and testing hypotheses in normal distributions; simple regression and correlation.

Text: Kurz, *Basic Statistics*.

Math. 235. Finite Mathematics I
3-0-3. Prerequisite: Math. 104.

Elements of logic; connectives, truth tables, trees. Sets, subsets, operations involving sets. Elementary probability. Vectors, matrices, systems of linear equations. Linear programming. Credit will not be allowed for both Math. 235 and Math. 238.

Text: Kemeny, Snell, and Thompson, *Introduction to Finite Mathematics*.

Math. 238. Finite Mathematics II
3-0-3. Prerequisite: Math. 201.

A course similar to Math. 235 but somewhat more advanced. Elementary mathematical logic, set theory; elementary probability. Credit will not be allowed for both Math. 235 and Math. 238.

Text: Kemeny, Mirkil, Snell, and Thompson, *Finite Mathematical Structures*.

Math. 304. Differential Equations
5-0-5. Prerequisite: Math. 203.

Math. 305. Differential Equations
3-0-3. Prerequisite: Math. 203 or concurrently.

A course centered around the linear equation with applications selected from physics, chemistry, and mechanics.

Math. 306. Differential Equations
3-0-3. Prerequisite: Math. 305.

Systems of linear differential equations, linear differential equations with variable coefficients, power-series solutions, the method of Frobenius.

Math. 309. Introduction to Higher Algebra
Vectors, vector spaces, matrices, systems of linear equations, transformations of coordinates in a vector space, quadratic forms, diagonalization, characteristic values.
Text: To be selected.

Math. 400. Special Topics
3-0-3. For example Math. 400 (a) could be Optimization Techniques, a companion course to Math. 407.
The purpose here is to enable the School of Mathematics to comply with requests for courses in selected topics. Given on demand.

Math. 401. Introduction to Analysis
3-0-3. Prerequisite: Math. 304 or 305 or concurrently.
The first of four courses on fundamental concepts of analysis. Real and complex number systems, sets, limits, continuity, differentiation of functions of one real variable.
Text: Apostol, Mathematical Analysis.

Math. 402. Introduction to Analysis
3-0-3. Prerequisite: Math. 401.
A continuation of Math. 401. Partial differentiation, functions of bounded variation, rectifiability, connectedness, the Riemann-Stieltjes integral.

Math. 403. Introduction to Analysis
3-0-3. Prerequisite: Math 402.
Infinite series, sequences of functions, improper integrals.

Math. 404. Introduction to Analysis
3-0-3. Prerequisite: Math. 402.
The fourth course of the sequence on fundamental concepts. Jacobians, implicit function theorem, line integrals, multiple integrals, vector analysis.

Math. 405. Modern Algebra
3-0-3. Prerequisite: Math. 309.
A survey of modern algebraic systems including groups, rings, fields, and finite-dimensional vector spaces.
Text: Herstein, Topics in Algebra.

Math. 407. Linear Programming
3-0-3. Prerequisite: Math. 202 or concurrently.
Text: To be selected.

Math. 409. Fundamental Concepts in Mathematics
3-0-3. Prerequisite: Differential equations or consent of instructor.
A course designed for mathematics majors and beginning graduate students. Unifies and extends certain basic notions of college mathematics.
Text: To be selected.

Math. 411. Advanced Engineering Mathematics
3-0-3. Prerequisite: Math. 304 or 305.
The Laplace transformation and its properties. Elementary applications to physical systems involving the solution of ordinary and partial differential equations.
Text: Churchill, Operational Mathematics.

Math. 412. Advanced Engineering Mathematics
3-0-3. Prerequisite: Math. 304 or 306 or consent of instructor.
Fourier series, Bessel functions, partial differential equations.

Math. 413. Advanced Engineering Mathematics
3-0-3. Prerequisite: Math. 394 or 305 or consent of instructor.
Topics from complex function
theory including conformal mapping and contour integration.
Text: Churchill, *Complex Variables and Applications*.

Math. 414. Modern Algebra
3-0-3. Prerequisite: Math. 405.
Text: Herstein, *Topics in Algebra*.

Math. 415. Introduction to Probability
3-0-3. Prerequisite: Math. 203 or concurrently.
An introduction to probability theory and its applications; discrete and non-discrete probability distributions; laws of large numbers.

Math. 416. Mathematical Statistics
3-0-3. Prerequisite: Math. 415.
A general study of discrete, continuous, and limiting distributions with emphasis on the normal distribution and the central limit theorem; exact sampling distributions, selected topics in estimation and testing hypotheses.

Math. 417. Mathematical Statistics
3-0-3. Prerequisite: Math. 416.
A continuation (from Math. 416) of estimation and of testing hypotheses; regression theory, design of experiments, analysis of variance, distribution-free methods.

Math. 418. Probability with Applications
3-0-3. Prerequisite: Math. 203.
an introduction to random processes with the necessary preliminary study of discrete sample spaces, combinatorial analysis, and basic laws of probability.

Math. 419. Probability with Applications
3-0-3. Prerequisites: Math. 418; Math. 309 or concurrently.

Math. 420. Vector Analysis
3-0-3. Prerequisite: Math. 304 or 306 or consent of instructor.
Vector algebra and applications to force diagrams; vector calculus, divergence, curl, and their role in potential theory. Line integrals, Gauss' theorem, Stokes' theorem, Green's theorem.
Text: Stein, *An Introduction to Vector Analysis*.

3-0-3. Prerequisite: Math. 203.
Organization and characteristics of digital computers; development of algorithms for elementary numerical methods; natural language and problem oriented language programming for machines currently available at the Rich Electronic Computer Center; the digital computer as a tool for experimental analysis.
Text: To be selected.

Math. 426. Computer Programming and Coding
3-0-3. Prerequisites: Math. 425, 443; Math. 444 or concurrently or consent of instructor.
Application of the digital computing equipment currently available at the Rich Electronic Computer Center to implement and investigate
methods studied in numerical analysis.
Text: To be selected.

Math. 427. Seminar
2-0-2. Prerequisites: Math. 309, 402, and either 306 or 304.
Study and discussion intended to enhance investigative independence and expository skill. Content varying from year to year, usually beginning with solution of a series of related problems.

Math. 428. Seminar
2-0-2. Prerequisite: Math. 427.
A continuation of Math. 427 with greater emphasis on individual study. Oral and written presentation of results.

Math. 429. Seminar
2-0-2. Prerequisite: Math. 428.
Individual investigations of problems of moderate difficulty with a suitable account of results.

3-0-3. Prerequisite: Math. 203.
An elementary tensorial treatment of various geometric and mechanical concepts needed in the study of hydrodynamics, elasticity, and plasticity.

Math. 431. Introductory Topology
3-0-3. Prerequisite: Math. 401 or consent of instructor.
A course to provide background for the use of topological methods in analysis. Topological spaces, continuous transformations, metric spaces.
Text: Baum, Elements of Point Set Topology.

Math. 434. Differential Geometry
3-0-3. Prerequisite: Math. 203.
The theory of curves and surfaces, including the first and second fundamental forms of a surface and topics related to them.
Text: To be selected.

Math. 438. Mathematical Logic
3-0-3. Prerequisite: Math. 203 or consent of instructor.
An introductory course in the basic topics of set theory, the statement calculus, the restricted predicate calculus. Additional topics considered to the extent that time permits include the relationship of logic to the foundations of mathematics, recursive functions (Turing machines), formal languages, extended predicate calculus, decision problems.

Math. 441. Theory of Groups
3-0-3. Prerequisite: Math. 309.
An introductory course in group theory suitable for students of mathematics, chemistry, and physics.
Text: Barnes, Introduction to Abstract Algebra.

Math. 443. Numerical Analysis I
3-0-3. Prerequisite: Math. 203.
Numerical solutions of systems of linear and nonlinear equations; interpolation and "best" approximations in the least square and uniform norms.
Text: To be selected.

Math. 444. Numerical Analysis II
3-0-3. Prerequisites: Math. 304 or 306; Math. 443 or consent of instructor.
Numerical integration, operator calculus, difference equations, and numerical approximation of solutions of ordinary differential equations.
Text: Henrici, Elements of Numerical Analysis.

Math. 445. Numerical Analysis III
3-0-3. Prerequisite: Math. 444 or consent of instructor.
Numerical approximation of solutions of integral equations and partial differential equations; eigenvalue problems; selected topics of current interest.
Text: To be selected.
Math. 446. Introduction to Game Theory
3-0-3. Prerequisites: Math. 235 or Math. 309 or Math. 407 or consent of instructor.

An introduction to game theory with emphasis on zero-sum two-person games. Military, economic, and recreational illustrations. Discussion of connections with linear programming and decision functions.
Text: Dresher, Games of Strategy.

Math. 491. Topics from Advanced Calculus
3-0-3. Prerequisite: Math. 203.
A course designed to furnish a broader foundation in analysis for students in the engineering curricula. Jacobians and the implicit function theorems, Riemann-Stieltjes integral, uniform continuity, theorems of Green, Stokes, and Gauss, uniform convergence of infinite series and improper integrals.
Text: Widder, Advanced Calculus.

Graduate Courses Offered

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Math. 600 Special Topics .. 3-0-3
Math. 601, 2, 3 Methods of Applied Mathematics 3-0-3
Math. 604, 5, 6 Modern Abstract Algebra I, II, III 3-0-3
Math. 607, 8, 9 Ordinary Differential Equations 3-0-3
Math. 618, 19, 20 Mathematical Theory of Elasticity 3-0-3
Math. 627, 8 Theoretical Hydrodynamics I, II 3-0-3
Math. 631, 2, 3 Functions of a Real Variable 3-0-3
Math. 634, 5, 6 Functions of a Complex Variable 3-0-3
Math. 637, 8, 9 Partial Differential Equations 3-0-3
Math. 641, 2, 3 Mathematical Statistics 3-0-3
Math. 644, 5, 6 Functional Analysis I, II, III 3-0-3
Math. 651, 2, 3 General Topology 3-0-3
Math. 654, 5, 6 Topological Dynamics 3-0-3
Math. 661, 2, 3 Algebraic Topology 3-0-3
Math. 691 Calculus of Variations 3-0-3
Math. 692 Integral Transforms ... 3-0-3
Math. 693 Integral Equations .. 3-0-3
Math. 694 Special Functions of Higher Mathematics 3-0-3
Math. 695 Laplace Transforms ... 3-0-3
Math. 696 Tensor Analysis ... 3-0-3
Math. 697 Field Theory with Applications 3-0-3
Math. 700 Master's Thesis .. 3-0-3
Math. 701, 2, 3 Seminar ... 1-0-0
Math. 704, 5, 6 Special Topics .. Credit to be arranged
Math. 707, 8, 9 Advanced Problems in Ordinary Differential Equations .. 3-0-3
Math. 712, 13, 14 Methods of Applied Mathematics 3-0-3
Math. 715, 16, 17 Advanced Topics in Algebra 3-0-3
Math. 731, 2, 3 Advanced Topics in Real Analysis 3-0-3
Math. 734, 5, 6 Advanced Problems in Complex Variables 3-0-3
Math. 741, 2, 3 Studies in Advanced Probability and Statistics 3-0-3
Math. 744, 5, 6 Advanced Topics in Numerical Analysis 3-0-3
Math. 751, 2, 3 Advanced Topics in Topology 3-0-3
Math. 800 Doctor's Thesis ...

For requirements for the graduate degrees in Mathematics, consult the Graduate Bulletin.
School of Mechanical Engineering

(Established in 1888)

Director—Kenneth G. Picha; Assistant Director—Samuel C. Barnett; Professor and Director Emeritus—Homer S. Weber; Regents Professors—Mario J. Goglia, *Joseph P. Vidosic; Professor Emeritus—A. Dinsmore Holland; Professors—Walter O. Carlson, Charles W. Gorton, William A. Hinton, Thomas W. Jackson, Alexander W. Luce, Richard A. Trotter; Visiting Professors—F. R. E. Crossley, Takashi Nakada; Associate Professors—Pandeli Durbetaki, Horace O. Foster, Ottis M. Harrelson, Eugene Harrison, A. Louis Holliman, *John H. Murphy, J. Edward Sunderland; Visiting Associate Professor—Geoffrey Boothroyd; Assistant Professors—John A. Bailey, Bobby F. Barfield, Richard C. Birkebak, Clifford J. Cremers, Gerald P. Francis, Harold L. Johnson, Phillip G. Sexton, William S. Shepard, Thomas F. Talbot, Lawrence J. Ybarondo; Lecturers—Raymond G. Grim, Brian Latto, James E. Rhodes; Instructor—Bobby L. Cline; Lead Technician—John W. Davis; Principal Laboratory Mechanics—Louis A. Cavalli, Joseph G. Doyal; Laboratory Mechanics—Clifford R. Bannister, Robert J. Collins, David W. Kiebel; Principal Secretary—Marjorie C. Wright; Senior Secretary—Mrs. Lucille F. Whitt; Secretary—Mrs. Ruth A. Shaw; Clerk—Mrs. Elsie L. Campbell.

General Information

Mechanical Engineering embraces the science and art of the generation, transmission, and utilization of heat and mechanical energy, and the design as well as the production of tools and machines and their products. Research, design, production, operation, administration, and economics are functional aspects of this branch of professional engineering.

The course of study is not designed to cover the entire field of Mechanical Engineering, but to impress basic principles upon the student and to assist him to assimilate new ideas and to draw correct conclusions from given facts.

Emphasis, in the freshman and sophomore years, is placed on mathematics, chemistry, and physics and, in the junior and senior years, on the strength and the metallurgy of materials, applied mechanics, thermodynamics, heat transfer and fluid mechanics, and the application of those fundamental subjects to the diverse problems of mechanical engineering.

Satisfactory completion of the curriculum leads to the degree, Bachelor of Mechanical Engineering.

*Leave of Absence
Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytic Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. *</td>
<td>Modern Language OR S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-18 14-13-18 14-13-18

*Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish.

Three quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.E. 207-8</td>
<td>Engineering Materials and Processes</td>
<td>2-3-3</td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Mech. 305</td>
<td>Statics</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 15-10-18 16-7-18 15-10-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 325</td>
<td>Electric Circuits and Fields</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 326</td>
<td>Elementary Electronics</td>
<td></td>
<td>2-3-3</td>
<td></td>
</tr>
<tr>
<td>E.E. 327</td>
<td>Electric Power Conversion</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>M.E. 309</td>
<td>Metallurgy and Heat Treating</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. 310-11</td>
<td>Fluid Mechanics</td>
<td></td>
<td>3-0-3</td>
<td>3-3-4</td>
</tr>
<tr>
<td>M.E. 315</td>
<td>Heat Transfer</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 322-3-4</td>
<td>Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 350</td>
<td>Instruments Laboratory</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Mech. 308</td>
<td>Dynamics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engr.Gr. 304</td>
<td>Graphic Statics I</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. 334, 337</td>
<td>Mechanics of Materials</td>
<td>5-0-5</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>*Basic Science, Elective</td>
<td></td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Humanities</td>
<td></td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals 15-9-18 16-6-18 17-619

*The Basic Science Elective will be selected from Chemistry, Mathematics or Physics. The Mathematics or Physics course must be numbered 300, or above.

**Humanities elective to be selected from list on page 34.
Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 328</td>
<td>Electronic Control</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. Electives</td>
<td></td>
<td>3-0-3</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>M.E. 410</td>
<td>Materials Engineering</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. 415</td>
<td>Heat Transfer</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E. 467-81-82</td>
<td>Machine Design</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>M.E. 491</td>
<td>Seminar</td>
<td></td>
<td>1-0-1</td>
<td></td>
</tr>
<tr>
<td>Mech. 421</td>
<td>Mechanical Vibrations</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Group **Electives</td>
<td></td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Group **Elective</td>
<td></td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 315 or ROTC</td>
<td>Public Speaking or ROTC</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 320 or ROTC</td>
<td>Technical English or ROTC</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or ROTC</td>
<td></td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 17-9-20 16-6-18 15-6-17

- M.E. Electives are to be chosen from the following engineering analysis, design and systems courses: M.E. 420, 421, 422, 425, 428, 431, 432, 439, and 443 and at least two of them shall be selected from M.E. 420, 421, and 422.

- If Group Elective courses are chosen in the field of Mechanical Engineering, they will be selected from the following: M.E. 403, 420, 421, 422, 425, 426, 427, 428, 429, 431, 432, 439, 443, 445, 447, and 480.

Three courses in science or technical courses in another field of engineering may be selected to fulfill the Group Elective requirement. A student who wishes to do this must submit a letter to the School of Mechanical Engineering, when preregistering for his first quarter senior year, outlining his program and listing three electives which he wishes to take. These courses should lead to some goal, selected by the student, and must be approved by the departmental schedule advisor, subject to final approval by the Director of the School of Mechanical Engineering.

Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

M.E. 207. Engineering Materials and Processes

2-3-3. Prerequisites: Chem. 103 and Phys. 207 or concurrently.

The atomic, unit cell and microscopic principles of metal structures are introduced. The technology of casting, forming and joining is also studied. Laboratory problems and metallurgical investigations complete the work.

Text: Burton, Applied Metallurgy for Engineers.

M.E. 208. Engineering Materials and Processes

Machine tools are analyzed. The theory and metallurgy of cutting are studied. Tool geometry, cutting fluids technology, thermal problems and surface finish are considered. Experiments include machinability, cutting dynamometry and metrology problems.

Text: Vidosic, Metal Machining and Forming Technology.

M.E. 309. Metallurgy and Heat Treatment

2-3-3. Prerequisite: M.E. 207.

An expanded study of the elements of material science. Principles of physical metallurgy, metallography and strengthening mechanisms are studied and some experiments are performed.

Text: Guy, Elements of Physical Metallurgy.

M.E. 310. Fluid Mechanics

3-0-3. Prerequisites: M.E. 323 or parallel.

An introduction to the study of fluid mechanics is presented, including the following topics: statics, kinematics, dynamics, energy and momentum relations for steady flow.

Text: To be selected.
M.E. 311. Fluid Mechanics
3-3-4. Prerequisites: M.E. 324 or parallel, Mech. 303 or parallel, M.E. 310 and M.E. 350.
A continuation of M.E. 310 with a presentation of the following topics: dimensional analysis and similarity, incompressible flow in closed conduits, compressibility phenomena, and drag forces.
Text: To be selected.

M.E. 315. Heat Transfer
3-0-3. Prerequisites: M.E. 323 and Math. 304 or 305.
Basic heat transfer mechanisms are introduced. Radiation, steady and unsteady conduction, and demonstrations of the pertinent principles are emphasized.
Text: To be selected.

M.E. 320. Thermodynamics
4-0-4. Prerequisites: Phys. 209 or parallel, Math. 203 or parallel.
The fundamentals of engineering thermodynamics are covered. The properties of fluids, energy equations, and practical applications are included.
Text: To be selected.

M.E. 322. Thermodynamics
3-0-3. Prerequisites: Phys. 209 or parallel; Math. 203 or parallel.
A study of the fundamental laws of engineering thermodynamics and the properties of systems. Processes in the perfect gas are considered.

M.E. 323. Thermodynamics
3-0-3. Prerequisites: M.E. 322, Phys. 209, Math. 203.
A continuation of M.E. 322 including semi-perfect gases, real gases, vapors, mixture of gases, and combustion.
Text: Van Wylen, *Thermodynamics*.

M.E. 324. Thermodynamics
3-0-3. Prerequisite: M.E. 323.
Applications of thermodynamics to engineering systems including vapor cycles, gas cycles, nozzles, turbines, compressors, and refrigeration.
Text: Van Wylen, *Thermodynamics*.

M.E. 334. Mechanical Equipment of Buildings
3-0-3. Prerequisite: Phys. 209 or 213.
Principles of water supply, plumbing and heating are studied. Design features of various types of heating systems are considered.

M.E. 335. Mechanical Equipment of Buildings
2-3-3. Prerequisite: M.E. 334.
Principles of air conditioning are studied. Application of heating and air conditioning principles to practical design problems is carried out during the laboratory period.

M.E. 350. Instruments Laboratory
0-3-1. Prerequisites: M.E. 320 or 322 or parallel.
Principles of measurement, accuracy of instruments and data analysis are discussed. Instrumentation employed includes: planimeters, pressure and temperature measuring devices, speed, torque and power elements.
Text: To be selected.

M.E. 353. Materials Laboratory
0-3-1. Prerequisites: Mech. 332 or Mech. 336, or parallel.
Basic methods of determining and evaluating phenomenological properties of engineering materials are ex-

M.E. 367. Machine Design

4-3-5. Prerequisites: Mech. 302 and 332.

Kinematics, stress analysis methods, machine elements, and fundamental machine design principles are studied. Text: Phelan, *Fundamentals of Mechanical Design*.

M.E. 403. Metal Cutting Principles

2-3-3. Prerequisites: M.E. 208, M.E. 309, Mech. 337.

Basic cutting processes are analyzed. Tool geometry, chip formation and machining economics are among the topics studied. Experiments dealing with the measurement of cutting forces, grinding ratios and tool life are conducted. Text: Notes.

M.E. 410. Materials Engineering

2-3-3. Prerequisite: M.E. 309.

The mechanical, thermal, electrical, chemical and irradiation behavior of engineering materials are studied from macrostructural considerations. Ceramics and plastics are also introduced as engineering materials. Text: Richards, *Engineering Materials Science*.

M.E. 415. Heat Transfer

3-0-3. Prerequisite: M.E. 311 and 315.

Laminar and turbulent convection, boiling, condensation, and demonstrations of the pertinent principles are emphasized. Design problems involving combinations of the basic heat transfer mechanisms are considered. Text: To be selected.

M.E. 420. Internal Combustion Engines

3-3-4. Prerequisites: M.E. 311, 315 and 324.

The mechanical construction, engine cycles, ignition, fuels, fuel feeds, combustion, vibration and balancing, and performance of internal combustion engines, with reference to aeronautical, automotive, and industrial use. The laboratory is devoted to experimental study of engines and their component parts. Text: Obert, *Internal Combustion Engines*.

M.E. 421. Heating, Ventilating and Air Conditioning

3-3-4. Prerequisites: M.E. 324, M.E. 415 or parallel.

The theory of heating, ventilating and air conditioning and its application to engineering systems. The laboratory work includes tests on equipment and materials pertinent to the field. Text: Carrier, Cherne, Grant, and Roberts, *Modern Air Conditioning, Heating and Ventilating*.

M.E. 422. Power Plant Engineering

3-3-4. Prerequisite: M.E. 324 and 415 or consent of instructor.

Modern power plant cycles, pumps, piping, fans, fuels, steam generators, boiler auxiliaries, heat exchangers and the economics of power plants are studied. The laboratory work consists of tests of equipment pertaining to the subject. Text: To be selected.

M.E. 425. Engineering Analysis

3-0-3. Prerequisite: M.E. 415, or parallel.

Methods of analysis of engineering situations requiring application of fundamentals of engineering sciences are studied. Projects requiring synthesis and analysis of engineering systems will be assigned. Text: Notes.
Mechanical Engineering / 147

M.E. 426. Principles of Turbomachinery
3-0-3. Prerequisite: M.E. 311.
Principles underlying all forms of turbomachinery are studied. Application of these principles is made to give a unified treatment of pumps, compressors, and turbines.
Text: Shepherd, Principles of Turbomachinery.

M.E. 427. Combustion and Flames
3-0-3. Prerequisite: M.E. 311, 315, and 324, or consent of instructor.
Stoichiometric and thermochemical analyses of the principal fuel air reactions are to be examined. Concepts of modern theories of combustion and flame propagation are presented.

M.E. 428. Elements of Rocket Systems
3-0-3. Prerequisite: M.E. 415 or parallel.
Basic elements, ballistics, and technical problems associated with the design of propulsion systems for solid and liquid propellant rockets are considered.
Text: Sutton, Rocket Propulsion Elements.

M.E. 429. One-Dimensional Compressible Flow
3-0-3. Prerequisite: M.E. 311.
An intermediate study of one-dimensional compressible flow systems related to Mechanical Engineering.

M.E. 431. Refrigeration
3-0-3. Prerequisite: M.E. 324.
A study of the compressor, condenser, piping and accessories of the refrigeration plant, and other practical applications of the principles of refrigeration.
Text: Jordan and Priester, Refrigeration.

M.E. 432. Steam Turbines
3-0-3. Prerequisite: M.E. 324.
A detailed study of the design and operation of steam turbines.
Text: Church, Steam Turbines.

M.E. 439. Gas Turbines
3-0-3. Prerequisites: M.E. 311 and 324.
The theory and the design of gas turbines and jet engines and the various applications of these engines.
Text: To be selected.

M.E. 443. Heating, Ventilation, and Air Conditioning Design
3-0-3. Prerequisite: M.E. 421.
A continuation of M.E. 421. The subject matter emphasizes the design of various systems, including automatic controls, and the selection of equipment.
Text: Carrier, Cherne, and Grant, Modern Air Conditioning, Heating and Ventilating.

M.E. 445. Principles of Automatic Control
3-0-3. Prerequisite: Math. 305.
Fundamental principles and generalized behavior of closed loop linear systems are examined. Pneumatic, mechanical, and electrical control systems are applied to pressure, flow, speed, temperature, and position control.
Text: To be selected.

M.E. 447. Elements of Nuclear Power
3-0-3. Prerequisite: M.E. 415 or concurrently, or equivalent.
A study of characteristics of nuclear power systems. Nuclear physics and nuclear reactions will be used for establishing some reactor principles and reactor types.
Text: To be selected.

M.E. 467. Machine Design
3-3-4. Prerequisites: Mech. 303, 332.
Kinematics and dynamics of machinery—motion, velocity, acceleration and inertia forces—are studied.
A few principles of mechanism synthesis are introduced.

M.E. 480. Dynamics of Machinery
2-3-3. Prerequisite: M.E. 467.
- Dynamic forces in machines, balancing and dynamics of reciprocation are studied. Cam dynamics and dynamics of feedback controls are also introduced.
- Text: To be selected.

M.E. 481. Machine Design
3-3-4. Prerequisites: M.E. 467, Mech. 337 and M.E. 410 or concurrently.
- Principles of design — synthesis and analysis — are introduced. The application of engineering mechanics to the design and selection of machine elements is then pursued. Component design projects are undertaken in the laboratory.

M.E. 482. Machine Design
3-3-4. Prerequisites: M.E. 410 and M.E. 481.
- Study of the design process is continued. Decision theory, creativity concepts, particular design factors and optimization are considered. Systems design include projects undertaken as laboratory exercises.

M.E. 491. Seminar
1-0-1. (Winter quarter only). Prerequisite: Senior standing in Mechanical Engineering.
- Civic and professional responsibilities and opportunities are brought to students by leaders in engineering, business, and community affairs.

M.E. 496-7-8-9. Special Problems in Mechanical Engineering
0-9-3, 0-6-2, 0-3-1, 0-12-4, respectively. Prerequisite: Senior standing in Mechanical Engineering.
- These courses are for the student who is interested in creative work.

Graduate Courses Offered

- **M.E. 611, 12** Energy Conversion I & II .. 3-0-3
- **M.E. 622, 3, 4** Thermodynamics .. 3-0-3
- **M.E. 630** Heating, Ventilation and Air Conditioning 3-0-3
- **M.E. 631** Advanced Refrigeration 3-0-3
- **M.E. 635** Heat Transfer ... 3-0-3
- **M.E. 636** Internal Combustion Engine Design 3-0-3
- **M.E. 637** Diesel Engines ... 3-0-3
- **M.E. 639** Turbines ... 3-0-3
- **M.E. 640** Combustion I .. 3-0-3
- **M.E. 641** Combustion II ... 3-0-3
- **M.E. 643, 4** Fluid Flow ... 3-0-3
- **M.E. 645, 6** Heat Transfer .. 3-0-3
- **M.E. 647** Fluid Flow ... 3-0-3
- **M.E. 649** Theory of Jets .. 3-0-3
- **M.E. 658** Mechanism Synthesis 3-0-3
- **M.E. 659** Engineering Design 3-6-5
- **M.E. 661** Advanced Dynamics of Machinery 3-0-3
<table>
<thead>
<tr>
<th>M.E.</th>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.E.</td>
<td>662</td>
<td>Machine Vibration</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>663</td>
<td>Elastic Yield Design of Machine Members</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>669</td>
<td>Materials for Design</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>671</td>
<td>Deformation of Metals</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>672, 3</td>
<td>Fabrication of Metals</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>674, 5</td>
<td>Variational Methods in Engineering</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>676, 7, 8</td>
<td>High Temperature Design I, II, III</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>683</td>
<td>Lubrication</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>711</td>
<td>Magnetogasdynamics I</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>712</td>
<td>Magnetogasdynamics II</td>
<td>3.0-3</td>
</tr>
<tr>
<td>M.E.</td>
<td>713</td>
<td>Magnetogasdynamics III</td>
<td>3.0-3</td>
</tr>
</tbody>
</table>

(Complete details about these courses are contained in the *Graduate Bulletin*, a copy of which is available upon request.)
Commandant and Professor of Military Science—Colonel C. B. Drennon, Jr.;
Assistant Professors—Lt. Colonel Kenneth I. Bechtold, Lt. Colonel Wythe P.
F. Hatcher, Capt. Thomas A. Kelly, Jr., Capt. Kenneth W. Pearce, Capt. James
R. Walker; Staff—Sergeant Major Bonney C. Nease, Master Sergeant Nolan J.
Maddock, Sergeants First Class Billie W. Douglas, Theodore M. Varner, Staff
Sergeants Bobby G. Adams, Allen Brewer, William L. Gravitt, Jr., Specialist
Fifth Class Jack E. Baughman, Eugene L. Gray, Frank W. Freund; Secretaries—Thelma
Kitchens, Mildred W. Norton, Kathleen W. Porte.

Reserve Officers' Training Corps

The Federal Government offers instruction at Georgia Institute of Technology, a Senior Division of the Army Reserve Officers' Training Corps, in six branches: Air Defense Artillery, Chemical Corps, Corps of Engineers, Infantry, Ordnance Corps, and Signal Corps. All branches are open to regular advanced course students and students enrolled under the Co-operative Plan. General objectives of the course of instruction are to produce junior officers possessing qualities and attributes essential to their progressive and continued development as officers in the United States Army Reserve and in the Regular Army. Training in military leadership is emphasized, with instruction being given in subjects common to all branches of the Army and in tactics and techniques of the several branches.

The complete course of instruction of the Senior Division ROTC program comprises four years. The first year of the basic course consists of approximately 70 hours of instruction, and the second year approximately 90 hours. The advanced course consists of approximately 110 hours of instruction each year and the addition of a six-week summer camp.

Academic Credit

Academic credit is granted for the completion of military courses as indicated in the sections that follow. However, not more than 6 hours credit in basic ROTC courses and not more than 9 hours credit in advanced ROTC courses may be applied toward a degree.

<table>
<thead>
<tr>
<th></th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic 1st Year</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Basic 2nd Year</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Advanced 1st Year</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Advanced 2nd Year</td>
<td>3</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

Uniforms

Students enrolling in the basic or advanced course will be furnished the ROTC uniform through Georgia Tech at an approximate cost to the student as follows:

- Basic Course: $75.00
- Advanced Course: $100.00
Prior to formal enrollment in the ROTC basic or advanced course, each student will deposit with the Cashier of Georgia Tech appropriately the amount shown above. The receipt of this deposit will then be taken to the Uniform Accounts Office where a Purchase Order will be issued to the depositor. This Purchase Order must be presented to the supplier of ROTC uniforms used in the ROTC program for proper fitting and issuance of items of uniform and insignia. Uniforms become the property of the individual and are not returnable for reimbursement once they have been issued.

Students formally enrolled in the ROTC are authorized a commutation in lieu of uniform which is earned in accordance with the length of time actually enrolled. The uniform allowance for advanced course students is $100.00 per student and is reimbursed to the student upon completion of the advanced course. The uniform allowance for basic students is $50.00 and is reimbursed to the student on the basis of one-sixth of the total per quarter of enrollment satisfactorily completed.

Texts
Textbooks are furnished by the Government.

Advance Course Retainer Pay
Students formally enrolled in the ROTC and pursuing the advanced course will receive retainer pay at a rate of forty (40) dollars a month.

The Basic Course
The basic course consists of formal instruction for two hours per week for two academic years of at least 30 weeks each, with the exception of one quarter of the freshman year. During this quarter the student will attend drill only. Subjects included in the basic course are the same for all students. During the sophomore year, selection is made of students considered eligible for enrollment in the advanced course. NOTE: All quarters include instruction in Leadership, Drill and Exercise of Command, to provide for leadership training, drill experience, and the development of certain essential characteristics of leadership such as initiative and self-confidence, through progressive training; also, to provide a thorough indoctrination in military courtesy and customs of the service.

M.S. 101. Leadership, Drill, and Exercise of Command: Individual Weapons and Marksmanship

2-1-2.

Leadership, Drill, and Command, stressing fundamentals on small unit level. Marksmanship training on indoor range. Mechanical functioning, disassembly, assembly, and employment with .30 and .22 cal. rifles.

M.S. 102. United States Army and National Security: Organization of the Army and ROTC

2-1-2.

Missions and responsibilities of the United States Army, the United States Army Reserve, and the National Guard as members of the National defense team. History and organization of ROTC, Design of
military organizations, specifically Infantry units.

M.S. 104. Leadership Laboratory (Drill) 0-1-0.
Military drill period will be attended, in uniform, by students enrolled in the Army ROTC program. Attendance and aptitude marks will be assigned, and a grade of "S" will be given for satisfactory completion of this course. Fundamentals of leadership, drill and command are stressed.

M.S. 201. Military Map Reading, Individual Tactics, and Small Unit Tactics 2-1-2.
Maps and Aerial Photograph

The Advanced Course
Students who have successfully completed the basic course and who are selected for further training may enroll in the advanced course. The advanced course is a recognized elective in all departments at Georgia Tech to the extent that nine hours of credit may be applied toward a degree providing the entire advanced course is completed. If the student does not complete the entire advanced program, ROTC credits may not be used as electives unless the student has been relieved of his contractual obligations by the Department of the Army.

Upon the successful completion of the advanced course and four years' education at a college level, graduates will be tendered commissions as second lieutenants in the United States Army Reserve. Students who meet other requirements promulgated by the Army will be designated Distinguished Military Students, and on graduation may be offered commissions in the Regular Army.

Members of the advanced course are required to attend camp one summer, normally between the junior and senior years. All students going to camp receive mileage for the round trip at the rate of six (6) cents per mile and are messed, housed, uniformed, and given medical and dental attention at government expense while at camp. Students will receive pay at the rate of $120.60 per month. The duration of the camp is not less than six weeks beginning about 15 June each year.

The advanced course consists of two quarters of military classroom instruction and one quarter of drill only in each of the junior and the senior years. Each quarter of classroom instruction includes four hours of class and one hour of drill. The program of instruction consists of a series of subjects which relate to the particular arm or service, and, in addition, a series of subjects common to all branches.

Army Air Defense Artillery Section
Any qualified student enrolled in any academic course may make application.

M.S. 311. Leadership, Military Teaching Principles and Counterinsurgency 4-1-3. Prerequisite: Junior Standing.

An analysis of the principles of leadership by the case study method, Examination of the fundamentals,
techniques and methods of instruction. Explanation of the United States policies and action which assist friendly foreign nations subjected to covert aggression.

M.S. 312. Fundamentals of Missile Science, Infantry Tactics, and Pre-Camp Orientation
4-1-3. Prerequisite: Junior Standing.
The integrated air defense missile battery. Principles and procedures of operation of Nike and Hawk missile systems. A study of small unit infantry tactics in the environment of limited or total war. Preparation for the field training and administrative requirements of the annual Army ROTC summer camp.

M.S. 304. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Junior Standing.
Participation as a cadet non-commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communication and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

M.S. 411. Army Administration, Military Justice and Role of the United States in World Affairs
4-1-3. Prerequisite: Senior Standing.

Chemical Corps Section
Admission to the Chemical Corps Unit requires acceptance based on performance in Basic Military (Freshman and Sophomore years) and is in general limited to those students who are enrolled in an academic course of instruction leading to an engineering, technical, or other scientific degree.

M.S. 321. Leadership, Military Teaching Principles and Counterinsurgency
4-1-3. Prerequisite: Junior Standing.
An analysis of the principles of leadership by the case study method. Examination of the fundamentals, techniques, and methods of instruction. Explanation of the United States policies and actions which assist friendly foreign nations subjected to covert aggression.

M.S. 322. Chemical Corps Missions, Organizations, Aspects of CBR Warfare and Defense, Infantry Tactics and Summer Camp Orientation
4-1-3. Prerequisite: Junior Standing.
Mission, general organization, and functions of the Chemical Corps. Characteristics of Chemical, Biological and Radiological agents to include employment detection, defense against decontamination and muni-
tions. A study of small unit infantry tactics in the environment of limited or total war. Preparation for the field training and administrative requirements of the annual Army ROTC summer camp.

M.S. 304. Leadership Laboratory (Drill) 0-1-0. Prerequisite: Junior Standing. Participation as a cadet non-commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitudes observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

M.S. 422. Operations, Logistics, Service Orientation and Review of Map Reading 4-1-3. Prerequisite: Senior Standing. A study of the command and staff organization and its functions, including estimate of the situation, combat orders, troop movements, supply and evacuation. Service orientation to prepare the future officer for active service. Review of map reading.

M.S. 404. Leadership Laboratory (Drill) 0-1-0. Prerequisite: Senior Standing. Participation as a cadet commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

Corps of Engineer Section

Admission to the Corps of Engineer Unit is limited to those students who are enrolled in an academic course leading to an engineering, technical, or scientific degree. Instruction in technical subjects supplements that of the engineering school, with particular attention to the military application of such subjects.

M.S. 331. Leadership, Military Teaching Principles and Counterinsurgency 4-1-3. Prerequisite: Junior Standing. An analysis of the principles of leadership by the case study method. Examination of the fundamentals, techniques, and methods of instructions. Explanation of the United States policies and actions which assist friendly foreign nations subjected to covert aggression.

Military Science / 155

Terms and informal methods of instruction are stressed. Performance and attitudes observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

M.S. 431. Administration, Military Justice and the Role of the U. S. in World Affairs
4-1-3. Prerequisite: Senior Standing.
Basic concepts of military administration. Fundamentals of military justice and court procedures. Orientation on geographical and economic factors which influence the role of the United States in world affairs.

M.S. 432. Engineer Logistics, Staff Procedures, Engineer Unit Operations, Service Orientation, and Review of Map Reading
4-1-3. Prerequisite: Senior Standing.

Infantry Section

Any qualified student enrolled in any academic course may make application.

M.S. 341. Leadership, Military Teaching Principles and Counterinsurgency
4-1-3. Prerequisite: Junior Standing.
An analysis of the principles of leadership by the case study method. Examination of the fundamentals, techniques, and methods of instruction. Explanation of the United States policies and actions which assist friendly foreign nations subjected to covert aggression.

M.S. 342. Infantry Tactics and Techniques Summer Camp Orientation
4-1-3. Prerequisite: Junior Standing.
Organization of Infantry units to include the Division. Techniques of tactical estimates and preparation of combat orders. Communication principles, techniques and equipment. Tactical employment of Infantry units to include the Company. Preparation for the field training and administrative requirements of the annual Army ROTC summer camp.

A study of engineer logistics to include unit supply, troop movements, and motor transportation. Organization, function and duties of staffs. Employment and utilization of engineer units in all types of operations. Service orientation to prepare the future officer for active service. Review of map reading.

M.S. 404. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Senior Standing.
Participation as a cadet commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

M.S. 404. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Junior Standing.
Participation as a cadet non-commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of "S" will be awarded for satisfactory completion of this course.

M.S. 441. Army Administration, Military Justice and Role of the U. S. in World Affairs
4-1-3. Prerequisite: Senior Standing.
Basic concepts of military administration. Fundamentals of military justice and court procedures. Orientation on geographical and economic factors which influence the role of the United States in world affairs.

M.S. 442. Operations, Logistics, Service Orientation and Review of Map Reading
4-1-3. Prerequisite: Senior Standing.
A study of the command and staff organization and its functions, including estimate of the situation, combat orders, troop movements, supply and evacuation Service orientation to prepare the future officer for active service. Review of map reading.

M.S. 404. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Senior Standing.
Participation as a cadet commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of “S” will be awarded for satisfactory completion of this course.

Ordnance Corps Section
Admission to the Ordnance Unit will be limited to those students who are enrolled in an academic course of instruction leading to an engineering, technical, or other scientific degree. However, students enrolled in other courses than these may be admitted if marked ability, aptitude, or interest in technical fields of endeavor is demonstrated.

M.S. 351. Leadership, Military Teaching Principles and Counterinsurgency
4-1-3. Prerequisite: Junior Standing.
An analysis of the principles of leadership by the case study method. Examination of the fundamentals, techniques, and methods of instructions. Explanation of the United States policies and actions which assist friendly foreign nations subjected to covert aggression.

M.S. 352. Ordnance Tactics and Techniques.
Infantry Tactics and Summer Camp Orientation
4-1-3. Prerequisite: Junior Standing.
A survey of the purpose, engineering, and capabilities of current combat material—military vehicles artillery weapons, explosives, ammunition, guided missiles and nuclear weapons. A study of small unit infantry tactics in the environment of limited or total war. Preparation for the field training and administrative requirements of the annual Army ROTC summer camp.

M.S. 304. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Junior Standing.
Participation as a cadet non-commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of “S” will be awarded for satisfactory completion of this course.

M.S. 451. Army Administration, Military Justice and Role of the U. S. in World Affairs
4-1-3. Prerequisite: Senior Standing.
Basic concepts of military administration. Fundamentals of military justice and court procedures. Orientation on geographical and economic factors which influence the role of the United States in world affairs.

M.S. 452. Ordnance Tactics and Techniques.
Service Orientation and Review of Map Reading
4-1-3. Prerequisite: Senior Standing.
A survey of the various tools of management used to accomplish the Ordnance mission; including operations research, linear programming, automatic data processing systems. Service orientation to prepare the future officer for active service. Review of map reading.
M.S. 404. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Senior Standing.
Participation as a cadet commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instruction are stressed. Performance and attitude observed for selective advancement within the group. A grade of “S” will be awarded for satisfactory completion of this course.

Signal Corps Section
Application for admission to the advanced course of the Signal Corps Unit is in general limited to those students enrolled in one of the academic fields leading to a degree in engineering, electronics, or physics. However, students enrolled in courses other than these may be accepted if marked ability, aptitude, or interest in technical fields of endeavor is demonstrated.

M.S. 361. Leadership, Military Teaching Principles and Counterinsurgency
4-1-3. Prerequisite: Junior Standing.
An analysis of the principles of leadership by the case study method. Examination of the fundamentals, techniques and methods of instruction. Explanation of the United States policies and actions which assist friendly foreign nations subjected to covert aggression.

M.S. 362. Signal Corps Tactics and Techniques, Infantry Tactics and Summer Camp Orientation
4-1-3. Prerequisite: Junior Standing.
A study of the various means of communication to include telephony, telegraphy, carrier, HF, VHF and microwave systems. An introduction to the global communication network of the U. S. Army. A study of small unit infantry tactics in the environment of limited or total war. Preparation for the field training and administrative requirements of the annual Army ROTC summer camp.

M.S. 304. Leadership Laboratory (Drill)
0-1-0. Prerequisite: Junior Standing.
Participation as a cadet non-commissioned officer in the cadet military organization. Application of leadership principles learned in departmental and extra-departmental courses. Effective oral communications and informal methods of instructions are stressed. Performance and attitude observed for selective advancement within the group. A grade of “S” will be awarded for satisfactory completion of this course.
Department of Modern Languages

Department Head—James D. Wright; Professor Emeritus—Joseph A. Campomor; Professor—George F. Walker; Associate Professor—Louis J. Zahn; Assistant Professors—James Gough, Jr., Carl E. Steinhauser, Roy O. Wyatt; Instructors—John R. Canavan, Richard L. Hawkey, Delford L. Santee, Maria S. Venable.

General Information

The Department of Modern Languages seeks first to give the student sufficient mastery of a foreign language to enable him to read and understand with reasonable facility the scientific and technical literature of that language. Further, it seeks to inform the student, through the medium of the foreign language, of the civilization and literature of the countries where that language is spoken. In facilitation of the effort to attain these goals the Department attempts to section, according to ability and/or preparation, its first- and/or second-year students of those languages which attract enrollments either large enough to support such sectioning or specifically qualified to do so.

A student taking a language in which he has two or more years of high school credit is encouraged to register initially for a course not lower in number than the first course of the 200 series in that language. However, if such a student is convinced that his knowledge of the language in question is inadequate for successful participation in this 200 series course, then he may, instead, register for any less advanced course in the same language which is available and to which his preparation is believed to be equal. Beginning with that less advanced course, he may then take for full credit toward graduation the entire complement of language courses recommended for his program of study. A student who elects to take courses in a language which he speaks as a native language must schedule a course not lower in number than the first course of the 200 series — if the language in question is French, German, or Russian. If the language in question is Spanish, such a student must schedule the available course of the series, M.L. 316-317-318. Otherwise the student in either of these situations may schedule the beginning course of another language.

Credit for courses of the 100 series is given only after completion of the series. Credit for courses above the level of the 100 series is given on a quarterly basis.

Students who are registered under the Co-operative Plan and who study the elementary course of a foreign language are required to study German. This requirement is made necessary by the fact that German is the only foreign language in which all three elementary courses are normally offered each quarter — a situation which usually makes possible the scheduling of any first-year German course during any quarter and which, in the study of the other languages, usually makes possible the scheduling of only that first-year course which is reserved for the quarter in question. Accordingly students who are enrolled only every other quarter can easily complete the first year of their language study in German but might do so only with great loss of time in the other languages.
Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

French

Those students who have had two years of high school training in French and those who have had more than two are encouraged to register initially for a course not lower in number than M.L. 207. The gradation of the series M.L. 207-208-209 and the instructional variety within that series are such that qualified students from both groups can profitably take the courses.

With permission of the instructor, exceptionally well prepared matriculating freshmen who have had three or more years of high school training in the language may be admitted to the series M.L. 307-308-309. This series is intended primarily, however, for students who have had two years of college training or the equivalent.

M.L. 17. Elementary French for Graduate Students

3-0-0. Prerequisite: None. (Available in summer quarter only.)

Pronunciation; minimum grammar; acquisition of vocabulary, both basic and scientific, from appropriate reading; translation of scientific literature into English. By preparing the student in one quarter for admission into the first course of the second-year series, M.L. 207, this course affords him an opportunity to shorten the period of time normally required for his preparation for the Ph.D. reading-knowledge examination.

Texts: Jackson and Standring, *French Course for Technologists and Scientists*; Contes Francais in edition by Wallace Fowlie; Borelli, *Reading French*.

M.L. 107. Elementary French

3-0-3. Prerequisite: None.

Essential principles of French grammar; acquisition of vocabulary through simple conversational exercises and the reading of simple selections.

M.L. 108. Elementary French

3-0-3. Prerequisite: M.L. 107 or equivalent.

Continuation of M.L. 107; extension of the survey of French grammar; acquisition of a large general vocabulary through conversation and the reading of texts dealing with French civilization and history.

M.L. 109. Elementary French

3-0-3. Prerequisite: M.L. 107 and 108 or equivalent.

Reading of selected texts; composition; completion of the survey of French grammar.

M.L. 207. Intermediate French

3-0-3. Prerequisite: M.L. 107-108-109 or equivalent.

Reading of novels and short stories intended to give the student a large general vocabulary; review of French grammar.

Text: Denoeu, *Image de la France*.

M.L. 208. Intermediate French

3-0-3. Prerequisite: M.L. 207 or equivalent.

Continuation of M.L. 207 with selected readings in the student's special field.

M.L. 209. Intermediate French

3-0-3. Prerequisite: M.L. 207 and
208 or equivalent.
Readings from French literature.

M.L. 307-308-309

Survey of French Literature from circa 1800 to the Present

Class and collateral study of prose, drama, and lyric poetry by representative authors through indicated literary movements; course conducted in French.

M.L. 307. Period: c. 1800-1850. Romanticism: the re-appearance of lyric poetry; the importance of the individual, as opposed to classical anonymity.

3-0-3. Prerequisite: M.L. 207-208-209 or equivalent.
Texts: Clouard and Leggewie, *Anthologie de la littérature française*, vol. II; selected paperbacks.

M.L. 308. Period: c. 1850-1900. Parnassianism and Symbolism: developments in poetry; Realism and Naturalism: trends in prose, with emphasis on the development of the novel.

3-0-3. Prerequisite: M.L. 207-208-209 or equivalent.
Texts: Clouard and Leggewie, *Anthologie de la littérature française*, vol. II; selected paperbacks.

M.L. 309. Period: c. 1900-. Exploration of currents in modern prose, poetry, and drama.

3-0-3. Prerequisite: M.L. 207-208-209 or equivalent.
Texts: Clouard and Leggewie, *Anthologie de la littérature française*, vol. II; selected paperbacks.

German

All students, upon their satisfactory completion of M.L. 101, the first course of the elementary German series, are subject to assignment to one or the other of two groups. Those who have completed M.L. 101 with distinction, may be assigned to an honors group; those who have not, are assigned to the regular group. When this division of the enrollment is made, the students in the honors group are offered the opportunity to complete their study of elementary German under a program of instruction which is more direct in presentation, more intensive in character, and more comprehensive in content than is the one conducted for those in the regular group. The courses which constitute the program offered the honors group are M.L. 105-106; those which constitute the program conducted for the regular group are M.L. 102-103. Participation in the first of these programs is completely voluntary on the part of the students concerned.

Students who have two or more years of high school credit and who are therefore encouraged to register initially for a course not lower in number than M.L. 201, may choose between the series M.L. 201-202-203 and the series M.L. 204-205-206 — if they do elect to enroll in a second-year course. Those who are interested in acquiring a passive knowledge of the language for use as a tool of research are advised to register for M.L. 201-202-203. Those who are interested in acquiring an active knowledge of the language for use not merely as a tool of research but also as a medium of cultural development, may register for the series M.L. 204-205-206. Since enrollment in this latter series is largely derived from the above mentioned M.L. 106, however, the series M.L. 204-205-206 is more highly recommended for students whose prior training has qualified them for instruction through the medium of the German language than it is for others. Each of the two series, M.L. 201-202-203 and M.L. 204-205-206, may be taken for full credit toward graduation; and either series may be taken first.

Of the matriculating freshmen who have three or more years of high school credit, an exceptional few may register initially for the series M.L. 304-305-306. When such students do register initially for this series, they are expected to bring qualifications which are of the kind recommended for M.L. 204-205-206 but which naturally represent a higher level of achievement than do those ex-
pected for the lower series. In general, however, the placement of such students in this 300 series will occur after registration; in response to application by the students for transfer to the more advanced level of study; and upon recommendation of this transfer by the staff members concerned.

M.L. 10. Elementary German for Graduate Students
5-0-0. Prerequisite: None. (Available in summer quarter only.)

Pronunciation; skeletal presentation of German grammar; translation of scientific literature into English. (By preparing the student in one quarter for admission into the first course of the appropriate second-year series—normally M.L. 201—this course affords him an opportunity to shorten the period of time usually required for his preparation for the Ph.D. reading-knowledge examination.)

Texts: Cunningham, Science Students' Guide to the German Language; Itter, German Workbook for Science Students; selected materials.

M.L. 101. Elementary German
3-0-3. Prerequisite: None.

Pronunciation; essential principles of German grammar; rapid acquisition of vocabulary by the reading of simple selections; elementary composition.

Text: Fehlau, Fundamental German.

M.L. 102. Elementary German
3-0-3. Prerequisite: M.L. 101 or equivalent.

Continuation of M.L. 101.

Text: Fehlau, Fundamental German.

M.L. 103. Elementary German
3-0-3. Prerequisite: M.L. 101 and 102 or equivalent.

Reading of German scientific and general material and the acquisition of a large scientific vocabulary; continued study of German grammar; composition.

Texts: Fehlau, Fundamental German; Goedsche and Glaettli, Steinmetz.

M.L. 105. Intensive Elementary German
3-1-3. Prerequisite: Departmental selection on the basis of achievement in M.L. 101.

Except for intensification, acceleration, regular practice in conversation, and a weekly one-hour laboratory requirement, essentially the same course as M.L. 102. Texts: Fehlau, Fundamental German; additional material as needed.

M.L. 106. Intensive Elementary German
3-1-4. Prerequisite: M.L. 105.

Continuation of M.L. 105.

Texts: Fehlau, Fundamental German; additional material as needed.

M.L. 201. Intermediate German
3-0-3. Prerequisite: M.L. 101-102-103 or equivalent.

Reading of German scientific and technical material; individual problems to conform, whenever possible, with the student's special branch of engineering.

Texts: Nock, German Science Reader; Itter, German Workbook for Science Students.

M.L. 202. Intermediate German
3-0-3. Prerequisite: M.L. 201 or equivalent.

Continuation of training given in M.L. 201.

Texts: Nock, German Science Reader; Itter, German Workbook for Science Students.

M.L. 203. Intermediate German
3-0-3. Prerequisite: M.L. 201 and 202 or equivalent.

Reading of German prose in support of the development achieved in M.L. 201 and 202.

Text: To be selected.

Note: The series M.L. 201-202-203 is a suitable combination of courses for graduate students who have a knowledge of elementary German and who wish to prepare for read-
ing-knowledge examinations for advanced degrees.

M.L. 204. Intensive Intermediate German
3-0-3. Prerequisite: Completion of the intensive courses of the 100 series; otherwise permission of the staff.

Review of grammar; intensive practice in conversation and composition.
Text: To be selected.

M.L. 205. Intensive Intermediate German
3-0-3. Prerequisite: M.L. 204 or equivalent.

Continuation of M.L. 204; study of twentieth-century prose.
Text: To be selected.

M.L. 206. Introduction to Contemporary German Prose
3-0-3. Prerequisite: M.L. 204 and M.L. 205 or equivalent.

Collateral and class reading of contemporary prose selections; written and/or oral reports; class discussion. Course conducted in German.
Text: To be selected.

A Survey of German Literature from circa 1830 to the Present

Class and collateral study of prose, drama, and lyric poetry by representative authors through indicated literary movements; course conducted in German.

3-0-3. Prerequisite: M.L. 204-205-206 or equivalent.
Texts: Feise and Steinhauer, German Literature since Goethe; selected paperbacks.

3-0-3. Prerequisite: M.L. 204-205-206 or equivalent.
Texts: Feise and Steinhauer, German Literature since Goethe; selected paperbacks.

3-0-3. Prerequisite: M.L. 204-205-206 or equivalent.
Texts: Feise and Steinhauer, German Literature since Goethe; selected paperbacks.

Russian

Of those students who indicate interest in the study of elementary Russian, only a select few are admitted to the course. Whether they are matriculating freshmen or others, they are restricted in number by the prerequisites for admission which the exacting limits of our Russian program impose. The result of this careful selection is that the competition which the students naturally afford each other makes the Russian program more intensive in character than it otherwise would be.

M.L. 154. Elementary Russian
3-2-4. Prerequisite: For matriculating freshmen and for sophomores, two years or more of high school training in any foreign language(s), ancient or modern, and selection on the basis of departmentally established criteria.

For all other students, college credit for two years' study of one foreign language or for one year's study of each of two or more foreign languages.

For all students, exceptions at the discretion of the staff.

During three class hours — to be scheduled at registration — conventional study of grammar and illustrative reading. During two laboratory hours — to be scheduled after registration — intensive familiarization with recorded study material.
Text: Potapova, Russian.

M.L. 155. Elementary Russian
3-2-4. Prerequisite: M.L. 154 or equivalent.
Continuation of M.L. 154; introduction of additional reading material as progress of class permits. Texts: Potapova, *Russian*; additional reading material.

M.L. 156. Elementary Russian

3-2-4. Prerequisite: M.L. 154 and M.L. 155 or equivalent.

Continuation of M.L. 154 and 155; emphasis on the reading of simple prose. Texts: Potapova, *Russian*; additional reading material.

M.L. 251. Intermediate Russian*\(^*\)

3-0-3. Prerequisite: M.L. 154-155-156 or equivalent.

Reading of short literary selections; acquisition of a large vocabulary; oral practice in the language. Review of Russian grammar; analysis of word and sentence structure. Text: To be selected.

M.L. 252. Intermediate Russian

3-0-3. Prerequisite: M.L. 251 or equivalent.

Continuation of reading and conversation; composition; translation. Reading of Russian newspapers and journals. Text: To be selected.

M.L. 253. Advanced Russian

3-0-3. Prerequisite: M.L. 251 and 252 or equivalent.

Reading of Russian scientific literature from various sources. Text: To be selected.

*Second-year courses in Russian offered in alternate years only.

Spanish

The second-year series M.L. 213-214-215 and the third-year series M.L. 313-314-315 are intended for all respectively eligible English-speaking students. Depending upon their qualifications, matriculating freshmen may be eligible for either of these two series: those who have two or more years of high school credit in Spanish are encouraged to register initially for a course not lower in number than M.L. 213; those who have three or more years of high school credit may register initially for the available course of the series M.L. 313-314-315. In general, however, even those matriculating freshmen who have three or more years of high school credit are advised to consult the staff of the Department of Modern Languages before registering initially for any course in this third-year series.

The series M.L. 316-317-318, the most elementary course to which Spanish-speaking students are admitted, is so graded as to afford, for those English-speaking students who have completed with adequate distinction the series M.L. 313-314-315 or the equivalent, a logical opportunity for a fourth year of study.

M.L. 113. Elementary Spanish

3-0-3. Prerequisite: None.

Pronunciation; grammar; reading; composition; simple conversational exercises. Text: Armitage and Meiden, *Beginning Spanish*.

M.L. 114. Elementary Spanish

3-0-3. Prerequisite: M.L. 113 or equivalent.

Continuation of M.L. 113; increased emphasis on reading and conversation. Text: Armitage and Meiden, *Beginning Spanish*.

M.L. 115. Elementary Spanish

3-0-3. Prerequisites: M.L. 113 and 114 or equivalent.

M.L. 213. Intermediate Spanish

3-0-3. Prerequisite: M.L. 113-114-115 or equivalent.

M.L. 214. Intermediate Spanish
3-0-3. Prerequisite: M.L. 213 or equivalent.
Continuation of review of grammar; composition; conversation; reading.

M.L. 215. Intermediate Spanish
3-0-3. Prerequisites: M.L. 213 and 214 or equivalent.
Readings from Spanish literature; conversation; composition.

M.L. 213. Mexican Literature
3-0-3. Prerequisite: M.L. 215 or equivalent.
An introduction to Latin-American civilization as reflected in representative Mexican literature.
Techniques of literary criticism. Lectures; discussions. Conducted in Spanish.

M.L. 214. The Spanish-American Essay and Short Story
3-0-3. Prerequisite: M.L. 215 or equivalent.
Selected works reflecting contemporary problems and developments. Emphasis on ideas rather than on form. Lectures, discussions. Conducted in Spanish.
Texts: Chang and Kantor, *La América Latina de hoy*; Arratia and Hamilton, *Diez cuentos hispanoamericanos*.

M.L. 215. Spanish Heritage in the Americas
3-0-3. Prerequisite: M.L. 215 or equivalent.
The cultural heritage of Spain in the Americas as reflected in readings from representative European and Spanish-American writers. Lectures, discussions. Conducted in Spanish.
Text: Del Rio, *Del solar hispánico*.

M.L. 316. Spanish Drama
3-0-3. Prerequisite: M.L. 315 or equivalent.
The evolution of Spanish culture and the importance of Spanish drama in world literature as reflected in representative novels from the Middle Ages to the present. Elaboration of M.L. 317. Conducted in Spanish.

M.L. 317. Don Quijote
3-0-3. Prerequisite: M.L. 315 or equivalent.
A detailed study of Cervantes' masterpiece as the vortex of Spanish literature, the prototype of the modern novel, and the essence of Renaissance and Baroque literature. Conducted in Spanish.
Text: Any unabridged edition of the *Quijote*.

M.L. 318. The Spanish Novel
3-0-3. Prerequisite: M.L. 315 or equivalent.
The evolution of Spanish culture and the importance of the Spanish novel in world literature as reflected in representative novels from the Middle Ages to the present. Elaboration of M.L. 317. Conducted in Spanish.
Texts: To be selected.

Linguistics
The courses listed below are offered as a contribution to the further development of a rising student interest in the science of linguistics.

M.L. 332. Introduction to Structural Linguistics I
3-0-3. Prerequisite: College credit for one year's study of any language, ancient or modern; exceptions at the discretion of the staff.
Presentation of methodology for scientific analysis of language; examination of data from hypothetical languages of increasing complexity prior to examination of natural languages; emphasis on phonetics and phonemics. Collateral readings; reports.
Text: Pike, *Phonemics*.

M.L. 333. Introduction to Structural Linguistics II
3-0-3. Prerequisite: M.L. 332 or equivalent.
Continuation of M.L. 332 with emphasis on morphology and syntax. Collateral readings; reports.
Text: Elson and Pickett, *Beginning Morphology-Syntax*.
Department of Music

Director—Walter C. Herbert; Band Director—Ben Logan Sisk.

General Information

Musical activities at Georgia Tech have become increasingly important. Courses are offered for credit to those taking part in the Band and the Glee Club.

In addition to strenuous activity during the football season, including at least two out of town trips, the band continues as a symphonic unit during the winter and spring. Each year the Glee Club and the Band join together in an outdoor concert sponsored by the Student Lecture and Entertainment Committee.

The Glee Club, with a history of several trips abroad, annually visits a number of the girls' colleges of Georgia and the Southeast. Some years ago an appearance was made on the Ed Sullivan Show. The club has also visited New Orleans, Miami and Jacksonville numerous times, accompanying the football team to bowl games.

Courses of Instruction

Music 201. Choral Music—History
1-2-1. Prerequisites: 1. Satisfactory completion of three quarters in Glee Club; 2. Approval of the Director of Music.

Course will consist of two hours practical or laboratory work, rehearsing and performing choral music. Third hour will be given to study of the history and development of choral music, from Gregorian chant through Palestrina and Bach to the present.

Text: Stringham, Listening to Music Creatively.

Music 202. Choral Music—Conducting
1-2-1. Prerequisites: 1. Satisfactory completion of three quarters in Glee Club; 2. Approval of the Director of Music.

Laboratory work will consist of rehearsal and performance of choral music. Third hour will include practice conducting by the students.

Text: Bauman, Elementary Musicianship.

Music 203. Choral Music—Appreciation
1-2-1. Sophomore, Junior or Senior Year, Spring Quarter. Prerequisites: 1. Satisfactory completion of three quarters in Glee Club; 2. Approval of the Director of Music.

The theoretical material of this course is a study of the operas presented during the spring quarter in Atlanta by the Metropolitan Opera Association, which can be attended free of charge by the Glee Club members.

Music 301. Marching Band
0-3-1. Junior or Senior Year, Fall Quarter. Prerequisites: 1. Satisfactory completion of three (3) quarters participation in band as a Freshman or Sophomore; 2. Approval of the band director.

Precision drilling. Special Maneuvers. Military Parade Procedure. (Students completing this course are expected to be able to direct as well as participate in these routines).

Text: Dvorak, "The Marching Band."
Music 302. Concert Band
0-3-1. Junior or Senior Year, Winter Quarter. Prerequisites: 1. Satisfactory completion of three (3) quarters participation in band as a Freshman or Sophomore; 2. Approval of the band director.
Text: "National School Band Manual."

Music 303. Concert and Marching Band
0-3-1. Junior or Senior Year, Spring Quarter. Prerequisites: 1. Satisfactory completion of three (3) quarters participation in band as a Freshman or Sophomore; 2. Approval of the band director.
Continuation of all procedures listed under Music 302 plus a resumption of the marching drill and performance which is begun in Music 301.

Music 401. Concert Band
0-3-1. Senior year, Fall Quarter. Prerequisites: Satisfactory completion of Music 303, and approval of the Band Director.
A continuation of the 300-series music courses.

Music 402. Concert Band
0-3-1. Senior year, Winter Quarter. Prerequisites: Satisfactory completion of Music 401 and approval of the Band Director.
A continuation of the 300-series music courses.

Music 403. Concert Band
0-3-1. Senior Year, Spring Quarter. Prerequisites: Satisfactory completion of Music 402 and approval of the Band Director.
A continuation of the 300-series music courses.
Department of Naval Science
(Established in 1926)

Commanding Officer and Professor of Naval Science—Captain Richard Henry Woodfin; Executive Officer and Associate Professor—Commander Lester Don Olson; Assistant Professors—Major Rollin R. Powell, Jr., (USMC); Lieutenant Commander Edward Sanford, Lieutenants Melton E. Rhodes, Benjamin F. Mercer, III, Philip S. Kent and Channing E. Jones; Instructors—Chief Gunner’s Mate Ernest B. McCrary, Chief Storekeeper John A. Eaton, First Sergeant Kenneth E. Beabout (USMC); Chief Gunner’s Mate Ariel G. McInville, Chief Quartermaster Roy J. Fluker, and Yeoman First Class Leonard V. Richards; Secretaries—Mrs. Virginia M. McDonald and Mrs. Mary C. Redd.

General Information
Naval ROTC students are enrolled for the full four-year period, except those students enrolled under the Two Year Contract Program at the junior level. This program is open to college sophomores in good standing at any accredited college, junior college or university, upon admission and transfer to this institution as juniors. Those students interested in this program will be required to attend a special six-week training session at one of three regionally selected NROTC universities, in order to qualify for enrollment as NROTC Contract students at the junior level. Students desiring commissions in the Marine Corps or Supply Corps follow a different curriculum during the Junior and Senior years. Students may apply for flight training or for a commission in the Civil Engineer Corps during the Senior year. A Flight Indocriation Program consisting of ground and flight training is conducted by a civilian flying school during the senior year for those Naval ROTC students qualified for naval flight training. Obligated service for flight training graduates is 42 months after designation as a Naval aviator. The NROTC is composed of two types of students: Regular and Contract.

Regular Students
These students are appointed Midshipman, USNR, after nation-wide competitive examinations. They have their tuition, fees and textbooks paid by the Navy for a period not exceeding four years, are uniformed at government expense, and receive retainer pay at the rate of $600.00 per year. They must obligate themselves to complete the prescribed Naval Science curriculum, to make a cruise of from six to eight weeks each summer, to accept a commission as Ensign, USN, or Second Lieutenant, USMCR, upon graduation, and to serve on active duty for four years after commissioning unless earlier released by the Navy Department. If they do not desire to remain in the Regular Navy or Marine Corps, they are ordered to inactive duty in the Naval Reserve or Marine Corps Reserve, for two years. At the end of this period their obligation to the Navy, or Marine Corps, is fulfilled. Students in this classification will not be entitled to receive simultaneous education benefits under the G.I. Bill.

Contract Students
These students are enrolled under the provision of Public Law 88-647. They are uniformed at government expense and during their junior and senior years are paid retainer pay of $40.00 per month. They must obligate themselves to complete the prescribed Naval Science curriculum, to make one summer cruise of approximately six weeks during the summer between their junior and senior year; and to accept a commission on graduation as Ensign, USNR or Second Lieutenant, USMCR.
In consideration for the benefits accrued by reason of membership in the Contract NROTC Program, the student is required to enlist in the U. S. Naval Reserve or Marine Corps Reserve for a period of six years prior to starting the junior year. These students are deferred from the draft, but must agree to serve on active duty for not less than three years after appointment to commissioned rank in the U. S. Naval Reserve or Marine Corps Reserve and to retain their commission until the sixth anniversary of receipt of original commission. After receiving their commissions, application may be made for a commission in the Regular Navy or Marine Corps. Students receiving these benefits may receive them in addition to G.I. Benefits to which they are entitled.

Naval Science Students

A limited number of students may enroll as Naval Science students. Normally these students are potential replacements for vacancies among Contract students. Those enrolled as Naval Science students take Naval Science courses as electives and have no contract with the Navy. They have no assurance of ultimate commissioning nor do they derive any of the benefits available to Regular and Contract students. They have no draft deferments.

Selection Procedure

Regular Students are selected in nation-wide competitive examinations held in December and the NROTC at Georgia Tech has no part in this selection, although information about the Regular Program is available. In addition, a faculty committee annually nominates one contract freshman to the Chief of Naval Personnel for a regular scholarship.

To apply for the Contract Program, a student must:
1. Be enrolled in Georgia Tech.
2. Be at least 17 and not over 21 years of age.
3. Be unmarried and never have been married.

Applicants are selected to fill the quota based on:
1. Physical qualifications.
2. Interview by Naval officers.
3. Score on Navy examination.
4. High School record.

Applicants for the contract program should apply at the Naval Armory during the first day of Freshman Orientation Week for the Fall Quarter.

Naval Science students are selected in limited numbers only, usually to fill potential vacancies among Contract Students.

Three candidates may be nominated each year by the President of the Georgia Institute of Technology for competitive examinations for entrance to the United States Naval Academy. These nominations are normally made during the Winter Quarter from freshman Contract students.

Curriculum

All NROTC students follow the same curriculum during their freshman year, attending three (3) hours of Naval Science class and one (1) hour of associated laboratory or drill each week.

Sophomore students follow the same curriculum, attending three (3) hours of Naval Science class and one (1) hour of associated laboratory or drill each week, except that Mechanical Engineering students in good standing may
Naval Science / 169

substitute upon request of the Professor of Naval Science N.S. 233 (0-1-0) for N.S. 223 (3-1-2) without being required to make up the credit hours. Students desiring Supply Corps or Marine Corps commissions, submit applications to follow subject curriculum during their junior and senior years.

Junior Line students will attend three (3) hours of Naval Science class and two (2) hours of associated laboratory and drill each week.

Junior Marine Option and Supply Option students will attend three (3) hours of Naval Science class appropriate to the type of commission sought and two (2) hours of associated laboratory and drill each week, except that during the third quarter, General Psychology (Psy. 303) or Industrial Psychology (Psy. 401) will be studied in lieu of Naval Science. Students during this quarter will attend the appropriate laboratory or drill sessions with no additional credit being earned.

Senior Line students will attend three (3) hours of Naval Science class and two (2) hours of associated laboratory and drill each week, except during the first quarter, when General Psychology (Psy. 303) or Industrial Psychology (Psy. 401) will be studied in lieu of Naval Science. Students during this quarter will attend appropriate Naval Science laboratory and drill for which no additional credit will be earned.

Senior Marine Option and Supply Option students will attend three (3) hours of Naval Science class and appropriate laboratory and drill each week.

No more than six (6) hours of credit in Basic Naval Science courses and no more than nine (9) hours of credit in Advanced Naval Science courses may be applied toward a degree.

Courses of Instruction

NOTE: 3-2-3 means 3 hours class, 2 hours laboratory, 3 hours credit.

N.S. 111. Naval Orientation and Introduction to History of Sea Power 3-1-2.

A study of the NROTC program and the Naval Service, its mission, ideals, standards, traditions, customs and the duties required of the midshipman. Also an introduction to the study of the influence of sea power on history.

A study of the concepts of sea power from early world history until the rise of the United States as a world sea power stressing: (1) the influence of sea power upon history; (2) the evolution of naval tactics; (3) the rationale of strategic decision; (4) the development of naval weapons; (5) the characteristics of successful leadership; and (6) the evolution of amphibious doctrine.

A study of the concepts of sea power from the rise of the United States as a world sea power until the present, stressing: (1) the influence of sea power upon history; (2) the evolution of naval tactics; (3) the rationale of strategic decision; (4) the development of naval weapons; (5) the characteristics of successful leadership; and (6) the evolution of amphibious doctrine.

A study of the science of ballistics, stressing the application of physics and trigonometry. A study of the design of naval weapons and the principles of hydraulic and pneumatic systems as applied to weapon design. A study of the principles of electrical and electro-hydraulic systems as ap-
plied to the control and operation of naval weapons. Solution of fire control problems by computer systems.

N.S. 222. Naval Weapons—Part II and Naval Engineering—Part I
3-1-2.
A study of the employment of weapon systems in fleet operations with special emphasis on guided missiles. A study of future trends and an introduction to space technology. A study of the general physics and chemistry as applied to naval propulsion plants and ship systems.

N.S. 223. Naval Engineering—Part II
3-1-2.
A study of the principles and applications of marine stability. An introduction to the physics of nuclear power. A study of the principles of nuclear reactors and the problems connected with these power plants. (Mechanical Engineering majors in good standing may be excused from this course upon request.)

N.S. 233. Naval Science Laboratory
0-1-0.
Naval laboratory exercises and military drill. No preparation is required and no tests will be given. The grade of "S" will be given for satisfactory completion of this course. Aptitude marks will be assigned.

N.S. 344. Navigation—Part I
3-2-3.
A study of the sciences and mathematical techniques involved in the solution of navigational aids, instruments, tables, and almanacs. Introduction to celestial navigation.

3-2-3.
A study of the science of celestial navigation by application of the theory and principles of nautical astronomy and spherical trigonometry. Introduction to the elements and principles of operations at sea.

N.S. 346. Naval Operations—Part II
3-2-3.
A study of the elements and principles of operations at sea designed to provide an understanding of command responsibility and to develop command capabilities. The following studies are emphasized: (1) international and U.S. regulations governing waterborne traffic, (2) current tactical doctrine, (3) relative motion problems, and (4) offensive and defensive employment of naval forces, (5) fleet communications and electronic countermeasures, and (6) the relationship of meteorological phenomena to operations at sea.

N.S. 443. Principles and Problems of Leadership—Part I
3-2-3.
This course is divided into two phases. Phase one is a study of the fundamental functions of management—planning, organizing, activating, and controlling; with emphasis upon the responsibility of naval officers in connection therewith. Phase two emphasizes the naval officer's leadership responsibility in connection with administration, education, training, and morality. Supporting this is a brief study of the naval judicial system and the role of discipline in leadership.

N.S. 444. Naval Science Laboratory
0-2-0.
Naval laboratory and military drill. Laboratory exercises cover case studies of situations requiring exercise of human understanding and leadership; military drill emphasizes leadership. No preparation is required and no tests will be given. The grade of "S" will be given for satisfactory completion of this course. Aptitude marks will be assigned. This course must be taken by all Line Senior Midshipmen during the Fall Quarter. Psychology 303 or 401 should be scheduled concurrently with this course, unless previously scheduled due to requirements of major.
N.S. 445. Principles and Problems of Leadership—Part II
3-2-3.
A study of concepts of leadership, effective group communication, relationships between the leader and the group, motivation of a group, and the role of mental health in management of personnel.

Supply Corps Option

N.S. 351. Naval Science Laboratory
0-2-0.
Supply Corps laboratory exercises and military drill, emphasizing leadership. No preparation is required and no tests will be given. The grade of “S” will be given for satisfactory completion of this course. Aptitude marks will be assigned. This course must be taken by all Junior Supply Corps Option Midshipmen during the Spring Quarter. Psychology 303 or 401 should be scheduled concurrently with this course.

N.S. 352. Supply Organization and Logistics, Naval Finance
3-2-3.
Supply Organization and Logistics is a study of the Naval material logistic support which deals with the procurement and distribution of required material. Naval Finance is a study of the basic fiscal functions of the Department of the Navy and the legislative action involved in the Federal Budget system.

N.S. 353. Naval Accounting, Basic Supply Afloat
3-2-3.
Naval Accounting is a study of the fidelity and statistical accounting methods employed by the Navy. Basic Supply Afloat is a study of the organization and administration of a supply department aboard ship.

N.S. 451. Advanced Supply Afloat—Part I
3-2-3.
A study of the management methods employed by a supply officer aboard ship. It includes the following areas: procurement, inventory control, distribution, and financial management of material.

N.S. 452. Advanced Supply Afloat—Part II
3-2-3.
A continuation of the study of management methods employed by a supply officer covering the procurement, merchandising and accounting procedures for conducting retail sales.

N.S. 453. Principles and Problems of Leadership
3-2-3.
A study of the basic principles, problems, and techniques for effective management and leadership. Includes case studies of leadership situations. The Midshipman is also given an introduction to military law, the administration of courts-martial, and the role of discipline in leadership.

Marine Corps Option

N.S. 361. Naval Science Laboratory
0-2-0.
Marine Corps laboratory exercises and military drill, emphasizing leadership. No preparation is required and no tests will be given. The grade of “S” will be given for satisfactory completion of this course. Aptitude marks will be assigned. This course must be taken by all Junior Marine Corps Option Midshipmen during the Spring Quarter. Psychology 303 or 401 should be scheduled concurrently with this course.

N.S. 362. Modern Basic Strategy and Tactics
3-2-3.
A study of the science of modern strategy and tactics, emphasizing the nine Principles, four Strands, and three Variables of military operations.

N.S. 363. Evolution of the Art of War—Part I
3-2-3.
A study of military history, emphasizing the development of the Art of War from the earliest recorded time through World War I.
N.S. 461. Evolution of the Art of War—
Part II and Amphibious Warfare—Part I
3-2-3.
A study of the evolution of the
Art of War from the end of World
War I to the present, with particular
emphasis on amphibious operations.

N.S. 462. Amphibious Warfare—Part II
3-2-3.
A study of the current U. S. am-
phibious warfare doctrine with par-
ticular emphasis on strategic deci-
sion in relation to amphibious war-
fare and the tactical employment of
amphibious weapons.

N.S. 463. Principles and Problems of
Leadership
3-2-3.
A study of the basic principles,
problems and techniques of military
leadership. Includes case studies of
leadership situations. The midship-
man is also given an introduction to
military law, the administration of
courts-martial and the role of dis-
cipline in leadership.
General Information

The School of Nuclear Engineering administers programs leading to degrees of Master of Science and Doctor of Philosophy. Students with undergraduate backgrounds in Mechanical Engineering, Chemical Engineering and other phases of engineering are eligible to apply for admission. In certain cases, students with backgrounds in Physics or Chemistry may also be considered. The intent of these degree programs in nuclear engineering is to provide suitable educational experience to carefully selected students for careers which require specialized knowledge of nuclear energy and its applications. The programs at the M.S. level are set up with three kinds of emphasis — reactor engineering; radiation utilization, and radiological safety — and the respective curricula are constructed from various combinations of the nuclear engineering courses listed below, supplemented with courses in other departments as needed:

<table>
<thead>
<tr>
<th>N.E. No.</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Reactor Technology I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>602</td>
<td>Reactor Technology II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>610</td>
<td>Radiation Detection</td>
<td>2-6-4</td>
</tr>
<tr>
<td>611</td>
<td>N.E. Laboratory I</td>
<td>1-6-3</td>
</tr>
<tr>
<td>612</td>
<td>N.E. Laboratory II</td>
<td>1-6-3</td>
</tr>
<tr>
<td>613</td>
<td>N.E. Laboratory III</td>
<td>1-6-3</td>
</tr>
<tr>
<td>620</td>
<td>N.E. Design</td>
<td>2-6-4</td>
</tr>
<tr>
<td>625</td>
<td>Reactor Calculations</td>
<td>3-0-3</td>
</tr>
<tr>
<td>630</td>
<td>Reactor Control</td>
<td>2-3-3</td>
</tr>
<tr>
<td>640</td>
<td>Radiation Protection</td>
<td>3-0-3</td>
</tr>
<tr>
<td>676</td>
<td>Reactor Physics I</td>
<td>4-0-4</td>
</tr>
<tr>
<td>677</td>
<td>Reactor Physics II</td>
<td>4-0-4</td>
</tr>
<tr>
<td>679</td>
<td>Radiation Attenuation</td>
<td>3-3-4</td>
</tr>
<tr>
<td>680</td>
<td>Advanced Reactor Theory</td>
<td>5-0-5</td>
</tr>
<tr>
<td>681</td>
<td>Radioactive Waste Disposal</td>
<td>3-0-3</td>
</tr>
<tr>
<td>730</td>
<td>Radiation Effects on Materials</td>
<td>3-0-3</td>
</tr>
<tr>
<td>732</td>
<td>Radioisotopes Engineering</td>
<td>3-0-3</td>
</tr>
<tr>
<td>734</td>
<td>Space Power and Energy Conversion I</td>
<td>3-0-3</td>
</tr>
<tr>
<td>735</td>
<td>Space Power and Energy Conversion II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>736</td>
<td>Nuclear Propulsion</td>
<td>3-0-3</td>
</tr>
<tr>
<td>740</td>
<td>Radiation Dosimetry</td>
<td>3-0-3</td>
</tr>
<tr>
<td>741</td>
<td>Applied Radiological Physics</td>
<td>2-3-3</td>
</tr>
</tbody>
</table>
A thesis or equivalent work in special problems is encouraged as part of each M.S. program, but approved courses or satisfactory performance at an approved nuclear engineering practice school (e.g. Summer Engineering Practice School conducted by the Associated Midwest Universities at Argonne National Laboratory) may be substituted in place of the thesis.

The Ph.D. program is designed with even greater latitude so as to capitalize on variations in experience as well as interests of each student. The graduate bulletin reveals over one hundred additional graduate courses closely relevant to nuclear engineering. Conspicuous among these are courses such as: Ch.E. 630, 631, Radiochemical Separation Processes; Ch.E. 632, Nuclear Processing Kinetics; Biol. 630, Biological Effects of Radiation; and others.

Excellent facilities now exist for the support of these graduate programs. The Radioisotope and Bioengineering Laboratory and the Frank H. Neely Nuclear Research Center provide Georgia Tech with an outstanding research capability in fields of interest to nuclear engineering. Included are a heavy-water moderated, five-megawatt research reactor, hot cells for handling highly radioactive materials remotely, a 12,000 curie cesium-137 radiation source, a one-million-volt Van de Graaff accelerator, a reactor simulator, and an array of instruments for radiation measurements. Additional assets of extreme importance are the Price Gilbert Memorial Library, with its collection of A.E.C. documents, and the Rich Electronic Computer Center.

Undergraduate students contemplating future academic programs in nuclear engineering are encouraged to take a course in modern physics, such as Physics 319, and their attention is invited to any one of the pertinent senior-level electives, such as M.E. 447, Ch.E. 411, or Physics 439.

For further information, please contact the Director, School of Nuclear Engineering or the Dean, Graduate Division.
Department of Physical Training

Department Head—A. M. Coleman; Professors—Lyle Welser, *Frederick R. Lanoue; Associate Professors—Norris C. Dean, James H. McAuley, Tommy Plaxico; Assistant Professors—John C. Hyder, Byron Gilbreath, and Robert Nelson; Instructor—Douglas L. Fowlkes; Secretary—Mrs. Forest H. McGeary.

General Information

All male students entering Georgia Institute of Technology as freshmen or sophomores are required to take Physical Training 4 hours per week, receiving 1 hour credit. The schedule will call for two two-hour periods on alternate days; one hour for physical training, thirty minutes for dressing and thirty minutes for shower. The annual physical examinations (see page 29) will determine any exemptions from physical training. Students bringing certificates of disability from personal physicians must have the certificates endorsed by the school physician before they will be accepted by the department.

All male freshman and sophomore students will be required to take Physical Training, except the following who will be exempt: Students not physically able; students twenty-one years of age, or over, on first admission to the Georgia Institute of Technology; and students transferring from accredited colleges with at least eight quarter credit hours. Students transferring to the Georgia Institute of Technology with sophomore standing will be required to take three quarters of Physical Training only. Students may register for only one Physical Training course per quarter.

Note: Men excused from Physical Training are not required to make up the credit hours in additional subjects.

Students taking physical training will be required to purchase a standard uniform consisting of a sweat shirt, gym pants, athletic supporter, socks and shoes. The uniform will be sold at cost and normally should not exceed $12. Locker facilities for those living neither on the campus nor in nearby fraternity houses may be secured by a two-dollar deposit with a refund of $1.50 at the end of the school year if the lock and locker are surrendered in good condition. Dressing room space, showers and towels are provided all students free of charge.

Freshman Physical Training

The object of these courses is to give the students sound basic concepts regarding exercise, physical fitness, and water safety, and to motivate them into achieving and maintaining these goals. One quarter will be devoted to swimming, one to physical fitness, orientation, gymnastics, and one to track. Swimming, tumbling, apparatus work, calisthenics, walking and running are basic to well rounded, sound physical development.

At the end of the year, students who make sufficient progress will be sent on to sophomore physical training.

*Deceased, March 20, 1965.
P.T. 101. Swimming

The primary objective of this course is SURVIVAL, and it is designed to "drown-proof" our students. Emphasis is placed on developing the ability to successfully handle typical Armed Forces swimming emergencies, such as cramps, disabling injuries, and long submersions. The application of basic mechanical principles is stressed to make students think for themselves, rather than accept dogmatic statements.

P.T. 102. Physical Fitness, Orientation, and Gymnastics

The purpose of the course will be to help orient the student through actual experience to some of the basic factors of physical fitness and to show how these factors tie in with greater achievement, not only in performing gymnastic movements, but with better all around physical performance and with higher social standards through life. Through the medium of 70 carefully chosen skills, it will be the goal to develop an appreciation of the significance of good coordination, efficiency of movement, rhythm, kinesthetic sense, confidence, courage, good form and team work, plus a wholesome, practical philosophy of the real value of exercise and of keeping physically fit. Each student shall earn his grade points and 60 points is essential as a minimum to pass the course. Points shall be distributed as follows:

Points

1. First fitness test __________ 10
2. Second fitness test __________ 20
3. Sixty of the seventy skills at 1 point each __________ 60

4. Attitude, hygienic practices and sportsmanship __________ 10

100

P.T. 103. Track

Instruction and practice will be given in starting, striding, use of the arms in running, and body lean. The object of the course is to build strong legs and to increase lung and heart capacity. The minimum score to pass the course is an average grade of 60.

Grade Scale:

100 Yd. Dash

<table>
<thead>
<tr>
<th>Grade</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11 to 11.5 sec.</td>
</tr>
<tr>
<td>B</td>
<td>11.5 to 12 sec.</td>
</tr>
<tr>
<td>C</td>
<td>12 to 12.5 sec.</td>
</tr>
<tr>
<td>D</td>
<td>12.5 to 13 sec.</td>
</tr>
</tbody>
</table>

220 Yd. Dash

<table>
<thead>
<tr>
<th>Grade</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>26 to 27 sec.</td>
</tr>
<tr>
<td>B</td>
<td>27 to 28 sec.</td>
</tr>
<tr>
<td>C</td>
<td>28 to 29 sec.</td>
</tr>
<tr>
<td>D</td>
<td>29 to 30 sec.</td>
</tr>
</tbody>
</table>

Quarter Mile Run (440 Yds.)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>58 to 63 sec.</td>
</tr>
<tr>
<td>B</td>
<td>63 to 68 sec.</td>
</tr>
<tr>
<td>C</td>
<td>68 to 73 sec.</td>
</tr>
<tr>
<td>D</td>
<td>73 to 78 sec.</td>
</tr>
</tbody>
</table>

Half Mile Run (880 Yds.)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2 min. 30 sec. to 2 min. 40 sec.</td>
</tr>
<tr>
<td>B</td>
<td>2 min. 40 sec. to 2 min. 50 sec.</td>
</tr>
<tr>
<td>C</td>
<td>2 min. 50 sec. to 3 min.</td>
</tr>
<tr>
<td>D</td>
<td>3 min. to 3 min. 10 sec.</td>
</tr>
</tbody>
</table>

Mile Run

<table>
<thead>
<tr>
<th>Grade</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5 min. 30 sec. to 5 min. 50 sec.</td>
</tr>
<tr>
<td>B</td>
<td>5 min. 50 sec. to 6 min. 10 sec.</td>
</tr>
<tr>
<td>C</td>
<td>6 min. 10 sec. to 6 min. 30 sec.</td>
</tr>
<tr>
<td>D</td>
<td>6 min. 30 sec. to 6 min. 50 sec.</td>
</tr>
</tbody>
</table>

Sophomore Physical Training

This is a maintenance course. The condition developed in the freshman year will be maintained and at the same time skills will be taught in games and other events that appeal to young men. One quarter will be devoted to indoor games, one to outdoor games and one to recreative sports.
P.T. 201. Indoor Games

Basketball will be the game on which the majority of effort will be concentrated. As the physical training facilities are expanded other games may be added. The basic fundamentals of the games will be demonstrated and practiced. After the class has developed, some skill teams will be organized for actual competition.

P.T. 202. Outdoor Games

Softball, touch football and soccer are the basic games for this course. This course is an exact parallel to the Indoor Games in the methods used and in the instruction and play arrangement.

P.T. 203. Recreative Sports

The class will receive instruction in the fundamentals of tennis, volleyball, or paddle ball. The purpose of the course is to provide recreational exercise and to develop an appreciation of these carry-over sports as recreation and as a means of maintaining a moderate level of physical fitness.

The student shall be graded on the proficiency he demonstrates in these sports. Attendance, attitude, and effort—except when inadequate—shall be considered only to the extent that their diligent application invariably results in greater proficiency.
School of Physics
(Established in 1939)

General Information

Physics is a pure science. The goal of physicists is to gain understanding of the natural world. The techniques by which such understanding is gained include observation, controlled experiment, inductive reasoning, and the formulation of principles susceptible to experimental testing. A physicist is seldom concerned with exploiting the practical applications of his discoveries; he may not even be interested in whether or not any such applications exist. Curiosity is his driving force, and its satisfaction is his principal reward.

Because the science of physics is fundamental to most of technology, and underlies many of the other sciences, the study of physics is a basic part of almost all undergraduate curricula in science and technology. The Georgia Tech School of Physics provides introductory courses for all students, and advanced elective courses as requested by other schools of the Institute. These courses provide a knowledge of physical principles on which science and engineering students can build an understanding of their own disciplines.

The curriculum for physics majors provides courses in classical physics and in modern physics including quantum mechanics, molecular, atomic, nuclear, and solid state physics. At the same time it provides a liberal number of elective hours by the use of which a student can follow his intellectual interests where they lead him. In the advanced undergraduate laboratories he uses research grade equipment to investigate for himself the phenomena which are occupying the attention of contemporary physicists. He also performs many of the landmark experiments in physics. Graduates from this program can and do compete successfully with other students in the job markets. The better graduates are equipped (if they have used their electives to this end) to enter graduate school.

The Georgia Tech School of Physics offers work leading to the degrees of Master of Science in Physics and Doctor of Philosophy in Physics. The faculty members who are conducting the research and teaching the courses in the graduate program participate actively in the undergraduate programs as well.
Option in Geophysics

A designated option in Geophysics is available, and students who wish this specialization should follow a different course of study in the junior and senior years as indicated below for this option. This course of study prepares students for work in geophysics, including the application of scientific methods to geophysical exploration.

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Draw.</td>
<td>113</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>Algebra-Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytical Geometry and Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.L.</td>
<td>**</td>
<td>Modern Language OR</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC</td>
<td>***</td>
<td>Basic ROTC (optional)</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-7-16 14-13-18 14-7-16

**Choice of M.L. 101-2-3, German; M.L. 107-8-9, French; or M.L. 113-14-15, Spanish. Three quarters of either M.L. or S.S. are required. German is recommended for students who expect to take graduate work after obtaining the bachelor's degree. It may be taken in the freshman year, or in any other year as an approved elective.

***ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng.</td>
<td>201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>305*</td>
<td>Differential Equations</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys.</td>
<td>207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>or 217-18-19</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td></td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC</td>
<td>***</td>
<td>Basic ROTC (optional)</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 13-7-15 13-7-15 14-7-16

*Math. 304, plus an additional hour of elective credit, may be substituted for Math. 305 and 306.

***ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 315</td>
<td>Public Speaking</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 306</td>
<td>Differential Equations</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Phys. 305</td>
<td>Laboratory Electronics</td>
<td>3-6-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 308</td>
<td>Intermediate Electricity</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 310</td>
<td>Electricity and Magnetism</td>
<td>5-6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 320</td>
<td>Mechanics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 331</td>
<td>Quantum Mechanics of Solids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 409</td>
<td>Atomic Physics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 422</td>
<td>Light</td>
<td></td>
<td></td>
<td>5-6-7</td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Economics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Approved Electives**</td>
<td></td>
<td>3-0-3</td>
<td>5-0-5</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 313</td>
<td>Nuclear Physics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 315</td>
<td>Experimental Physics I</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 412*</td>
<td>Electricity and Magnetism</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 415</td>
<td>Experimental Physics II</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 416*</td>
<td>Experimental Physics III</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 424</td>
<td>Thermo. and Kinetic Theory</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 427*</td>
<td>Quantum Mechanics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 431*</td>
<td>Molecular and Solid State Phys.</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives **</td>
<td></td>
<td>9-0-9</td>
<td>9-0-9</td>
<td>9-0-9</td>
</tr>
</tbody>
</table>

Totals: 17-6-19 16-6-18 17-6-19

*Approved electives may be substituted for these courses, but students making such substitutes will not in general be recommended for graduate work.

**Electives must include 6 hours of humanities from list on page 34. Not more than 9 hours of electives may be in advanced ROTC.

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 313</td>
<td>Nuclear Physics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 315</td>
<td>Experimental Physics I</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 412*</td>
<td>Electricity and Magnetism</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 415</td>
<td>Experimental Physics II</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 416*</td>
<td>Experimental Physics III</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 424</td>
<td>Thermo. and Kinetic Theory</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 427*</td>
<td>Quantum Mechanics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 431*</td>
<td>Molecular and Solid State Phys.</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives **</td>
<td></td>
<td>9-0-9</td>
<td>9-0-9</td>
<td>9-0-9</td>
</tr>
</tbody>
</table>

Totals: 17-6-19 17-6-19 17-6-19

Junior Year

(geophysics option)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 315</td>
<td>Public Speaking</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 201</td>
<td>General Geology</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 202</td>
<td>General Geology Laboratory</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 305</td>
<td>Historical Geology</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 307</td>
<td>Historical Geology Laboratory</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 310</td>
<td>Crystallography and Tests</td>
<td>1-3-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. 414</td>
<td>Mineralogy</td>
<td>2-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 306</td>
<td>Differential Equations</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 305</td>
<td>Laboratory Electronics</td>
<td>3-6-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 308</td>
<td>Intermediate Electricity</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 310</td>
<td>Electricity and Magnetism</td>
<td>5-6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 320</td>
<td>Mechanics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 409</td>
<td>Atomic Physics</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Electives***</td>
<td></td>
<td>3-0-3</td>
<td>5-0-5</td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Totals: 15-12-19 16-6-18 17-6-19
Senior Year
(geophysics Option)

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng.</td>
<td>320</td>
<td>Technical Writing</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys.</td>
<td>313</td>
<td>Nuclear Physics</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys.</td>
<td>315</td>
<td>Experimental Physics I</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys.</td>
<td>424</td>
<td>Thermo. and Kinetic Theory</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Geol.</td>
<td>313</td>
<td>Economic Geology Laboratory</td>
<td>0-3-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol.</td>
<td>418</td>
<td>Petrography</td>
<td></td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Geol.</td>
<td>443</td>
<td>Advanced Engr. Geology</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>204</td>
<td>Economics</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

*Approved Electives***

<table>
<thead>
<tr>
<th>7-0-7</th>
<th>10-0-10</th>
<th>13-0-13</th>
</tr>
</thead>
</table>

Totals 15-12-19 18-3-19 19-0-19

*Electives must include 6 hours of humanities from list on page 34. Not more than 9 hours of electives must be in advanced ROTC.

***Including a minimum of 9 hours chosen from Phys. 325, 412, 415, 422, 427, and 431.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Phys. 207. Mechanics
5-3-6. Prerequisite: Math 201 or concurrent.

Physics 207-8-9 together constitute a thorough course in basic physics for engineers. The five hours of class include one or two demonstration lectures per week. The solution of a large number of problems is required, and the course includes applications of the elements of calculus.

The laboratory work is designed to give practice in the art of making precise measurements, proficiency in the manipulation of apparatus and added familiarity with some of the concepts of physics. The theory of errors is stressed enough to give students the ability to decide under what conditions the greater expense of more precise measurement is justified.

Text: Richards, Wehr, Sears, Zeman
sky, Modern University Physics.

Phys. 208. Electricity
5-3-6. Prerequisites: Phys. 207, Math. 201.

Electricity and related phenomena taught as a part of the basic physics course described under Physics 207.

Text: Richards, Wehr, Sears, Zemansk
y, Modern University Physics.

Phys. 209. Heat, Sound and Light
5-3-6. Prerequisites: Phys. 208, Math. 201.

Heat, sound, light and atomic physics taught as a part of the basic physics course described under Physics 207.

Text: Richards, Wehr, Sears, Zeman
sky, Modern University Physics.

Phys. 211, 212, 213. Elementary College Physics
4-0-4. Prerequisite: Math. 102, Phys. 211 is prerequisite to Phys. 212 or 213.

This sequence of courses is designed to meet the needs of the students in the less technical curricula. It includes a basic study of the physical principles of Mechanics, Sound, Heat, Electricity, Light and Modern Physics. Mathematics below the level of calculus is used freely to provide practice in the use of mathematics in logical reasoning. The method of teaching and the subject matter are chosen to give an understanding of the scientific methods and to give a background of scientific information and terminology which is needed today to comprehend the commercial, cultural, and political significance of scientific progress.

Text: Greene, Principles of Physics.
Phys. 217, 218, and 219. General Physics 5-3-6. These courses may be used respectively instead of Physics 207, 208, and 209 by engineering and science students who have a particular interest in physics. They may be taken only with the approval of the School of Physics and are restricted to those who can be expected to make a grade of B or better in mathematics and physics.

Text: Resnick and Halliday, Physics for Students of Science and Engineering.

Phys. 244. Introduction to Astronomy 3-0-3. Prerequisite: Math. 201, or concurrently.

A survey of astronomy with special emphasis on the applications of physics to astronomical problems. The nature and behavior of the earth, the other planets, stars, and stellar systems will be examined.

Text: Struve, Elementary Astronomy.

Phys. 305. Laboratory Electronics 3-6-5. Prerequisite: Physics 310. Restricted.

The properties of electronic devices considered as circuit elements, and their use in circuits which are frequently encountered in experimental physics, including power supplies, amplifiers, oscillators, electronic meters, electronic relays and scalars.

Text: Malmstadt, Electronics for Scientists.

This course covers electric charge, current, electric fields, magnetic fields, potential, resistance, inductance, capacitance and sources of emf. These fundamentals are taught with the free use of differential and integral calculus.

Text: Whitmer, Electromagnetics.

The definition and measurement of fundamental electric and magnetic quantities, and a study of relationships that exist among them under various conditions of physical constraint. Constant, transient, and sinusoidal currents at all frequencies; capacitive and inductive effects; electric oscillations; and lines with distributed properties.

Text: Notes.

Text: Kaplan, Nuclear Physics.

A selected group of experiments to parallel Phys. 313. Among those performed are the Oil Drop Experiment, ratio e/m, conduction through gases, X-ray absorption and diffraction, absorption of alpha, beta, and gamma rays, measurement techniques with electroscopes and Geiger counters, half-lives of radioactive materials and artificial radioactivity.

Phys. 319. Modern Physics for Engineers 3-0-3. Prerequisites: Phys. 207-8-9 with a minimum grade of C.

This course covers the more recent developments of physics which are of particular importance for engineers. It includes the structure of bulk matter, the structure of atoms, the properties of elementary particles, the fundamentals of nuclear physics, and the interaction of radiation with matter.

Phys. 320. Mechanics
5-0-5. Prerequisites: Phys. 308, Math. 306, or concurrently.
Statics and dynamics of rigid bodies, with vector analysis and with application to oscillations, planetary motion, rotation of a rigid body, and impact.
Text: Constant, *Theoretical Physics, Mechanics*.

Phys. 325. Kinetic Theory and Statistical Mechanics
3-0-3. Prerequisites: Math. 304 or 305 concurrent, Phys. 209 or 219.

Phys. 331. Elementary Quantum Theory of Solids
3-0-3. Prerequisites: Phys. 209, Math. 305 or concurrent or consent of instructor.
Introduction to quantum mechanics of one dimensional systems with applications to elementary solid state physics. Emphasis will be placed on the electrical properties of solids.

Phys. 405. Electronic Phenomena
3-0-3. Prerequisites: Phys. 308 or equivalent, Phys. 409.
The physics of electronic phenomena. The subject matter includes the motion of charged bodies in electric and magnetic fields, the basic phenomena of gaseous electronics, the conduction of electricity through gases, electric discharges.

Phys. 409. Atomic Physics
3-0-3. Prerequisites: Physics 320, Math. 305.
The mass and charge of atomic particles. The structure of atoms. Optical spectra. Excitation and ionization potentials. Photoelectricity. The production and absorption of X-rays. The wave nature of material particles.

Phys. 412. Electric and Magnetic Fields
5-0-5. Prerequisites: Phys. 308 and 310, Math. 306.
Development of Maxwell's equations and their application to radiation problems and to the transmission of guided electromagnetic waves.

Phys. 415. Experimental Physics II
0-6-2. Prerequisite: Phys. 315, Phys. 320. Restricted.
Special experiments from various fields of physics. Emphasis is placed on good laboratory technique.

Phys. 416. Experimental Physics III
0-6-2. Prerequisite: Phys. 305. Restricted.
A continuation of Phys. 415.

Phys. 422. Light
5-6-7. Prerequisites: Phys. 209, Math. 306 or concurrent.
Text: Jenkins and White, *Fundamentals of Optics*.

Phys. 424. Thermodynamics and Kinetic Theory
5-0-5. Prerequisites: Phys. 209, Math. 304 or Math. 306, or concurrent.
Phys. 427. Elementary Quantum Mechanics
Historical introduction, Schrödinger's equation, and probabilistic interpretation of quantum mechanics. Solutions of Schrödinger's equation in one dimension: free particle, wavepackets, particle in a box, and linear oscillator. Rigid rotator. Applications to atomic structure.
Text: Park, *Introduction to Quantum Theory*.

Phys. 429. Special Problems
1-3-2. Prerequisite: The scheduling of this course must be approved by the School of Physics.
Each student is required to give extended study to some problem in physics to develop research technique, and to become familiar with the use of the library in physics.

Phys. 431. Elementary Molecular and Solid State Physics
3-0-3. Prerequisite: Physics 409, Phys. 427.
Elementary wave mechanics applied to explain some of the properties of solids and molecular gases. Molecular spectra, binding forces in molecules and solids, the free electron theory of metals, band theory of metals, semi-conductors, and transistors.

Phys. 432. Introductory Diffraction Theory
3-0-3. Prerequisite: Math. 304 or 305, Phys. 209 or 219.
Aspects of crystal symmetry and introductory theory common to electron, neutron, and X-ray diffraction are treated. The reciprocal lattice and geometric portion of the kinematic theory are developed from the Laue-Ewald point of view. Treatment of coherent scattering from continuous distributions is introduced.

Phys. 438. Vibrations and Wave Motion
3-0-3. Prerequisite: Phys. 320.
Oscillations and wave motion of discrete and continuous mechanical systems. The course will emphasize the application to physical systems of the Laplace transform, Fourier series, Matrix theory, difference equations, integral equations, and orthogonal functions.

Phys. 439. Introductory Nuclear Reactor Physics
3-0-3. Prerequisites: Phys. 209 and Math. 304 or Math. 306 concurrently.
Review of nuclear physics including binding-energy, fission, neutron cross-sections and interactions. Basic theory of neutron chain reactions and the diffusion approximation. Calculations of critical mass and composition of elementary reactor systems.

Phys. 497. Theory of Measurements and Instrumentation
3-0-3. Prerequisites: Math. 306 and consent of instructor.
An operational consideration of physical measurements and measuring instruments. The topics to be covered include sensitivity; time of response; precision; accuracy; types of errors and the extent to which they may be dealt with by the "theory of errors"; thermal noise as the limit of precision in instruments; instruments that "count" compared with those that give some proportional response; and instrument design. Specific instruments are considered as examples of general principles.
Graduate Courses Offered

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 613</td>
<td>Physical Crystallography</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 614</td>
<td>Introductory Solid State Physics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 616</td>
<td>Statistical Mechanics I</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 621</td>
<td>Theoretical Mechanics</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 624</td>
<td>Nuclear Physics</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 627</td>
<td>Introduction to Quantum Mechanics</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 628</td>
<td>Electromagnetic Theory I</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 631</td>
<td>Principles of Modern Physics II</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 633</td>
<td>An Introduction to Collision Theory</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 675</td>
<td>Principles of Nuclear Physics</td>
<td>4-0-4</td>
</tr>
<tr>
<td>Phys. 676</td>
<td>Neutron and Reactor Physics</td>
<td>4-0-4</td>
</tr>
<tr>
<td>Phys. 679</td>
<td>Radiation Attenuation</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Phys. 680</td>
<td>Nuclear Reactor Theory</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 682</td>
<td>Plasma Physics and Thermonucleonics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 714</td>
<td>Optical Properties of Solids</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 715</td>
<td>Quantum Mechanics of Many-Particle Systems</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 721</td>
<td>Advanced Classical Mechanics</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 724</td>
<td>Theoretical Nuclear Physics</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 727</td>
<td>Quantum Mechanics II</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 728</td>
<td>Electromagnetic Theory II</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 731</td>
<td>Molecular Spectra and Structure</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 734</td>
<td>Introduction to Relativity</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Phys. 736</td>
<td>Quantum Field Theory</td>
<td>5-0-5</td>
</tr>
</tbody>
</table>

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
School of Psychology

Director—Edward H. Loveland; Regents' Professor—Joseph E. Moore; Associate Professors—Richard P. Moll, M. Carr Payne, Jr., William W. Ronan; Assistant Professors—Ethel Jo Baker, C. Michael York; Lecturer—George E. Passey; Secretary—Mrs. C. Flora Chinkes.

General Information

The School of Psychology serves a dual function in the Institute. First, it offers courses which permit the student majoring in architecture, engineering, industrial management, and natural sciences to gain training in the basic and applied aspects of the science of behavior. Second, it offers programs of studies leading to the degrees, Bachelor of Science in Applied Psychology and Master of Science in Psychology. The general objective of all courses is to provide an understanding of behavior within an experimental and scientific frame of reference.

The undergraduate curriculum in psychology stresses fundamentals, providing opportunity for broad training in mathematics, chemistry, physics, biology, and a number of basic engineering, management, and humanities subjects. The large number of elective courses which the student takes enables the curriculum to fulfill a wide variety of educational and vocational needs. A small portion of elective courses are restricted; the student must choose these from lists of grouped engineering and management courses prescribed by the psychology faculty. The student is encouraged to broaden his educational development by choosing at least a portion of his unrestricted elective courses from course offerings in the humanities and the social sciences.

The graduate of the Bachelor of Science curriculum in applied psychology will be well prepared to work in personnel and training departments in industry, and to serve with a human factors research team investigating human requirements in equipment design. The curriculum provides an excellent preparation for graduate study in psychology as well as in other fields, such as medicine and labor relations.

The Master of Science program is intended to prepare the student for either or both of two activities: continuation of graduate work toward the doctorate and/or employment in business, industrial or governmental positions. The program involves intensive preparation in the theoretical and experimental foundations of psychology to which the student may add study of the applications of psychology to industrial, business or engineering problems.
Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>Inorganic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 100</td>
<td>College Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. 111-12-13</td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC): 15-13-18 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.
ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Bio. 201-2</td>
<td>Introduction to Biology</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Bio. 203</td>
<td>Comparative Anatomy</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>2-6-4</td>
</tr>
<tr>
<td>Psych. 303-4</td>
<td>General Psychology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psych. 401</td>
<td>Industrial Psychology</td>
<td>3-0-3</td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
<td>6-0-6</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC): 14-7-16 14-7-16 14-10-17

ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 205-6</td>
<td>Elementary Statistical Analysis</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Psych. 403</td>
<td>Introduction to Psychological Testing</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Psych. 405</td>
<td>Psychological Aspects of Personnel Management</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psych. 406</td>
<td>Psychological Statistics</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Psych. 407</td>
<td>Experimental Psychology</td>
<td></td>
<td></td>
<td>2-3-3</td>
</tr>
<tr>
<td>Psych. 410</td>
<td>Social Psychology</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Phys. 207</td>
<td>Mechanics</td>
<td>5-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 208</td>
<td>Electricity</td>
<td>5-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 209</td>
<td>Heat, Sound, Light</td>
<td>5-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives **</td>
<td></td>
<td>6-0-6</td>
<td>6-0-6</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals: 17-3-18 17-3-18 15-9-18

A total of not more than 9 hours of electives may be in advanced ROTC.
Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psych. 412</td>
<td>Experimental Psychology</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psych. 413***</td>
<td>Psychology of Learning</td>
<td></td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Psych. 414</td>
<td>Applied Experimental Psychology</td>
<td></td>
<td></td>
<td>3-3-4</td>
</tr>
<tr>
<td>Psych. 415</td>
<td>Special Problems</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Eng. 315</td>
<td>Special Problems</td>
<td></td>
<td></td>
<td>3-3-4</td>
</tr>
<tr>
<td>Electives **</td>
<td>Public Speaking</td>
<td>15-0-15</td>
<td>3-0-3</td>
<td>12-0-12</td>
</tr>
</tbody>
</table>

| Totals | 18-3-19 | 9-0-9 | 18-6-20|

A total of not more than 9 hours of electives may be in advanced ROTC.*

*Psychology 602 may be substituted for Psychology 413 with the approval of the School of Psychology and the Dean of the Graduate School.

Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Psy. 303. General Psychology A
3-0-3. Prerequisite: None.
This course is an intensive coverage of the methods and findings of contemporary psychology. Emphasis will be placed upon the scientific approach to the study of behavior and upon topics of maturation and development, learning, and motivation.

Psy. 304. General Psychology B
3-0-3. Prerequisite: Psy. 303.
This is a continuation of Psychology 303. Such topics as individual differences, emotion, perception, and personality will be discussed.

Psy. 400. Developmental Psychology
3-0-3. Prerequisite: Psy. 303.
A comprehensive study of the behavior and development of the child from infancy through adolescence. Emphasis will be given to the results of empirical research on experiences and processes which affect child behavior.

Psy. 401. Industrial Psychology
3-0-3. Prerequisite: None.
This course introduces the student to scientific methods of inquiry as they are utilized in the study of human behavior in industry. Emphasis is on scientific and experimental study of individual differences, human relations, psychological aspects of equipment design, learning, and motivation.

Psy. 402. Psychology of Adjustment
3-0-3. Prerequisite: Psy. 303.
This course will deal with the typical individual and the social adjustment problems of normal people. Its chief aim will be to assist the student better to understand himself and his fellow man. The primary approach will be from the viewpoint of objective psychology.

Psy. 403. Introduction to Psychological Testing
3-0-3. Prerequisite: Psy. 401.
This course deals with psychological tests and measurement. Applications in business and industry are emphasized. Uses and abuses, advantages and limitations of the more commonly used types of tests are discussed. Students have opportunities to administer, take, score, interpret, construct, and evaluate certain tests. Individual problems are assigned. The aim of the course is to provide the student with sufficient background so that, as a business or engineer, he will be able to exercise sound judgment concerning the uses of tests and measurements in the management of men.
Psy. 404. Psychology of Advertising
3-0-3. Prerequisites: Psy. 303 and 401.

An analysis of the psychological factors which govern buying activities of consumers. These and other facts are combined to establish the psychological foundations of effective advertising and selling. The psychological aspects of such topics as product testing, advertising media research, copy testing, and consumer and audience research will be discussed.

Psy. 405. Psychological Aspects of Personnel Management
3-0-3. Prerequisite: Psy. 401.

The purpose of this course is to provide prospective business and industrial executives with a knowledge of the techniques employed by industrial and personnel psychologists in industry. Such topics as the development and use of psychological tests and criterion measures, the applications of principles of learning and motivation to the construction of training programs, interviewing and counseling of employees, and the theory and construction of rating scales will be discussed in detail.

Psy. 406. Psychological Statistics
2-3-3. Prerequisite: Permission of the instructor.

A study of the applications of statistical techniques to the description, prediction, and control of human behavior. Methods of evaluating psychological tests, individual differences, merit rating scales and personnel selection and training programs will be discussed in detail. Emphasis will be placed upon the logical aspects of the statistics studied.

Psy. 407. Experimental Psychology I
2-3-3. Prerequisite: Psy. 303.

An introduction to psychological measurement and laboratory techniques. Students will plan, conduct, evaluate, and report experiments dealing with such topics as visual, auditory, tactual, and kinesthetic perception; sensorimotor coordination; and human feedback systems. Emphasis will be placed on the applications of the methods of science to the experimental study of human behavior.

Psy. 410. Social Psychology
3-0-3. Prerequisite: Psy. 303.

The behavior of the individual in society is the main concern of this course. Emphasis will be placed on the scientific study of the individual in relation to other individuals and groups.

Psy. 411. Experimental Psychology II
3-3-4. Prerequisites: Psy. 304 and 407, and permission of the instructor.

This course emphasizes quantitative methods in the scientific study of the learning process. Scientific methods of studying related topics such as motivation and thinking will also be treated.

Psy. 412. Psychology of Learning
3-3-4. Prerequisites: Psy. 401 and 411, and permission of the instructor.

The purpose of this course is to familiarize the student with the basic phenomena of learning and to acquaint him with the pertinent contemporary literature. Applications of learning principles currently being made in business, industry, and other fields will be emphasized and the possibilities of additional future applications will be discussed.

Psy. 413. Applied Experimental Psychology
3-3-4. Prerequisites: Psy. 406 and 412, and permission of the instructor.

Consideration of the applications of the methods and data of experimental psychology to practical behavior problems.
Psy. 414. Special Problems
0-3-1. Prerequisites: Psy. 406 and 411, and permission of the instructor.

The student will, under the direction of a staff member, do semi-independent work in literature review and/or experimental design.

Psy. 415. Special Problems
3-3-4. Prerequisite: Permission of instructor.

Students will work, under the direction of the instructor, on projects adding to their development beyond the scope of existing courses.

Graduate Courses Offered

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psy. 601</td>
<td>Advanced Industrial Psychology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 602</td>
<td>Applied Experimental Psychology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 603</td>
<td>Social Psychology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 604</td>
<td>Human Information Processing</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 605, 6, 7</td>
<td>Proseminar in General Psychology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 608</td>
<td>Human Motivation</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 621, 2</td>
<td>Foundations of Psychology</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 623, 4</td>
<td>Design of Psychological Experiments</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Psy. 625</td>
<td>Experimental Methods in Psychology</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Psy. 626</td>
<td>Response Evaluation</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 627</td>
<td>Human Learning</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Psy. 700</td>
<td>Master's Thesis</td>
<td></td>
</tr>
<tr>
<td>Psy. 704</td>
<td>Special Problems in Industrial Psychology</td>
<td>Credit to be arr.</td>
</tr>
<tr>
<td>Psy. 710</td>
<td>Seminar in Industrial Psychology</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

For requirements for the graduate degree in Psychology, consult the Graduate Bulletin.
Department of Social Sciences

Department Head—George Hendricks; Professors—Robert Scharf, Glenn N. Sisk; Associate Professors—Edward A. Gaston, John C. Gould, Malcolm G. Little, Willard E. Wight; Assistant Professors—Patrick Kelly, Thomas D. Philips, Charles B. Pyles, Mrs. Charlotte Tatro, Mrs. Sandra Thornton; Instructors—Numan V. Bartley, John H. Burnett; Lecturer—Morris Mitzner; Secretary—Mrs. Agnes Doster.

General Information

The Department of Social Sciences gives Freshman courses describing contemporary society and the American government. To upperclassmen, it offers courses in sociology, history, government, philosophy and logic. Its courses in industrial sociology examine the community of the factory and the social roles of professional men, especially engineers. The department participates in the graduate City Planning program.

Freshmen are required to take either Social Sciences 111, 112 and 113, or Modern Languages. Transfer students may substitute for SS 111 and 112 any two of the following: SS 305, 306, 319, 327, 328.

Courses of Instruction

NOTE: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

S.S. 111. Contemporary American Society
3-0-3. Prerequisite: None.
Description of contemporary society, with comparative and theoretical examination of developments in society.
Text: Selected paperback books on personality and culture.

S.S. 112. Contemporary American Society
3-0-3. Prerequisite: None.
Continuation of S.S. 111.
Text: Selected paperback books on contemporary institutions.

S.S. 113. Government of the United States
3-0-3. Prerequisite: None.
A study of the structure and functions of the United States and Georgia governments. IT GIVES EXEMPTION FROM THE UNITED STATES AND GEORGIA CONSTITUTION EXAMINATION.
Text: Saye, Pound, Allums, Principles of American Government; and selected paperback books on political institutions.

S.S. 208. Basic Sociology
3-0-3. Prerequisite: Sophomore standing.
While discussing the various sociological aspects of the modern family, the church, the factory, and other contemporary institutions, this course will provide an introduction to the theory of social organization.
Text: Young, Systematic Sociology.

S.S. 301. Social Problems of Industry
3-0-3. Prerequisite: Junior standing or Sophomore with permission of instructor.
This course analyzes the factory, and the business enterprise as social institutions, with particular attention to the contrasting functions of formal and informal organization, and to the significance of co-operation, authority, communication, status and group norms in the work situation.
Text: Dubin, Human Relations in Administration.

S.S. 305. Nineteenth Century Europe
3-0-3. Prerequisite: Sophomore, Junior or Senior standing.
Modern European History and its
impact on world civilization.
Text: Thomson, *Europe Since Napoleon*.

S.S. 306. World Problems Since 1914
3-0-3. Prerequisite: Sophomore, Junior or Senior standing.
A continuation of S.S. 305.
Text: Hughes, *Contemporary Europe*.

S.S. 307. American Economic History
3-0-3. Prerequisite: Junior or Senior standing.
Special attention is given to the rise of technology, our industrial system, the westward movement, the development of our banking system, and government regulation of industry.

S.S. 313. The Problems of Public Opinion
3-0-3. Prerequisite: Junior or Senior standing.
A study of the processes of opinion formation and opinion diffusion in large-scale urban societies. These processes will be examined with reference to situations in which the stimuli for opinion formation are produced (a) planfully, as by propaganda; or (b) without plan, as in the contexts of disaster or mass hysteria.
Text: To be selected.

S.S. 314. Individual and Society
3-0-3. Prerequisite: Junior standing or Sophomore with permission of instructor.
A study of interpersonal relations in the small or informal group, seen in a variety of industrial contexts, such as the family, and in educational, military, or industrial organizations.
Text: Cohen, *Social Structure and Personality*.

S.S. 319. History of the South
3-0-3. Prerequisite: Junior or Senior standing.
The growth of the South's economic, social, and political life since 1820. Special emphasis is given to those factors which have played an important part in the progress of Georgia. Current regional problems are considered. Exemption from *United States and Georgia history examination*.

S.S. 323. American Constitutional Problems
3-0-3. Prerequisite: Junior or Senior standing.
This is an advanced course in the government of the United States and Georgia, taught largely through the medium of constitutional law. Such significant problems as federalism, separation of powers, and civil liberties are studied. Exemption from *United States and Georgia history examination*.

S.S. 325. American Diplomatic History
3-0-3. Prerequisite: Junior or Senior standing.
An historical analysis of United States diplomacy from the Revolutionary War to the present. Emphasis is placed upon the political, economic, and social factors of American history influencing foreign policy and upon the role of the South in world affairs. Exemption from *United States and Georgia History Examination*.

S.S. 326. The American Civil War
3-0-3. Prerequisite: Junior or Senior standing.
A survey of the major political, economic, and military events occurring in both the Union and the Confederacy during the American Civil War.
Text: To be selected.

S.S. 327. American Political and Social History to 1876
3-0-3. Prerequisite: Junior or Senior standing.
Readings on colonial America, the American Revolution, the framing of the Constitution, Jeffersonian de-
Social Sciences / 193

Democracy, sectionalism, the slavery question, secession, the Civil War, and Reconstruction. Attention is given to the place of Georgia in the history of the United States. Exemption from United States and Georgia history examination.

Text: Faulkner, American Political and Social History.

S.S. 328. American Political and Social History Since 1876
3-0-3. Prerequisite: Junior or Senior standing.

A continuation of S.S. 327. Readings on the restoration of home rule in the South, the Granger movement, business and politics, tariff and trust problems, imperialism and party politics, foreign relations, and international affairs. Exemption from United States and Georgia history examination.

Text: Hicks, The American Nation: 1865 to Present.

S.S. 329. History of Georgia
3-0-3. Prerequisite: Junior or Senior standing.

Through the social, economic and political life of Georgia, the problems which have confronted the state are examined in their historical setting. The relating of Georgia's history to the national scene gives the student a broader perspective of the state's place in the nation. Exemption for the United States and Georgia history examination.

Text: Coulter, A Short History of Georgia.

S.S. 331, 332. Introductory Philosophy
3-0-3. Prerequisite: Junior or Senior standing.

Ancient and modern systems of philosophy as related to political government, social ethics, economics, and comparative religion.

S.S. 332 concentrates on deductive and inductive logic.

Text for S.S. 331: To be selected.

S.S. 334. Symbolic Logic
3-0-3. Prerequisite: Junior or Senior standing.

An approach to basic logical notions through use of special symbols.

Text: Copi, Symbolic Logic.

S.S. 347, 348. Foundations of National Power and International Relations
3-0-3. Prerequisite: Junior or Senior standing.

This course is designed to acquaint the student with the United States' power position in world affairs, relative to that of other powers, and with the events in the world today which have an impact on that position. International relations are emphasized.

Text for S.S. 348: To be selected.

S.S. 351. Statistics for Planning
3-0-3.

Statistical principles for analysis of economic, social, and population data; sampling; measures of central tendencies; normal curve; testing of findings; correlation and arriving at conclusions.

S.S. 360. Recent Latin American History
3-0-3.

Historical evolution of Latin America in recent times, with particular attention to social change.

S.S. 361. Latin American Governments and Politics
3-0-3.

Survey of governmental and political processes in the Latin American countries.

S.S. 401. Municipal and County Government
3-0-3. Prerequisite: Junior or Senior standing.

An analysis of local government, with particular emphasis on the mechanics and functions of city and urban county governmental units.

Text: To be selected.
S.S. 402. State and Local Government
3-0-3. Prerequisite: S.S. 113.
An analysis of the structure and functions of state, county, and municipal governments. Problems of local governmental units receive particular attention—mass transportation, reapportionment, financing.
Text: To be selected.

S.S. 405, 406. Political Theory
3-0-3. Prerequisite: Senior standing. Open to Graduate students.
Beginning with the classical political thought of Plato and Aristotle, this course traces the development of political theory through the Middle Ages to the present. Special attention is given to the rise of ideology and the theories of Communism and Fascism.
Text: To be selected.

S.S. 412. Technology and Society
3-0-3. Prerequisite: Senior or Graduate standing. Open to Graduate students.
This course analyzes the social conditions which promote or retard technological activity. Particular emphasis is placed on the historical development of technology in Western Society, and on the social role of the scientific and engineering professions in that development.

S.S. 415. Urban Sociology
3-0-3. Prerequisite: Senior or Graduate standing. Open to Graduate students.
A study of the problems of economic, religious, and social institutions in modern urban life. Field experience and research illustrate and apply the theoretical materials of the course.

Graduate Courses Offered

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.S. 601</td>
<td>Governmental Aspects of Planning</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S. 605</td>
<td>Planning for People</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>
The A. French Textile School
(Established in 1899)

General Information
This school, housed in the modern Harrison Hightower Building, offers courses leading to the degrees of Bachelor of Textile Engineering, Bachelor of Science in Textile Chemistry and Bachelor of Science in Textiles. Each degree may be taken as a regular four-year course, or in accordance with the five-year cooperative plan.

Graduate courses are also provided leading to the degrees of Master of Science in Textile Engineering, and Master of Science in Textiles.

The school is vitally interested in serving the expanding textile industry, and the courses provided have as their objective the training of students for employment in this industry and its related branches.

During the first two years the work is largely fundamental, including the basic courses of Mathematics, Physics, and Chemistry, followed by more specialized training in the field of Textiles during the Junior and Senior years.

Instruction through classroom, library, and experimental laboratory practice is arranged to give both a theoretical and practical understanding of textile procedure. Original work on the part of the student is encouraged in both regular and graduate courses.

Supervised visits to textile plants in this area are made periodically by Junior and Senior classes, thus giving the student contact with industry, and textile operations on a production scale.

*Assistant to the Director.

Program for B. of Textile Engineering Degree
Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>101-2-3</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr.</td>
<td>113-14-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytic Geometry and Calculus</td>
<td></td>
<td>5-0-5</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L.</td>
<td>*</td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC</td>
<td>**</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-13-18 14-13-18 14-13-18

NOTES: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.

*Choice of M.L. 101-2-3 German; M.L. 107-8-9 French; or M.L. 113-14-15 Spanish.

Three Quarters of either M.L. or S.S. are required.

**ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 304</td>
<td>Differential Equations</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Phys. 207-8-9</td>
<td>Physics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 305</td>
<td>Statics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 204</td>
<td>Survey of Economics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training (optional)</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 13-7-15 16-7-18 16-7-18

*ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex. 213-214</td>
<td>Fiber Processing I & II</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Tex. 402</td>
<td>Fiber Processing Systems</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Tex. 301-302</td>
<td>Fabric Structures I and II</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Mech. 308</td>
<td>Dynamics</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Mech. 334</td>
<td>Mechanics of Materials</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Mech. 421</td>
<td>Mechanical Vibrations</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>C.E. 324</td>
<td>Fluid Mechanics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 320</td>
<td>Thermodynamics</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Elective**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals 15-6-17 18-6-20 16-6-18

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex. 417</td>
<td>Quality Evaluation I</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Tex. 421</td>
<td>Engineering of Text. Structures</td>
<td>2-3-3</td>
<td>2-3-3</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Tex. 453</td>
<td>Textile Plant Engineering</td>
<td>2-3-3</td>
<td>2-3-3</td>
<td>2-3-3</td>
</tr>
<tr>
<td>Tex. 454</td>
<td>Seminar</td>
<td>1-6-3</td>
<td>1-6-3</td>
<td>1-6-3</td>
</tr>
<tr>
<td>Tex. 455</td>
<td>Textile Engineering Problems</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Tex. 462</td>
<td>Engineering Analysis Dyeing Sys.</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 339</td>
<td>Eval. of Engineering Data</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.E. 425</td>
<td>Engineering Economy</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Ch.E. 350</td>
<td>Elementary Heat & Mass Transfer</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>M.E. 467</td>
<td>Machine Design</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>S.S. 328</td>
<td>American Pol. & Scl. History 1876</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>E.E. 325</td>
<td>Electrical Circuits and Fields</td>
<td>2-3-3</td>
<td>2-3-3</td>
<td>2-3-3</td>
</tr>
<tr>
<td>E.E. 326 or 327</td>
<td>Elem. Electronics or Power Conv.</td>
<td>6-0-6</td>
<td>6-0-6</td>
<td>6-0-6</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals 14-9-17 14-9-17 12-9-15

*S.S. 319, 325 or 317 may be substituted for S.S. 328.

**Not more than 9 hours of electives may be in Advanced ROTC.
Program for B.S. in Textile Chemistry

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>107-8-9*</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr.</td>
<td>105-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td>0-6-2</td>
</tr>
<tr>
<td>Eng.</td>
<td>101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>105</td>
<td>Introduction to Literature</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>100</td>
<td>Algebra and Trigonometry</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>104</td>
<td>Analytic Geometry and Calculus</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>201</td>
<td>Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. **</td>
<td></td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S.</td>
<td>111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T.</td>
<td>101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>101</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen.</td>
<td>101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC) 15-7-16 14-13-18 14-13-18

NOTE: Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit. *Chem. 101, 102, 103 may be scheduled. However, a minimum grade of C is required for Chem. 101 and 102 and the prerequisite for Chem. 214 is Chem. 103 with a grade of C or better or Chem. 109.

**Choice of M.L. 101-2-3 German; M.L. 107-8-9 French; or M.L. 113-14-15 Spanish. Three Quarters of either M.L. or S.S. are required.

ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem.</td>
<td>214-15</td>
<td>Analytical Chemistry</td>
<td>2-6-4</td>
<td>2-6-4</td>
<td></td>
</tr>
<tr>
<td>Math.</td>
<td>202-3</td>
<td>Calculus</td>
<td>5-0-5</td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math.</td>
<td>304</td>
<td>Differential Equations</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Phys.</td>
<td>207-8-9</td>
<td>Physics</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Eng.</td>
<td>201</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.T.</td>
<td>201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td></td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC) 12-13-16 12-13-16 13-7-15

*ROTC** is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.
Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 331-2-3</td>
<td>Physical Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 334-5-6</td>
<td>Physical Chemistry Laboratory</td>
<td>0-3-1</td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Chem. 340-1-2</td>
<td>Organic Chemistry</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Chem. 343</td>
<td>Organic Chemistry Laboratory</td>
<td>0-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 346-7</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
<td>0-3-1</td>
<td>0-3-1</td>
</tr>
<tr>
<td>Eng. 202-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Tex. 213-214</td>
<td>Fiber Processing I and II</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td></td>
</tr>
<tr>
<td>Tex. 440</td>
<td>Man Made Fibers</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Biol. 413</td>
<td>Air and Water Pollution</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Elective **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals: 14-12-18 17-9-20 15-6-17

Senior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex. 301-303</td>
<td>Fabric Structures I and III</td>
<td>5-3-6</td>
<td></td>
<td>5-3-6</td>
</tr>
<tr>
<td>Tex. 417-418</td>
<td>Quality Evaluation I and II</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Tex. 452</td>
<td>Textile Chemistry II</td>
<td>5-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex. 464</td>
<td>Dyeing Systems</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Tex. 424</td>
<td>Textile Costing</td>
<td></td>
<td></td>
<td>5-3-6</td>
</tr>
<tr>
<td>Tex. 454</td>
<td>Seminar</td>
<td></td>
<td>1-0-1</td>
<td></td>
</tr>
<tr>
<td>Tex. 461</td>
<td>Textile Chemistry III</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Chem. 406</td>
<td>Instrumental Analysis</td>
<td></td>
<td></td>
<td>1-6-3</td>
</tr>
<tr>
<td>I.E. 339</td>
<td>Eval. of Engineering Data</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng. 320</td>
<td>Technical Writing</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>6-0-6</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals: 16-9-19 16-6-18 14-12-18

Not more than nine hours of electives may be in advanced ROTC.
Program for B.S. in Textiles

Freshman Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 101-2-3</td>
<td>General Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>E.Gr. 105-15</td>
<td>Engineering Graphics</td>
<td>0-6-2</td>
<td>0-6-2</td>
<td></td>
</tr>
<tr>
<td>Eng. 101-2</td>
<td>Composition and Rhetoric</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng. 105</td>
<td>Introduction to Literature</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Math. 101</td>
<td>Algebra</td>
<td>5-0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 102</td>
<td>Trigonometry</td>
<td></td>
<td>5-0-5</td>
<td>5-0-5</td>
</tr>
<tr>
<td>Math. 104</td>
<td>Analytical Geometry and Calculus</td>
<td></td>
<td></td>
<td>5-0-5</td>
</tr>
<tr>
<td>M.L. * *</td>
<td>Modern Language OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. 111-12-13</td>
<td>Social Science</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>P.T. 101-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC **</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 101</td>
<td>Orientation</td>
<td>1-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)** 15-7-16 14-13-18 14-13-18

Notes
- Under Quarters, 3-3-4 means 3 hours class, 3 hours lab., 4 hours credit.
- Choice of M.L. 101-2-3 German; M.L. 107-8-9 French; or M.L. 113-14-15 Spanish. Three quarters of either M.L. or S.S. are required.
- ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Sophomore Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 305-6</td>
<td>Organic Chemistry</td>
<td>3-3-4</td>
<td>3-3-4</td>
<td>3-3-4</td>
</tr>
<tr>
<td>Eng. 201-2-3</td>
<td>Survey of the Humanities</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 201-2</td>
<td>Economic Principles & Problems</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 220</td>
<td>Industrial Organization</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Tex. 213-214</td>
<td>Fiber Processing I & II</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td></td>
</tr>
<tr>
<td>I.E. 349</td>
<td>Elementary Quality Control</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td>6-0-6</td>
</tr>
<tr>
<td>P.T. 201-2-3</td>
<td>Physical Training</td>
<td>0-4-1</td>
<td>0-4-1</td>
<td>0-4-1</td>
</tr>
<tr>
<td>ROTC *</td>
<td>Basic ROTC (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (excluding ROTC)* 14-10-17 14-10-17 15-4-16

Notes
- ROTC is an optional requirement and those students not scheduling ROTC courses are required to earn 6 credit hours in elective courses as a substitute. Only 6 credit hours in basic ROTC may be applied toward the requirements for a degree.

Junior Year

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 211-2-3</td>
<td>Physics</td>
<td>4-0-4</td>
<td>4-0-4</td>
<td>4-0-4</td>
</tr>
<tr>
<td>Tex. 301-02-03</td>
<td>Fabric Structures I-II-III</td>
<td>5-3-6</td>
<td>5-3-6</td>
<td>5-3-6</td>
</tr>
<tr>
<td>Tex. 442</td>
<td>Textile Chemistry I</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex. 440</td>
<td>Man Made Fibers</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.M. 329</td>
<td>Survey in Business Law</td>
<td></td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>I.M. 336</td>
<td>Accounting Survey</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>I.E. 416</td>
<td>Motion & Time Study</td>
<td>2-3-3</td>
<td></td>
<td>3-0-3</td>
</tr>
<tr>
<td>Eng. 315</td>
<td>Public Speaking</td>
<td>3-0-3</td>
<td>3-0-3</td>
<td>3-0-3</td>
</tr>
</tbody>
</table>

Totals 17-6-19 18-3-19 18-3-19

Notes
- Not more than 9 hours of elective may be in advanced ROTC.
<table>
<thead>
<tr>
<th>Course</th>
<th>No.</th>
<th>Subject</th>
<th>1st Q.</th>
<th>2nd Q.</th>
<th>3rd Q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex.</td>
<td>452</td>
<td>Textile Chemistry II</td>
<td>5-3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>464</td>
<td>Dyeing Systems</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>402</td>
<td>Fiber Processing Systems</td>
<td></td>
<td>0-3-1</td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>424</td>
<td>Textile Costing</td>
<td></td>
<td></td>
<td>5-3-6</td>
</tr>
<tr>
<td>Tex.</td>
<td>417</td>
<td>Quality Evaluation I</td>
<td>3-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>418</td>
<td>Quality Evaluation II</td>
<td></td>
<td>3-3-4</td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>451</td>
<td>Tex. Plant Design & Layout</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Tex.</td>
<td>454</td>
<td>Seminar</td>
<td></td>
<td>1-0-1</td>
<td></td>
</tr>
<tr>
<td>LM.</td>
<td>316</td>
<td>Finance Survey for Engr.</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>LM.</td>
<td>317</td>
<td>Industrial Marketing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.M.</td>
<td>459</td>
<td>Industrial Relations in The Piedmont Region</td>
<td></td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td>Eng.</td>
<td>320</td>
<td>Technical Writing</td>
<td>3-0-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>3-0-3</td>
<td>6-0-6</td>
<td>3-0-3</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>17-6-19</td>
<td>13-9-16</td>
<td>14-3-15</td>
</tr>
</tbody>
</table>

Courses of Instruction

Note: 4-3-5 means 4 hours class, 3 hours laboratory, 5 hours credit.

Tex. 201. Survey of Fibrous Materials 3-0-3.
A thorough survey of natural and synthetic fibers used in the Textile Industry. (Not open to Textile students.)

Tex. 202. Survey of Fiber Processing
A survey course in Yarn Manufacturing covering the theory and principles of processing natural and synthetic fibers. (Not open to Textile Students.)

Tex. 213. Fiber Processing I 5-3-6.
The first of two courses designed to give the student the fundamental theory and practice in fiber processing. This course covers the process machinery from opening through roving on both natural and man-made fibers with emphasis on blends of these fibers.

Tex. 214. Fiber Processing II 5-3-6. Prerequisite: Tex. 213.
Goes further into detail on machine construction, theory of processing and methods of process control. Covers machine systems and calculations of both conventional and long draft equipment.

Tex. 251. Survey of Fabric Production 3-0-3.
A survey course in the design, weaving and utilization of fabrics made from both natural and synthetic fibers. (Not open to Textile Students.)

A survey course covering the dyeing and finishing of textile materials made from both natural and synthetic fibers. (Not open to Textile Students.)

Tex. 301. Fabric Structures I
5-3-6. Prerequisite: Sophomore Textile standing.
Course covers a study of the basic weaves and the fabrics in which they are used. A study is also made of fundamental cam loom weaving theory and practice, as applied to the weaves applicable to cam looms.

Tex. 302. Fabric Structures II
5-3-6. Prerequisite: Tex. 301.
Course covers a study of fancy automatic looms such as dobby mechanisms, box mechanisms, jacquards, and leno attachments. **A**
study is also made of warp sizing and slashing.

Tex. 303. Fabric Structures III

5-3-6. Prerequisite: Tex. 301.

Course covers a study of advanced textile design, dissecting fabrics to determine weaves, analysis of fabrics for weight, yarn numbers and construction.

Tex. 402. Fiber Processing Systems

0-3-1. Prerequisite: Tex. 214.

Special problems involving analytical or experimental investigations in the field of fiber processing. Designed to develop the student's initiative.

Tex. 417. Quality Evaluation I

3-3-4. Prerequisite: Senior standing and/or consent of instructor.

A course covering the physical testing and evaluation of both natural and synthetic fibers and the yarns and fabrics made from the various fibers. Standard procedures are studied and the effective use of the developed data is stressed.

Tex. 418. Quality Evaluation II

3-3-4. Prerequisite: Quality Evaluation 1.

A course designed to familiarize the student with the more useful chemical and microscopic methods of testing and evaluating the quality of both natural and synthetic fibers with particular emphasis on blended mixtures of fibers.

Tex. 421. Engineering of Textile Structures

2-3-3. Prerequisite: Senior standing in Textile Engineering.

This course covers the application of engineering principles to processing and design of textile materials. Basic fiber properties and translation characteristics are studied.

Tex. 422. Jacquard Design and Weaving

2-3-3. Prerequisite: Tex. 301.

A course covering the designing of Jacquard patterns and the techniques involved in the transfer of design to the loom.

Tex. 424. Textile Costing

5-3-6. Prerequisite: Senior Textile standing.

Covers basic principles, material, labor, overhead, departmental costs, depreciation and machinery replacement, marketing costs, and financial statements. This is to be supplemented by practical problems in costing.

Tex. 440. Man-Made Fibers

3-0-3. Prerequisite: Senior textile standing.

This course is designed to give the student an understanding and a working knowledge of man-made fibers in the textile field.

Tex. 442. Textile Chemistry I

3-0-3. Prerequisite: Chem. 305.

Designed to give the student specific, working knowledge, using the concepts and principles of Chemistry as related to the composition, properties, manufacture, use and care of textiles.

Tex. 451. Textile Plant Design and Layout

3-0-3. Prerequisite: Tex. 214.

Course includes problems of mill organization, equipment and layout of machinery, equipment cost, problems of conversion when changing machinery to manufacture a different product, etc.

Tex. 452. Textile Chemistry II

5-3-6. Prerequisite: Tex. 440 and Tex. 442 or Chem. 342.

Structure and properties of dyes and fibrous materials are studied. Reaction mechanisms of dyes with fibers and engineering principles employed in the application of dyes are considered.

Tex. 453. Textile Plant Engineering

2-3-3. Prerequisites: Tex. 214 and E.E. 325.

This course acquaints the students with the selection and cost of process equipment, organization programs, plant layouts and the proper equipment for air-conditioning, lighting, power and material handling.
Tex. 454. Seminar
1-0-1. Prerequisite: Senior standing.
Specific topics concerned with scientific literature; what industry expects of graduates in textiles and similar subjects are covered by experienced speakers.

Tex. 455. Textile Engineering Problems
1-6-3. Prerequisite: Senior standing in Textile Engineering.
Specific problems involving analytical or experimental investigations in the field of Textile Engineering.

Tex. 456. Special Problems in Textiles
1-6-3. Prerequisites: Senior standing in Textiles.
Specific problems involving analytical or experimental investigations in the field of textiles and/or textile chemistry.

Tex. 461. Textile Chemistry III
3-0-3. Prerequisite: Tex. 442 or Chem. 342.
Chemical principles used in the development of process formulae are discussed. Chemical aspects of finishing processes are considered.

Tex. 462. Engineering Analysis of Dyeing and Finishing Systems
3-3-4. Prerequisites: Ch.E. 350 and C.E. 324.
Design and operating principles of systems employed are covered.

Tex. 464. Dyeing Systems
0-3-1. Prerequisite: Tex. 452.
Application of dyestuffs to fibers, yarns and fabrics in pilot scale equipment. Principles of machine operation, application problems, and costs are emphasized.

Tex. 470. Fiber Science
3-0-3. Prerequisite: Phys. 207 and Senior standing.
The physical structure and mechanical properties of fibers are studied. Methods for evaluating fiber properties and relating them to performance characteristics of yarn and fabric structures are covered.

Tex. 471. Fiber Processing Principles
4-3-5. Prerequisite: Phys. 211 and Senior standing.
Operational methods and physical principles employed for conversion of fibers into yarns and related structures are analyzed and evaluated. Analytical methods for characterizing the yarn and intermediate products are studied.

Tex. 472. Fabric Construction—Analysis and Design
4-3-5. Prerequisite: Tex. 471.
Principles embodied in the design and operation of machines for weaving and knitting are studied. Properties and performance characteristics of fabrics are also covered.

Tex. 473. Chemical Processing of Textile Materials
3-0-3. Prerequisite: Chem. 103 and Senior standing.
A course specifically designed to acquaint students with those basic chemical principles that are made use of in fiber manufacturing and processing.
Graduate Courses Offered

Tex. 626, 27 Advanced Dyeing & Finishing 3-3-4
Tex. 628 Natural and Synthetic High Polymers 3-0-3
Tex. 646 Advanced Fabric Analysis 3-3-4
Tex. 648 Advanced Designing .. 3-0-3
Tex. 656, 57 Advanced Yarn Manufacturing 2-3-3
Tex. 666, 67 Advanced Weaving .. 2-3-3
Tex. 673, 74 Technical Textile Testing 2-3-3
Tex. 700 Master's Thesis ..
Tex. 701, 2, 3 Seminar .. 1-0-0
Tex. 704, 5, 6 Special problems and topics in Textiles and Textile Engineering. Credit to be arranged. Grad. Staff.

(Complete details about these courses are contained in the Graduate Bulletin, a copy of which is available upon request.)
THE CO-OPERATIVE DIVISION
(Established in 1912)

Co-operative Courses in Aerospace, Chemical, Civil, Electrical, Industrial,
Mechanical, and Textile Engineering; Chemistry, Physics and
Engineering Mechanics

(A Special Bulletin is available and will be mailed on request)

Director—James Gordon Wohlford; Associate Director—William Henry Hitch;
Assistant Director—William Franklin Leslie; Secretaries—Judy Walker, Maude
Collins.

The engineering and science graduate must have an educational background of
sound scientific and economic principles, and he must be acquainted with in-
dustrial practices in his field of employment before he can assume responsibility
for industrial projects. The interlocking of theory and practice is provided
in the co-operative plan of education by the integration of technical theory
and practical industrial experience. The Georgia Institute of Technology
recognizes the value of this plan and has since 1912 offered a Co-operative
Course for those students who desire to acquire their education under the
co-operative plan. The correlation of the scientific and engineering practices
of classroom and laboratory work and practical industrial experience is ac-
complished in a five-year course. Co-operative students complete twelve aca-
demic quarters and their scheduled industrial quarters. The alternation between
campus and industry continues until the student has completed the second or
third quarter (depending on the student's section) of the junior year curricu-
lum, at which time the students are scheduled to attend classes continuously
until graduation.

Ten courses are available to students under this plan. Originally only
Mechanical and Electrical Engineering were offered, but Civil, Textile, and
Chemical Engineering were added between 1920 and 1928, and in 1946 Aero-
nautical (now Aerospace) and Industrial Engineering were included. Chemistry,
Physics, and Engineering Mechanics were added in 1963.

Students in the Co-operative Division are selected from men who are in the
upper third of their high school or preparatory class, or who have made better-
than-average records in the Georgia Tech regular course or at some other ac-
credited institution of higher learning. The entrance requirements for the
Co-operative Courses include all "Specified or Required Units" on page 18.
Only those students who expect to graduate under the Co-operative Division
are accepted for these courses. A co-operative student, of course, must make
a creditable scholastic record before being recommended for work in industry,
and is allowed to continue under the co-operative plan only if he maintains a
good record. Upon graduation a Bachelor's Degree, Co-operative Plan, is
awarded to a co-operative student in his particular field.

Students in the Co-operative Division are divided into two sections, the first
beginning classes in June and the second in September. While Section One is
at college three months, Section Two is at work in industry for the same
length of time. The two sections alternate or exchange places with each other
every three months until the fifth school year, when they merge and remain at
college continuously until graduation. A co-operative student gets three weeks' vacation during each calendar year—one week at Christmas and two weeks during the summer.

The Institute is co-operating with more than two hundred and twenty firms, including power companies, electric and electronic equipment manufacturers, oil companies, airlines, railroads, manufacturers of machinery and mechanical equipment, pulp and paper mills, chemical industries, textile mills, foundries, steel mills, construction and engineering firms, and state and federal agencies. The area covered by those industries includes the Southeastern States and many sections of the Middle Atlantic and Western Central States.

After satisfactory completion of at least three months' classroom work in the Co-operative Division, a student is recommended for work with an industrial company. Since the firms employing co-operative students offer a wide variety of practical training and many lines of specialization, students are afforded the opportunity to secure work in the field in which they are most interested. Although the Co-operative Division does not guarantee work nor stipulate any certain amount of compensation, every effort is made to place students to their best educational and financial advantage.

The co-operative students receive wages for their work at the prevailing rate in the shops in which they are employed, and the employers pay the wages directly to the students. At the present time the average beginning wage for a freshman is around $300.00 per month. The wages increase as the student remains on the job assigned him until he is advanced to a higher grade of work by the company which employs him or by the Co-operative Division. By the time he graduates, a co-operative student will have received training in practically all departments of an industry. A high percentage of students trained in this way follow and succeed in their chosen profession. At the conclusion of the course the co-operative graduate is not obligated to accept employment with the co-operating company; neither is the company obligated to offer employment. In many instances, however, such employment is offered by the company and accepted by the student.

The Director of the Co-operative Division makes frequent visits to employing companies. Through interviews with company officials and shop foremen he brings about co-ordination of industrial work with school curricula and takes care of any adjustments in types of work, wages, and other relevant matters. Before freshmen are sent to work, they attend orientation classes in which they are acquainted with the various aspects of their industrial work and receive pointers on how to succeed on the job, how to make friends with regular shop employees, how to save wisely, and other important factors.

A Georgia freshman should have about $950.00 and an out-of-state student about $1,200.00 for the total expenses of his first two academic quarters. Anyone interested in making application for admission into the Co-operative Division should write to J. G. Wohlford, Director of Co-operative Division, for a bulletin which gives full particulars about fees, courses, living expenses, wages paid the students while at work, discipline, school activities, and other pertinent information.
THE GRADUATE DIVISION

(A Bulletin on Graduate Studies will be sent upon request)

Dean—Mario J. Goglia; Assistant to the Dean—Karl M. Murphy; Secretaries—Hazel Beach, Florence Carroll, Elizabeth Oxford.

Graduate Council

MARIO J. GOGLIA, Ph.D.________________________Chairman
WILLIAM L. CARMICHAEL, M.S.____________________Secretary

Ex-Officio

PAUL WEBER, Ph.D.____________________________Dean of Faculties
JESSE W. MASON, Ph.D.________________________Dean of the Engineering College
RALPH A. HEFNER, Ph.D.________________________Dean of the General College
WYATT C. WHITLEY, Ph.D._______________________Director, Engineering Experiment Station

Appointment Expiring June 30, 1965:

HOMER V. GRUBB, Ph.D., Director of the School of Chemical Engineering
WILLIAM B. JONES, JR., Ph.D., Professor of Electrical Engineering
EDWARD H. LOVELAND, Ph.D., Director, School of Psychology
KENNETH G. PICA, Ph.D., Director, School of Mechanical Engineering

Appointment Expiring June 30, 1966:

SHERMAN F. DALLAS, Ph.D., Director, School of Industrial Management

Appointment Expiring June 30, 1967:

ERLINO GROVENSTEIN, Ph.D., Professor of Chemistry
CHARLES E. STONEKING, Ph.D., Professor of Engineering Mechanics
HARRISON M. WADSWORTH, JR., Ph.D., Associate Professor of Industrial Engineering

Appointment Expiring June 30, 1968:

VERNON CRAWFORD, Ph.D., Director, School of Physics
RAYMOND K. FLEGE, M.S., Professor of Textile Engineering
WILLIAM B. HARRISON, Ph.D., Director, School of Nuclear Engineering

JAMES D. WRIGHT, Ph.D., Head, Department of Modern Languages

Degrees and Fields of Study

The degree of Master of Science is offered with or without designation in the following fields: Aerospace Engineering, Applied Mathematics, Ceramic Engineering, Chemical Engineering, Chemistry, Civil Engineering, Electrical Engineering, Engineering Mechanics, Industrial Engineering, Information Science, Industrial Management, Mechanical Engineering, Metallurgy, Nuclear Engineering, Nuclear Science, Physics, Public Health Engineering, Psychology, Safety Engineering, Sanitary Engineering, and Textile Engineering. It may be awarded without designation when the student does not major in the field in which he has earned his bachelor’s degree. The degrees of Master of Architecture and Master of City Planning are also offered.

In addition to the fields of study listed above for the Master of Science degree, collateral study of an advanced nature is available in Industrial Psychology, Modern Languages and Sociology.

Fellowships

The A-C Network Calculator Fellowship
Several members of the Southeastern Electric Power Exchange have contributed $1,500 each to a fellowship in Electrical Engineering. This award will carry a stipend of $1,500 for one calendar year starting with a summer or fall quarter. One-half of the recipient's time will be devoted to work with the A-C Network Calculator.

Atlantic Steel Company
A fellowship in Chemical or Mechanical Engineering; $1,800 stipend, plus tuition and matriculation fees; total grant of $3,000.

Automotive Safety Foundation
A fellowship in Highway Engineering; $1,800 stipend, plus tuition and matriculation fees.

Callaway Educational Association Fellowship
A fellowship at the Master's level in Industrial, Chemical, Mechanical or Textile Engineering; stipend, $3,600.

J. H. Carpenter Foundation
A fellowship in Ceramic Engineering; $3,600 stipend; $400 for the School of Ceramic Engineering.

Celanese Corporation
A fellowship in Textiles or Textile Engineering in the amount of $2,500, including tuition and matriculation fees and other expenses incidental to research.

E. I. Du Pont de Nemours & Company, Inc.
A Postgraduate Teaching Assistant Award in Chemistry; $1,200 stipend, plus tuition and matriculation fees; $500 for the School of Chemistry.

Eastman Kodak Fellowship
A fellowship in Chemistry; $1,500 stipend, plus tuition and matriculation fees; total grant, $2,500.

Ethyl Corporation
A fellowship in Chemical or Mechanical Engineering; $2,100 stipend, plus tuition and fees; $600 to the Department of Instruction.

Ford Foundation Fellowships
Fellowships and loans for doctoral studies in Engineering. These awards are a combination of fellowships and teaching or research assistantships valued at up to $3,000 plus tuition and matriculation fees and may be awarded for a calendar year including the usual vacation periods. Loans, based on need up to $3,000 annually, will be available to qualified graduate students motivated toward academic careers.

General Electric Foundation
A $5,000 grant to the School of Chemical Engineering.

Gulf Oil Corporation Graduate Fellowship
A fellowship in Chemical Engineering; $2,500 stipend plus tuition and matriculation fees.

Humble Oil & Refining Company Education Foundation Grant
A grant to the School of Chemical Engineering of $3,500.

International Lead Zinc Research Organization
A fellowship in Ceramic Engineering; $3,600 stipend for twelve months study.

Kaiser Aluminum and Chemical Corporation
A fellowship in Chemical Engineer-
ing; $1,800 stipend, plus $750 for research and other expenses.

Louie D. Lasker Fellowship Trust
Graduate Fellowships in City Planning. Awarded on a basis of National competition.

Richard King Mellon Charitable Trusts
Fellowships for graduate work in City Planning. Preference is given to men and women who are working in the field of City Planning and who recognize a need of further graduate training.

Edward Orton, Jr., Ceramic Foundation
A fellowship in Ceramic Engineering; $1,800 stipend for 12 months.

Procter and Gamble Company
A fellowship in Chemical Engineering; up to $2,100 stipend, plus tuition and matriculation fees, with an unrestricted grant to the School of Chemical Engineering up to $1,200.

The Rayonier Foundation
A fellowship in the field of Chemistry; $1,800 stipend, $500 for tuition and matriculation fees and $500 for supplies and equipment for the recipient's research.

The Robert and Company Associates Fellowships for Advanced Study in Architecture
A fellowship in Architecture; $1,200 stipend. Recipient must be a native of Georgia.

The Robert and Company Fellowship
A fellowship to be used in Civil, Electrical or Mechanical Engineering; $1,200 stipend. Recipient must be a native of Georgia.

Schlumberger Foundation
A fellowship in Mechanical Engineering; $2,100 stipend with support for tuition, matriculation fees and research needs.

Sears-Roebuck Foundation
Fellowships in City Planning; awarded on the basis of National competition.

Shell Companies Foundation
A fellowship for graduate study in Civil Engineering; $2,000 stipend academic year, $2,500 calendar year (married students $2,600 and $3,200 respectively) plus tuition and matriculation fees; $1,000 to the School of Civil Engineering.

Mary White Staton Fellowship
Mr. Albert H. Staton has established a graduate fellowship for advanced study by a native of Colombia. $1,500 stipend.

T. Earle Stribling Textile Memorial Fellowship Fund
A fellowship for advanced study and research in problems pertaining to the Textile industry has been established in memory of the late T. E. Stribling, an alumnus of Georgia Tech. This fellowship carries a stipend of $2,000 for the calendar year, plus tuition and matriculation fees. Applications are encouraged from men whose preparation has been in the fields of Textile Engineering, Textile Chemistry, Chemical Engineering, Mechanical Engineering, Chemistry or Physics.

United States Steel Foundation
A fellowship in Physics; up to $3,000 per year stipend (additional for dependency allowance). The award is made for two years.

National Fellowship Programs
National Programs are available through the Institution, including Fellowships — National Science Foundation, NDEA Title IV, Atomic Energy Commission Special Fellowships in Nuclear Science and Engineering, Oak Ridge Graduate Fellowship. Traineeships—Atomic Energy Commission, National Aeronautics and Space Administration, National Science Foundation, Public Health Service.

For further information concerning any of the fellowships, write the Dean of the Graduate Division.
Graduate Fellowships

Fellowships may be made available through grants to the Institute from the Ford Foundation, National Aeronautics and Space Administration, National Science Foundation, National Institutes of Health, Research Corporation, the Atomic Energy Commission, and the National Defense Education Title IV Program. These are in addition to the fellowships listed on preceding page.

Instructors and Assistants

A number of part-time instructorships and teaching or research assistantships are available for qualified graduate students through the Schools, Departments, and the Engineering Experiment Station. These appointments are normally for one-third full time and carry stipends ranging from $1,500 upward for the academic year.

Admission

In general, applicants for admission to graduate study should hold a bachelor's degree from a recognized university, school, or college and should have graduated with academic standing in the upper half of their class. Those applicants who plan to become candidates for the doctorate should have had academic standing in the upper quarter of their baccalaureate class or must have demonstrated, or be prepared to demonstrate, outstanding ability in their work toward a master's degree.

Length of Study and Graduate Requirements

Thirty-three quarter hours of advanced study past the bachelor's degree plus a thesis, or fifty quarter hours of advanced study past the bachelor's degree without a thesis are necessary in fulfillment of the requirements for the master's degree. At least one full academic year in residence past the bachelor's degree must be completed on campus before the master's degree can be awarded.

At least three full academic years of advanced study and research past the bachelor's degree are necessary for the award of the doctorate. Ordinarily between 67 and 90 quarter hours of advanced work in course will be undertaken, the balance of the required time being devoted to research and the preparation of the dissertation. At least three full quarters of the doctorate program must be spent in residence at the Georgia Institute of Technology and unless special permission is obtained, these must be the three immediately preceding the award of the degree.

Graduate Bulletin

A copy of the Graduate Bulletin, discussing requirements for advanced degrees in detail and listing advanced work in courses available in the various departments, may be obtained on request from the Dean of the Graduate Division.
ENGINEERING EXPERIMENT STATION

Directional Staff

Purposes

The Georgia Tech Engineering Experiment Station is the agency of the University System of Georgia which is designed to enhance the general welfare of the people of Georgia by coordinating and conducting investigations in all fields of engineering and in many aspects of the physical, chemical and biological sciences. The Station is charged with: the promotion of research in the
Georgia Institute of Technology, the development of a program of assistance to industry and agriculture, and the study and utilization of the natural resources in the State.

Georgia Tech believes that a progressive technological institution should carry on, conjointly, a strong educational program and a coordinated fundamental and applied research program. Teaching and research are complementary. At Georgia Tech, this philosophy is carried out by a full-time Engineering Experiment Station staff composed of competent engineers, scientists, technicians, a large number of associated faculty members, and a strong supporting Graduate Division.

During the year, 1963-64, the Station utilized the full-time services of an average of 349 persons and part-time services of an average of 390 persons in the prosecution of 340 research projects. Included in this personnel total were 44 shared faculty members, 99 Faculty Research Associates, 99 graduate students, and 110 undergraduate students.

Many research activities of great potential value to the State and the South are now underway. Some of these studies concern: the development of Georgia's industrial economy; new processes and uses of Georgia's ceramic clays and other minerals; nuclear reactor engineering; applications of nuclear physics and chemistry to the health sciences; factors affecting the aerial transmission of disease; applications and development of electronic computers; new methods of electrical power system analysis; the effects of river impoundments on water quality; and protective treatments for cotton textiles.

A number of projects also concern the basic nature of matter and energy. Among these are studies in atmospherics, solid state, and nuclear physics, microwave radar, organic chemistry, microbiology, and mathematical statistics.

The results of most of these investigations are made available to the public by publication in technical periodicals, in the bulletins, reprints, and special reports of the Station, and through Georgia Tech's bimonthly newsletter, *Tech Topics*, which this year replaced *The Research Engineer*.

The Station's budget for 1964-65 was approximately $4,000,000. In both facilities and finances, it is one of the largest state engineering experiment laboratories in the nation. The principal sources of this support are: the United States Government, by means of research contracts channelled through the Georgia Tech Research Institute; private industry (mostly in Georgia) through contracts for specific research projects; the State of Georgia, by means of appropriations through the Board of Regents; and gifts, grants-in-aid, and endowments.

Advanced undergraduate and graduate students are employed on projects in the Engineering Experiment Station whenever feasible to afford them direct experience and training in research and development work.

Research Staff

Station faculty members and professional staff are listed among the General Faculty beginning on page 259.
THE ENGINEERING EXTENSION DIVISION

Director—Lawrence V. Johnson; Director Emeritus—Roger S. Howell; Administrative Assistant—Mrs. Minnie N. Mavity; Secretary to Director—Mrs. Jane H. Whitner; Registrar Emeritus—Mrs. Blanche B. Turner; Continuing Education: Director—Richard Wiegand; Associate Directors—James L. Garner and Robert S. Herndon; Principal Clerk—Frederick C. Bischoff, III; Principal Secretary—JoAnn Crotwell; Senior Secretary—Martha E. Ballentine; Secretaries—Louise R. Johns, Susan Hertel, Barbara Winters; Industrial Education: Director—Dallas B. Cox; Director Emeritus—Thomas H. Quigley; Research and Instructional Materials Specialist—Emory L. Moore; Instructor of the Fire Institute—Harold G. Thompson; Secretaries—Mrs. Elizabeth C. Severance, Mrs. Ruth S. Rogers, Mrs. Betty T. Stevenson.

The Engineering Extension Division is designed both as a campus and an off-campus educational program to serve the people and industry of Georgia where a need exists for industrial training. The scope of its work includes specialized programs in adult education, two-year college Engineering Technology courses designed to train those who wish to qualify as engineering technicians, short courses and conferences, and in cooperation with the State Department of Education, a training program in trade and industrial education within the industries and public services of the state, including supervisory and foremanship conferences.

The Engineering Extension Division consists of three units—Continuing Education, Industrial Education and Southern Technical Institute.

CONTINUING EDUCATION

The industrialist and the educator share the responsibility of keeping the professional college graduate abreast of the forward strides being made by the dynamic and burgeoning technology of this twentieth century. The Department of Continuing Education conducts over 200 programs annually in various subjects to help college graduates and others keep pace. All offerings of the Department are non-credit.

Through the cooperation of the various schools and departments of the Georgia Institute of Technology this Department has access to the various school facilities for the classroom and laboratory work of continuing education courses. Skilled and experienced teaching personnel—and specialists from industry—are secured to provide the best in instruction.

Special Programs

Special Programs courses include College Preparatory courses and general adult education offerings. The College Prep Course Series provides opportunities (1) to acquire basic units in mathematics and science required by many colleges; (2) to have a transition from high school to college; (3) to review basic subject areas for the individual who has been out of school for some time; and (4) to have a proving ground to test individual aptitude for a technically oriented education.

Courses are offered in adult education which prepare the engineering and/or
professional graduate for state professional examinations. In addition to these Profession Refresher Courses, other programs and subjects are scheduled, such as courses in basic and advanced computer programming.

Short Courses and Conferences

Courses scheduled for a short duration of time but very intensive in subject coverage are conducted for the benefit of industries and for the professional graduate. Special technical and industry-management short courses and conferences train key industry personnel by providing information and instruction on new developments and best methods.

The Short Courses work emphasizes close cooperation with industry, trade associations, technical and scientific and business organizations in planning and presenting these special educational programs.

INDUSTRIAL EDUCATION

In conformity with the provisions of the various vocational education acts, this department, in cooperation with the State Department of Education, has a responsibility for training industrial, fire service, and related technical teachers for the following:

1. Evening and part-time classes in public schools and industrial and fire service organizations.
2. All day public trade schools.
3. Supervision courses.

The activities of the department include research to determine specific industrial and fire service education needs of a community, industry or plant; developing courses of study to meet these needs; selecting teachers of the required occupational experience; training these teachers for specialized service; developing specialized instructional materials for use of such teachers; training local teacher trainers in the larger centers; and improving teachers in service after placement.

Because of the specialized local character of this extension work all activities are conducted under special arrangements between the Georgia Institute of Technology, the Georgia State Department of Education, local boards of education, and industrial and fire service organizations. The following courses and other activities are conducted at many localities in the state: principles and organization of industrial education, conference leading, methods of teaching, industrial education psychology, course planning, practice teaching, industrial plant surveys, teaching related subjects, and occupational analysis.

The Georgia Fire Institute

The Georgia Fire Institute was established in the Industrial Education Department in 1958 by the Board of Regents through a special appropriation by the State. It is a coordination of both the Georgia Institute of Technology and
the State Department of Education, cooperating with local boards of education and fire departments, for amplifying the program of fire service training that has been in development for many years by these agencies. Its aim is the optimum training of Georgia firemen, paid and volunteer, public and private, to reduce and hold to the minimum Georgia's loss of life and property by fire.

Throughout the State the Fire Institute conducts short and long-time classes in local fire departments, short intensive zone fire schools in the special fire service problems of various sections of the State, and short intensive statewide fire schools. In the latter it is successor to the former Georgia State Fire College. The training includes the techniques and technologies of fire prevention, inspection, extinguishment, rescue, and investigation, and fire department officership and administration.
SOUTHERN TECHNICAL INSTITUTE
Marietta, Georgia

General Objectives

The Southern Technical Institute is that unit of the Engineering Extension Division of the Georgia Institute of Technology designed for the student who desires to become an Engineering Technician.

Ten two-year engineering technology programs leading to the Associate in Engineering degree are offered: Air Conditioning Engineering Technology, Architectural Engineering Technology, Civil Engineering Technology (Surveying and Construction Option), Civil Engineering Technology (Structural Materials and Design Option), Electrical Engineering Technology, Gas Engineering Technology, Industrial Engineering Technology, Industrial Engineering Technology (Management Option), Mechanical Engineering Technology, and Textile Engineering Technology.

These curricula are designed to provide the basic scientific training, the specialized technical "know-how," and the supervisory and management training needed by the engineering technician. The courses are briefer, more intensive, and more specific in purpose than those of the professional engineering curricula, although they lie in the same fields of industry and engineering. Their aim is to prepare the individual for specific technical positions or lines of activity rather than for broad sectors of engineering practice.

*On leave.
Engineering Technician and Engineering Technology

An Engineering Technician is one whose education and experience qualify him to work in those areas of engineering which require the application of established scientific and engineering knowledge and methods, combined with technical skills, in the support of engineering or scientific activities toward the accomplishment of engineering objectives.

The Engineering Technician is the newest member of the Engineering Team. This team is composed of the scientist, the engineer, the engineering technician, and the craftsman. His addition to the team resulted from what may be called the impatience of the 20th century. Prior to World War II the lapse-time between a scientific discovery and its application was of the order of 6 to 10 years. Today our technology is moving so fast that this time is now of the order of 3 to 6 months or less.

This increasing pressure to move more quickly from experiment to product requires engineers to witness, interpret, and make use of scientific discoveries almost as they occur. This change in engineer's work requires engineering education to be more and more in the area of advanced mathematics and the physical sciences, and less and less in applied or operational engineering fields. Today an engineer's work is generally concerned with development and design rather than with applied or operational engineering work.

Because the engineering arts and skills are essential to industry, the American Society for Engineering Education has sponsored the Engineering Technology Program with curricula designed to fill the educational gap caused by the change in the engineer's work and to train men qualified to take over much of the operational engineering work formerly done by large segments of the engineering profession, thus freeing engineers for engineering work requiring a much more scientific and mathematical background.

The engineering technician is concerned with the production and operational aspects of engineering and industry, and he performs specific tasks which usually embrace a specialized field of research, design, development, or construction; or of control and operation of production facilities and manpower.

Graduates from engineering technology courses are in great demand. Engineering Technicians with several years' experience have advanced to top positions in Engineering, Management, and Architectural areas.

A full-time day program is available at the new Southern Technical Institute campus at Marietta, Georgia. Two academic years or six quarters are required to complete the various courses at Southern Technical Institute. For complete information regarding this school write for special catalog.

Southern Tech also makes six of its ten curricula available on a part-time schedule in evening classes on both the Georgia Tech and the Southern Tech campuses. These are Architectural Engineering Technology, Civil Engineering Technology, Electrical Engineering Technology, Industrial Engineering Technology, Industrial Engineering Technology (Management Option), and Mechanical Engineering Technology. Those who work in Atlanta's metropolitan
area may thus avail themselves of the opportunity of obtaining this type of training through evening study.

The job opportunities for engineering technicians are numerous. Studies made by the American Society for Engineering Education reveal that two engineering technicians are needed for every engineer. The Associated Industries of Georgia estimates that there are, in Georgia alone, 5000 well-paying positions for trained engineering technicians, at salaries ranging upward from $5000 per year.

The work offered qualifies the engineering technician graduate for a rapidly expanding number of technical jobs in engineering. His work is closely related to that of the graduate engineer and, in fact, the two usually work as a team.

A special bulletin containing complete information will be sent upon request. Direct such requests to the Registrar, Southern Tech, Marietta, Georgia.

Entrance Requirements

Applicants must be high school graduates or equivalent and must have two credits in algebra, one credit in geometry, two credits in science, and four credits in English. Applicants must have also taken the College Entrance Examination Board Scholastic Aptitude Tests (Verbal and Mathematical), and the College Entrance Examination Board Achievement tests in English and Mathematics (Level I—Standard).

Veteran's Program

Veterans are eligible to enter the Institute under the G. I. Bill of Rights, as established under Public Laws 894, 634, and 815.

Tuition and Fees

The rates for fees, board, and room are subject to change at the end of any quarter.

DAY CLASSES AND EVENING CLASSES

Full-Time Schedule (12 or More Hours)

<table>
<thead>
<tr>
<th>Matriculation Fee per Quarter</th>
<th>Tuition Fee per Quarter</th>
<th>Medical Fee per Quarter</th>
<th>Student Activity Fee per Quarter</th>
<th>TOTAL FEES Per Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident of Georgia $80.00</td>
<td>$3.50</td>
<td>$5.00</td>
<td>$88.50</td>
<td>$265.50</td>
</tr>
<tr>
<td>Non-Resident of Georgia $80.00</td>
<td>$100.00</td>
<td>$3.50</td>
<td>$5.00</td>
<td>$188.50</td>
</tr>
</tbody>
</table>

Part-Time Schedule (Fewer Than 12 Hours)

<table>
<thead>
<tr>
<th>Resident of Georgia</th>
<th>Non-Resident of Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.00 per hour</td>
<td>$15.50 per hour</td>
</tr>
</tbody>
</table>

Day and Evening School students carrying fewer than 12 hours are not required to pay the $3.50 medical fee nor the $5.00 activity fee. Part-time students, however, do not benefit from the medical services that the full-time students do.

ABOVE RATES SUBJECT TO CHANGE WITHOUT NOTICE.
STUDENT HEALTH SERVICE

Director of Health—John B. Riggsbee, M.D.; Director Emeritus—Leslie Morris, M.D.; School Physicians—John Michaels, M.D., Robert S. Spears, M.D.; Medical Consultant and Physician to Athletic Association—Lamont Henry, M.D.; Psychiatrist—George P. Dillard, M.D.; Residents—Bricker Burns, William Garrett, Gordon Gibson, and James Logan; Head Nurse—Mrs. Jane F. Akers, R.N.; Nurses—Mrs. Leslie Beavers, R.N., Mrs. Winifred Cooper, R.N., Mrs. Betty Egerton, R.N., Miss Patricia Hunter, R.N., Mrs. Glendal LaRowe, R.N., Mrs. Annette Townsend, R.N., Mrs. Martha Trnavsky, R.N.; Night Supervisor—Mrs. Lisa Hollingsworth, R.N.; Technicians—Charles C. Crawford, Gerald P. Eggleston, Philip J. Exposito, and W. Joe Simonton; Secretaries—Miss Peggy Boileman and Miss Joy Ivens. INFIRMARY CONSULTING STAFF: Dentists—Irwin T. Hyatt, D.D.S., and Aaron L. King, Jr., D.D.S.; Allergy—Dr. Carl Jones; Dermatology—Dr. Chenault Hailey, and Dr. Fred F. Hardin; Hematology—Dr. Spencer Brewer, Jr.; Internal Medicine—Dr. T. J. Anderson, Jr., Dr. Max M. Blumberg; Neurology—Dr. William A. Smith, Dr. Richard Wilson; Neuro-surgery—Dr. Charles Dowman, Dr. Exum Walker; Ophthalmology—Dr. William L. Eubanks, Dr. Jess C. Lester, Dr. Jack J. Stokes; Orthopedic Surgery—Dr. F. James Funk, Jr., Dr. Thomas P. Goodwyn, Dr. H. Walker Jernigan, Dr. Robert E. Wells; Otolaryngology—Ponce de Leon Infirmary Staff, Dr. David Smiley; Proctology—Dr. Edgar Boling; Surgery—Dr. Jack Thompson; Thoracic Surgery—Dr. Allen G. Macris, Dr. L. N. Turk, III; Urology—Dr. Reece C. Coleman, Jr., Dr. Major F. Fowler.

The Health Service is located in the Joseph Brown Whitehead Memorial Hospital located on Fifth Street adjoining Rose Bowl Field. The hospital contains the offices of the medical staff, examination and treatment rooms, clinical laboratory, X-ray and physiotherapy departments, plus wards and rooms for seventy patients. Food for patients is normally obtained from the college dining hall but special diets are prepared in the hospital.

The Infirmary staff consists of three full-time physicians, two regularly visiting consultants in Internal Medicine and Psychiatry, four young doctors from Emory University, nine registered nurses, four technicians, two secretaries, three orderlies and three maids. We also have thirty physicians, representing the various medical specialties, on our consulting staff who are available when their services are needed.

Infirmary policy is determined by a faculty committee composed of the Dean of Students, the Assistant Athletic Director, the Dean of Faculties, the Athletic Association physician, and the Director of Health.

The facilities of the Health Service are available to all students who take twelve or more credit hours of classes. The Health Service is financed by student fees and only those who have paid a health fee for the current quarter are eligible for treatment. Co-op students on their work quarter and students with less than 12 credit hours are not charged a health fee and are not entitled to any treatment at the Infirmary. Faculty members and Institute employees are entitled only to emergency first aid treatment. Part-time students may be treated on a “fee-for-service” basis.

For those eligible, the Health Service provides unlimited free office treatment. This includes necessary medical care, and such minor surgery as deemed necessary and provided by the school physicians. If the illness or injury is of
such complexity or severity that consultation with a specialist is deemed advisable, this will be arranged by the Health Service. Up to 14 days hospitalization in the school Infirmary each quarter with nursing care, drugs, laboratory, and x-ray service is provided free except for a charge of one dollar for each meal served, and one dollar per day to cover laundry of linens used. If the illness or injury requires treatment in a private hospital, arrangements can be made by the school physician for such care.

All students who are sick or injured are expected to report to the Infirmary for treatment. If the student does not desire treatment by one of the school employed physicians, he may arrange for another physician to care for him at the Infirmary.

Medical care is available at the Infirmary 24 hours a day when school is in session but not at all on authorized vacation periods or between quarters. Physicians are on duty for regular clinic visits from 7:30 a.m. to 7:30 p.m. Monday through Friday and from 8:00 a.m. to 1:00 p.m. on Saturdays; and from 3:00 p.m. to 6:00 p.m. on Sundays.

Emergency visits are possible at any hour of the day or night. An emergency is an illness or injury that is likely to become worse if treatment is delayed until the next regularly scheduled clinic period—it has nothing to do with class schedule or convenience of the patient. Students are expected to make their clinic visits during their free periods or before classes begin in the morning. Classes will be excused for the actual time of visit to the physician only if the visit is an emergency.

School regulations prohibit any student staying in his room in a dormitory or fraternity house with a contagious disease. If the school physicians feel that the illness of the student is contagious or is severe enough to justify absence from classes, the student will be put to bed in the Infirmary until such time as he is able to return to classes with safety. School regulations require a class excuse for any absence caused by illness. To be eligible for such an excuse, the student must be confined to the Infirmary or another hospital. The only exception made is in the case of local students who reside in the home with their parents, who may bring in a note from a parent concerning the illness and be given an excuse for one day's classes. If the absence is for more than one day, the student must have a physician's certificate stating the cause for the absence and the period he advised the student to remain at home. The Health Service does not provide any care for students in the home nor do the physicians make house calls.

Only physical training classes will be excused for patients not actually confined to bed and these excuses must be obtained from the Infirmary prior to the hour of the scheduled class. Class excuses for patients confined to bed will be issued only for the actual period of confinement to bed. If a student is unable to drill, the physician will give the student a chit authorizing other duties to be assigned by the military for the hour.

The Health Service does not have or provide any insurance. Free service is limited to care in the Infirmary, and for injuries received in class. Free service does not apply to elective surgery, specialist treatment, orthopedic appliances, special nurses, or hospitalization. The Health Service will assume no financial responsibility for the treatment of chronic diseases or injury present prior to enrollment, nor will it be responsible for elective surgery such as wart removal, hernia repair, tonsillectomy, pilonidal cyst removal, etc.
Health Service provides no dental care except for the repair of teeth injured in P.T. class, provided such injury is reported within one hour of the injury. It does not pay for eye refraction or for glasses. Only if glasses are broken in P.T. class while wearing protective goggles, will the glasses be replaced by the Health Service. All students who must wear glasses should keep an extra pair on hand and a copy of their prescription for glasses.

The Health Service will provide financial assistance for medical care rendered by physicians outside the Infirmary only for: (1) on-campus injuries sustained in the classroom, laboratory, physical training, going to and from classes, or while participating in school-sponsored activities, or (2) off-campus injuries while participating in school-sponsored activities. The Health Service will provide full financial coverage for those injuries sustained in the classroom, laboratory, and physical training classes. For the other injuries defined above, the financial responsibility of the Health Service for any one injury will be limited to $200 for the physician's fees, and if treatment in a hospital outside the Infirmary is required, $10 per day for room and board plus $100 toward other hospital charges. In all cases the Health Service will assume this financial responsibility only if such service is deemed necessary and authorized in writing by one of the school physicians.

Students and parents are reminded that Georgia Tech has no health or hospital insurance. Parents are urged to provide such insurance for their children while attending Georgia Tech. Any benefits defined in the above paragraph will be paid regardless of other insurance coverage. Check with your personal physician or local medical society regarding availability of good health insurance.

All students are required to have immunization against tetanus (toxoid), small pox, and polio prior to enrollment. Boosters for tetanus, small pox and polio will be given as needed. Tech does not require typhoid vaccine but advises it for those who intend to do water skiing, skin diving, or other fresh water sports.

Entrance physical examination forms are mailed to students with the notice of their acceptance for enrollment. These forms are to be completed by the prospective student and his personal physician and mailed to the Director of Health in sufficient time to be received prior to the date of initial registration. After review of the medical history and physical examination report, the school physicians determine the assignments to R.O.T.C. and Physical Training. Any student who desires special consideration because of mental or physical disability should have his physician write an explanatory letter to the Director of Health giving full details of the disability and any desired limitations on physical activity. This letter is to be attached to the physical examination form. Any special examinations or reports needed to determine eligibility for enrollment or assignment are at the expense of the student, not the school. Any student who fails to submit the required physical examination and immunization record prior to registration will have the examination ordered by the school at the expense of the student.

The Director of Health as representative of the Institute reserves the right to exclude students with certain infirmities or disabilities which he feels may be detrimental either to the individual or to other students. He also reserves the right to require certain treatment of students in order to qualify for enrollment or to remain in school.
LIBRARY

Director of Libraries—Mrs. J. Henley Crosland; Associate Director of Libraries—Dale L. Barker; Chief of Technical Processing—Miss Sophia Sullivan; Chief of Readers' Services—Edward Graham Roberts; Chief Science-Technology Librarian—Arthur T. Kittle; Science-Technology Librarians—Miss Ann Evans, Miss Frances Kaiser, Mrs. Marjorie H. Muller; Technical Reports Librarian—Robert J. Greene; Interlibrary Services Librarian—Miss Lee Lane; Special Collections Librarian—Miss Safford Harris; Chief General Studies Librarian—Mrs. Anne P. Bugg; General Studies Librarians—Miss Ruth Hale, Richard Leacy, Mrs. Mary R. Power, Miss Nancy Shofner; Chief Catalog Librarian—Miss Eleanor Smith; Catalog Librarians—Mrs. Kelly K. Ackerman, Mrs. Jeanne C. Magill, Mrs. Mary Mac Thigpen, Mrs. Helen S. Walzer, Miss Mary Harriet White; Data Processing Librarian—Miss Lorna Wiggins; Acquisitions Librarians—Mrs. Beatrice R. Caine, Mrs. Carolyn B. DallaValle, Miss Frances Drew, James Whitehead; Physical Processing Librarian—Miss Mildred Emmons; Assistant Physical Processing Librarian—John W. Pattillo; Library Assistants—Mrs. Helen R. Citron, Mrs. Sigrid H. Fowler, Mrs. Maribeth Manresa, Mrs. Britta K. Palmer, Mrs. Maxine B. Roy; Administrative Secretary—Mrs. Kathryn A. Hook; Senior Accounting Clerk—Mrs. Zelma P. Levy; Other Non-Academic Assistants—Miss Beverly Dockery, Mrs. Marilyn Emerson, Mrs. Mary Fischer, Mrs. Marie Fortier, Mrs. Joan R. Hoffman, Mrs. Elita L. Moyers, Mrs. Lola S. Paille, Mrs. Frances Robinson, Richard Samay, Mrs. Sandra Tilley, Mrs. Florence Ueda, Miss Terry Uyeno, Howard W. Voigt, and Mrs. Jane Wilhoit.

On November 21, 1953, the new Price Gilbert Memorial Library was dedicated. It is an impressive structure of contemporary design. The cost, including equipment and furniture, was more than $2,000,000. The building, completely air-conditioned, has five floors on the South wall and three on the North wall.

The interior of the building follows the contemporary design of the exterior. Twenty colors have been used throughout the building, giving a feeling of warmth. Comfortable lounge furniture has been interspersed between the large natural birch reading tables. All stacks, except those on the ground floor, are open.

The building has a capacity of about 450,000 volumes and will seat 800. The General Studies Library is on the first and second floors and the Science-Technology Library on the third and fourth floors. The Music Room on the ground floor contains more than 6,800 recordings, a collection which continues to grow because of the generous gifts of alumni. The Music Room offers much enjoyment to both students and faculty. When the folding partition between them is opened, the Music Room and Wilby Room together can serve as an auditorium seating almost 300.

The Library collection today numbers more than 300,000 bound volumes and approximately 168,000 unbound documents and pamphlets. The greater part of these, which are scientific and technical, are used for study and research. The Library subscribes to the journals of the leading engineering and scientific societies and to the outstanding scientific and technical periodicals in this
country and abroad. There is an author and title and a subject catalog for all books and periodicals.

In August 1962 the Tech Library was designated as one of twelve Regional Technical Report Centers, where unclassified U.S. Government Scientific Technical Reports are deposited to serve users in Alabama, Florida, Georgia, Mississippi, South Carolina, Tennessee, and Puerto Rico. To expedite service the Center has a TWX system, five Xerox 914 copying machines, and a ITEK Reader Printer for microfilm.

The Library is primarily for the use of students and members of the faculty. All books, not reference or held on reserve, may be withdrawn for home use in accordance with the rules of the Library. The General Library is open from 8:00 a.m. to 11:30 p.m. Monday through Friday. On Saturday the building closes at 6:00 p.m. It is open on Sundays from 2:00 p.m. to 10:00 p.m. Printed Library regulations are given the freshmen at the time of matriculation.
WATER RESOURCES CENTER

Director—Regents' Prof. Carl E. Kindsvater; Administrative Committee—Dr. J. W. Mason (Chairman), Dr. R. A. Hefner, Dr. M. J. Goglia, Prof. R. E. Stiemke, Dr. F. W. Schutz; Advisory Committee—Dr. Frederick Bellinger, Dr. W. C. Biven, Dr. R. S. Ingols, Dr. R. N. Lehrer, Regents' Prof. H. K. Menhinick, Prof. W. M. Snyder, Dr. H. W. Straley.

The Water Resources Center was established in 1963 to stimulate and coordinate a campus-wide program of education and research related to water resources planning, development, and management. Policies and activities of the Water Resources Center are governed by an Administrative Committee, consisting of appropriate administrative officers, and an Advisory Committee, consisting of faculty and staff representatives from units of the Institute having an appropriate interest in the field.

Typical of the activities of the Center are the following:

1. Coordinate course offerings on a campus-wide basis.
2. Coordinate search for interdisciplinary staff.
3. Coordinate proposals for interdisciplinary research.
4. Coordinate a water resources publication series.
5. Coordinate contacts with outside individuals and agencies as regards interdisciplinary activities.
6. Collect, review, and circulate information regarding legislative activities, research, technical reports, etc.
7. Coordinate conferences, seminars, short schools, etc.
8. Allocate unrestricted funds appropriated or donated to the Institute for water resources activities.
9. Coordinate reviews and expressions of opinion or position regarding matters of public or professional interest.
10. In general, to serve as the focal point of Georgia Tech's public image as a regional center for water resources education and research.
OFFICE OF DEAN OF STUDENTS

Acting Dean of Students—James E. Dull; Dean of Students Emeritus—George C. Griffin; Acting Associate Dean of Students—W. Eugene Nichols; Assistant Deans—Edwin P. Kohler, Lucien W. Hope, Michael V. Mulligan; Director of Counseling and Guidance—James A. Strickland; Assistant Director—Mark E. Meadows; Counselors—Basil Hoover and M. Harris Mynatt; Psychometrist—Rachel G. Jones; Assistant Psychometrist—Muriel O. Lindsay; Office Manager—C. O. Mackinder; Senior Clerk—Mrs. Mary Lou Smith; Secretaries—Mrs. Hazel Hammer, Mrs. Gaye Jackson, Mrs. Donna Schoultz, Miss Judith D. Terrell, Miss Paula Parker.

The Dean of Students Office supervises extracurricular activities and student services. It is the focal point in the administration of affairs concerning the life and activities of students in all but the academic field. It stresses the importance of the student as an individual.

It is the headquarters for student life including social fraternities, student government, student housing, student publications, international student affairs, selective service and veterans affairs, counseling and guidance services, religious affairs, and health services.

Every effort is made to draw all students to this office who need assistance or advice in solving problems or who desire to participate in extracurricular activities. The goal of the Dean of Students Office is to assist the student in making the best possible adjustment to college life and to gain the best possible benefit from being a member of the college community.

The Guidance and Counseling Service, located in the Dean of Students Building, provides vocational, educational, and personal counseling services for all enrolled Georgia Tech students.

Each year, more than a thousand Tech students avail themselves of this service. These students work with professional counselors in such areas as choosing a vocation, improving study habits, and personal adjustment to college life.

The Counselor does not attempt to make up the student's mind for him. On the other hand, the counselor encourages each student to make his own decision. A variety of interest, personality, and ability tests are available to help both the student and the counselor in their work together.

The Office of the Dean of Students attempts to preserve the atmosphere of informality and friendliness, such as is found at a small school, and to assist the student in making the transition from high school to college as easy as possible. The Dean of Students and his staff are eager to cooperate with the parents of students in an effort to solve any problems affecting the welfare of Georgia Tech students.
STUDENT ACTIVITIES

STUDENT ACTIVITIES

Student Council—1964-1965

The Student Council, which was first established in 1922, is the student government organization of Georgia Tech. Through its elected representatives, it exercises supervisory authority over all extracurricular student activities except YMCA and Athletics.

The Student Council officially represents and acts as principal liaison agent between the general student body and the faculty. It controls the use of student activity fees and handles all financial matters involving the general student body.

Also the Student Council has charge of the chartering of all student organizations. Through a series of standing committees and some temporary committees, the work of the Council is carried on in every field of student activity.

The Student Council is composed of representatives from each class at Georgia Tech. There are four freshman representatives, six sophomore representatives, eight junior representatives, and sixteen senior representatives (representing and elected by the seniors in the individual Departments). Supplementing this group are the senior class officers. The Dean of Students is Faculty Advisor for the Student Council.

Officers:

Ronald D. Stallings, President
Gregg L. McKee (Chip), Vice President
James E. Sprouse, Judiciary Cabinet Chairman
Stephen M. Mitchell, Secretary
Edwin C. Rodgers (Sonny), Treasurer
Dean James E. Dull, Faculty Advisor

Senior Class Officers:

William J. Gresham, Jr., President
Robert C. Scruggs, Vice President
William Eugene Selby, Secretary-Treasurer

Senior Departmental Representatives:

Charles E. Cunningham, Arch. Edgar T. Anderson, A.E.
Henry Wall, C.E. Ralph E. McMorris, E.E.
Carey Reagan Huff, C.E. Freddie R. Burke, M.E.
James R. Tate, Ch.E. Val F. Coerver, M.E.
John Y. Williams, I.E. James Robert Wiggins, T.E.
David Alan Simmons, I.M. Peter B. Wright, Comb.
Hugh T. FitzSimons, I.M. John Richard Phelps, Comb.
Larry K. Whipple, E.E. Donald Paul Dietz, Co-op.

Junior Class Representatives:

Howard T. Tellepsen, Chairman John Robert Shields
Edwin C. Rodgers Tony Lee Yaksh
Jack S. Painter Walter E. Gilbert
Harold Bruce McEver William Phelps, III, Co-op.
Patrick F. McMahon William Paul Moore, Co-op.
Sophomore Class Representatives:
John Henry Outland (Doc), Chairman
Charles Clint Bolte
Swep Taylor Davis
Robert Lewis Lord

Freshman Class Representatives:
Marshall T. Schreeder, Chairman
Stokes Harris

Members at Large:
Kenneth Eugene Perry
James E. Sprouse
John Phillip Gingrey

Honorary Members:
Cathryn Lee Burton, Coed Representative
Bruce D. Fitzgerald, Technique Representative
Henry Villa, International Students Representative

Publications Board
This Board was organized in July 1945, at the request of the Student Council. The Board is responsible for all student publications on the Georgia Tech campus. Officers of the Board for 1964-65 were.

Chairman and Treasurer: Dean Michael V. Mulligan; Secretary: John R. Shields

The Technique
Bruce D. Fitzgerald, Editor
William T. Waddell, Business Manager
Dr. James E. Young, Faculty Advisor

The Blue Print
William W. Sumits, Editor
Kenneth L. Kennedy, Business Manager
Mr. Frank A. Beckum, Jr., Faculty Advisor

The Georgia Tech Engineer
Leroy L. Laney, Editor
James E. Smith, Business Manager
William W. Hines, Faculty Advisor

Office of Publications
Robert B. Wallace, Jr., Director
Young Men's Christian Association

General Secretary—Robert Charlton Commander; Assistant Secretary—Robert E. Winn; Administrative Associate—Mrs. Clyde Lyon; Office Secretary—Mrs. Robert C. Frost, Jr.

The Young Men’s Christian Association is a lay Christian movement. It seeks to find forms of lay religious expression that will reflect understanding of the teachings and practices of all the churches to which YMCA members belong.

We welcome as members persons of all religious affiliations who wish to join and cooperate in support of the Christian ideals and values for which we stand. Each member is encouraged to be faithful to the teachings and practices of his own church.

In giving effect to our Christian ideals and values, the Georgia Tech YMCA offers, to those who participate in its activities, opportunities for experiences that will help them

...to develop self-confidence and self-respect and an appreciation of their own worth as individuals

...to develop a faith for daily living

...to grow as responsible members of their families and citizens of their communities

...to appreciate that health of mind and body is a sacred gift and that physical fitness and mental well-being are conditions to be achieved and maintained

...to recognize the worth of all persons, and to help others attain their greatest self-fulfillment

...to develop a sense of world-mindedness, and to work for world-wide understanding

...to develop capacities for leadership and use them responsibly in their own groups and in community life.

The Georgia Tech YMCA sponsors purposeful activities, some of which are: Alpha Phalanx Club, Barbell Club, Cabinet, Camp Committee, Chess Club, Executive Roundtable, Gamma Psi, Gene Turner Fund, Photography Club, Recreation Council, Religious Programs Committee, Sigma Phalanx Club, “T” Book Committee, Toastmasters Club, Triangle Club and World Student Fund.

The “T” Book—a handbook of information for new students—contains much of interest and value about the YMCA and other student organizations. A copy is available upon request.
FRATERNITIES

Interfraternity Council—Composed of two representatives from each national fraternity at Georgia Tech, and Assistant Dean of Students as faculty advisor, the Interfraternity Council is the governing body for all social fraternities on the campus. The Council sets such regulations as rush-week rules, house rules, and pledge and membership regulations.

Officers 1964-1965

I. F. C.

DOUGLAS W. JOHNSON .. President
JAMES E. SMITH .. Vice-President
LEE W. HOGAN .. Secretary
JAMES R. FREEMAN ... Treasurer
DEAN EDWIN P. KOHLER, II .. Faculty Advisor

Fraternity Faculty Advisor

Alpha Epsilon Pi ... Robert Scharf
Alpha Tau Omega .. Roane Beard
Beta Theta Pi ... Harry Baker
Chi Phi ... Thomas H. Hall
Chi Psi ... Arisledes F. Abril
Delta Sigma Phi ... Walter H. Tripod
Delta Tau Delta .. James J. Bynum
Delta Upsilon .. B. A. Gilbreath
Kappa Alpha ... Lane Mitchell
Kappa Sigma ... Charles B. Pyles
Lambda Chi Alpha ... Mrs. J. H. Crosland
Phi Delta Theta .. Tommy Plaxico
Phi Epsilon Pi .. Neil DeRosa
Phi Gamma Delta ... Harrison M. Wadsworth
Phi Kappa Sigma ... Douglas H. Hutchinson
Phi Kappa Tau .. Col. Clarence R. Drennon
Phi Sigma Kappa ... Tommy Plaxico
Pi Kappa Alpha .. Lane Mitchell
Pi Kappa Phi ... R. E. Stiemke
Sigma Alpha Epsilon .. James D. Landrum
Sigma Chi ... Ewing Hunter
Sigma Nu ... H. G. Carmichael
Sigma Phi Epsilon .. Phil Rector
Tau Kappa Epsilon .. Bill Muse
Theta Chi ... Irving F. Foote
Theta Xi ... Niels N. Engel and Leroy A. Woodward

Sorority Faculty Advisor

Alpha Xi Delta ... R. E. Stiemke
PROFESSIONAL AND TECHNICAL SOCIETIES

Departmental Societies

<table>
<thead>
<tr>
<th>Society</th>
<th>Faculty Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Association of Textile Colorists and Chemists</td>
<td>R. K. Flege</td>
</tr>
<tr>
<td>American Ceramic Society</td>
<td>Lane Mitchell</td>
</tr>
<tr>
<td>American Chemical Society</td>
<td>Dr. J. Aaron Bertrand</td>
</tr>
<tr>
<td>American Institute of Architects (Student Chapter)</td>
<td>Joseph N. Smith</td>
</tr>
<tr>
<td>American Institute of Chemical Engineers</td>
<td>H. Clay Lewis</td>
</tr>
<tr>
<td>American Institute of Industrial Engineers</td>
<td>H. M. Wadsworth</td>
</tr>
<tr>
<td>American Society of Civil Engineers</td>
<td>Dr. Fred G. Pohland</td>
</tr>
<tr>
<td>American Society of Mechanical Engineers</td>
<td>Dr. E. Harrison</td>
</tr>
<tr>
<td>Association of Industrial Design Students</td>
<td>W. J. Seay</td>
</tr>
<tr>
<td>Georgia Tech Planner’s Society</td>
<td>M. G. Little</td>
</tr>
<tr>
<td>Institute of Aerospace Sciences</td>
<td>Dr. James A. Stricklin</td>
</tr>
<tr>
<td>Psi Society (Psychology)</td>
<td>Dr. R. P. Moll</td>
</tr>
<tr>
<td>Society for Advancement of Management</td>
<td>Dr. R. E. Green</td>
</tr>
<tr>
<td>Society of American Military Engineers</td>
<td>Lt. Col. Wythe P. Brookes</td>
</tr>
</tbody>
</table>

Departmental Honorary Societies:

<table>
<thead>
<tr>
<th>Society</th>
<th>Faculty Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Pi Mu (I.E.)</td>
<td>Wm. N. Cox, Jr.</td>
</tr>
<tr>
<td>Armed Forces Chemical Association</td>
<td>Lt. Col. K. Bechtold</td>
</tr>
<tr>
<td>Arnold Air Society</td>
<td>Capt. Gordon J. Milliken</td>
</tr>
<tr>
<td>Chi Epsilon (C.E.)</td>
<td>J. R. Fincher</td>
</tr>
<tr>
<td>Delta Kappa Phi (Textile)</td>
<td>G. B. Fletcher</td>
</tr>
<tr>
<td>Eta Kappa Nu (E.E.)</td>
<td>F. O. Nottingham</td>
</tr>
<tr>
<td>Industrial Management Society</td>
<td>G. E. Maddox</td>
</tr>
<tr>
<td>Kappa Kappa Psi</td>
<td>B. L. Sisk</td>
</tr>
<tr>
<td>Keramos (Ceramics)</td>
<td>Dr. Lane Mitchell</td>
</tr>
<tr>
<td>Phi Psi (Textile)</td>
<td>Frank L. Clarke</td>
</tr>
<tr>
<td>Pi Delta Epsilon (Publications)</td>
<td>R. B. Wallace, Jr.</td>
</tr>
<tr>
<td>Pi Mu Epsilon</td>
<td>J. M. Osborn</td>
</tr>
<tr>
<td>Pi Tau Sigma (M.E.)</td>
<td>L. J. Y. Barrondo</td>
</tr>
<tr>
<td>Scabbard and Blade</td>
<td>Lt. Col. Mayo J. Elliot</td>
</tr>
<tr>
<td>Sigma Gamma Tau (A.E.)</td>
<td>D. W. Dutton</td>
</tr>
<tr>
<td>Sigma Pi Sigma (Physics)</td>
<td>James R. Stevenson</td>
</tr>
<tr>
<td>Tau Sigma Delta (Arch.)</td>
<td>J. H. Grady</td>
</tr>
</tbody>
</table>

Honorary

<table>
<thead>
<tr>
<th>Society</th>
<th>Faculty Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAK</td>
<td>W. Roane Beard</td>
</tr>
<tr>
<td>Briaerean Society</td>
<td>I. E. Perlin</td>
</tr>
<tr>
<td>Koseme</td>
<td>Tom Hall</td>
</tr>
<tr>
<td>ODK</td>
<td>W. A. Flinn</td>
</tr>
<tr>
<td>Phi Eta Sigma</td>
<td>A. H. Bailey</td>
</tr>
<tr>
<td>Phi Kappa Phi</td>
<td>Paul Weber</td>
</tr>
<tr>
<td>Tau Beta Pi</td>
<td>D. W. Dutton</td>
</tr>
</tbody>
</table>
Religious

<table>
<thead>
<tr>
<th>Organization</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baptist Student Union</td>
<td>E. Warren Woolf</td>
</tr>
<tr>
<td>Canterbury Association</td>
<td>Rev. H. Bartlett</td>
</tr>
<tr>
<td>Christian Science</td>
<td>W. J. Clemence</td>
</tr>
<tr>
<td>Georgia Tech Christian Fellowship</td>
<td>Dewey Carpenter</td>
</tr>
<tr>
<td>King's Men</td>
<td>R. E. Green</td>
</tr>
<tr>
<td>Lutheran Student Association</td>
<td>Pastor Philip Schulz</td>
</tr>
<tr>
<td>Newnan Club</td>
<td>Robert F. Hochman</td>
</tr>
<tr>
<td>Pi Tau Chi (Religious Honorary)</td>
<td>Rev. Harwood Bartlett</td>
</tr>
<tr>
<td>Wesley Foundation</td>
<td>Rev. Lon Chesnutt and Rev. Wm. Landis</td>
</tr>
<tr>
<td>Westminster Fellowship</td>
<td>Al Jepson</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Organization</th>
<th>Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Kappa Psi</td>
<td>M. V. Law, P. Adler</td>
</tr>
<tr>
<td>Alpha Phi Omega</td>
<td>Michael V. Mulligan</td>
</tr>
<tr>
<td>American Marketing Association—Collegiate Chapter</td>
<td>W. V. Muse</td>
</tr>
<tr>
<td>American Materials Handling Society</td>
<td>J. M. Apple</td>
</tr>
<tr>
<td>American Rocket Society</td>
<td>F. M. White, Jr.</td>
</tr>
<tr>
<td>Band</td>
<td>B. L. Sisk</td>
</tr>
<tr>
<td>Bulldog Club</td>
<td>Tommy Plaxico</td>
</tr>
<tr>
<td>Cheerleaders</td>
<td>J. E. Dull</td>
</tr>
<tr>
<td>Chinese Club</td>
<td>K. L. Su</td>
</tr>
<tr>
<td>Circle K. Club</td>
<td>H. W. Sturges</td>
</tr>
<tr>
<td>Colombian Student Organization</td>
<td>R. F. O'Connor</td>
</tr>
<tr>
<td>Co-op Club</td>
<td>J. G. Wohlford</td>
</tr>
<tr>
<td>Dames Club</td>
<td>Mrs. W. E. Nichols</td>
</tr>
<tr>
<td>Debating Club</td>
<td>J. D. Young</td>
</tr>
<tr>
<td>Drama Tech</td>
<td>B. M. Drucker</td>
</tr>
<tr>
<td>Flying Club</td>
<td>R. B. Logan</td>
</tr>
<tr>
<td>Foil and Mask</td>
<td>Major Murray</td>
</tr>
<tr>
<td>Georgia Tech Political Forum</td>
<td>C. B. Pyles</td>
</tr>
<tr>
<td>Georgia Tech Sailing Club</td>
<td>Robert Nelson</td>
</tr>
<tr>
<td>Georgia Tech Soccer Club</td>
<td>P. G. Mayer</td>
</tr>
<tr>
<td>Georgia Tech Wrestling Club</td>
<td>W. E. Nichols</td>
</tr>
<tr>
<td>Glee Club</td>
<td>W. C. Herbert</td>
</tr>
<tr>
<td>Graduate Student Senate</td>
<td>M. J. Goglia</td>
</tr>
<tr>
<td>International Students Organization</td>
<td>L. W. Hope</td>
</tr>
<tr>
<td>Inter-Varsity Christian Fellowship</td>
<td>Dr. Dewey Carpenter</td>
</tr>
<tr>
<td>Judo Club</td>
<td>M. N. Dunham</td>
</tr>
<tr>
<td>Pan-American Club</td>
<td>L. J. Zahn</td>
</tr>
<tr>
<td>Pershing Rifles</td>
<td>Capt. Kelly</td>
</tr>
<tr>
<td>Philosophy Club</td>
<td>Robert Scharf</td>
</tr>
<tr>
<td>Pi Sigma Epsilon</td>
<td>Sidney G. Gilbreth, III</td>
</tr>
<tr>
<td>Radio Club</td>
<td>R. A. Martin</td>
</tr>
<tr>
<td>Rambling Reck Club</td>
<td>J. E. Dull</td>
</tr>
<tr>
<td>St. Patrick's Council</td>
<td>B. J. Dasher</td>
</tr>
<tr>
<td>Semper Fidelis</td>
<td>Maj. R. R. Powell</td>
</tr>
<tr>
<td>Society of Automotive Engineers</td>
<td>Prof. Shepard</td>
</tr>
<tr>
<td>Society of Women Engineers</td>
<td>Mrs. B. R. VanLeer</td>
</tr>
<tr>
<td>Sons of Tech Club</td>
<td>G. C. Griffin</td>
</tr>
</tbody>
</table>
Professional and Technical Societies / 231

T. Club .. Richard Inman
Veterans Club .. F. W. Ajax
Women's Student Association .. J. E. Dull
Young Americans for Freedom ... B. F. Barfield

YMCA Groups

Alpha-Y-Phalanx .. R. E. Winn
Barbell Club .. W. E. Nichols
Chess Club ... R. E. Winn
Executive Roundtable .. R. E. Winn
Gamma Psi .. Mrs. Clyde Lyon
Gavel Club .. R. E. Winn
Photography Club ... Mrs. Clyde Lyon
Recreation Council .. R. E. Winn
Sigma-Y-Phalanx .. R. E. Winn
T Book Staff ... Mrs. Clyde Lyon
Triangle Club .. Mrs. Clyde Lyon
World Student Fund ... R. C. Commander
Y.M.C.A. Cabinet ... R. C. Commander
SCHOLARSHIPS AND LOAN FUNDS

Rules and Regulations Governing Scholarships

1. The majority of the scholarships available through the Georgia Institute of Technology are restricted to those undergraduates who have high academic ability and good character but lack sufficient funds to continue their college education.

2. An application in writing on a form obtainable from the Georgia Institute of Technology is required of each applicant. Scholarship forms are available from the Registrar or the Dean of Students and must be completed by entering freshmen and returned no later than February 15. All other students must submit an application by June 1.

3. The Georgia Institute of Technology is a member of the College Scholarship Service (CSS). Participants in CSS subscribe to the principle that the amount of financial aid granted a student should be based on financial need. The CSS assists colleges and universities and other agencies in determining the student's need for financial assistance. All new students who are applicants for financial aid must also submit the Parents' Confidential Statement to the CSS designating the Georgia Institute of Technology as one of the recipients, at P.O. Box 176, Princeton, N. J., or P.O. Box 1025, Berkeley, California 94704, no later than February 15. Forms may be obtained at high schools or from the Office of the Registrar, Georgia Institute of Technology, Atlanta, Georgia 30332. All other students must obtain the Parents' Confidential Statement from the Office of the Registrar and return it to that office by June 1.

4. Each application must be approved by the appropriate committee before a scholarship will be deposited with the Controller of the Georgia Institute of Technology who will release the necessary funds to the recipient upon proper authorization from the appropriate committee.

5. Certain scholarships are renewable provided the recipients demonstrate high scholastic ability in their studies and outstanding character. To be eligible for renewal scholarship recipients must complete a renewal application form.

6. All entering freshmen are required to take the College Entrance Examination Board Scholastic Aptitude Test and three Achievement Tests (English, mathematics [Level I or Level II] and physics or chemistry) prior to acceptance at the Georgia Institute of Technology. Results of these tests will be considered by the Committee on Student Grants-In-Aid and Scholarships in making scholarship awards to entering freshmen.

7. An application for a scholarship cannot be considered until the student has been accepted for admission or is enrolled as a student at the Georgia Institute of Technology. Entering freshmen will be notified of their selection by June 1. All other students will be notified by September 1.

8. A student need not apply for a particular scholarship since his eligibility for any scholarship is established upon receipt of the scholarship application and theParents' Confidential Statement.

9. Scholarship payments are made in equal quarterly installments during the academic year. Payments are made to the individual recipient who in turn may apply the payment against his expenses.
Aluminum Company of America
Scholarships
Five $625 engineering scholarships to any student. Need, ability, and scholastic standing are the prime factors in the selection of candidates. Scholarships are renewable.

Anonymous Alumnus Scholarship
(Class of 1926)
A $400 annual scholarship to an entering freshman cooperative student. Recipient must acknowledge receipt of the award to the Scholarship Committee.

Armco Foundation Scholarships
Two scholarships, one junior and one senior, per year. Each scholarship amounts to $300 per year for a Georgia student or $600 per year for an out-of-state student. Restricted to Civil Engineering students. Selection is made from candidates who have demonstrated scholarship, character, and other potentialities for success in a technical industry. Selection is made by the Scholarship Committee subject to the approval of donor. Scholarship awarded junior recipient is renewable.

Atlanta, Georgia, Chapter — Armed Forces Communications and Electronics Association Scholarship
An award of $500 to a senior cooperative student in the field of Electrical Engineering. Recipient must desire a career in communications and electronics.

David J. Arnold Scholarships
Scholarships to be awarded from the interest on a fund established by Robert O. Arnold in memory of his brother. Award is unrestricted as to field of study and is awarded on the basis of financial need. Preference to residents of Spalding County, Georgia.

Atlanta Federal Savings Scholarships
Two annual $500 scholarships, one made to a freshman and one to a senior. Freshman award is made on basis of financial need and high school academic excellence. Senior award is made from upper 25% of his class on basis of financial need. Recipients must be male graduates of Atlanta and Fulton County High Schools, and enrolled in the School of Industrial Management.

Atlanta Textile Club Scholarship
One $300 scholarship to be awarded to a junior or senior in the A. French Textile School. Preference will be given to students from the Atlanta area.

Eugene O. Batson Scholarship Fund
This fund of $10,000 was created by Mr. E. O. Batson in memory of his son, the income to be given to deserving students. Unrestricted as to field of study.

Borden Freshman Prize
An award of $200 to the student finishing the freshman year with the highest average.

Building Stone Institute Scholarship
One $250 scholarship to be awarded to a third or fourth year student in the School of Architecture.

Burlington Industries Foundation Scholarships
Two annual $500 scholarships to a rising junior and a rising senior. Selection on basis of leadership, scholarship, and financial need. Prefer Textiles, Industrial Management, Industrial Engineering and related fields. Scholarship awarded junior recipient is renewable.

Callaway Scholarships
One annual $500 scholarship to be awarded a rising junior in the upper third of his class and majoring in Textile Engineering, Textiles, or Textile Chemistry. Award is renewable. Selection by Scholarship Committee and Callaway Scholarship Plan Committee. Scholarship is renewable provided recipient maintains satisfactory class standing.

Fuller E. Callaway Scholarship
Six general scholarships are awarded annually in the maximum amount of $300 per quarter to applicants who are employees or children of employees of Callaway Mills Company.
A maximum of six Co-Operative Scholarships may also be awarded to any applicant in the following fields: Chemical, Electrical, Industrial, Mechanical or Textile Engineering. Selection is by the Callaway Scholarship Plan Committee. For further information write: Callaway Mills Company, Scholarship Plan Committee, LaGrange, Georgia.

Chemstrand Corporation Scholarship
An award of $500 restricted to a senior in the A. French Textile School. Awards are made on basis of leadership, need, and ability to a U.S. citizen desiring a career in industry. Recipient must have B average or better.

Coats & Clark, Incorporated Scholarships
Two $500 scholarships to be awarded each year. These scholarships are renewable for three additional years, provided student maintains proper requirements. Award will be made to a high school graduate entering Georgia Tech for his freshman year in Chemical, Mechanical, Textile, Industrial, Electrical Engineering, as well as Chemistry, Textiles, and Textile Chemistry. If possible, one award will be made to an applicant from North Georgia and one to an applicant from South Georgia with preference to children of employees of Coats & Clark, Inc. Awards will be made on basis of academic ability and financial need.

John Cochran Scholarship
One or more scholarships to students in the field of Aerospace, Ceramic, Chemical, Civil, Electrical, or Mechanical Engineering. Awarded by Scholarship Committee on basis of need.

Columbus High School Class of 1912 Scholarships to be awarded by the Columbus High School in the maximum amount of $400 to their graduates. For further information write the Office of the Principal, Columbus High School, Columbus, Georgia.

Crown Zellerbach Scholarship
Two scholarship grants of $600 each unrestricted as to field of study for a junior or senior. Merit and ability are the primary considerations without regard to financial need. Scholarships are non-renewable.

Damar, Incorporated Scholarship
One $400 scholarship awarded to a Cobb County, Georgia, resident. Award is made on basis of need and ability.

Douglas Aircraft Company, Inc. Scholarship
One $750 scholarship awarded to a senior student in Aerospace, or Electrical (electronics) Engineering. Selection by Scholarship Committee subject to approval of Douglas Scholarship Committee Board. Preference to student willing to accept employment in California.

Ethyl Corporation Scholarship
One scholarship for any student majoring in Industrial Engineering. The amount of the award is determined by the Scholarship Committee. Scholarship is renewable.

Floyd County Scholarships
A scholarship fund to assist needy students without reference to politics, religion, or athletic ability. Recipients, as well as at least one of their parents, shall have been born in Floyd County or Rome City, Georgia. Selection is by the Floyd County School Board and the Rome City School Board. For further information write Trust Officer, The National City Bank of Rome, Rome, Georgia.

John and Mary Franklin Scholarships
Three thousand dollars annual scholarship fund established to aid worthy students from the State of Georgia. Awards are made on the basis of need, ability, evidence of good character and scholastic standing.

Fulton Federal Savings Scholarship
Three scholarships of $250 each for students majoring in the School of Architecture who are residents of Georgia. Ordinarily one award will go to a sophomore, one to a junior, and one to a senior.
Geigy Dyestuffs Scholarship
A $250 scholarship for a student, preferably a junior, majoring in Textile Chemistry, Chemical or Textile Engineering. This award will be granted on the basis of financial need, academic ability and evidence of good character.

General Motors Scholarships
Three scholarships are awarded each year to entering freshmen. Amount of the award will range from $200 to $2,000 per year, depending on the financial need of the recipient. Scholarships are renewable. Unrestricted as to field of study.

Gilman Foundation Scholarship
An award of $1,000 for an entering freshman, renewable for three additional years. Preference will be given in the order indicated:

1. Male resident of St. Marys, Georgia who is employed by, or who is a son of an employee of, St. Marys Kraft Corp., St. Marys Railroad Co., or Kraft Bag Company.
2. Any male employee or son of an employee of above mentioned companies, Gilman Paper Co., The Cellucord Corp., or Gilman Electric Light and Power Co., regardless of residence.

Goodyear Foundation Scholarship
An award of $1,000 for a junior or senior majoring in Mechanical or Chemical Engineering. Selection on basis of need, leadership, scholarship and ability.

Dean George C. Griffin Scholarships
Income from property amounting to $1,000 a year has been made available for 99 years by Mr. Lonnie Allen Morris, Class of 1936, a resident of Miami, Florida, to set up in honor of George C. Griffin, Dean of Students at Ga. Tech. First preference for award of the scholarships will be given to residents of Miami or Dade County, Florida. Second preference will be to those from other sections of Fla. The main qualifications for the scholarships will be academic ability and financial need.

George C. Griffin Scholarship
A scholarship fund created from the interest on approximately $35,000 contributed by Georgia Tech alumni and friends honoring Dean Griffin on his retirement as Dean of Students. The scholarships are unrestricted as to field of study and awarded on the basis of financial need.

The Robert E. Gross/Lockheed Aircraft Corp. Scholarship
Income from $30,000 to be awarded annually by the Scholarship Committee to any student in scientific, engineering, economic or other fields applicable to the aerospace, electronic, marine, manufacturing, or construction industries. Recipient must be U. S. citizen.

The John P. Holmes Scholarships Honoring Ben Z. and Sallie P. Holmes
This scholarship was set up by John P. Holmes in memory of his parents to provide one or more scholarships annually to undergraduates on the basis of academic ability and financial need.

Industrial Minerals of Canada Limited Scholarship
One scholarship in the amount of $500 to be awarded a Ceramic Engineering student.

C. D. LeBey Memorial Scholarship
(Class of 1922)
One scholarship each year, unrestricted as to field of study, has been established in memory of Mr. C. D. LeBey, President, Class of 1922. First preference to residents of Florida, Alabama, and Tennessee. Value, approximately $250.

Lockheed Leadership Fund
One annual scholarship covering tuition and fees plus $500 to any student under 25 and majoring in any field applicable to aircraft manufacturing. Selection on basis of leadership, scholarship, and ability. Scholarships are renewable.

Julian L. Looney Scholarship Fund
A trust fund of approximately $30,000 given by Hazel Betts Looney in
honor of her husband. Income from the fund is available for unrestricted scholarship purposes.

Lowry Memorial Scholarship Fund
This scholarship was set up by Colonel Robert J. and Emma C. Lowry for the purpose of assisting legal residents of the State of Georgia to obtain a college education, who, because of lack of funds, might otherwise be deprived of this opportunity. The interest on approximately $500,000 is distributed as gift or loan scholarships, depending on the individual needs of the students.

R. L. "Bob" MacDougall Scholarship
One scholarship each year, unrestricted as to field of study, has been established in the name of R. L. MacDougall by the Class of 1925 and friends. Value, approximately $300.

Martin Freshman Tuition Scholarships
One or more annual scholarship grants to cover full tuition for entering freshmen for the cooperative plan during the freshman year. Recipients must be from the Maryland, District of Columbia, or Orlando, Florida areas. Special consideration should be given to sons of employees. Preference will be given to those students in Aerospace Engineering.

Kenneth E. (Babe) McIntosh Scholarship
One $400 scholarship awarded to high school student from Fulton, DeKalb, Clayton, Cobb, or Gwinnett Counties. The award is renewable and unrestricted as to course of study. Selection is by Scholarship Committee on the basis of scholarship, leadership, and financial need.

McLendon Scholarship Fund
Fund of $500 established to be awarded to qualified students of good character, in financial need, and who would be otherwise unable to pursue their education. Unrestricted as to field of study.

Minnesota Mining and Manufacturing Company Scholarship
$1,000 per year scholarship fund awarded to any undergraduate student in the field of engineering.

Monsanto Chemical Company
One $500 scholarship to be awarded to an outstanding student for his senior year of study in the School of Chemical Engineering. Selection of recipient will be made by the Scholarship Committee on recommendation of the School of Chemical Engineering.

Muscogee Foundation Scholarship
One scholarship in the amount of $600 to an entering freshman in the field of textiles. Selection is by the Muscogee Scholarship Committee. For further information contact Secretary, Muscogee Scholarship Committee, Columbus, Georgia.

Northside Optimist Club Scholarship
A scholarship fund in the amount of $2,000 to be awarded entering freshmen from the Greater Atlanta geographic area. Recipients must have high character, leadership potential, and academic ability. Preference will be given to those students with financial need.

Owens-Illinois Scholarship
One scholarship for a non-resident student or two scholarships for resident students to be awarded each year. Each scholarship will cover tuition, other college fees, and the cost of required textbooks and laboratory supplies. Award will be made to a male high school graduate and will be renewable for three additional years under certain conditions. Recipients must major in Electrical, Chemical, Civil, Ceramic, Mechanical or Industrial Engineering.

Patterson and Dewar Engineers, Inc.
A fund of $400 per year, established by Patterson and Dewar Engineers, Inc., to be awarded to a deserving senior. The scholarship is made in behalf of the clients of the firm in lieu of the Christmas gifts of earlier years. The recipient is requested to assume the responsibility to repay voluntarily to the scholarship the funds received if practical in the future.
Pennsylvania Glass Sand Corporation
Merit Award Scholarship
An award covering tuition and fees for the senior year to the student in Ceramic Engineering who completes the junior year with the highest average.

Annie Laura Galloway Phillips Scholarship
A $200 annual scholarship established to help deserving boys. Award will be made on the basis of scholastic record and financial need.

Jack Phinizy Educational and Charitable Foundation Fund
Awards of $200 each for a freshman and a sophomore student in engineering. Restricted to students from Florida, Georgia, or North Carolina, with preference given to students of Richmond County, Georgia. Granted on the basis of academic ability, engineering, aptitude, and financial need.

Procon, Incorporated Scholarships
Two annual scholarships of $500 each to be awarded to senior students, one in the School of Civil Engineering and one in the School of Mechanical Engineering.

The Rayonier Scholarships
Two scholarships of $500 each established by The Rayonier Foundation. One of the scholarships is available for a senior in the School of Chemical Engineering and the other for a senior in the School of Industrial Management.

Scholarships and Loan Funds / 237

Regents' State Scholarships
A fund of approximately $20,000, Georgia Tech's share of a $200,000 fund appropriated by the General Assembly for the University System in accord with the Board of Regents. Scholarships are for Georgia students with average grades and/or predicted grade point average in the upper 25% who possess superior ability and require financial need. The amount of each scholarship is determined by the Scholarship Committee up to a maximum of $750 per year. Scholarships are renewable and with the provision that recipients must agree to stay and work in the State of Georgia one year for each $1,000 received under this program.

Rotary Club of Buckhead Scholarship
An award of approximately $300 to an entering freshman. Applicant must be from one of these high schools: Chamblee, North Fulton, Northside.

Savannah Gas Company Scholarship
A $300 scholarship to a student of Armstrong College transferring to the Georgia Institute of Technology. Selection is by the Savannah Gas Company. For further information write Executive Vice-President, Savannah Gas Company, P. O. Box 888, Savannah, Georgia.

Schoon Foundation
Two $500 scholarships. Awards are to be made to students of high academic standing in their junior or senior year in the Schools of Electrical or Mechanical Engineering or Physics. Students must complete, prior to earning his undergraduate degree, at least twelve hours study in electricity.

Seydel-Woolley & Company Scholarship
One $300 scholarship to be given to an outstanding male junior or senior studying in the field of Textile Engineering or Textile Chemistry.

Seydel-Woolley & Company Scholarship

Shaheen Foundation Scholarship
The interest from $5,700 to be awarded to engineering students on the basis of need and ability. Selection by Scholarship Committee with preference to students from Whitfield County, Georgia.

Alfred P. Sloan Foundation Scholarships
Two awards (amount to be determined) for matriculating male fresh-
men who plan to major in one of the traditional engineering disciplines or in basic science. The recipients must have established a record of high character, leadership potential, and scholarly promise. The awards may be renewed for three additional years.

Socony Mobil Oil Scholarships
Two scholarships covering tuition and fees to a maximum of $400, plus $500 cash each. One each given in the field of Civil Engineering and Geophysics with preference to students interested in the exploration and production activities of the petroleum industry. Selection by the Scholarship Committee and the Socony Mobil Producing and Fellowship Committee based on scholastic and personal qualifications with interest in the petroleum industry. The awards may be given to one junior or senior, or divided among two or more freshmen. A $500 unrestricted grant to the major school of the recipient accompanies the award.

Square D Scholarship
One annual scholarship of $600 per year to a rising junior in Electrical or Mechanical Engineering. Scholarship renewable for senior year.

Starke Patteson Scholarship
One or more annual scholarships to be awarded on the basis of academic ability and financial need. Recipients are to be selected from boys in the Cooperative plan from Memphis or Shelby County, Tennessee, high schools. Awards are made on the basis of academic record and financial need.

T. E. Stribling Memorial Textile Fellowship/Scholarship Fund
Entire annual net income from Stribling Trust Fund for one fellowship to include tuition and fees, not less than $2,000 nor more than $2,500, plus $500 misc. expenses. Any excess income may be used for undergraduate scholarships of not more than $600 to members of the junior and senior classes of the Textile Department.

Texaco Scholarship
A grant of $1,800 to be awarded at the discretion of the Scholarship Committee. Preference will be given to juniors and seniors in Civil, Chemical, Electrical, Industrial and Mechanical Engineering and juniors and seniors in the Schools of Chemistry and Physics.

The Textile Engineering Scholarship Plan of the Textile Education Foundation, Inc.
The Textile Education Foundation, Inc., of Atlanta, Georgia, established this scholarship plan in 1952 for the purpose of encouraging and assisting worthy young men who seek to obtain an education in Textile Engineering. A maximum of six scholarships will be awarded annually, each scholarship amounting to $600 per scholastic year for each of four scholastic years provided the recipient maintains the requirements. For further information write to: The Director, A. French Textile School, Georgia Institute of Technology, Atlanta, Georgia 30332.

James F. Towers Scholarship
Scholarships are to be awarded from the interest on a fund of $15,000 established by James F. Towers. Recipients are to be of good character majoring in engineering or science. Preference will be given to male students from Floyd County, Georgia.

The Trane Company Scholarship
One $500 scholarship to be awarded annually to a student, preferably a mechanical engineer, for his senior year of study. Recipient must be a citizen of the United States and must have a standing in the upper 25% of his class. Good character, outstanding technical and administrative potential, extracurricular activities and the need of the student will be given consideration.

Union Bag-Camp Paper Corporation
A $500 scholarship for a junior which is renewable for the senior year. The selection must alternate annually between Industrial and Chemical Engineering students.
Scholarships and Loan Funds / 239

Scholastic ability and leadership potential are the major considerations.

Union Carbide Engineering Scholarship
A $500 scholarship for an entering freshman who will major in Chemical or Mechanical Engineering. Renewable for three additional years. Students entering in the co-operative plan are not eligible for this scholarship.

Universal Oil Products Company Scholarship
$1,000 per year scholarship fund established to aid worthy students in their junior or senior years of study in the School of Chemical Engineering. Awards are made on the basis of academic record and financial need.

Western Electric Fund Scholarships
Three scholarships awarded to upper-classmen in the field of Engineering. Awards can be given to first or second year students. Scholarships include tuition, fees, books to a maximum amount of $800. Scholarships are renewable. Preference will be given to those students majoring in Electrical, Industrial, or Mechanical Engineering.

Westwood Charitable Foundation Scholarship
A scholarship fund in the amount of $1,200 to be awarded those students with financial need. Scholarships are unrestricted as to course of study.

R. K. Whitehead Foundation
$2,500 to $3,000 in scholarships to be awarded to outstanding freshmen with financial need.

Wilcox-Connelly Scholarship
An award of $300 for any junior or the School of Architecture.

Woman's Aero Club of Atlanta Scholarship
An award of $300 for any junior or senior majoring in Aerospace Engineering.

Women's Chamber of Commerce Scholarship
A $300 per year scholarship fund to be conferred upon any needy Georgia woman student at the Georgia Institute of Technology with the specification that the same student be eligible to receive the fund for more than one year; scholarship is to continue until such time as the organization deems it necessary to withdraw.

GEORGIA TECH ALUMNI CLUB SCHOLARSHIPS

Various alumni clubs sponsor scholarship programs for students in their geographic areas. Interested applicants should contact their local high school counselor for further information or contact Mr. W. Roane Beard, Executive Secretary, Georgia Tech Alumni Association, 225 North Avenue, Atlanta, Georgia 30332.

Albany, Georgia Alumni Club
Three $300 scholarships (Co-op) for freshmen from the Albany, Georgia area. Engineering courses only available.

Greater Atlanta, Georgia Tech Club
Fifteen or more freshmen scholarships of $300-450 each for qualified needy students from the Metropolitan Area. Students are urged to attend on the Co-operative plan. Scholarships are extended for the sophomore year to those students who make a point average of 3.0 or better in their first year.

Augusta, Georgia Tech Club
One, possibly two, $300 scholarships available to freshmen from the Augusta area.

Birmingham, Alabama Georgia Tech Club
One $850 scholarship for freshmen from Birmingham and vicinity.

Chattanooga, Tennessee Georgia Tech Club
One $400 scholarship available to freshmen from the Chattanooga area pursuing an engineering curriculum under the Co-operative Program. Applicants must rank in the upper 1/2 of their high school class, be of good moral character, and have financial need.

Macon, Georgia Tech Club
One, possibly two, $300 scholarships available to freshmen from the Macon area.

Middle Tennessee Georgia Tech Club
A scholarship fund in the amount of $500 to be awarded entering fresh-
men who require financial assistance. Recipients must be from the Middle Tennessee area.

Savannah, Georgia Tech Club
Two $300 scholarships for students from the Savannah area.

South Texas Alumni Association
(Blake R. Van Leer Memorial Scholarship)
One $700 scholarship (Co-op) for freshmen from Houston, Texas and nearby cities. Engineering courses only available.

Rules and Regulations Governing Regular Short Term Student Loans

1. A written application will be required of each applicant for a student loan. Forms may be obtained in the Student Loan Office and should be submitted two weeks before the money is desired.

2. Each applicant under 23 years of age and single must have the approval of his parents. Each applicant under 21 years of age and married must have the approval of his parents.

3. Each application must be approved by the Committee on Student Loans before the loan will be granted.

4. Each student to whom a loan is granted will be required to sign a promissory note covering the principal and interest.

5. Georgia Tech students, faculty and staff members may not be used as references.

6. All short term student loans must be repaid ten days before the end of the quarter in which the money is received.

7. There will be a set schedule of repayment which will be made a part of the application for the loan, and will also be made a part of the note to be signed by the student.

8. All short term notes bear interest at the rate of 5% per annum from the date of the note.

9. A student may make application for a loan to be used for the following purposes:

 Tuition and fees
 Room Rent
 Board
 Books and Supplies

10. The note given by the student will be to secure money to pay tuition and fees, room rent, board, and books and supplies for a certain period. If the maker of the note should leave the Georgia Institute of Technology for any reason at any time before the expiration of said period, it is distinctly understood and agreed that there is to be no credit or refund therefor on the note given to the Georgia Institute of Technology.
Rules and Regulations Governing
National Defense Student Loans

With the enactment of the National Defense Education Act in September, 1958, a new long-term financial aid program was created for college students. This act makes it possible for many students denied a college education because of financial need an opportunity to receive such an education.

Applications for this loan must be submitted two months prior to the quarter the money is desired. A new application must be submitted for each quarter, and the maximum amount allowable per quarter is $300.

In order to be eligible for a loan under this program, a student must:

1. Be at least a half-time student or be accepted for admission as a half-time student at Georgia Tech.

2. Be in good standing and capable of maintaining such a standing.

3. Show evidence of financial need in order to complete his course of study.

4. Sign a loyalty oath.

The National Defense Loan bears simple interest upon the unpaid balance at 3% a year.

The principal amount of the loan, together with the interest, should be repaid to the institution in equal annual installments which may be extended over a period of ten years. The repayment period begins one year after the date the borrower ceases to be a full-time student at an institution of higher education. An institution, however, may at its discretion grant a deferment of payments during periods aggregating not more than three years during which a borrower is a part-time student taking courses creditable toward a degree. Interest would continue to accrue during any such period of deferment.

Applications may be secured from the Student Loan Office at the Georgia Institute of Technology.
LOAN FUNDS

Approved loan applications are assigned by the Loan Committee to the following funds which have been established through the generous contributions of friends and patrons of the Institute:

<table>
<thead>
<tr>
<th>Fund Name</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>George W. Adair Loan Fund</td>
<td>$677.14</td>
</tr>
<tr>
<td>William Ott Alston, Jr. Memorial Loan Fund</td>
<td>$750.34</td>
</tr>
<tr>
<td>American Institute of Architects, Georgia Chapter Loan Fund</td>
<td>$297.12</td>
</tr>
<tr>
<td>American Society of Mech. Engrs., Roger Martin Memorial Fund</td>
<td>$1,400.78</td>
</tr>
<tr>
<td>J. Baldwin Loan Fund</td>
<td>$63.22</td>
</tr>
<tr>
<td>M. R. Berry Loan Fund</td>
<td>$4,406.88</td>
</tr>
<tr>
<td>James G. Boswell Foundation Loan Fund</td>
<td>$697.49</td>
</tr>
<tr>
<td>S. F. Boykin Loan Fund</td>
<td>$137.15</td>
</tr>
<tr>
<td>T. P. Branch Memorial Loan Fund</td>
<td>$210.14</td>
</tr>
<tr>
<td>Brittain-Busbin-Jarrell Emergency Loan Fund</td>
<td>$3,003.34</td>
</tr>
<tr>
<td>J. B. Campbell Loan Fund</td>
<td>$797.74</td>
</tr>
<tr>
<td>The DeWitt F. Capehart Loan Fund</td>
<td>$235.75</td>
</tr>
<tr>
<td>Class of 1919 Loan Fund</td>
<td>$25.53</td>
</tr>
<tr>
<td>Class of 1934 Loan Fund</td>
<td>$272.95</td>
</tr>
<tr>
<td>Josiah Dana Cloudman Loan Fund</td>
<td>$16,309.95</td>
</tr>
<tr>
<td>Holland Coleman, Jr. Architectural Memorial Schol. Loan Fund</td>
<td>$1,519.95</td>
</tr>
<tr>
<td>William B. Coleman Post #51 of the American Legion Loan Fund</td>
<td>$505.10</td>
</tr>
<tr>
<td>Mrs. Alice Spencer Coon Loan Fund</td>
<td>$2,834.02</td>
</tr>
<tr>
<td>Creole Foundation Loan Fund</td>
<td>$1,008.93</td>
</tr>
<tr>
<td>A. C. Dobbs Loan Fund</td>
<td>$128.84</td>
</tr>
<tr>
<td>Arthur J. Dyer Student Loan Fund</td>
<td>$1,300.74</td>
</tr>
<tr>
<td>Ford Foundation Loan Fund</td>
<td>$149,466.25</td>
</tr>
<tr>
<td>A. French Loan Fund</td>
<td>$2,777.73</td>
</tr>
<tr>
<td>Georgia Federation of Labor Loan Fund</td>
<td>$1,361.52</td>
</tr>
<tr>
<td>Count Dillon Gibson Memorial Student Loan Fund</td>
<td>$2,781.09</td>
</tr>
<tr>
<td>Mary Brotherton Griffin Loan Fund</td>
<td>$228.96</td>
</tr>
<tr>
<td>Mary D. Gude Loan Fund</td>
<td>$188.74</td>
</tr>
<tr>
<td>Lyman Hall Loan Fund</td>
<td>$8,127.90</td>
</tr>
<tr>
<td>J. M. High Memorial Loan Scholarship Fund</td>
<td>$3,372.43</td>
</tr>
<tr>
<td>Dr. and Mrs. Thomas P. Hinman Loan Fund</td>
<td>$299.42</td>
</tr>
<tr>
<td>Irving Subway Grating Company, Inc. Loan Fund</td>
<td>$570.11</td>
</tr>
<tr>
<td>Louis Gholsin Johnson Loan Fund</td>
<td>$735.16</td>
</tr>
<tr>
<td>Kappa Alpha Educational Foundation, Inc. Loan Fund</td>
<td>$123.90</td>
</tr>
<tr>
<td>The Clyde L. King, Jr. and John King Memorial Loan Fund</td>
<td>$7,573.24</td>
</tr>
<tr>
<td>John King Memorial Loan Fund</td>
<td>$24,262.78</td>
</tr>
<tr>
<td>Roy Stevenson King Loan Fund</td>
<td>$3,148.70</td>
</tr>
<tr>
<td>Last Sub Class Loan Fund of 1914</td>
<td>$176.58</td>
</tr>
<tr>
<td>Malta Lodge #641, F. & A. M. Loan Fund</td>
<td>$1,668.42</td>
</tr>
<tr>
<td>Lona Mansfield Loan Fund</td>
<td>$1,353.03</td>
</tr>
<tr>
<td>Mrs. T. O. Marshall Loan Fund</td>
<td>$8,245.13</td>
</tr>
<tr>
<td>E. P. McBurney Loan Fund</td>
<td>$16,172.17</td>
</tr>
<tr>
<td>J. A. McFarland Loan Fund</td>
<td>$169.14</td>
</tr>
<tr>
<td>Thomas E. Mitchell Education Fund of the University of Georgia</td>
<td>$2,899.04</td>
</tr>
<tr>
<td>Joseph N. Moody Loan Fund</td>
<td>$3,039.49</td>
</tr>
</tbody>
</table>
The Gayle Nimmocks Memorial Scholarship .. 206.34
The L. W. (Chip) Robert, Jr. Loan Fund .. 140.28
Scottish Rite Loan Fund .. 1,640.68
Second Baptist Church, Bible Class #1 .. 813.85
Sam W. Small Loan Fund .. 73.66
T. W. Smith Loan Fund ... 413.81
Smyrna Lions Club Loan Fund ... 116.57
Stacey-Roberts Loan Fund .. 117.48
J. P. Stevens Loan Fund ... 7,822.29
Lynn Strickland Memorial Loan Fund .. 1,276.54
Joseph M. Terrell Loan Fund .. 3,850.44
Thomaston Mills Loan Fund .. 1,928.18
Clark Thornton Memorial Loan Fund .. 660.98
E. A. Turner Loan Fund .. 60.79
Arthur Williams Estate Emergency Trust Loan Fund 1,018.07
Mrs. Fannie B. Wright Loan Fund .. 1,230.27

The Lewis H. Beck Fund
The Lewis H. Beck Scholarship Fund is a student loan fund created by the late Mr. Lewis H. Beck of Atlanta, for the benefit of students attending Georgia Institute of Technology who are (1) residents of Georgia, (2) unmarried, (3) between the ages of 16 and 25, and (4) upperclassmen who, if sophomores, have completed their freshmen years with a 2.5 or better average or if juniors or seniors, have maintained a 2.0 or better average. The loan is administered by a special Board of Trustees. Applications may be obtained from the Student Loan Office.

Cuban Students Loan Program
The purpose of this loan is to make available funds to Cuban nationals who are presently unable to receive support from sources within Cuba as a result of actions by the Cuban Government, and who are without sufficient resources in the United States to finance their attendance at institutions of higher education.

An application must be submitted for each quarter a loan is desired approximately two months prior to the beginning of the quarter. The maximum amount a student may borrow per quarter is $333.00.

In order to be eligible for a loan under this plan, a student must:
(1) Be a Cuban national.
(2) Be enrolled in the Institution as a full-time student on either the undergraduate or graduate level.
(3) Be capable, in the opinion of the Institution, of continuing to maintain satisfactory standing.
(4) Be unable, as a result of action by the Cuban Government, to receive support from inside Cuba.
(5) Be in need of the amount of the loan to pursue his course of study at the Institution.

Each student to whom a loan is granted will be required to sign a promissory note.

A borrower has a "year of grace" after he ceases to be enrolled as a full-time student in an institution of higher education during which he does not have to make payments on the loan and during which the interest of 3 per cent a year on the unpaid balance does not accrue. After that year elapses, the borrower will begin to repay the principal plus the interest in ten equal annual installments.

Applications may be secured from the Student Loan Office at the Georgia Institute of Technology.

Pickett and Hatcher Educational Fund
The late Mr. Claude A. Hatcher of Columbus, Georgia, created an educational loan fund for the purpose of aiding a large number of worthy students in securing courses in broad liberal college training. Loans are available for students of all classes,
including graduates. Limitations prevent loans being granted to students of law, medicine and for the ministry.

Applications and requests for additional information should be addressed to Pickett and Hatcher Educational Fund, P. O. Box 2128, Columbus, Georgia.

Emergency Loan Funds
Generous friends of the institution have established funds of varying amounts which are used for emergency loans. The Office of the Dean of Students operates nine Emergency Loan Funds for students. It established the M. L. Brittain Loan Fund started by the President—Emeritus of Georgia Tech; the Bill Busbin Fund started by Mrs. T. E. Busbin; the Edward W. Navickas Fund; the John Jarrell and Tech Women's Club Fund; H. O. Henry "Ozzie" Ward Fund; Major General Haywood Shepherd Hansell (U.S.A.) Fund; Bob Eskew Fund; and George C. Griffin Fund. Loans are made from these funds for emergencies only.

United Students Aid Funds Loan Program
USA Funds is a private, non-profit service corporation which endorses long-term loans made by local banks to needy college students. To be eligible for this loan, a student must have completed his freshman year and be a full-time student in good standing.

A student can borrow up to $1,000 a year, but applications must be submitted each quarter to the Student Loan Office. Repayment of this loan begins five months after graduation and extends over a period of three years. These loans bear 6% simple interest.

Student Loan Fund of the American Society of Mechanical Engineers
The Woman's Auxiliary to the American Society of Mechanical Engineers has established a loan fund for students of Mechanical Engineering in good standing who are either juniors, seniors or graduate students. Correspondence should be addressed to Mrs. W. J. Schell, Jr., Chairman, Student Loan Fund, 151 Idlewood Drive, Stamford, Connecticut 06905.

The Methodist Student Loan Fund
This loan is available to students of all classes, including graduates, who have been members of the Methodist Church for one year or more immediately prior to application. In addition, applicants must be citizens of the United States, at least seventeen years of age, have earned at least a 2.0 average during the quarter immediately prior to application and be wholly or partially self-supporting. Interested and qualified students should contact the Reverend William Landiss, Director, Wesley Foundation, 189 Fourth Street, N.W., Atlanta, Georgia, for the necessary application forms and further information.

The General Henry H. Arnold Education Fund
The Air Force Aid Society has created a loan fund to aid unmarried children of Air Force and Army Air Forces personnel in securing an undergraduate college education, with priority being given to students whose fathers are deceased. Additional information and application material should be requested from the Air Force Aid Society, National Headquarters, Washington, D. C. 20333.

Stevens Bros. Foundation, Inc.
The Foundation was incorporated as a nonprofit and charitable corporation which has been primarily engaged in making educational loans to senior and graduate men, provided they are citizens of the United States, in good standing and will commence work at the end of the academic year the loan is requested. Interested students should send a copy of their transcript with full details concerning their status and requirements to The Stevens Bros. Foundation, Inc., 610-612 Endicott Building, St. Paul 1, Minnesota.
MEDALS AND PRIZES

The Honor Society of Phi Kappa Phi
Among the prizes offered for scholarship by the Georgia Institute of Technology is membership in the honor society, Phi Kappa Phi, to which a limited number of seniors representing all departments are elected annually. Phi Kappa Phi is a national organization with chapters in many of the leading universities and colleges.

The local chapter of Phi Kappa Phi awards annually a scholarship cup to that member of the senior class who, on the basis of all work taken in this institution, ranks scholastically as one of the first two students in the class.

Tau Beta Pi
Tau Beta Pi is a national honorary engineering fraternity with chapters in most of the leading engineering schools of the country. The Alpha Chapter of Georgia offers membership to approximately twenty-five engineering students of each graduating class who can qualify according to the standards of scholarship, character, loyalty, personality, leadership, and school activities. The fact that Tau Beta Pi is the second oldest honorary fraternity in the country and numbers among its members many of our leading engineers, makes membership in the society a coveted honor.

The local chapter of Tau Beta Pi awards annually a scholarship cup to an outstanding engineering senior who ranks among the first five of his class, on the basis of all scholastic work taken in this institution.

Phi Eta Sigma
Phi Eta Sigma is a freshman honor society in which any male student is eligible for membership who has made an average of at least 3.5 on the work of the first term of the freshman year. The society awards a scholarship cup to the freshman who makes the highest average for the first term.

Chi Epsilon Award
The Chi Epsilon Award is given annually by the Georgia Tech Chapter. The recipient is chosen from the five highest members, based on scholarship of the senior class. The final choice of the recipient is made from the five candidates on the basis of leadership, sociability, practicality and scholarship. The winner receives a certificate and his name is placed on an honor roll in the Civil Engineering Building.

Textile Scholarship Medals
The Georgia Textile Manufacturers' Association awards a watch annually to a member of the senior textile class, based on scholarship throughout his course, and for original effort in the work of the Textile Department during his senior year. The American Association of Textile Technologists makes an award annually in the form of a suitable plaque to a member of the graduating class of the A. French Textile School. The award is based on scholarship and other personal qualities which indicate an outstanding student.

Briaerean Scholarship Cup
The Briaerean Society of the Georgia Institute of Technology presents annually a scholarship cup to a senior member of the society whose scholastic average for a period of four and one-half years entitles him to rank as one of the highest three members of the class.

Fraternity Scholarship Cup
The Interfraternal Council awards quarterly a scholastic cup to the chapter of that organization which makes the highest scholastic average.
Alpha Chi Sigma Prize
The professional chemical fraternity, Alpha Chi Sigma, presents annually a handbook to the junior who has made the best record in the Chemistry or Chemical Engineering course.

Eta Kappa Nu
The Eta Kappa Nu Association, national electrical fraternity, awards annually an electrical engineering handbook to the regular sophomore Electrical Engineering student (on the basis of four quarters) or to the co-op pre-junior electrical engineering student (on the basis of four quarters) having the highest scholastic average.

Delta Kappa Phi
The Delta Kappa Phi Plaque is awarded annually to the graduating senior selected as the outstanding graduate in the textile department. A certificate is presented at the annual Honors Day exercises. Delta Kappa Phi is the oldest national honorary textile fraternity in the country.

Pi Tau Sigma
Pi Tau Sigma, national mechanical engineering fraternity, elects to membership outstanding mechanical engineering students in the junior and senior years.

An annual award of an engineering handbook is made to the highest ranking sophomore student in Mechanical Engineering (based upon at least four quarters of work).

Aerospace Engineering Medal
The James Edward Oglethorpe Chapter of the Daughters of the American Colonists presents annually a medal to the member of the graduating class in Aerospace Engineering who has made the highest scholastic average, based on the work of at least four complete quarters.

Industrial Management Certificate
The Industrial Management Society, senior honorary organization for I.M. students, awards annually a certificate of scholarship to the senior in the School of Industrial Management who ranks first in his class on the basis of all scholastic work taken at Georgia Tech.

The William Gilmer Perry Award
The Department of English awards annually a fifty dollar bond to the student in his first year who has done the best work in freshman English. This award is made through the courtesy of the Georgia Tech Foundation, Inc. in honor of Dr. William Gilmer Perry, late Professor of English.

Alpha Pi Mu Award
The Alpha Pi Mu Award is presented yearly to extend recognition and honor to that senior student in Industrial Engineering who has exhibited outstanding scholastic achievement tempered with those individual characteristics which the members of Alpha Pi Mu consider necessary for success. The recipient of the award is chosen from the three top seniors scholastically, and the presentation is made at the Annual Honors Day Exercises.

The American Institute of Industrial Engineers, Atlanta Chapter Award
The American Institute of Industrial Engineers, Atlanta Chapter, award is presented to the Industrial Engineering junior who is most outstanding in scholastic attainment and who has demonstrated such personal qualities as leadership, character, and breadth of interest. The presentation is made annually at the Honors Day Exercises.

The American Institute of Industrial Engineers, Student Chapter Award
The American Institute of Industrial Engineers, Student Chapter, award is presented to the Industrial Engineering sophomore who is chosen from the top three in his individual engineering class as having the best combination of personal and aca-
Academic qualities. This presentation is made annually at the Honors Day Exercises.

Society for Advancement of Management Award
The S.A.M. Award is presented at the annual Honors Day Exercises to the Industrial Engineering junior who is most outstanding in scholastic attainment and who has demonstrated such personal qualities as leadership, character, and breadth of interest.

Georgia Engineering Society Awards
Four awards consisting of a cash prize and certificate are awarded each year by the Georgia Engineering Society. Three awards are given to Juniors in the College of Engineering who have earned the highest accumulative grade-point average at the end of the Winter Quarter. Not more than one award is given to students in any one of the schools of engineering. One award is given to the junior in the School of Architecture who is judged by a committee to be the most promising all-around student. The recipients must have completed at least six quarters of work at the Institute.

The American Society of Civil Engineers Award
The American Society of Civil Engineers Award is given annually by the Georgia Section of the ASCE. The recipient is selected by a committee from a list of three candidates who have the highest point average among the graduating members of the Student Chapter of the ASCE and who have completed at least eight quarters of work at the Institute. The Award consists of the Junior Membership entrance fees and a cash prize of $90.00.

Army R.O.T.C. Prizes and Trophies
The A.B. Steele Trophy, a handsome silver cup, the gift of Mrs. Ray Powers and Mr. A. B. Steele, as a memorial to those "Tech" men who made the supreme sacrifice during World War I, is awarded annually to the best drilled company in the regiment.

The Joseph Habersham Chapter of D.A.R. presents annually a medal to the member of the senior class who attains the highest rating in Military Science and Tactics.

The Georgia Society of Daughters of Colonial Wars presents annually a medal to the cadet officer who attains the highest rating for outstanding leadership.

The Reserve Officers' Association of Atlanta gives annually an officer's Saber to the most outstanding student in Military Science and Tactics.

The U. S. Artillery Association presents annually a medal to the member of the junior class, Artillery Unit, who attains the highest rating for proficiency in scholarship and in Military Science.

The Society of American Military Engineers presents annually a gold medal to the outstanding senior engineering student of the Engineer R.O.T.C. Unit. The award is based on academic achievement, attitude, military proficiency in the field, and leadership qualifications.

A gold medal is given annually by the Army Ordnance Association to the member of the junior class of the Ordnance Unit who attains the highest rating in Leadership and Ordnance scholarship.

The Armed Forces Chemical Association presents annually a medal to the most outstanding Chemical Engineering student enrolled in the Advanced Course of Army, Navy, or Air Force R.O.T.C.

The Association of the United States Army presents annually medals to the outstanding 1st year Advanced Course cadets of the Infantry R.O.T.C. battalion.

The Armed Forces Communication Association presents awards annually to the outstanding sophomore, junior, and senior Army, Navy, or Air Force R.O.T.C. cadets who attain the highest ratings for pro-
iciency in scholarship in Military, Naval, or Air Science in the field of communications.

The Beta Theta Pi Fraternity, Georgia Tech chapter, presents annually medals to those members of the senior class who are selected as the most outstanding of the Distinguished Military Graduates of each branch of service, Army R.O.T.C.

The United States Veterans Signal Corps Association presents annually a medal to the most outstanding of the 2nd year Advanced Course cadets in the Signal Corps battalion.

The ANAK Society, Georgia Tech, presents annually seven medals, one each to the freshman in the Air, Artillery, Chemical Corps, Engineer, Infantry, Ordnance, and Signal Corps Units, who attains the highest rating for proficiency in Military Science.

The Scabbard and Blade Society gives annually a trophy to the captain of the company which wins the Steele Trophy.

An appropriate award is presented annually to each R.O.T.C. member of the Georgia Tech Rifle Team for proficiency in rifle marksmanship.

Gold, silver, and bronze medals are awarded by the Scabbard and Blade Military Society to students who achieve the highest individual rating for excellence in military drill.

The American Legion Medal is presented annually by the Fulton County Voiture 217, 40, and 8, Honor Society of the American Legion, to the outstanding freshman AFROTC cadet who is outstanding in leadership, academic achievement and military proficiency.

The Howard Shaw Leadership Trophy is annually awarded by Mr. Howard Shaw to the senior AFROTC cadet who has demonstrated the highest qualities of leadership.

The McGuire Medal, presented by Beta Theta Pi, is annually awarded to the distinguished AFROTC senior.

An appropriate award is presented annually to each AFROTC member of the Georgia Tech Rifle Team for proficiency in rifle marksmanship.

The Society of American Military Engineers' Eagle Award is presented to the ten outstanding senior engineering students of the nationwide AFROTC program.

Gold, silver, and bronze medals are awarded by the Scabbard and Blade Military Society to cadets who achieve the highest individual rating for excellence in military drill.

Various aviation trophies are presented by the major aircraft manufacturers.
Naval R.O.T.C. Medals and Awards
The Georgia State Society “United States Daughters of 1812” awards a gold medal each year to the NROTC senior who achieves the highest rating in Naval Science.

The ANAK Society awards annually two medals; one to the NROTC junior showing highest proficiency in Theoretical and Practical Navigation, and the other to the NROTC freshman showing highest proficiency in Naval Science during his freshman year.

The Scabbard and Blade Society gives annually an award to the outstanding NROTC senior.

The McGuire Medal is presented annually to the distinguished senior regular midshipman and to the distinguished senior contract midshipman.

The Atlanta Chapter of the Reserve Officers of the Naval Service presents annually an award to the sophomore NROTC student showing the greatest proficiency in ordnance, gunnery, and fire control.

An appropriate award is presented each year to each NROTC member of the Georgia Tech Rifle Team for proficiency in rifle marksmanship.

The Armed Forces Chemical Association award is presented annually to the junior ROTC student at each of five NROTC schools, having the highest scholastic average in chemistry or chemical engineering.

The Society of American Military Engineers awards annually 10 engineering medals for the outstanding engineering NROTC seniors and 10 medals for the outstanding engineering NROTC junior, selected from all NROTC schools in the United States.

The United States Naval Institute presents awards annually to the senior Regular NROTC student and the senior Contract NROTC student having the highest cruise aptitude marks for summer training.

The Marine Corps Association presents annually an award to the outstanding senior NROTC student who is a candidate for commission in the U. S. Marine Corps.

The Veterans of Foreign Wars of the United States presents the “General Douglas A. MacArthur $1,000 Award” every third year commencing in 1953 to the outstanding Regular NROTC senior in the United States.
GEORGIA TECH ATHLETIC ASSOCIATION

Board of Directors

Intercollegiate Staff

College Athletics
College athletics at the Georgia Institute of Technology are managed by a Board of Directors consisting of seven faculty members, three alumni members and three student members. The President is chairman of the Board and appoints the faculty and alumni members. The student members are the captain of the football team, the editor of *The Technique*, and the president of the Student Council. The Business Manager of Athletics is elected by the Board. The head coaches of the various sports are called into Board meetings from time to time. The Athletic Board holds regular monthly meetings and on occasion called meetings at the discretion of the President. The Board aims to secure cooperation of the faculty and students in athletic affairs to maintain a high standard of sportsmanship and to create adequate facilities to give every student an opportunity to take part in some athletic activity.

The liberal policy adopted by the faculty toward athletics has resulted in such interest in college sports that the number engaged in some form of exercise is large.

Intercollegiate schedules are played in football, cross country, basketball, swimming, track, golf, tennis, baseball, gymnastics, and wrestling.
Athletic Plant

The Hugh Inman Grant Field, the football stadium, is located in the center of the campus and occupies two full city blocks. The U-shaped stadium seats 52,300 and surrounds one football field and a quarter-mile cinder track. At the open end of the U are located the Naval Armory building, the gymnasium and swimming pool building and the athletic administration building. Under the East Stand, dressing rooms and showers to accommodate 1,000 men have been constructed.

The completion of the Alexander Memorial Center in September of 1956 has given our basketball, Physical Training and Intramural programs a great impetus. The coliseum will seat approximately 7,000 spectators for basketball. It has two full-size basketball courts. This building is also used for numerous school functions and is owned by the Georgia Institute of Technology.

The Physical Training Building adjoining the coliseum has dressing rooms and lockers for Physical Training, basketball, visiting teams, and officials. A full-size basketball court and offices for our Physical Training faculty (sophomore) are in this building.

The "old" gymnasium seats 2,000 for athletic indoor events and 3,000 when set up as an auditorium. The swimming pool seats 400 for aquatic events. This building has adequate locker rooms and showers for both men and women.

The Naval Armory houses the Navy R.O.T.C. Unit and in addition furnishes a supplementary gymnasium for intramural and physical training activity.

The athletic administration building houses the athletic and business offices, visitors' dressing rooms, and an adequately designed and equipped wrestling room and corrective exercise room.

The liberality of Mr. John W. Grant and other money furnished by the Georgia Tech Athletic Association, and the government agencies—C.W.A., P.W.A., and W.P.A.—have resulted in a well equipped sports and recreation center worth well over five million dollars. Acknowledgement is also made of the money loaned by Mr. Fred M. Kaufman which made possible the construction of the Naval Armory.

In addition to Grant Field, the Board of Directors in 1930 purchased a ten-acre tract located four hundred yards north of the main plant. This field is known as Rose Bowl Field and contains three football fields, two baseball diamonds, and a baseball stand which seats 5,000.

Some excellent tennis courts have been built on school property directly across from the Gymnasium in Peters Park. Also, twelve additional all-weather courts have been constructed bordering Tenth Street.

The land bounded by 8th Street, 10th Street, Fowler and Cherry Streets has been allocated to athletic purposes by Georgia Tech.
252 / Georgia Institute of Technology

NATIONAL ALUMNI ASSOCIATION

Executive Secretary—W. Roane Beard; Associate Secretary—Thomas H. Hall, III; Editor, The Georgia Tech Alumnus—Robert B. Wallace, Jr.; Administrative Assistant—Mrs. Mary Bowie; Secretaries—Mrs. Carol Stevens, Miss Ann Goodwin; Records and Clerical—Mrs. Theresa H. Ward, Mrs. Nell Ivey; IBM Operator—Marion F. Griffin.

In 1920, under the leadership of William H. Glenn, B.S. in M.E., '91, the various Georgia Tech Alumni Clubs which had been previously organized in Georgia and other states, were banded together into the present Georgia Tech National Alumni Association. Today Georgia Tech alumni, consisting of graduates and former students, are found all over the world.

Some of the worthwhile objectives of the association are to:

1. Maintain an up-to-date record of each alumnus of Georgia Tech.
2. Publish The Georgia Tech Alumnus.
3. Organize and service local Georgia Tech Alumni Clubs.
4. Operate a placement service for Georgia Tech alumni—without cost to either employer or applicant for employment.
5. Organize special events for alumni, such as class reunions, homecoming days, and alumni participation in commencements.
6. Furnish a medium through which alumni may aid and encourage the President of Georgia Tech and his faculty in making it a bigger and better institution, and assist in providing scholarships for worthy students.
7. Furnish visiting alumni with information, and other such personal services.
8. Through the various media of publicity, acquaint the general public; the people of Georgia; civic, state and federal officials; industries of the United States and institutions of secondary and higher education with the achievements of the Georgia Institute of Technology and its alumni.
9. Raise funds for Georgia Tech through the Annual Alumni Roll Call.

The Alumni Secretary acts in a clearing capacity for Georgia Tech men after their graduation. All Georgia Tech men are urged to keep their files in his office up-to-date, giving their location, activities, and other valuable information, in order that they may be consulted without delay on problems of mutual interest.

Officers and trustees of the Alumni Association for 1964-65: Daniel A. McKeever, '32, Atlanta, Ga., President; Madison F. Cole, '41, Newnan, Ga., Vice President; Alvin M. Ferst, '43, Atlanta, Ga., Vice President; W. Roane Beard, '40, Atlanta, Ga., Secretary; L. Lawrence Gellerstedt, '45, Atlanta, Ga., Treasurer; Herbert A. Bolton, '32, Griffin, Ga.; L. Massey Clarkson, '50, Atlanta, Ga.; James R. Dellinger, Jr., '53, Cartersville, Ga.; J. Leland Jackson, '35, Macon, Ga.; J. Erskine Love, Jr., '49, Atlanta, Ga.; Dan I. MacIntyre,
GEORGIA TECH FOUNDATION, INC.

Executive Secretary—Joe W. Guthridge; Bookkeeper—Mrs. Jennie L. Bradley.

The Georgia Tech Foundation, Inc. is a non-profit corporation organized and operated solely for the purpose of soliciting and administering funds for the benefit of the Georgia Institute of Technology and its students. The Georgia Tech Foundation, Inc., is directed by a Board of outstanding alumni business leaders, who administer the funds received in such a way as in their judgment would most effectively improve the standard of the school.

The funds received by the Foundation are used presently for the following purposes:

1. To supplement the compensation of faculty members in order to obtain or retain outstanding faculty members and thus improve the standard of education at the Georgia Institute of Technology.

2. To undertake special programs, which cannot be financed by state funds, for the development of the Georgia Institute of Technology.

3. To enable faculty members to improve their professional qualifications and standing by grants to obtain advanced degrees, etc.

The majority of donations received are unrestricted and are used by the Foundation at the discretion of its Board of Trustees. Some donations are received for designated purposes and are used by the Foundation only for the purpose designated, provided they are for the use of the Georgia Institute of Technology and within the charter purposes of the Foundation.

Members of the Foundation Board of Trustees are: John C. Staton, '24, Atlanta, President; Oscar G. Davis, '22, Atlanta, Vice President; Henry W. Grady, '18, Atlanta, Treasurer; Joe W. Guthridge, Exec. Secretary; Ivan Allen, Jr., '33, Atlanta; John P. Baum, '24, Milledgeville, Ga.; Fuller E. Callaway, Jr., '26, LaGrange, Ga.; John O. Chiles, '23, Atlanta; Robert H. Ferst, '38, Atlanta; Y. Frank Freeman*, '10, Hollywood, Calif.; Jack F. Glenn, '32, Atlanta; Ira H. Hardin, '24, Atlanta; Julian T. Hightower, '19, Thomaston, Ga.; Wayne J. Holman, Jr., '28, New Brunswick, N. J.; Howard B. Johnson, '34, Atlanta; George T. Marchmont*, '07, Dallas, Texas; George W. McCarty, '08, Atlanta; Jack J. McDonough, '23, Atlanta; Walter M. Mitchell, '23, Atlanta; Frank H. Neely*, '04, Atlanta; William A. Parker, '19, Atlanta; Hazard E. Reeves, '28, New York, New York; I. M. Sheffield, '20, Atlanta; Hal L. Smith, '26, Atlanta; Howard T. Tellepsen, '34, Houston, Texas; Robert Tharpe, '34, Atlanta; William C. Wardlaw, Jr., '28, Atlanta; Robert H. White*, '14, Atlanta; George W. Woodruff, '17, Atlanta; Charles R. Yates, '35, Atlanta.

Income Tax Provisions of Contributions

Funds held by the Georgia Tech Foundation, Inc. are exempt from taxation by both State and Federal Governments, because it is a non-profit educational organization. Contributions made by individuals and industries to the Foundation are deductible from income for income tax purposes. For full details about limitations and savings in income tax, latest State and Federal tax regulations should be consulted.

*Trustee Emeritus.
Bequests

There are various forms of bequests that can be used. Due to differences in the various state laws, an attorney-at-law should be consulted. A suggested simple form that will serve in some cases is as follows:

I hereby give and bequeath to the GEORGIA TECH FOUNDATION, INC., Atlanta, Georgia, the sum of____________dollars to be used by the Board of Trustees in whatever way will best advance the interests of the Georgia Institute of Technology.

If the bequest is intended to leave the Foundation the remainder of any estate, the form may be: *All the rest, residue, and remainder of my real and personal property of any kind whatsoever, I give and bequeath to the GEORGIA TECH FOUNDATION, INC., Atlanta, Georgia, et cetera.*

All money received by the Foundation will be administered and directed by the Board of Trustees according to the wishes of the donors and in the best interests of the Georgia Institute of Technology.

Georgia Tech Annual Alumni Roll Call

The rising cost of higher education has made it imperative that colleges and universities get all possible aid from outside sources. In 1947, the Foundation originated the Georgia Tech Annual Alumni Roll Call, a vehicle by which all Tech men can contribute to their Alma Mater according to their means. The annual Alumni Roll Call began its eighteenth year, July, 1964.

The results of the first seventeen years of the Roll Call have proved the soundness of this plan. The renewed spirit of giving to Georgia Tech by alumni has been very gratifying to all concerned. Additional support is being received from industry and foundations within the state. The Joint Tech-Georgia Development Fund is proving to be very helpful to both Georgia Tech and Georgia.

For the past four years, the Georgia Institute of Technology has been recognized nationally with the first place award “for sustained alumni support” among all public institutions of higher learning. In 1962, the Institute also received the national runner-up award “for sustained alumni support” among all colleges and universities.

The aid realized through the Roll Call supports the work of the National Alumni Association as well as the Georgia Tech Foundation, Inc. The only use to which these funds are put by the Foundation is for the advancement and benefit of Georgia Tech. The work of the Georgia Tech Foundation, Inc. continues to be one of the most vital factors in the growth and development of the Georgia Institute of Technology.
Administrative Council—1965-1966*

FRED W. AJAX
Director of Public Relations

JAMIE R. ANTHONY
Controller

W. ROANE BEARD
Alumni Secretary

WILLIAM C. BIVEN (3)
Faculty Representative

WILLIAM L. CARMICHAEL
Registrar

ARTHUR M. COLEMAN, Head
Department of Physical Training

VERNON D. CRAWFORD, Director
School of Physics

MRS. J. HENLEY CROSLAND
Director of Libraries

SHERMAN F. DALLAS, Director
School of Industrial Management

BENJAMIN J. DASHER, Director
School of Electrical Engineering

ROBERT L. DODD
Director of Athletics

CLARENCE B. DRENNON, JR., Col.,
USA Professor of Military Science

BERTRAM M. DRUCKER
Director, School of Mathematics

ARNOLD L. DUCOFFE, Director
School of Aerospace Engineering

JAMES E. DULL
Acting Dean of Students

ROBERT H. FETNER, Director
School of Applied Biology

MARIO J. GOGGLA
Associate Dean of Faculties
Dean of Graduate Division

CHARLES W. GORTON (1)
Faculty Representative

FRANK F. GROSECLOSE, Director
School of Industrial Engineering

HOMER V. GRUBB, Director
School of Chemical Engineering

JAMES B. HAMAN (2)
Faculty Representative

EDWIN D. HARRISON
President

WILLIAM B. HARRISON, Director
School of Nuclear Engineering

PAUL M. HEFFERNAN, Director
School of Architecture

RALPH A. HEPNER, Dean
General College

GEORGE HENDRICKS, Head
Department of Social Sciences

WALTER HERBERT, Head
Department of Music

R. KENNETH JACOBS, Head
Department of Engineering Graphics

ALEXANDER K. JOHNSON, Lt. Col.,
USAF
Professor of Air Science

LAWRENCE V. JOHNSON, Director
Engineering Extension Division

EDWARD H. LOVELAND, Director
School of Psychology

JESSE W. MASON, Dean
Engineering College

HOYT L. MCCLURE, Director
Southern Technical Institute

LANE MITCHELL, Director
School of Ceramic Engineering

KENNETH G. PICA, Director
School of Mechanical Engineering

MILTON E. RAVILLE, Director
School of Engineering Mechanics

FREDERICK W. SCHUTZ, Director
School of Civil Engineering

VLADIMIR SLAMECKA, Director
School of Information Science

WILLIAM M. SPICER, Director
School of Chemistry

ROBERT E. STIEMKE
Associate Dean of Faculties
Administrator of Research

JAMES L. TAYLOR, Director
A. French Textile School

ANDREW J. WALKER, Head
Department of English

PAUL WEBER
Dean of Faculties

WYATT C. WHITLEY, Director
Engineering Experiment Station

JAMES G. WOHLFORD, Director
Cooperative Division

RICHARD H. WOODFIN, Capt., USN
Professor of Naval Science

J. DIXON WRIGHT, Head
Department of Modern Languages

Three Student Representatives

*Number in parentheses after faculty representative’s name indicates years to be served on Administrative Council.
Standing Committees of the General Faculty—1965-1966*

ADVANCED PLANNING—Mason, Cushman, Heffernan, Hefner, Dutton (3), W. B. Harrison (3), Rainey (1).

FACULTY COUNCIL—Beckum (3), Eaton (3), Su (2), Topp (2), Almon (1), Hochman (1).

INFIRMARY—Riggsbee, Coleman, Henry, Weber, Dull, Student Representative.

LIBRARY—Ford (3), Atchison (2), Ducoffe (1), Crosland.

PUBLIC RELATIONS—Ajax, Paquette (3), Bellinger (2), Garner (2), Welser (1).

PUBLICATIONS—C. G. Johnson (3), K. Murphy (2), Eberhardt (1), Crosland, Wallace.

STATE RESIDENCE—Anthony, Carmichael, Dull.

STATUTES—McKinley (3), Stanfield (3), Almon (2), Loveland (2), Stoneking (1), Carmichael.

STUDENT LECTURE AND ENTERTAINMENT—Bragg (3), Brewer (3), Foote (2), Ajax, Herbert, 4 Student Representatives.

STUDENT LOANS—Anthony, Dull, Guthridge.

Special Committees of the Faculty—1965-1966*

CIVIL DEFENSE—Fincher, Caseman, Covault, Cushman, Wang, Zimmerman.

FACULTY AWARDS—Goglia, Atchison, Carstens, Dallas, T. H. Hall.

FOREIGN STUDENTS—Wright, Comer, Dull, Hope, Spillman, Sturgis, Zahn

INSURANCE—Groseclose, Eaton, Marshall, Starrett.

NON-ACADEMIC PERSONNEL—Marshall, Helms, Logan.

NUCLEAR SAFEGUARDS—Zimmerman, Eichholz, Fleming, Harmer, Kirkland, McGee, C. J. Roberts.

PARKING—Anthony, Cox, Cushman, Dull, W. B. Harrison, Moll, 2 Student Representatives.

PRE-MEDICAL ADVISORY—Fetner, Loveland, Spicer.

SAFETY AND FIRE PROTECTION—Cox, Cushman, Fleming, McKinley, McLendon, Ratcliff, Schutz.

STUDENT ACTIVITIES BUILDING—Dull, Ajax, Anthony, Cushman, Flinn, Savini, 3 Student Members.

STUDENT RECRUITING—Carmichael, Ajax, Beard, Dull, Wohlford.

Number in parenthesis after faculty representative's name indicates years to be served on the committee.
UNIVERSITY CENTER—Groseclose, Drucker, Hefner, A. J. Walker.
VISUAL AIDS TO EDUCATION—Staton, Crosland, Gilman, Grubb, W. B.
Harrison, McKinley, Moll.
WATER RESOURCES CENTER ADVISORY—Kindsvater, Bellinger, Biven,
Ingols, Lehrer, Menhinick, Snyder, Straley.

Standing Committees of the Academic Senate—1965-1966*

ADMISSIONS—Carmichael, Hefner, Mason, Slaughter (3), Dallas (1).
CURRICULUM—Weber, Carmichael, Hefner, Mason, Lehrer (3), Grovenstein (2), Kindsvater (2), Moll (1).
GUIDANCE AND TESTING—Loveland, Carmichael, Commander, Dull,
Hefner, Mason, Nichols, Lnenicka (3), Smythe (2), Barnett (1).
HONORS AND PRIZES—Carmichael, Moody (3), Gaston (2), Immel (1).
STANDING—Weber, Hefner, Mason, Dull (non-voting).
STUDENT ACTIVITIES—Dull, Ajax, Shipley (3), J. D. Young (2), Maddox (1), Student Representative.
STUDENT-FACULTY HONOR—Durden (3), Vail (2), Finn (1), 3 Student Representatives.

*Number in parenthesis after faculty representative's name indicates years to be served on the committee.
GENERAL FACULTY
(As of April 1, 1965)

NOTE: After the name of each faculty member is listed his highest degree and the name of the institution conferring it. Professional engineers among the faculty are indicated with the authorized abbreviation of P.E. followed by the name of the state in which they are registered. Practicing architects among the faculty are indicated with the abbreviation of Reg. Arch. followed by the name of the state in which they are registered.

ARTHUR B. ABELINO, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

A. F. ABRIL, Ph.D.
(University of Havana)
Associate Professor, Industrial Management

MRS. KELLY K. ACKERMAN, M.Ln.
(Emory University)
Catalog Librarian

CHARLTON B. ADAMS, JR., B.Arch.
(Georgia Institute of Technology)
Assistant Campus Architect, Physical Plant Department

HENRY W. ADAMS, M.A.
(Columbia University)
Professor, English

JOSEPH W. ADAMS, B.S.
(U. S. Naval Academy)
Assistant Professor, Engineering Graphics

PHILIP ADLER, M.B.A.
(University of Miami)
Assistant Professor, Industrial Management

R. MARTIN AHRENS, Ph.D.
(Washington University)
Associate Professor, Physics

FRED WESLEY AJAX, M.A.
(Emory University)
Director, Public Relations

JOHN I. ALFORD, B.S.
(Georgia Institute of Technology)
Associate Professor, Textile Engineering

ESTELLE ALLEN, B.C.S.
(Georgia Tech Evening School)
Associate Registrar (Retired)

LAMAR ALLEN, M.S.
(Georgia Institute of Technology)
Instructor, Electrical Engineering

MAX L. ALLEN, B.S.
(University of Alabama)
Research Assistant
Engineering Experiment Station

TOM F. ALMON, M.A.
(Peabody College)
Assistant Head and Associate Professor, English

HENRY L. ANDEL, M.S.
(Georgia Institute of Technology)
Athletic Trainer

MARY EDNA ANDERS, D.L.S.
(Columbia University)
Special Research Scientist
Engineering Experiment Station

NORMAN ANON, Ph.D.
(University of Wisconsin)
Associate Professor, Industrial Management

JAMIE R. ANTHONY, Controller

FREDERICK C. APPLE, B.S.
(Purdue University)
Research Engineer
Engineering Experiment Station

JAMES M. APPLE, M.S.
(Michigan State University)
P.E. (Georgia)
Professor, Industrial Engineering

FRANCES T. ARMSTRONG, B.S.
(University of North Carolina)
Research Assistant
Engineering Experiment Station

JAMES HAL ARMSTRONG, Ph.D.
(Iowa State University, Ames)
Associate Professor, Engineering Mechanics
Eugene C. Ashby, Ph.D.
(University of Notre Dame)
Assistant Professor, Chemistry

Billy H. Atcheson
Senior Accountant
Engineering Experiment Station

William F. Atchison, Ph.D.
(University of Illinois)
Research Professor of Mathematics,
Engineering Experiment Station;
Chief, Rich Electronic Computer
Center, and Professor, Information
Science

Alson Hunnicutt Bailey, Ph.D.
(Ohio State University)
Professor, Mathematics

John Albert Bailey, Ph.D.
(University of Wales)
Assistant Professor, Mechanical
Engineering

Ethel Jo Baker, Ph.D.
(Emory University)
Assistant Professor, Psychology

Harry L. Baker, Jr., B.S., LL.B.
(Georgia Institute of Technology,
Emory University) P.E. (Georgia)
Associate Professor; Assistant
Controller (contracts); President,
Georgia Tech Research Institute

W. J. Bryan Baker, B.S.
(Oklahoma University)
Research Engineer
Engineering Experiment Station

Jerry O. Bange, B.S.
(University of Arizona)
Research Assistant
Engineering Experiment Station

Preston T. Bankston, Ph.D.
(Georgia Institute of Technology)
Senior Research Engineer and Head,
Savannah Area Branch
Engineering Experiment Station

A. M. Barber
Campus Postmaster

Bobby F. Barfield, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Assistant Professor, Mechanical
Engineering

Dale L. Barker, M.S.
(University of Illinois)
Associate Director, Libraries and
Assistant Professor, Information
Science

A. H. Barnes
Buyer, Procurement Office

Ewell I. Barnes, B.S.
(Berry College)
Associate Controller

Samuel C. Barnett, Ph.D.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor and Assistant
Director, Mechanical Engineering

Numan V. Bartley, M.A.
(North Texas State University)
Instructor, Social Sciences

Julio R. Bastida, Ph.D.
(University of Georgia)
Assistant Professor, Mathematics

Helmut F. Bauer, Ph.D.
(Institute of Technology, Darmstadt)
Professor, Engineering Mechanics

W. Roane Beard, B.S.
(Georgia Institute of Technology)
Executive Secretary, Georgia Tech
National Alumni Association

George Beattie
(Cleveland Institute of Art)
Lecturer, Architecture

Kenneth I. Bechtold (Lt. Col.,
U.S. Army—Cml C), B.A., LL.B.
(Stetson University)
Assistant Professor, Military Science

Arthur Franklin Beckum, Jr.,
M.F.A.
(Princeton University)
Associate Professor, Architecture

Howard E. Bedell, B.S.
(University of Alabama)
Assistant to the Director,
Engineering Experiment Station

John Robert Bell, B.S.
(Georgia Institute of Technology)
Assistant in Football

Richard B. Bell, M.A.
(State University of Iowa)
Instructor, English
FREDERICK BELLINGER
Dr. Engrg. (Yale University)
P.E. (Georgia)
Professor, Chemical Engineering;
Chief, Chemical Sciences &
Materials Division
Engineering Experiment Station

RICHARD B. BELSER, M.S.
(Emory University)
Research Associate Professor,
Engineering Experiment Station

ARTHUR L. BENNETT, Ph.D.
(Princeton University)
Research Professor, Physics
Engineering Experiment Station

RALPH BERGAMO, A.M.
(Columbia University)
Assistant Professor, English

MICHAEL C. BERNARD, Ph.D.
(Purdue University)
Assistant Professor, Engineering
Mechanics

JESSE S. BERRY, A.B.
(University of South Carolina)
Assistant in Football

J. AARON BERTRAND, Ph.D.
(Tulane University)
Assistant Professor, Chemistry

WILLIAM A. BEZAIRE, B.S.
(University of Detroit)
Special Research Engineer
Engineering Experiment Station
Head, Operations and Maintenance
Branch, Rich Electronic Computer
Center

JACKSON H. BIRDSONG, B.I.E.
(Auburn)
Lecturer, Industrial Engineering

RICHARD C. BIRKEBAK, Ph.D.
(University of Minnesota)
Assistant Professor, Mechanical
Engineering

WALLACE B. BISHOP, JR., B.A.
(University of Arizona)
Research Assistant
Head, Southwest Georgia Branch
Engineering Experiment Station

WILLIAM CARL BIVEN, Ph.D.
(St. Louis University)
Associate Professor, Industrial
Management

EDITH H. BLICKSILVER, M.A.
(Smith College)
Instructor, English

WILLIAM C. BLISS, M.E.
(Cornell University)
Lecturer, Engineering Graphics
(Retired)

FRANK BOGLE, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor Engineering
Mechanics (Retired)

FRED BOLING, M.S.
(Georgia Institute of Technology)
Instructor, Industrial Management

EVERETT R. BOLLINGER, JR., D.B.A
(Indiana University)
Associate Professor, Industrial
Management

J. E. BOLTON, M.A.
(Emory University)
Instructor, Industrial Management

STEVE H. BOMAR, JR., M.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

GEOFFREY BOOTHROYD, Ph.D.
(University of London)
A.M.I. Mech.E. (London)
Visiting Associate Professor
Mechanical Engineering

EARLE EDGAR BORTELL, M.S.
(Emory University)
Professor-Emeritus, Physics

WINSTON C. BOTELER, M.S.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station

ALBERT W. BOWERS, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station
C. W. BOYD
Director, Dining Halls

ROBERT M. BOYD, B.S.
(Arkansas A&M College)
Health Physicist

Engineering Experiment Station

CHARLES H. BRADEN, Ph.D.
(Washington University)
Professor, Physics

FRANCIS COOLIDGE BRAGG, M.S.
(Syracuse University)
P.E. (Georgia)
Associate Professor, Engineering Mechanics

HIN BRENDENIECK, Diploma
(Bauhaus, Dessau, Germany)
Professor, Industrial Design

KENNETH H. BREEDEN, B.E.E.
(Georgia Institute of Technology)
Research Assistant

Engineering Experiment Station

GORDON W. BRELAND, M.S.
(Georgia Institute of Technology)
Instructor, Electrical Engineering

HAROLD R. BREWER, Ph.D.
(University of North Carolina)
Associate Professor, Physics

MAURICE R. BREWSTER, M.B.A.
(Northwestern University)
Professor, School of Industrial Management

G. LEON BRIDGER, Ph.D.
(Iowa State University)
Professor, Chemical Engineering

WYTHER P. BROOKES, (Lt. Col. U. S. Army—C.E.), B.S.
(Virginia Polytechnic Institute)
Assistant Professor, Military Science

JAMES CLYDE BROOKS, M.A.
(University of Georgia)
Assistant Professor, Mathematics

WINFIELD A. BROOKS, M.S.
(Columbia University, Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Industrial Engineering
(Retired)

BRYAN L. BROWN, M.S. in M.E.
(Yale University)
P.E. (Georgia)
Professor, Engineering Mechanics

JOHN L. BROWN, B.S.
(Georgia Institute of Technology)
Research Physicist

Engineering Experiment Station

MARY ELEAZAR BROWN
Administrative Assistant to Dean of Faculties
(Retired)

ARTHUR C. BRUCE, M.S.
(Georgia Institute of Technology)
Assistant Professor, Aerospace Engineering

LOY Y. BRYANT, M.A.
(University of North Carolina)
Registrar, Southern Technical Institute

TONEY W. BRYANT, B.C.S.
(Georgia State College)
Chief Accountant

Engineering Experiment Station

WRAY BUCHANAN, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer

Engineering Experiment Station

MRS. ANNE P. BUGG, B.A. in L.S.
(Emory University)
Chief General Studies Librarian

ROBERT L. BULLOCK, M.A.
(Indiana University)
Research Assistant

Engineering Experiment Station

EDWARD M. BURGESS, Ph.D.
(Massachusetts Institute of Technology)
Assistant Professor, Chemistry

CARMEL E. BURKE, M.S.
(University of Tennessee)
Research Assistant

Engineering Experiment Station

JOHN H. BURNETT, M.A.
(Emory University)
Instructor, Social Sciences

WALTER H. BURROWS, M.S.
(Emory University)
Research Associate Professor

Engineering Experiment Station
JOHN H. BURSON, III, Ph.D.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

HAROLD BUSH-BROWN, M.Arch.
(Harvard University)
Professor-Emeritus, Architecture

J. CLARK BUTTERWORTH
Research Assistant
Engineering Experiment Station

FRED L. CAIN, M.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

MYRA H. CAIN, M.A.T.
(Vanderbilt University)
Instructor, English

MRS. BEATRICE R. CAINE, B.A. in L.S.
(Emory University)
Acquisitions Librarian

DRURY S. CAINE, III, Ph.D.
(Emory University)
Assistant Professor, Chemistry

GEORGE C. CALDWELL, Ph.D.
(University of North Carolina)
Associate Professor and
Associate Director, Mathematics

JAMES L. CALDWELL, Ph.D.
(Louisiana State University)
Assistant Professor, Industrial Management

JOSEPH A. CAMPOAMOR, M.A., LL.B.
(Burgos University)
Professor-Emeritus, Modern Languages

JOHN R. CANAVAN, M.A.
(Middlebury College)
Instructor, Modern Languages

MERCER D. CARITHERS, B.S.
(Georgia Institute of Technology)
Assistant Research Physicist
Engineering Experiment Station

JAMES ANTHONY CARLEN, B.S.
(Georgia Institute of Technology)
Assistant in Football

WALTER O. CARLSON, Ph.D.
(University of Minnesota)
P.E. (Minnesota)
Professor, Mechanical Engineering

H. GRIFFIN CARMICHAEL, A.B.
(Emory University)
Assistant Professor, Physics

WILLIAM LAWSON CARMICHAEL, M.S.
(Georgia Institute of Technology)
Registrar and Director of Admissions

ROBERT W. CARNEY, Ph.D.
(Cornell University)
Associate Professor, Industrial Management

DEWEY K. CARPENTER, Ph.D.
(Duke University)
Assistant Professor, Chemistry

DEWEY E. CARROLL, M.Ln.
(Emory University)
Assistant Professor, School of
Information Science, and
Engineering Experiment Station

MARION ROBERT CARSTENS, Ph.D.
(State University of Iowa)
P.E. (Georgia)
Professor, Civil Engineering

AUSTIN BERT CASEMAN, Sc.D.
(Massachusetts Institute of Technology)
P.E. (Georgia)
Professor, Civil Engineering

ROBERT B. CASSELL, M.A.
(Vanderbilt University)
Research Economist and Head,
Community Development Branch
Engineering Experiment Station

JOHN C. CERNY, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Research Engineer
Engineering Experiment Station

MILTON CHAIKIN, Ph.D.
(New York University)
Associate Professor, English

FRANCIS W. CHAMBERS, JR., M.S.
(George Washington University)
Associate Professor of Nuclear Engineering
Engineering Experiment Station
JERRY B. F. CHAMPLIN, B.S.
(Massachusetts Institute of Technology)
Assistant Research Scientist
Engineering Experiment Station

ALICE CHASTAIN
Administrative Secretary
Department of Public Relations

TZE I. CHIANG, Ph.D.
(University of Florida)
Research Economist
Engineering Experiment Station

FRANK J. CLARKE, M.S.
(Georgia Institute of Technology)
Assistant Research Scientist
Director, Textile Engineering

JOHN C. CLARK, M.S.
(Georgia Institute of Technology)
Assistant Professor
Engineering Mechanics

JOSEPH D. CLEMENT, Ph.D.
(University of Wisconsin)
Associate Professor
Nuclear Engineering

BOBBY L. CLINE, B.M.E.
(Georgia Institute of Technology)
Instructor, Mechanical Engineering

A. M. COLEMAN, M.A.
(Hardin-Simmons University)
Assistant Athletic Director,
Assistant in Football, Professor
and Head, Department of
Physical Training

EDITH AMY COLLINS, B.A.
(Leeds University)
Assistant Research Economist
Engineering Experiment Station

JAMES T. COLLINS, B.E.E.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

ROBERT C. COMMANDER, B.D.
(Yale University)
General Secretary, Y.M.C.A.

MARSHALL M. COOKSEY, B.S.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station

ANDREW JACKSON COOPER, III.
Ph.D.
(Princeton University)
Associate Professor, Industrial
Management

WILLIAM J. CORBETT, Ph.D.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station

HENRY A. CORRIHER, JR., M.S.
(California Institute of Technology)
P.E. (Georgia)
Special Research Engineer
Engineering Experiment Station

DONALD O. COV р., Ph.D.
(Purdue University)
P.E. (Georgia)
Professor, Civil Engineering

WILLIAM B. COWN
Research Assistant
Engineering Experiment Station

DALLAS B. COX, B.S.
(North Carolina State College)
Director,
Industrial Education Department

JAMES R. COX, JR., Ph.D.
(Harvard University)
Associate Professor, Chemistry

WILLIAM N. COX, JR., M.M.E.
(Johns Hopkins University)
P.E. (Georgia)
Professor, Industrial Engineering

THOMAS F. CRAFT, JR., M.A.
(Emory University)
Assistant Research Chemist
Engineering Experiment Station

Vernon D. Crawford, Ph.D.
(University of Virginia)
Professor and Director,
School of Physics
CLIFFORD J. CREMERS, Ph.D.
(University of Minnesota)
Assistant Professor, Mechanical
Engineering

MRS. J. HENLEY CROSLAND,
Certificate in Library Science
(Emory University)
Director, Libraries

F. R. ERSKINE CROSSLEY, Ph.D.
(Yale University)
Professor, Mechanical Engineering

JOHN CECIL CURRIE, Ph.D.
(Louisiana State University)
Professor, Mathematics

T. H. CUSHMAN, Jr., M.C.E.
(Rensselaer Polytechnic Institute)
P.E. (Georgia)
Director, Physical Plant
Department

SHERMAN F. DALLAS, Ph.D.
(Indiana University)
Director and Professor,
Industrial Management

MRS. CAROLYN B. DALLAVALLE,
A.B. in L.S.
(University of North Carolina)
Acquisitions Librarian

BARBARA J. DANIELS, B.A.
(Agnes Scott College)
Research Assistant
Engineering Experiment Station

JAMES O. DARNELL
Research Assistant
Engineering Experiment Station

BENJAMIN J. DASHER, Sc.D.
(Massachusetts Institute of
Technology)
P.E. (Georgia)
Professor and Director, School of
Electrical Engineering

J. GORDON DAVIS, M.S.E.
(University of Florida)
Assistant Professor, Industrial
Engineering

STANLEE L. DAVIS, A.M.
(University of Michigan)
Research Assistant
Engineering Experiment Station

JOHN B. DAY, B.S.
(University of California)
P.E. (Georgia)
Part-time Lecturer, Industrial
Engineering (Retired)

MARTHA ANN DEADMORE, B.A.
(Agnes Scott)
Research Assistant
Engineering Experiment Station

NORRIS C. DEAN, B.S.
(Georgia Institute of Technology)
Associate Professor, Physical
Training

DOROTHY E. DEFOOR, B.S.
(University of Georgia)
Research Assistant
Engineering Experiment Station

HUBERT E. DENNISON, A.B.
(University of Tennessee)
Professor-Emeritus, Industrial
Management

HUGH WAYNE DENNY, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

A. P. DEROSA, B.I.E.
(Georgia Institute of Technology)
Director of Placement

HARVEY DIAMOND, B.S.
(North Carolina State College)
Assistant Research Engineer
Engineering Experiment Station

HERMAN A. DICKERT, Sc.D.
(Newberry College)
P.E. (Georgia)
Professor, Textile Engineering

FREDERICK DIXON, M.S.
(Georgia Institute of Technology)
Senior Research Physicist and Head,
Special Problems Branch
Engineering Experiment Station

ROBERT L. DODD
(University of Tennessee)
Athletic Director and Head Football
Coach
ERNEST E. DONALDSON, JR., M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

LEROY M. DORMAN, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

C. B. DRENNON, JR., (Col., U.S.
Army—Cml C), B.S.
(Georgia Institute of Technology)
Professor, Military Science

FRANCES DREW, M.Ln.
(Emory University)
Acquisitions Librarian

CARL R. DRISKELL, M.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

BERTRAM M. DRUCKER, Ph.D.
(University of North Carolina)
Professor and Director, Mathematics

ARNOLD L. DUCOFFE, Ph.D.
(University of Michigan)
P.E. (Georgia)
Director, Aerospace Engineering

H. G. DULANEY, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Physics

HUGO B. DULING, M.S.
(Georgia Institute of Technology)
Professor, Electrical Engineering
(Retired)

JAMES E. DULL, M.Ed.
(Miami University, Oxford, Ohio)
Acting Dean of Students

PANDELI DURBETAKI, Ph.D.
(Michigan State University)
Associate Professor, Mechanical Engineering

JOSEPH C. DURDEN, JR., M.S.
(Georgia Institute of Technology)
Associate Professor, Engineering Graphics

HOWARD L. DURHAM, JR., M.S.
(Georgia Institute of Technology)
Assistant Professor, Aerospace
Engineering and Engineering Experiment Station

DONNELL W. DUTTON, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Professor, Aerospace Engineering

FREDERICK B. DYER, M.S.
(Georgia Institute of Technology)
Assistant Research Physicist
Engineering Experiment Station

JOHN R. DYER, Ph.D.
(University of Illinois)
Associate Professor, Chemistry

PAUL T. EATON, Ph.D.
(Aachen Techn. Hochs., University of Frankfort, Germany)
P.E. (Georgia)
Professor, Industrial Engineering

JERRY L. EAVES, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

WILLIAM H. EBERHARDT, Ph.D.
(California Institute of Technology)
Regents' Professor, Chemistry

JOHN P. EDGERLY, B.S.
(U. S. Naval Academy)
Lecturer, Engineering Graphics
(Retired)

H. GRIFFITH EDWARDS, B.S. in Arch.
F.A.I.A., F.C.S.I.
(Reg. Arch. (Ga., N.C., S.C., Tenn., Fla., Ala., Ky.))
Part-time Professor, Architecture

HENRY LEITNER EDWARDS, Ph.D.
(University of North Carolina)
Professor, Chemistry

HOWARD D. EDWARDS, Ph.D.
(Duke University)
Associate Professor, Aerospace Engineering

JOSEPH LEE EDWARDS, M.S.
(Carnegie Institute of Technology)
Assistant Research Physicist
Engineering Experiment Station

GEOFFREY G. EICHHOLZ, Ph.D.
(University of Leeds)
Professor, Nuclear Engineering
JOHN ORAN EICHLER, M.C.E.
(Syracuse University)
P.E. and Reg. Land Surveyor
(New York and Georgia)
Professor, Civil Engineering

WILLIAM C. EISENHUER, B.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

JAMES C. ELLIOTT, Ph.D.
(University of London)
Postdoctoral Fellow in Physics
Engineering Experiment Station

MAYO J. ELLIOTT, (Lt. Col.
U. S. Army—Ord.C), B.S.
(United States Military Academy)
Assistant Professor, Military Science

THOMAS A. ELLIOTT, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Research Engineer and Head,
Mechanical Design Branch
Engineering Experiment Station

ISHMAEL LAROY ELLIS, B.S.
(Georgia Institute of Technology)
Assistant Professor, Engineering Graphics

LEWIS W. ELSTON, B.S.
(Mississippi State College)
Assistant Research Chemist
Engineering Experiment Station

MILDRED EMMONS, M.A.
(Emory University)
Physical Processing Librarian

NIELS N. ENGEL, Dr. Ing.
(Max Planck Institute für Eisenforschung)
P.E. (Georgia)
Professor, Chemical Engineering

ALLEN B. ESCHENBRENNER, M.D.
(Washington University School of Medicine)
Research Associate Professor,
Applied Biology
Engineering Experiment Station

ROBERT E. ESKEW, M.S.I.E.
(Georgia Institute of Technology)
Business Manager-Treasurer,
Athletic Association

JOHN T. ETHERIDGE, M.B.A.
(University of Mississippi)
Assistant Professor, Industrial Management

ANN G. EVANS, M.Ln.
(Emory University)
Science-Technology Librarian

ANTHONY CARROLL EVANS, B.A.
(Oglethorpe University)
Research Assistant
Engineering Experiment Station

ELIZABETH EVANS, M.A.
(University of North Carolina)
Instructor, English

WALTER P. EWALT, M.A.
(University of Michigan)
Professor, Physics

GEORGE E. EWELL, III, B.E.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

GEORGE R. FESSLER, JR., (Capt.,
USAF), M.A.
(Arizona State University)
Assistant Professor, Air Science

ROBERT H. FETNER, Ph.D.
(Emory University)
Director and Professor of Applied Biology,
Engineering Experiment Station

DANIEL C. FIELDER, Ph.D.
(Georgia Institute of Technology)
Professor, Electrical Engineering

JAMES H. FINCH, B.S. Arch.
(Georgia Institute of Technology)
Reg. Arch. (Georgia)
Part-time Associate Professor Architecture

JAMES R. FINCHER, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Assistant Professor, Civil Engineering

DAVID L. FINN, Ph.D.
(Purdue University)
Professor, Electrical Engineering
HERMENEGILD A. FLASCHKA, Ph.D
(University of Graz, Austria)
Professor, Chemistry

R. K. FLEGGE, M.S.
(Massachusetts Institute of Technology)
Professor, Textile Engineering

JAMES A. FLEMING, JR., M.A.
(Alabama Graduate School of Business)
Research Assistant
Engineering Experiment Station

JULIAN D. FLEMING, JR., Ph.D.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Chemical Engineering

WALTER S. FLEMING, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

MONROE C. FLENTGE, (Capt., U.S. Army—Sig C), B.S.
(Texas A & M)
Assistant Professor, Military Science

Gerald B. Fletcher, B.S.
(Georgia Institute of Technology)
Associate Professor, Textile Engineering

Jack Fligg, M.A.
(George Peabody College)
Assistant in Football

William A. Flinn, Ph.D.
(Ohio State University)
Associate Professor, Industrial Management

Edward Foster, M.A.
(Harvard University)
Professor, English

Horace Orion Foster, M.S.
(Georgia Institute of Technology)
Associate Professor, Mechanical Engineering

Warren S. Foster
Research Assistant
Engineering Experiment Station

D. L. Buddy Fowlkes, B.S.
(Georgia Institute of Technology)
Instructor, Physical Training

Gerald P. Francis, Ph.D.
(Cornell University)
Assistant Professor, Mechanical Engineering

Edward C. Franklin, B.S.
(Massachusetts Institute of Technology)
P.E. (Ohio)
Associate Professor, Industrial Engineering

William R. Free, M.S.
(University of Georgia)
Assistant Professor, Mathematics

Arthur E. Fulton, M.S.
(Rutgers University)
Assistant Professor, Mathematics

David E. Fyffe, Ph.D.
(Northwestern University)
P.E. (Tenn., Ill.)
Associate Professor, Industrial Engineering

Peter Gaffney, Ph.D.
(Rutgers University)
Associate Professor, Applied Biology

C. Malcolm Gailey, M.Arch.
(Georgia Institute of Technology)
Reg. Arch., Engr. (Georgia)
Assistant Professor, Architecture

James H. Gailey, M.S. in Arch.
(University of Pennsylvania)
Reg. Arch. (Georgia)
Professor-Emeritus, Architecture
LAWRENCE J. GALLAHER, Ph.D.
(Washington University)
Research Physicist,
Engineering Experiment Station;
Head, Physical Analysis Branch,
Rich Electronic Computer Center

R. G. GAMONEDA, D.C.S.
(University of Havana)
Associate Professor, Industrial
Management

MODESTO J. GARCIA, M.B.A.
(University of Havana)
Special Lecturer, Industrial
Management

JAMES LAFAYETTE GARNER, B.I.E.
(Georgia Institute of Technology)
Associate Director, Department of
Continuing Education

JAMES E. GARRETT
Head, Photographic and
Reproduction Services
Engineering Experiment Station

EDWARD A. GASTON, Jr., Ph.D.
(Emory University)
Associate Professor, Social Sciences

WILLIAM E. GATES, Ph.D.
(University of Michigan)
Assistant Professor, Civil
Engineering

IAN R. GATLAND, Ph.D.
(Imperial College, London, England)
Assistant Professor, Physics

DENTON E. GENTRY, B.S.
(Tennessee Polytechnic Institute)
Research Assistant
Engineering Experiment Station

REINER J. GERDES, Ph.D.
(Technische Hochschule Hannover)
Research Assistant Professor of
Chemistry
Engineering Experiment Station

HAROLD A. GERSCH, Ph.D.
(Johns Hopkins University)
Professor, Physics

BYRON GILBREATH, M.Ed.
(East Texas State College)
Assistant Professor, Physical
Training; Assistant Basketball
Coach

SIDNEY G. GILBREATH, III, M.S.
(University of Tennessee)
Instructor, Industrial Engineering

GLENN GILMAN, Ph.D.
(University of Chicago)
Professor, Industrial Management

BENJAMIN M. GIMARC, Ph.D.
(Northwestern University)
Assistant Professor, Chemistry

JOHN T. GODWIN, M.D.
(Emory University)
Special Research Scientist
Engineering Experiment Station

MARIO J. GOGLIA, Ph.D.
(Purdue University)
Associate Dean of Faculties,
Regents' Professor, Mechanical
Engineering, and Dean, Graduate
Division

JAMIE J. GOODE, M.S.
(Georgia Institute of Technology)
Assistant Professor, Mathematics

WILLIAM L. (DYNAMITE) GOODLOR
(Georgia Institute of Technology)
Assistant in Football

ROBERT M. GOODMAN, B.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Research Engineer
Engineering Experiment Station

CLOYD S. GOOHRUM, Jr., M.A.
(University of North Carolina)
Instructor, Mathematics

SIDNEY L. GORDON, Ph.D.
(Columbia University)
Assistant Professor, Chemistry

CHARLES W. GORTON, Ph.D.
(Purdue University)
Professor, Mechanical Engineering

JAMES GOUGH, Jr., M.A.
(Harvard University)
Assistant Professor, Modern
Languages, and Information
Science

JOHN CHARLES GOULD, M.R.P.
(University of North Carolina)
Associate Professor (part-time),
Architecture, Social Sciences
JAMES H. GRADY, B.Arch.
(Ohio State University)
Reg. Arch. (North Carolina)
Professor, Architecture

ROBIN B. GRAY, Ph.D.
(Princeton University)
Professor, Aerospace Engineering

ROBERT EARL GREEN, D.B.A.
(Indiana University)
Associate Professor, Industrial Management

ROBERT J. GREENE, M.S. in L.S.
(Florida State University)
Technical Reports Librarian

RUFUS R. GREENE, B.Arch.
(Georgia Institute of Technology)
Assistant Professor, Architecture

HIRAM F. GRIFFIES, M.B.A.
(University of Detroit)
Assistant Research Economist
Engineering Experiment Station

GEORGE C. GRIFFIN, M.S.
(Georgia Institute of Technology)
Dean of Students—Emeritus

JACK GRIFFIN, B.S.
(Georgia Institute of Technology)
Assistant in Football

FRANK FARRIER GROSECLOSE, M.S.
(Virginia Polytechnic Institute)
P.E. (Georgia and N. C.)
Professor and Director, Industrial Engineering

ERLING GROVENSTEIN, JR., Ph.D.
(Massachusetts Institute of Technology)
Professor, Chemistry

HOMER V. GRUBB, Ph.D.
(Georgia Institute of Technology)
Professor and Director, School of Chemical Engineering

JOE W. GUTHRIDGE, B.S.
(Roanoke College)
Assistant to the President,
Director of Development

JOHN MINOR GWYNN, JR., M.A.
(University of North Carolina)
Assistant Professor, Mathematics and Information Science
Engineering Experiment Station

*ARTHUR HAGEDORN, JR., B.S.
(Georgia Institute of Technology)
Instructor, Electrical Engineering

HAROLD G. HALE, JR.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

RUTH C. HALE, M.S.L.S.
(Columbia University)
General Studies Librarian

THOMAS H. HALL, III, B.S.
(Georgia Institute of Technology)
Associate Secretary, Alumni Association

JAMES B. HAMAN, M.A.
(Duke University)
Professor, English

JOSEPH L. HAMMOND, JR., Ph.D.
(Georgia Institute of Technology)
Associate Professor, Electrical Engineering

ROSS W. HAMMOND, M.S.
(University of Texas)
Senior Research Scientist; Director, Area Development Program
Engineering Experiment Station

A. FRANK HAMRICK, M.A.
(Wake Forest College)
Associate Professor, English

PYO B. HAN, Ph.D.
(Duke University)
Associate Professor, Industrial Management

ALBERT F. HANKEN, Ph.D.
(Ohio State University)
Associate Professor, Industrial Engineering

WILLIAM CAREY HANSARD, B.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Ceramic Engineering

JOHN C. HARDY
(Ringling School of Art)
Part-time Lecturer, Architecture

*On leave.
DON S. HARMER, Ph.D.
(University of California at Los Angeles)
Associate Professor, Physics

JOHN J. HARPER, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Professor, Aerospace Engineering

OTTIS M. HARRELSON, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Mechanical Engineering

JOE N. HARRIS, B.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

JULIAN H. HARRIS, B.S. in Arch.
(Georgia Institute of Technology)
Reg. Arch. (Georgia)
Part-time Professor, Architecture

SAPFORD HARRIS, M.A.
(Emory University)
Special Collections Librarian

CHARLES M. HARRISON, B.S.
(University of Tennessee)
Assistant Research Engineer
Engineering Experiment Station

EDWIN DAVIES HARRISON, Ph.D.
(Purdue University)
P.E. (Virginia, Georgia)
President

EUGENE HARRISON, Ph.D.
(Michigan State University)
Associate Professor,
Mechanical Engineering

WILLIAM B. HARRISON, III, Ph.D.
(University of Tennessee)
Professor and Director,
Nuclear Engineering
Chief, Nuclear Sciences Division
Engineering Experiment Station

JAMES A. HART, JR., B.E.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

JOSEPH F. HATCHER, (Capt., U. S. Army—Cml. C.), B.S.
(Arkansas Polytechnic College)
Assistant Professor, Military Science

RICHARD L. HAWKEY, A.B.
(West Virginia University)
Instructor, Modern Languages

ROBERT D. HAYES, Ph.D.
(Georgia Institute of Technology)
Research Engineer and Assistant Professor, Electrical Engineering
Engineering Experiment Station

JERRY W. HEAD, B.B.A.
(Georgia State College)
Research Assistant
Engineering Experiment Station

PAUL MALCOLM HEFFERNAN,
M.S., M.Arch.;
(Iowa State College, Harvard University)
Reg. Arch. (Georgia)
Professor and Director, School of Architecture

RALPH A. HEFNER, Ph.D.
(University of Chicago)
Dean, General College and
Professor, Mathematics

EVERARD M. HEIM, B.S.
(U. S. Naval Academy)
Assistant Professor, Engineering Graphics

M. JOE HELMS, M.S.
(Georgia Institute of Technology)
Assistant to the Administrator of Research

FRED N. HENDERSON, M.A.
(Emory University)
Instructor, English

GEORGE HENDRICKS, Ph.D.
(Columbia University)
Professor and Head, Department of Social Sciences

WALTER C. HERBERT, A.B.
(Wofford College)
Director of Music

ROBERT S. HERNDON, M.Ed.
(University of Florida)
Associate Director, Department of Continuing Education
NEVA JOSEPHINE HESTER, B.B.A.
(Georgia State College)
Assistant Registrar

JANICE R. HICE, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

WALTER H. HICKLIN
Assistant Research Engineer
Engineering Experiment Station

ALBERTO F. HIDALGO, M.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

TIE H. HIETT, M.S.
(Georgia Institute of Technology)
Lecturer, Industrial Engineering

G. DEWEY HILDING, M.S.
(Colorado School of Mines)
Assistant Professor, Engineering Graphics

FRANCIS MARION HILL, M.S.E.
(University of Michigan)
P.E. (Georgia)
Professor, Mechanical Engineering

H. CHARLES HILL, JR., B.I.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

RALPH LENTON HILL, M.S.
(Georgia Institute of Technology)
Professor Emeritus, Textile Engineering

ROBERT A. HILL
(Young Harris College)
Superintendent, Buildings and Grounds
Physical Plant Department

JACK HINE, Ph.D.
(University of Illinois)
Regents' Professor, Chemistry

WILLIAM W. HINES, Ph.D.
(Georgia Institute of Technology)
Associate Professor, Mechanical Engineering

WILLIAM A. HINTON, M.S. in M.E.
(Yale University)
P.E. (Georgia)
Professor, Mechanical Engineering

WILLIAM HENRY HITCH, B.M.E.
(Georgia Institute of Technology)
Associate Director, Co-operative Division

DAR-VEIG HO, Ph.D.
(Brown University)
Assistant Professor, Mathematics

ROBERT F. HOCHMAN, Ph.D
(University of Notre Dame)
Associate Professor, Chemical Engineering

FREMONT B. HODSON
Lecturer, Engineering Graphics
(Retired)

HAROLD W. HOLADY, JR., (Capt., USAF), B.S.
(University of Washington)
Assistant Professor, Air Science

ARCHIBALD DINSMORE HOLLAND, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Professor Emeritus, Mechanical Engineering

A. LOUIS HOLLIMAN, Ph.D.
(Case Institute of Technology)
P.E. (Georgia)
Associate Professor, Mechanical Engineering

CHANDLER H. HOLTON, M.A.
(Harvard University)
Associate Professor, Mathematics

CLARKE W. HOOK, M.A.
(University of North Carolina)
Professor, Mathematics (Retired)

JOHN W. HOOPER, Ph.D.
(Georgia Institute of Technology)
Associate Professor, Electrical Engineering

BASIL HOOVER, M.A.
(Duke University)
Counselor, Counseling and Guidance

LUCIAN HOPE, B.S.
(Davidson College)
Assistant Dean of Students
Foreign Student Advisor
ROGER SHEPPARD HOWELL, M.S.
(Georgia Institute of Technology)
Director Emeritus, Engineering Extension Division

JOSEPH HERMAN HOWEY, Ph.D.
(Yale University)
Professor and Associate Director, School of Physics

WILLIAM A. HOWINGTON (Maj., USAF), B.B.A.
(University of Georgia)
Assistant Professor, Air Science Engineering

A. BEN HUANG, Ph.D.
(University of Illinois)
Associate Professor, Aerospace Engineering

JAMES L. HUBBARD, B.S.
(Georgia Institute of Technology)
Research Assistant, Engineering Experiment Station

JAMES E. HUBBARTT, M.S.
(Case Institute of Technology)
Associate Professor, Aerospace Engineering

HAROLD R. HUNT, Ph.D.
(University of Chicago)
Associate Professor, Chemistry

EWING HUNTER, M.S.
(Georgia Institute of Technology)
Instructor, Industrial Management

F. KENNETH HURD, Ph.D.
(University of California)
Professor, Electrical Engineering

JOHN E. HUSTED, M.A.
(University of Virginia)
Associate Professor, Geology
Engineering Experiment Station

JOHN D. HUTCHESON, M.S.
(Georgia Institute of Technology)
Reg. P.E. and L.S.
(Georgia)
Assistant Professor, Engineering Graphics
(On leave)

DOUGLAS H. HUTCHINSON, M.S.
(Georgia Institute of Technology)
Instructor, Industrial Engineering

WILLIAM L. HYDEN, Ph.D.
(Johns Hopkins University)
Professor, Textile Engineering

JOHN C. HYDER, B.S.
(Georgia Institute of Technology)
Assistant Professor, Physical Training and Basketball Coach

KOICHI INOYA, Ph.D.
(Nagoya University)
Special Research Engineer
Engineering Experiment Station

ERIC R. IMMEL, Ph.D.
(University of California at Los Angeles)
Professor, Mathematics

ROBERT S. INGOLS, Ph.D.
(Rutgers University)
P.E. (Georgia)
Professor, School of Applied Biology
Engineering Experiment Station

RICHARD E. INMAN, B.S.
(Georgia Institute of Technology)
Assistant in Football

DORIS N. ISLEY, M.A.
(Florida State University)
Librarian, School of Architecture

JAMES L. JACKSON, B.S.
(Indiana State)
Procurement Officer

*SARAH EVELYN JACKSON, Ph.D.
(Emory University)
Assistant Professor, English

THOMAS W. JACKSON, Ph.D.
(Purdue University)
P.E. (Ohio, Georgia)
Research Professor, Mechanical Engineering and Chief, Mechanical Sciences Division, Engineering Experiment Station

R. KENNETH JACOBS, Ph.D., D.Eng.
(University of Michigan, Ohio Northern University)
P.E. (Georgia and Ohio)
Professor and Head, Department of Engineering Graphics
JOHN W. JAYNE, M.A.
(Vanderbilt University)
Assistant Professor, Mathematics

ANNIBEL JENKINS, Ph.D.
(University of North Carolina)
Assistant Professor, English

H. H. JENKINS, JR., M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

T. A. JENNINGS, B.A.
(Rice University)
Assistant Professor, Industrial Management

ALTON P. JENSEN, B.S.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station

WILLIAM BEN JOHNS, JR., M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Professor Emeritus, Engineering Mechanics

ALEXANDER K. JOHNSON (Lt. Colonel, USAF), B.S.
(University of Omaha)
Professor, Air Science

CECIL G. JOHNSON, M.S.
(Georgia Institute of Technology)
Associate Professor, Industrial Engineering

HAROLD L. JOHNSON, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Mechanical Engineering

JAMES W. JOHNSON, B.S.
(North Georgia College)
Assistant Research Physicist
Engineering Experiment Station

LAWRENCE V. JOHNSON, M.S.
(Ohio State University)
Director, Engineering Extension Division

NORMA M. JOHNSON, A.B.
(University of Georgia)
Assistant Registrar

RICHARD C. JOHNSON, Ph.D.
(Georgia Institute of Technology)
P.E. (Georgia)
Research Physicist and Head, Radar Branch
Engineering Experiment Station

ROGER D. JOHNSON, Ph.D.
(University of Virginia)
Associate Professor, Mathematics

CHANNING E. JONES (Lt., SC, U.S.N.), B.S.
(Georgia Institute of Technology)
Assistant Professor, Naval Science

CHARLES ALFRED JONES, B.S.
(Georgia Institute of Technology)
Professor-Emeritus, Textile Engineering

*DON B. JONES, M.S.
(State University of Iowa)
P.E. (Georgia)
Assistant Professor, Civil Engineering

WILLIAM B. JONES, JR., Ph.D.
(Georgia Institute of Technology)
Professor, Electrical Engineering

ERNEST A. KAARSBERG, Ph.D.
(University of Chicago)
Research Assistant Professor of Geology
Engineering Experiment Station

FRANCES E. KAISER, M.A.
(Emory University)
Science-Technology Librarian

WILLIAM J. KAMMERER, Ph.D.
(University of Wisconsin)
Associate Professor, Mathematics

ROBERT H. KASRIEL, Ph.D.
(University of Virginia)
Professor, Mathematics

PATRICK KELLY, M.A.
(Emory University)
Assistant Professor, Social Sciences

THOMAS A. KELLY, JR., (Capt., U.S. Army-Ord. C.), B.A.
(Hofstra University)
Assistant Professor, Military Science

GUY J. KELNHOFER, JR., M.A.
(University of Chicago)
Associate Professor, City Planning

*On leave.
NISBET S. KENDRICK, M.S.
(Emory University)
Assistant Professor, Physics

DONALD F. KENNEDY, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

PHILIP S. KENT, (Lt., U.S.N.), B.S.
(Villanova University)
Assistant Professor, Naval Science

SAMUEL C. KETCHIN, Ph.D.
(Emory University)
Associate Professor, English

THOMAS W. KETHLEY, M.S.
(Emory University)
Research Professor of Applied Biology and Head, Bioengineering Laboratory
Engineering Experiment Station

ROBERT B. KIMMEL, B.S.
(Georgia Institute of Technology)
Assistant Registrar

RAYMOND D. KIMBROUGH, Jr., Ph.D.
(Northwestern University)
Research Assistant Professor, Chemistry
Engineering Experiment Station

AUGUSTUS L. KINARD, LL.B.
(John Marshall Law School)
Research Assistant
Engineering Experiment Station

CARL E. KINDSVATER, M.S.
(State University of Iowa)
P.E. (Georgia)
Director, Water Resources Center; Regents’ Professor, Civil Engineering

RICHARD KING, M.S.
(Illinois Institute of Technology)
P.E. & L.S. (Connecticut)
Professor, Civil Engineering

WILTON W. KING, Ph.D.
(Virginia Polytechnic Institute)
Assistant Professor, Engineering Mechanics

JOHN F. KINNEY, M.S.
(Georgia Institute of Technology)
Research Engineer and Associate Professor and Head, Thermo and Fluid Dynamics Branch
Engineering Experiment Station

ROBERT S. KIRKLAND, B.S.
(University of Oklahoma)
Research Engineer
Engineering Experiment Station

ARTHUR T. KITTLE, D.L.S.
(Columbia University)
Chief Science-Technology Librarian and Assistant Professor, Information Science

JACK KLEINER, S.J.D.
(New York Law School)
Special Lecturer, Industrial Management

JAMES A. KNIGHT, JR., Ph.D.
(Pennsylvania State University)
Research Professor, Chemistry
Head, Radioisotopes Laboratory
Engineering Experiment Station

JOSEPH A. KNIGHT, M.S.
(Georgia Institute of Technology)
Instructor, Electrical Engineering

LEE H. KNIGHT, JR., M.S.
(Georgia Institute of Technology)
Research Engineer and Head, Electro-Mechanical Devices Branch
Engineering Experiment Station

ELIZABETH KOENIG
Executive Secretary to the President

EDWIN P. KOHLER, A.B.
(Pennsylvania State)
Assistant Dean of Students

MONTE W. KORB, B.S.
(Georgia Institute of Technology)
Senior Research Engineer and Head, Brunswick Area Branch
Engineering Experiment Station

JOSEPH KROL, Ph.D.
(University of London)
M.I. Mech.E. (G.B.), P.E. (Georgia and Quebec)
Professor, Industrial Engineering
RUDOLF KURTH, Dr. Phil.
(University of Berne)
Professor, Mathematics

DALTON C. KURTS, B.S.
(Louisiana State University)
Research Assistant
Engineering Experiment Station

JAMES DAVIS LANDRUM, A.B.
(Mercer University)
Assistant in Football

SARA LEE LANE, M.Ln.
(Emory University)
Interlibrary Services Librarian

*FREDERICK L. LANOUE, M.Ed.
(Springfield College)
Professor, Physical Training

WILLIAM JOHN LARSON, B.S.
(U.S. Naval Academy)
Lecturer, Engineering Graphics,
(Retired)

RALPH C. LATHEM, M.S.
(Clemson Agricultural College)
Assistant Professor, Textile Engineering

BRIAN LATTO, Ph.D.
(University of Glasgow)
Lecturer, Mechanical Engineering

ALAN G. LAW, M.A.
(University of British Columbia)
Instructor, Mathematics

MARLIN V. LAW, M.S.
(Georgia Institute of Technology)
Assistant Professor, Industrial Management

CHARLES R. LEACY, M.A. in Ln.
(Emory University)
General Studies Librarian

ROBERT N. LEHRER, Ph.D.
(Purdue University)
P.E. (Georgia)
Professor and Associate Director,
School of Industrial Engineering

S. P. LENOIR, JR., M.S.
(Georgia Institute of Technology)
Special Research Engineer
Engineering Experiment Station

WILLIAM FRANKLIN LESLIE, B.I.E.
(Georgia Institute of Technology)
Assistant Director,
Co-operative Division

H. CLAY LEWIS, Sc.D.
(Carnegie Institute of Technology)
P.E. (Georgia)
Professor, Chemical Engineering

JERRY L. LEWIS, B.B.A.
(Emory University)
Research Scientist and Head,
Manpower Resources Branch
Engineering Experiment Station

D. E. LILLIE, B.S.
(Georgia Institute of Technology)
Glassblower
Engineering Experiment Station

THEODORE D. LINDGREN, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Electrical Engineering

JOHN PAUL LINE, M.S.
(University of Michigan)
Associate Professor, Mathematics

THEODORIC C. LINTHICUM, B.S.
(U. S. Naval Academy)
Assistant Professor, Engineering Graphics

MALCOLM G. LITTLE, JR., M.C.P.
(Massachusetts Institute of Technology)
Associate Professor, City Planning, Social Sciences

BILLY R. LIVESAY, M.A.
(University of Texas)
Assistant Research Physicist
Engineering Experiment Station

WILLIAM J. LNEICKA, Ph.D.
(Georgia Institute of Technology)
P.E. (Oklahoma)
Associate Professor, Engineering Mechanics

ROBERT B. LOGAN
Director, Auxiliary Services

MAURICE W. LONG, Ph.D.
(Georgia Institute of Technology)
P.E. (Georgia)
Special Research Engineer and
Chief, Electronics Division,
Engineering Experiment Station

*Deceased, March 20, 1965.
FRANK S. LONGSHORE, B.S.
(University of Alabama)
Assistant Research Editor
Engineering Experiment Station

CHARLIE RAY LORD, B.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

EDWARD H. LOVELAND, Ph.D.
(University of Tennessee)
Professor and Director,
School of Psychology

JAMES HERTY LUCAS, M.S.
(Georgia Institute of Technology)
P.E., Reg. Land Surveyor (Georgia)
Professor, Civil Engineering
(Retired)

ALEXANDER W. LUCE, D.Eng. (Hon.)
(Norwich University)
Professor, Mechanical Engineering

JAMES KARL LUCK, JR., B.S.
(Georgia Institute of Technology)
Head Baseball Coach
Assistant in Football

JOHN H. MACKAY, Ph.D.
(University of North Carolina)
Research Professor of Mathematics
and Assistant Chief, Rich
Electronic Computer Center
Engineering Experiment Station

GEORGE E. MADDOX, M.S.
(Georgia Institute of Technology)
Assistant Professor, Industrial
Management

MRS. JEANNE C. MAGILL, A.B. in
L.S.
(Emory University)
Catalog Librarian

PATRICIA H. MALPHURS, M.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

RICHARD J. MANLEY, B.C.S.
(University of Georgia)
Statistician, Registrar's Office

JAKOB MANDELKER, Dr. of Engg.
Sc.
(Technische Hochschule, Vienna,
Austria)
Professor, Engineering Mechanics

ANDREW W. MARRIS, Ph.D.
(University of New Zealand)
P.E. (British Columbia, Canada and
Georgia)
Professor, Engineering Mechanics

ALPHEUS R. MARSHALL, Ph.D.
(University of Virginia)
Professor, Industrial Management

CHARLES S. MARTIN, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Civil
Engineering

DAVID W. MARTIN, Ph.D.
(University of Michigan)
Associate Professor, Physics

ROY A. MARTIN, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Assistant Research Engineer,
Engineering Experiment Station
Lecturer, School of Electrical
Engineering
Assistant Secretary, Georgia Tech
Research Institute

WILLIAM A. MARTIN, M.A.
(University of Alabama)
Associate Professor, Mathematics

LILIANA A. MASIRONI, Ph.D.
(University of Rome)
Research Assistant
Engineering Experiment Station

HOWARD WARD MASON, M.S.
(University of Idaho)
P.E. (Georgia)
Professor, Mechanical Engineering
(Retired)

JESSE W. MASON, Ph.D., D. Eng.
(Yale University, University of
Louisville)
P.E. (Georgia)
Dean, Engineering College and
Professor, Chemical Engineering

GEORGE DISMUKES MAY, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Assistant Professor, Civil
Engineering
*Paul G. Mayer, Ph.D.
(Cornell University)
P.E. (Georgia)
Associate Professor, Civil Engineering

Harold G. Mayfield, B.C.E.
(Georgia Institute of Technology)
Civil Engineer
Physical Plant Department

*G. Lafayette Maynard, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

B. B. Mazanti, M.S.
(Georgia Institute of Technology)
P. E. (Georgia)
Assistant Professor, Civil Engineering

James A. McAlister, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

James Herbert McAuley, B.S.
(Georgia Institute of Technology)
Associate Professor, Physical Training

Joseph L. McCarter (Maj., USAF), M.S.
(University of Omaha)
Assistant Professor, Air Science

James Weldon McCarty, M.S. in T.E.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Textile Engineering

Hoyt L. McClure, M.S.
(Georgia Institute of Technology)
Director, Southern Technical Institute

E. W. McDaniel, Ph.D.
(University of Michigan)
Professor, Physics

Henry A. McGee, Jr., Ph.D.
(Georgia Institute of Technology)
Research Associate Professor, Chemical Engineering
Engineering Experiment Station

On leave.

John P. McGovern
Engineering Analyst
Engineering Experiment Station

*Charles W. McGuirt, M.S.
(Georgia Institute of Technology)
Assistant Professor, Aerospace Engineering

Howard L. McKinley, M.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Professor, Electrical Engineering

James W. H. McKoy, B.S.
(Georgia Institute of Technology)
Research Engineer and Head, Industrial Location Analysis Section
Engineering Experiment Station

Milton E. McLain, Jr., M.S.
(University of Idaho)
Research Chemist
Engineering Experiment Station

Luther A. McLendon, Jr., Certificate in Criminology
(George Washington University)
Head, Employment, Security, Property Services
Engineering Experiment Station

Howard M. McMahon, Ph.D.
(California Institute of Technology)
Associate Professor, Aerospace Engineering

J. Conrad Meaders, B.A.
(Emory University)
Research Assistant
Engineering Experiment Station

Mark E. Meadows, M.A.
(Peabody College)
Assistant Director, Counseling and Guidance

Francis J. Mee, M.S.
(Columbia University)
Lecturer, Engineering Graphics (Retired)

Robert E. Mee, M.S.
(University of Kentucky)
Research Engineer
Engineering Experiment Station
HOWARD K. MENHINICK, M.I.A.C.P.
(Harvard University)
Regents' Professor, City Planning

BENJAMIN F. MERCER, III, (Lt. U.S.
Navy) B.S.
(U.S. Naval Academy)
Assistant Professor, Naval Science

WILLIAM RICHARD METCHALFE, A.M.
(Emory University)
Associate Professor, English

CLARENCE C. MILEY, M.S.
(Georgia Institute of Technology)
Research Economist
Engineering Experiment Station
Head, Management Sciences and
Business Processing Branch,
Rich Electronic Computer Center

GEORGE A. MILLER, Ph.D.
(University of Michigan)
Associate Professor, Chemistry

GORDON J. MILLIKEN (Capt.,
USAF), B.A.
(Bowdoin College)
Assistant Professor, Air Science

HONG SHIK MIN, Ph.D.
(University of Georgia)
Assistant Professor, Applied Biology

LANE MITCHELL, Ph.D.
(Pennsylvania State University)
P.E. (Georgia)
Professor and Director, Ceramic
Engineering

MORRIS MITZNER, M.A.
(Emory University)
Lecturer, Social Sciences

M. F. MOAD, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Electrical
Engineering

RICHARD P. MOLL, Ph.D.
(University of Tennessee)
Associate Professor, Psychology

WILLIS E. MOODY, Jr., Ph.D.
(North Carolina State College)
P.E. (Georgia)
Professor, Ceramic Engineering

EMORY L. MOORE, B.S.
(Georgia Institute of Technology)
Research and Instructional
Materials Specialist
Industrial Education Department

JOSEPH E. MOORE, Ph.D.
(Peabody College)
Regents' Professor, Psychology

L. HUGH MOORE, Ph.D.
(Emory University)
Assistant Professor, English

MACK A. MOORE, Ph.D.
(University of Wisconsin)
Assistant Professor, Industrial
Management

DAVID C. MORGAN, B.S.
(University of Florida)
Assistant Research Economist and
Head, Northwest Georgia
Branch, Engineering Experiment
Station

LESLEY MORRIS, M.D.
(Harvard Medical School)
Director, Health (Retired)

ROBERT L. MORRIS, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

VAUGHN W. MORRISON, M.S.
(Ohio University)
Instructor, Mathematics

WILLIAM B. MULLEN, Ph.D.
(Columbia University)
Associate Professor, English

MRS. MARJORIE H. MULLER, M.S.
in L.S.
(Florida State University)
Science-Technology Librarian

MICHAEL V. MULLIGAN, M.A.
(Michigan State)
Assistant Dean of Students

*JOHN H. MURPHY, Ph.D.
(Georgia Institute of Technology)
Associate Professor, Mechanical
Engineering

KARL M. MURPHY, Ph.D.
(Harvard University)
Professor, English
L. Thomas Murphy, Jr., B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

Jeanne M. Murray, B.S.
(Morris Harvey College)
Research Assistant
Engineering Experiment Station

Thomas H. Murray, (Maj. U. S.
Army—Arty.), B.S.
(Illinois Institute of Technology)
Assistant Professor, Military Science

William V. Muse, M.B.A.
(University of Arkansas)
Assistant Professor, Industrial
Management

Ann E. Nagel, B.S.
(Newcomb College of Tulane
University)
Research Assistant
Engineering Experiment Station

Takashi Nakada, Ph.D.
(Tokyo Institute of Technology)
Visiting Professor, Mechanical
Engineering

Phil Blasier Narmore, Ph.D.
(University of Michigan)
P.E. (Georgia)
Regents' Professor Emeritus,
Engineering Mechanics

M. Zuhair Nashed, Ph.D.
(University of Michigan)
Assistant Professor, Mathematics

Helen H. Naugele, M.A.
(University of Mississippi)
Instructor, English

John D. Neff, Ph.D.
(University of Florida)
Associate Professor, Mathematics

Robert Nelson, B.S.
(Springfield College)
Assistant Professor, Physical
Training

Henry M. Neumann, Ph.D.
(University of California)
Professor, Chemistry

William Meese Newton, Ph.D.
(University of Iowa)
Professor, Chemical Engineering

W. Eugene Nichols, M.S.
(Indiana University)
Acting Associate Dean of Students

Peter R. Norris, M.A.
(Harvard University)
Reg. Arch. (North Carolina,
Virginia, Georgia) N.C.A.R.B.
Assistant Professor, School of
Architecture

Mrs. Frances Norton
Administrative Assistant, Dean of
Engineering College

Frank O. Nottingham, Jr., Ph.D.
(Purdue University)
P.E. (New York)
Professor, Electrical Engineering

Lester D. Olson (Cdr., U.S.
Navy), M.B.A.
(Georgia State College)
Executive Officer and Associate
Professor, Naval Science

*Charles R. O'Melia, Ph.D.
(University of Michigan)
P.E. (Georgia)
Assistant Professor, Civil
Engineering

John P. O'Neill, M.A.
(New York University)
Assistant Professor, English

Clyde Orr, Jr., Ph.D.
(Georgia Institute of Technology)
Professor, Chemical
Engineering and Head,
Micromeritics Branch,
Engineering Experiment Station

James M. Osborn, Ph.D.
(University of Michigan)
Associate Professor, Mathematics

Paul Packman, Ph.D.
(Syracuse University)
Lecturer, Engineering Mechanics

Radnor Joseph Paquette, M.S.
(Michigan College of Mining and
Technology)
P.E. (Michigan, Florida, Georgia,
Alabama)
Professor, Civil Engineering

*On leave.
DEMETRIUS T. PARIS, Ph.D.
(Georgia Institute of Technology)
Associate Professor, Electrical Engineering

JOHN F. PARKER, B.C.S.
(Georgia State College)
Engineering Assistant
Engineering Experiment Station

RONALD B. PARKER, B.S.
(Texas Technological College)
Assistant Research Engineer
Engineering Experiment Station

J. WARD PARR, B.E.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

GEORGE E. PASSEY, Ph.D.
(Tulane University)
Lecturer, Psychology

E. T. PATRONIS, Jr., Ph.D.
(Georgia Institute of Technology)
Associate Professor, Physics

JOHN W. PATTILLO, Master of Librarianship
(Emory University)
Assistant Physical Processing Librarian

CLAYTON R. PAUL, M.S.
(Georgia Institute of Technology)
Instructor, Electrical Engineering

M. CARR PAYNE, Jr., Ph.D.
(Princeton University)
Associate Professor, Psychology

PETER PEACOCK, M.S.
(Georgia Institute of Technology)
Instructor, Industrial Management

KENNETH W. PEARCE, (Capt., U.S. Army—Inf.), A.B.
(Citadel)
Assistant Professor, Military Science

JOHN B. PEATMAN, Ph.D.
(Case Institute of Technology)
Assistant Professor, Electrical Engineering

E. IRENE PENTZ, Ph.D.
(Northwestern University of Medical Science)
Research Biochemist
Engineering Experiment Station

IRWIN E. PERLIN, Ph.D.
(University of Chicago)
Research Professor, Mathematics, Engineering Experiment Station
Head, Mathematical Analysis Branch, Rich Electronic Computer Center

HERBERT P. PETERS, M.S.
(Pennsylvania State University)
Special Research Engineer
Engineering Experiment Station

JOHN R. PETERSON, B.S.
(Carnegie Tech)
Research Engineer and Head, Market Analysis Branch
Engineering Experiment Station

RAY H. PETTIT, Ph.D.
(University of Florida)
Lecturer, Electrical Engineering

KENNETH G. PICHIA, Ph.D.
(University of Minnesota)
Professor and Director, Mechanical Engineering

THOMAS D. PHILIPS, A.B.
(Emory University)
Assistant Professor, Social Sciences

KENT R. PIEROTTI, Ph.D.
(University of Washington)
Associate Professor, Chemistry

ROBERT A. PETERS, Ph.D.
(Vanderbilt University)
Assistant in Football

E. JUANITA PITTS, M.A.
(University of Alabama)
Assistant Professor, Mathematics
TOMMY PLAXICO, B.S.
(Georgia Institute of Technology)
Associate Professor, Physical Training

FREDERICK G. POHLAND, Ph.D.
(Purdue University)
Associate Professor, Civil Engineering

RICHARD J. POINSETT, B.E.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

EVERETT O. POSEY, B.S.
(The Citadel)
Head, Supply Services
Engineering Experiment Station

MRS. CHARLES T. POTTINGER,
Certificate in Library Science
(Emory University)
Music Librarian (Retired)

NICK E. POULOS, M.S.
(Georgia Institute of Technology)
Research Engineer and Associate Head, High Temperature Materials Branch,
Engineering Experiment Station

ROLLIN R. POWELL, JR., (Maj., USMC), B.S.
(Emory University)
Assistant Professor, Naval Science

MRS. MARY R. POWER, M.Ln.
(Emory University)
General Studies Librarian

WILLIAM J. PROCTOR, LL.B., M.A.
(Vanderbilt University)
Member, Atlanta Bar Association
Professor Emeritus, Industrial Management

EDWARD THERON PROSSER, M.A.
(Ohio Wesleyan University)
Associate Professor, Physics

CHARLES B. PYLES, M.A.
(University of Arkansas)
Assistant Professor, Social Sciences

BERRY OWEN PYRON, M.S.
(Georgia Institute of Technology)
Research Physicist
Engineering Experiment Station

THOMAS H. QUIGLEY, A.B.
(Indiana University)
Director Emeritus, Industrial Education Department, Engineering Extension Division

ROBERT F. RABUN, B.Arch.
(Georgia Institute of Technology)
Assistant Professor, Architecture

WILBUR EDWARD RADFORD, B.I.E.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

GLENN W. RAINEY, M.A.
(Emory University)
Professor, English

GEORGE W. RAMEY, JR., B.S. in Arch.
(Georgia Institute of Technology)
Reg. Arch. (Georgia)
Part-time Associate Professor, Architecture

MILTON E. RAVILLE, Ph.D.
(University of Wisconsin)
P.E. (Kansas)
Professor and Director, Engineering Mechanics

WALTER L. REAGH
Research Assistant
Engineering Experiment Station

PHILIP G. RECTOR, B.M.E.
(Georgia Institute of Technology)
P.E. (Georgia)
Plant Engineer, Physical Plant Department

CHARLES P. REED, JR., M.S.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station
Head, Computer Sciences and Programming Branch,
Rich Electronic Computer Center
Special Lecturer, Information Science and Mathematics
MELTON E. RHODES, JR., (Lt. U.S. Navy), B.S.
(University of Mississippi)
Assistant Professor, Naval Science

MARY H. RIDDLE, B.A.
(Hollins College)
Research Assistant
Engineering Experiment Station

JOHN B. RIGGSBEE, M.D.
(Vanderbilt University)
Director of Health

JAMES C. S. RIVERS, M.A.
(University of South Carolina)
Assistant Professor, English

ROBERT A. RIVERS, B.S.
(University of Kentucky)
Research Assistant
Engineering Experiment Station

WAYNE K. RIVERS, JR., M.S.
(Georgia Institute of Technology)
Research Physicist
Engineering Experiment Station

CLYDE D. ROBBINS, M.C.P.
(Ohio State University)
Campus Planner
Development Office
Assistant Professor (part-time)
City Planning

CARLYLE J. ROBERTS, Ph.D.
(University of Rochester)
Professor, Nuclear Engineering and Applied Biology; Head, Frank H. Neely Nuclear Research Center
Engineering Experiment Station

EDWARD GRAHAM ROBERTS, Ph.D.
(University of Virginia)
Chief of Readers' Services, Library and Assistant Professor, Information Science

WILLIAM D. ROBERTS, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

DOUGLAS W. ROBERTSON, M.S.
(Georgia Institute of Technology)
Research Engineer and Head, Communications Branch
Engineering Experiment Station

JOHN W. ROBERTSON, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

DOUGLAS J. ROBILLARD, M.A.
(Columbia University)
Assistant Professor, English

DANIEL A. ROBINSON, Ph.D.
(University of Wisconsin)
Associate Professor, Mathematics

NELSON K. ROGERS, M.S.
(Georgia Institute of Technology)
Lecturer, Industrial Engineering

WILLIAM W. RONAN, Ph.D.
(University of Pittsburgh)
Associate Professor, Psychology

FRANK E. ROPER, JR., M.S.I.E.
(Georgia Institute of Technology)
Assistant Registrar

LAURENCE W. ROSS, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

FRANK M. ROWAN, B.S.
(Georgia Institute of Technology)
Assistant Professor, Engineering Mechanics (Retired)

DONALD JACK ROYER, Ph.D.
(University of Kansas)
Associate Professor, Chemistry

LARRY J. RUBIN, Ph.D.
(Emory University)
Associate Professor, English

WALTER S. RUSSELL, JR., M.A.
(Vanderbilt University)
Assistant Professor, English

WALLACE C. RYAN (Major, USAF), M.S.
(Ohio State)
Assistant Professor, Air Science

ARTHUR T. SALES, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station
PAUL H. SANDERS, Ph.D.
(Carnegie Institute of Technology)
P.E. (Georgia)
Associate Professor, Civil
Engineering

EDWARD SANFORD, (LCDR, USN),
B.A.
(Amherst College)
Assistant Professor, Naval Science

MRS. MARY NELL SANTACROCE,
M.A.
(Emory University)
Drama Director, English
Department

DELFORD L. SANTREE, B.A.
(University of Oklahoma)
Instructor, Modern Languages

ISAAC ELIAS SAPORTA, Architekt,
Diplom-Ingenieur
(Saxon State Polytechnicum,
Germany)
Reg. Arch. (Georgia, South
Carolina, Germany, Greece)
Associate Professor, Architecture

HAROLD SATTLER (Capt., USAF),
M.S.
(Oklahoma State University)
Assistant Professor, Air Science

WILLIAM K. SAUNDERS, Ph.D.
(University of California)
Visiting Professor, Electrical
Engineering

HARRY CLIFTON SAVAGE, Jr.,
M.S.Ed.
(The Citadel)
Associate Professor, Engineering
Graphics (Retired)

DOMENICO PIETRO SAVANT, M.S.
(Rose Polytechnic Institute, Harvard
University)
Professor-Emeritus, Electrical
Engineering

DAVID O. SAVINI, B.S., B.A.
(Georgia Institute of Technology)
Campus Architect
Physical Plant Department

WILLIAM ARTHUR SCHAFFER, B.S.
(Georgia Institute of Technology)
Assistant Professor, Industrial
Management

ROBERT S. SCHARF, Ph.D.
(University of Kiel, Germany)
Professor, Social Sciences

EDWIN J. SCHEIBNER, Ph.D.
(Illinois Institute of Technology)
Research Professor, Physics
Chief, Physical Sciences Division
Engineering Experiment Station

WILLIAM McNAIR SCHOFIELD, Ph.D.
(University of Cincinnati)
Lecturer, Aerospace Engineering

FREDERICK W. SCHUTZ, Jr., Ph.D.
(University of Illinois)
P.E. (Georgia)
Director, Civil Engineering

WILLIAM J. SEAY, B.A.
(Alabama Polytechnic Institute)
Assistant Professor, Architecture

R. FRED SESSIONS, Ph.D.
(Stanford University)
Professor, Chemistry

CHARLES H. SEWELL, B.A.
(Emory University)
Research Scientist and Head,
Industrial Services Branch
Engineering Experiment Station

PHILLIP G. SEXTON, M.S.
(Georgia Institute of Technology)
Assistant Professor, Mechanical
Engineering

ROBERT G. SHACKELFORD, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

WILLIAM S. SHEPARD, M.S.
(Georgia Institute of Technology)
Assistant Professor, Mechanical
Engineering

ARTHUR J. SHERIDAN, B.S.
(U.S. Military Academy)
Lecturer, Engineering Graphics
(Retired)

*PETER B. SHERRY, Ph.D.
(University of Virginia)
Associate Professor, Chemistry
VERNON M. SHIPLEY, JR., B.Arch.
(Georgia Institute of Technology)
Reg. Arch. (Georgia)
Associate Professor, Architecture

NANCY C. SHOFNER, M.Ln.
(Emory University)
General Studies Librarian

*GEORGE J. SIMITSES, M.S., A.E.
(Georgia Institute of Technology)
Assistant Professor, Aerospace Engineering

WILLIAM C. SIMPSON, Ph.D.
(University of Virginia)
Associate Professor, Physics

ROBERT E. SINGLETON, Ph.D.
(California Institute of Technology)
Lecturer, Aerospace Engineering

BEN LOGAN SISK, M.A.
(University of Michigan)
Bandmaster

GLENN N. SISK, Ph.D.
(Duke University)
Professor, Social Sciences

VLADIMIR SLAMECKA, D.L.S.
(Columbia University)
Professor and Director, School of Information Science

GEORGE M. SLAUGHTER, Ph.D.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Civil Engineering

MISS SARAH QUINN SLAUGHTER, M.A.
(Columbia University)
Administrative Assistant
Aerospace Engineering

GEORGE SLAYTON, M.S.
(Emory University)
Instructor, Physics

MARVIN B. SLED, Ph.D.
(Massachusetts Institute of Technology)
Professor, Mathematics

HAROLD E. SMALLEY, Ph.D.
(University of Pittsburgh)
P.E. (Georgia)
Professor, Industrial Engineering

CHARLES E. SMITH
Engineering Assistant
Engineering Experiment Station

CLOYD VIRGIL SMITH, JR., S.C.D.
(Massachusetts Institute of Technology)
Assistant Professor, Aerospace Engineering

DONALD H. SMITH, B.S.
(Michigan State University)
Assistant Professor, Engineering Graphics

ELEANOR SMITH, B.S. in L.S.
(University of North Carolina)
Chief Catalog Librarian

JAMES PENNY SMITH, M.A.
(University of North Carolina)
Instructor, English

JOSEPH N. SMITH, B. Arch.
(Georgia Institute of Technology)
Reg. Arch. (Florida, Georgia)
Assistant Professor and
Administrative Assistant,
Architecture

ROBERT HALL SMITH, B.S.
(U. S. Naval Academy)
Assistant Professor, Engineering Graphics

WILLIAM R. SMYTHE, JR., Ph.D.
(Duke University)
Associate Professor, Mathematics

NATHAN W. SNYDER, Ph.D.
(University of California)
Neely Professor, Nuclear Engineering

WILLARD M. SNYDER, M.S.
(Massachusetts Institute of Technology)
Professor, Civil Engineering

GEORGE F. SOWERS, M.S.
(Harvard University)
P.E. (Ohio, Fla., N.C., Ga., Tenn., Ala.)
Professor, Civil Engineering

WALTER FRANCIS SPARA, M.A.
(Canisius)
Instructor, English

*On leave.
WILLIAM MONROE SPICER, Ph.D.
(University of Virginia)
Professor and Director, School of
Chemistry

RALPH R. SPILLMAN, M.A.
(University of North Carolina)
Associate Professor, English

BOBBY C. SPRADLIN, Ph.D.
(Oklahoma State University)
Assistant Professor, Industrial
Engineering

WILLIAM R. SPRUILL, B.S.
(University of Maryland)
Instructor, English

FRANK W. STALLARD, Ph.D.
(University of North Carolina)
Associate Professor, Mathematics

A. W. STALNAKER, M.S.
(Georgia Institute of Technology)
Instructor, Industrial Management

JAMES A. STANFIELD, Ph.D.
(University of Tennessee)
Professor, Chemistry

AUGUSTUS L. STANFORD, JR., Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Physics

E. A. STARKE, JR., Ph.D.
(University of Florida)
Assistant Professor, Chemical
Engineering

AUSTIN L. STARRETT, A.M.
(Harvard University)
Professor, Mathematics

ROCKER T. STATON, JR., Ph.D.
(Johns Hopkins University)
Associate Dean, Engineering
College and Professor, Industrial
Engineering

CARL E. STEINHAUSER, M.A.
(University of Chicago)
Assistant Professor, Modern
Languages

LEROY P. STERLING, M.S.
(Georgia Institute of Technology)
Lecturer, Engineering Graphics
(Retired)

JAMES R. STEVENSON, Ph.D.
(University of Missouri)
Associate Professor, Physics

ROBERT E. STIEMKE, M.S.
(University of Wisconsin)
P.E. (Georgia)
Associate Dean of Faculties—
Administrator of Research
Professor, Civil Engineering

CHARLES E. STONEKING, Ph.D.
(Kansas State College)
P.E. (New Mexico, Georgia)
Professor, Engineering Mechanics

HARRISON W. STRALEY, III, Ph.D.
(University of Chicago, University
of North Carolina)
P.E. (Georgia)
Professor, Geology

JAMES A. STRICKLAND, Ed.D.
(Columbia University)
Director, Counseling and Guidance

WILLIAM L. STRICKLAND, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

JAMES A. STRICKLIN, Ph.D.
(Massachusetts Institute of
Technology)
Assistant Professor, Aerospace
Engineering

CHARLES W. STUCKEY, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

HORACE W. STURGIS, Ph.D.
(New York University)
Associate Registrar

PETER E. STURROCK, Ph.D.
(Ohio State University)
Assistant Professor, Chemistry

KENDALL L. SU, Ph.D.
(Georgia Institute of Technology)
Associate Professor, Electrical
Engineering

SOPHIA SULLIVAN, M.S.
(University of Illinois)
Chief of Technical Processes,
Library

J. EDWARD SUNDERLAND, Ph.D.
(Purdue University)
P.E. (Georgia)
Associate Professor, Mechanical
Engineering
CLAUDE B. SUTTON, SR., (Maj. U.S. Army—Inf.), B.S. (University of Georgia)
Assistant Professor, Military Science

RAY L. SWEIGERT, Ph.D. (State University of Iowa)
P.E. (Georgia)
Dean Emeritus, Graduate Division

C. ROBERT SWENSON, M.A. (Emory University)
Associate Professor, Mathematics

THOMAS F. TALBOT, Ph.D. (Georgia Institute of Technology)
Assistant Professor, Mechanical Engineering

JAMES M. TANNER, M.S. (Georgia Institute of Technology)
Assistant Professor, Physics

FRED A. TARPLEY, B.B.A. (Baylor University)
Assistant Professor, Industrial Management

MRS. CHARLOTTE TATRO, M.A. (Louisiana State University)
Assistant Professor, Social Sciences

JAMES L. TAYLOR, Ph.D. (University of North Carolina)
Professor and Director, A. French Textile School

ROBERT TECCHO, Ph.D. (Georgia Institute of Technology)
Research Engineer and Assistant Professor, Chemical Engineering, Engineering Experiment Station; Head, Engineering Analysis Branch, Rich Electronic Computer Center

MRS. MARY MAC E. THIGPEN, B.S. in L.S. (Emory University)
Catalog Librarian

DAN W. THOMAS
Machine Shop Foreman
Engineering Experiment Station

EDWARD W. THOMAS, Ph.D. (University of London)
Assistant Research Physicist
Engineering Experiment Station

HAROLD G. THOMPSON
Fire Service Training Supervisor
Industrial Education Department

ROBERTA ANN THORMAN, B.A. (University of Florida)
Research Assistant
Engineering Experiment Station

MRS. SANDELL THORNTON, Ph.D. (Georgetown University)
Assistant Professor, Social Sciences

W. RAYMOND TOKE, JR., M.S. (Georgia Institute of Technology)
P.E. (Georgia)
Special Research Engineer
Engineering Experiment Station

CALVIN W. TOOLES, M.S. (Iowa State University)
P.E. (Virginia)
Associate Professor, Civil Engineering

ALLAN C. TOPP, Ph.D. (McGill University, Montreal, P.Q.)
Associate Professor, Chemistry

ROBERT D. TRAMMELL, JR., M.S. (Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

PERRY D. TRIPP, JR., (Maj. U.S. Army—CE), B.S. (Clemson University)
Assistant Professor, Military Science

RICHARD ADELBERT TROTTER, M.E. (University of Wisconsin)
P.E. (Georgia)
Professor, Mechanical Engineering

RAYMOND N. TROWBRIDGE, M.A. (Columbia University)
Associate Professor, Industrial Engineering (Retired)

JOSEPH T. TROWER, B.S. (Georgia Institute of Technology)
Radio-TV Editor

MRS. BLANCHE B. TURNER
Registrar Emeritus, Engineering Extension Division
CHARLES E. S. UENG, Ph.D.
(Kansas State University)
Assistant Professor, Engineering Mechanics

JOHN RICH VAIL, M.A.
(University of Michigan)
Assistant Professor, Mathematics

MARIAN A. VAN LANDINGHAM, M.A.
(Emory University)
Science News Editor

MRS. MARIA S. VENABLE, Certifikat
(Pädagogisches Institut, Heidelberg, Germany)
Instructor, Modern Languages

JOSEPH PAUL Vidosic, Ph.D.
(Purdue University)
P.E. (Georgia)
Regents' Professor, Mechanical Engineering

JOSE VILLANUEVA, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Engineering Mechanics

NEIL H. WADE, Ph.D.
(University of London)
Assistant Professor, Civil Engineering

HARRISON M. WADSWORTH, JR., Ph.D.
(Western Reserve University)
P.E. (Ohio)
Professor, Industrial Engineering

KENNETH C. WAGNER, Ph.D.
(University of North Carolina)
Research Scientist and Chief, Industrial Development Division Engineering Experiment Station

ANDREW J. WALKER, Ph.D.
(Harvard University)
Professor and Head, Department of English

GEORGE FULLER WALKER, II, M.A.
(Vanderbilt University)
Professor, Modern Languages

JACK R. WALKER, Ph.D.
P.E. (Oklahoma)
(Oklahoma State University)
Assistant Professor, Industrial Engineering

JAMES R. WALKER (Capt. U.S. Army-Arty.), B.S.
(Drexel Institute of Technology)
Assistant Professor, Military Science

JAMES W. WALKER, Ph.D.
(University of North Carolina)
Professor, Mathematics

NELSON C. WALL, B.S.
(Georgia Institute of Technology)
Research Assistant Engineering Experiment Station

JOHN M. WALLACE, JR., M.S.
(Georgia Institute of Technology)
Assistant Professor, Electrical Engineering

ROBERT B. WALLACE, JR., B.S.
(Georgia Institute of Technology)
Publications Director; Editor, The Georgia Tech Alumnus

NANCY W. WALLS, Ph.D.
(University of Michigan)
Research Assistant Professor, Applied Biology Engineering Experiment Station

JESSE D. WALTON, JR., B.S.
(University State Teachers College Geneseo, New York)
Catalog Librarian

J. M. Wampler, Ph.D.
(Columbia University)
Assistant Professor, Geology

JAMES TING-SHUN WANG, Ph.D.
(Purdue University)
Associate Professor, Engineering Mechanics

HENDERSON C. WARD, Ph.D.
(Georgia Institute of Technology)
Professor, Chemical Engineering
W. Bruce Warren, M.S.
(Georgia Institute of Technology)
Research Engineer
Engineering Experiment Station

Gary C. Watson, B.S.
(Georgia Institute of Technology)
Research Assistant
Engineering Experiment Station

Thomas L. Weatherly, Ph.D.
(Ohio State University)
Professor, Physics

Charles E. Weaver, Ph.D.
(Pennsylvania State University)
Associate Professor, Geology

R. P. Webb, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Electrical Engineering

Homer S. Weber, Ph.D.
(Stanford University)
P.E. (Georgia)
Professor Emeritus and Director Emeritus, School of Mechanical Engineering

Paul Weber, Ph.D.
(Purdue University)
P.E. (Georgia)
Dean of Faculties

Lyly Welser, M.Ed.
(Springfield College)
Professor, Physical Training

Fred B. Wenn, M.A.
(Emory University)
Professor Emeritus, Industrial Management

Stanley J. Wertheimer, M.S.
(Georgia Institute of Technology)
Instructor, Mathematics

Edward Plummer (Ned) West
(St. Petersburg Jr. College)
Director of Sports Information

Edward R. Weston, M.S.
(University of Michigan)
P.E. (Pennsylvania)
Professor, Electrical Engineering

R. D. Wetherington, M.S.
(Georgia Institute of Technology)
Special Research Physicist
Engineering Experiment Station

Earl M. Wheby, M.S.
(Georgia Institute of Technology)
Assistant Professor, Engineering Graphics

Mary Harriet White, M.Ln.
(Emory University)
Catalog Librarian

Thomas M. White, Jr., Ph.D.
(Georgia Institute of Technology)
Associate Professor, Electrical Engineering

Willard J. Whitehead, M.L.S.
(University of Illinois)
Acquisitions Librarian

George I. Whitlatch, Ph.D.
(Indiana University)
Senior Research Scientist
Engineering Experiment Station

Wyatt Carr Whitley, Ph.D.
(University of Wisconsin)
Professor, Chemistry
Director,
Engineering Experiment Station

James Fredric Whittenel, M.A.
(University of North Carolina)
Instructor, English

Richard Wiegand, M.A.
(University of North Carolina)
Associate Professor and Director,
Department of Continuing Education

Lorna A. Wiggins, M.Ln.
(Emory University)
Data Processing Librarian

Willard E. Wight, Ph.D.
(Emory University)
Associate Professor, Social Sciences

O. B. Wike, M.S.
(University of Georgia)
Assistant Professor, Physics

Michael K. Wilkinson, Ph.D.
(Massachusetts Institute of Technology)
Professor, Physics

*I. Edwin Wilks, M.S.
(Georgia Institute of Technology)
Assistant Professor, Engineering Graphics
J. QUITTMAN WILLIAMS, Ph.D.
(Duke University)
Professor, Physics

FRANK R. WILLIAMSON, Jr., M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

FRANK B. WILSON, B.S.
(Georgia Institute of Technology)
Manager, Book Store

HOWELL K. WILSON, Ph.D.
(University of Minnesota)
Assistant Professor, Mathematics

RICHARD WILSON, A.A. Dpl.
(Architectural Assn., School of
Architecture, London)
Reg. Arch. (Great Britain; Georgia)
Professor, Architecture

JAMES GORDON WOHLFORD, M.S.
(Stanford University)
Director, Co-operative Division

A. ALLEN WOLF, M.A.
(Vanderbilt University)
Instructor, Physics

JOHN M. WOLF, B.S.
(University of Kentucky)
Research Assistant
Engineering Experiment Station

RICHARD HENRY WOODFIN (Capt.,
U.S. Navy) B.S.
(U.S. Naval Academy)
Commanding Officer and Professor,
Naval Science

LEWIS C. WOODRUFF, B.S.
(University of Georgia)
Assistant in Football

LEROY A. WOODWARD, M.S.
(University of Michigan)
Assistant Professor, Physics

JOE W. WRAY, Ph.D.
(University of Illinois)
Associate Professor, Mathematics

JAMES DIXON WRIGHT, Ph.D.
(University of Wisconsin)
Professor and Head, Modern
Languages

PAUL H. WRIGHT, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Civil
Engineering

JAMES R. WYATT, B.B.A.
(University of Texas)
Research Economist
Engineering Experiment Station

ROY O. WYATT, Jr., M.A.
(University of Alabama)
Assistant Professor, Modern
Languages

HUGH ALLEN WYCKOFF, M.S.
(University of Chicago)
Professor-Emeritus, Public Health
and Biology

L. DAVID WYLIE, Jr., Ph.D.
(Yale University)
Regents' Professor, Physics

*CHARLES FELIX WYSONG, B.S.
(Georgia Institute of Technology)
P.E. (Georgia)
Associate Professor, Ceramic
Engineering

LAWRENCE J. YBARRONDO, Ph.D.
(Georgia Institute of Technology)
Assistant Professor, Mechanical
Engineering

RUDOLPH L. YOBS, M.S.
(Georgia Institute of Technology)
Assistant Research Engineer
Engineering Experiment Station

C. MICHAEL YORK, Ph.D.
(University of Maryland)
Assistant Professor, Psychology

GUY A. YORK, M.A.
(University of North Carolina)
Assistant Professor, Mathematics

JAMES DEAN YOUNG, Ph.D.
(Rice University)
Associate Professor, English

*Deceased, July 20, 1964.
LOUIS C. YOUNG, M.S.
(Massachusetts Institute of Technology)
Research Engineer
Engineering Experiment Station

ROBERT A. YOUNG, Ph.D.
(Polytechnic Institute of Brooklyn)
Professor of Physics and
Head, Diffraction Group
Engineering Experiment Station

LOUIS J. ZAHN, Ph.D.
(University of North Carolina)
Associate Professor, Modern Languages

EDMOND F. E. ZEYDEL, DR.Tech.Sc.
(Institute of Technology, Delft, Holland)
Professor, Aerospace Engineering

WALDEMAR T. ZIEGLER, Ph.D.
(Johns Hopkins University)
Regents' Professor, Chemical Engineering

ROBERT L. ZIMMERMAN, B.S.
(Rensselaer Polytechnic Institute)
Radiological Safety Officer
SUMMARY OF ENROLLMENT 1963-1964

College Day Courses

By Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate students</td>
<td>927</td>
</tr>
<tr>
<td>Fifth year</td>
<td>30</td>
</tr>
<tr>
<td>Seniors</td>
<td>1,888</td>
</tr>
<tr>
<td>Juniors</td>
<td>1,154</td>
</tr>
<tr>
<td>Sophomores</td>
<td>1,799</td>
</tr>
<tr>
<td>Freshmen</td>
<td>1,588</td>
</tr>
<tr>
<td>Unclassified</td>
<td>32</td>
</tr>
</tbody>
</table>

Total College Day Courses: 7,418

By Major Departments

<table>
<thead>
<tr>
<th>Department</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering</td>
<td>649</td>
</tr>
<tr>
<td>Applied Biology</td>
<td>51</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>256</td>
</tr>
<tr>
<td>Applied Psychology</td>
<td>36</td>
</tr>
<tr>
<td>Architecture</td>
<td>383</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>58</td>
</tr>
<tr>
<td>Chemistry</td>
<td>204</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>496</td>
</tr>
<tr>
<td>City Planning</td>
<td>37</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>576</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>1,340</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>59</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>759</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>1,146</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>803</td>
</tr>
<tr>
<td>Physics</td>
<td>334</td>
</tr>
<tr>
<td>Textile Engr., Textiles, Textile Chem.</td>
<td>177</td>
</tr>
<tr>
<td>Others</td>
<td>54</td>
</tr>
</tbody>
</table>

Total: 7,418

Engineering Extension Division

<table>
<thead>
<tr>
<th>Program</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evening School</td>
<td>3,644</td>
</tr>
<tr>
<td>Institutes and Conferences</td>
<td>2,623</td>
</tr>
<tr>
<td>Southern Technical Institute</td>
<td>652</td>
</tr>
<tr>
<td>Trade and Industrial Education</td>
<td>9,445</td>
</tr>
</tbody>
</table>

Total Engineering Extension Division: 16,364

Total College Day Courses: 7,418

Duplicates: 246

Grand Total: 23,536
<table>
<thead>
<tr>
<th>DEGREES</th>
<th>Initially Conferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S. in Applied Bio.</td>
<td>1962</td>
</tr>
<tr>
<td>B.S. in Applied Math.</td>
<td>1954</td>
</tr>
<tr>
<td>B.S. in Applied Phys.</td>
<td>1961</td>
</tr>
<tr>
<td>B.S. in Arch. Eng.</td>
<td>1911</td>
</tr>
<tr>
<td>B. Arch.</td>
<td>1936</td>
</tr>
<tr>
<td>B.S. in Aero. Eng.</td>
<td>1952</td>
</tr>
<tr>
<td>B. Aero. Eng.</td>
<td>1940</td>
</tr>
<tr>
<td>B.S. in Build. Con.</td>
<td>1959</td>
</tr>
<tr>
<td>B.S. in Basic Eng.*</td>
<td>1944</td>
</tr>
<tr>
<td>B.S. in Ceramic Eng.</td>
<td>1969</td>
</tr>
<tr>
<td>B. Ceramic Eng.</td>
<td>1903</td>
</tr>
<tr>
<td>B.S. in Chem. Eng.</td>
<td>1945</td>
</tr>
<tr>
<td>B. Chem. Eng.</td>
<td>1909</td>
</tr>
<tr>
<td>B.S. in Chem.</td>
<td>1911</td>
</tr>
<tr>
<td>B.S. in Civ. Eng.</td>
<td>1902</td>
</tr>
<tr>
<td>B. Civ. Eng.</td>
<td>1945</td>
</tr>
<tr>
<td>B.S. in Commerce</td>
<td>1919</td>
</tr>
<tr>
<td>B.S. in Elec. Eng.</td>
<td>1898</td>
</tr>
<tr>
<td>B.S. in Elec. Eng.</td>
<td>1945</td>
</tr>
<tr>
<td>B.S. in Gen. Eng.</td>
<td>1923</td>
</tr>
<tr>
<td>B.S. in Ind. Design</td>
<td>1959</td>
</tr>
<tr>
<td>B.S. in Ind. Education</td>
<td>1922</td>
</tr>
<tr>
<td>B. Ind. Eng.</td>
<td>1946</td>
</tr>
<tr>
<td>B.S. in Ind. Man.</td>
<td>1937</td>
</tr>
<tr>
<td>B.S. in Mech. Eng.</td>
<td>1890</td>
</tr>
<tr>
<td>B. Mech. Eng.</td>
<td>1946</td>
</tr>
<tr>
<td>B.S. in Mech. Eng.</td>
<td>1961</td>
</tr>
<tr>
<td>B.S. in Naval Sol.*</td>
<td>1911</td>
</tr>
<tr>
<td>B.S. in Pub. Heal. Eng.</td>
<td>1940</td>
</tr>
<tr>
<td>B.S. in Phys.</td>
<td>1943</td>
</tr>
<tr>
<td>B.S. in Text. Eng.</td>
<td>1901</td>
</tr>
<tr>
<td>B.S. in Text. Eng.</td>
<td>1949</td>
</tr>
<tr>
<td>B.S. in Text. Chem.</td>
<td>1960</td>
</tr>
<tr>
<td>B.S. in Text.</td>
<td>1949</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEGREES</th>
<th>Initially Conferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Bachelors</td>
<td>1927</td>
</tr>
<tr>
<td>B. Commerical Science</td>
<td>1916</td>
</tr>
<tr>
<td>Master of Science</td>
<td>1925</td>
</tr>
<tr>
<td>M. of Architecture</td>
<td>1953</td>
</tr>
<tr>
<td>M. of City Planning</td>
<td>1934</td>
</tr>
<tr>
<td>Doctor of Philosophy</td>
<td>1950</td>
</tr>
<tr>
<td>Professional Deg.</td>
<td>1914</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Degrees</th>
<th>Certificates</th>
</tr>
</thead>
</table>

NOTES: The M.S. degrees, Ph.D. degrees, Professional degrees, and Certificates shown above are distributed among the departments as follows:

2. Ph.D.: Ch.E., 49; Chem., 52; C.E., 7; E.E. 26; I.E., 3; M.E., 14; Phys., 17; San.E., 1.

3. Professional Degrees: C.E., 17; Ch.E., 1; B.E., 11; M.E., 15; T.E., 1.

4. Certificates: A.E., 43; C.E., 43; I.Eng., 9; M.T., 14; T.E., 1; E.E., 190.

General Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>9</td>
</tr>
<tr>
<td>Administrative Council</td>
<td>256</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>17</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>35</td>
</tr>
<tr>
<td>Aeronautics School, Daniel Guggenheim</td>
<td>35</td>
</tr>
<tr>
<td>Air Force R.O.T.C.</td>
<td>42</td>
</tr>
<tr>
<td>Alumni Organizations</td>
<td>252</td>
</tr>
<tr>
<td>Apartments</td>
<td>33</td>
</tr>
<tr>
<td>Applied Biology</td>
<td>46</td>
</tr>
<tr>
<td>Architecture</td>
<td>51</td>
</tr>
<tr>
<td>Army R.O.T.C.</td>
<td>150</td>
</tr>
<tr>
<td>Athletics</td>
<td>250</td>
</tr>
<tr>
<td>Auditors</td>
<td>21</td>
</tr>
<tr>
<td>Band</td>
<td>165</td>
</tr>
<tr>
<td>Bequests</td>
<td>255</td>
</tr>
<tr>
<td>Board of Regents</td>
<td>8</td>
</tr>
<tr>
<td>Building Construction</td>
<td>55</td>
</tr>
<tr>
<td>Calendar, School</td>
<td>6</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>63</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Chemistry</td>
<td>79</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>85</td>
</tr>
<tr>
<td>Committees of Faculty</td>
<td>257</td>
</tr>
<tr>
<td>Continuing Education</td>
<td>212</td>
</tr>
<tr>
<td>Co-operative Plan</td>
<td>204</td>
</tr>
<tr>
<td>Courses and Degrees</td>
<td>3</td>
</tr>
<tr>
<td>Credits for Entrance</td>
<td>18</td>
</tr>
<tr>
<td>Dean of Students</td>
<td>224</td>
</tr>
<tr>
<td>Degrees</td>
<td>3</td>
</tr>
<tr>
<td>Doctorate</td>
<td>206</td>
</tr>
<tr>
<td>Dormitories</td>
<td>30</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>94</td>
</tr>
<tr>
<td>Engineering, College of</td>
<td></td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>35</td>
</tr>
<tr>
<td>Architecture</td>
<td>51</td>
</tr>
<tr>
<td>Ceramic Engineering</td>
<td>63</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>85</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>94</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>101</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>103</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>142</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>173</td>
</tr>
<tr>
<td>Textile Engineering</td>
<td>195</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>101</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td>103</td>
</tr>
<tr>
<td>Engineering Experiment Station</td>
<td>210</td>
</tr>
<tr>
<td>Engineering Extension Division</td>
<td>212</td>
</tr>
<tr>
<td>Engineering Societies</td>
<td>229</td>
</tr>
<tr>
<td>English</td>
<td>110</td>
</tr>
<tr>
<td>Entrance Requirements</td>
<td>17</td>
</tr>
<tr>
<td>Examinations, Entrance</td>
<td>18</td>
</tr>
<tr>
<td>Expenses</td>
<td>28</td>
</tr>
<tr>
<td>Extension Division</td>
<td>212</td>
</tr>
<tr>
<td>Faculty</td>
<td>259</td>
</tr>
<tr>
<td>Fellowships</td>
<td>207</td>
</tr>
<tr>
<td>Food Services</td>
<td>33</td>
</tr>
<tr>
<td>Foreign Students</td>
<td>25</td>
</tr>
<tr>
<td>Foundation, Georgia Tech</td>
<td>254</td>
</tr>
<tr>
<td>Fraternities</td>
<td>228</td>
</tr>
<tr>
<td>French</td>
<td>159</td>
</tr>
<tr>
<td>Freshmen</td>
<td>17</td>
</tr>
<tr>
<td>General Information</td>
<td>17</td>
</tr>
<tr>
<td>General College</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>79</td>
</tr>
<tr>
<td>English</td>
<td>110</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>121</td>
</tr>
<tr>
<td>Information Science</td>
<td>132</td>
</tr>
<tr>
<td>Mathematics</td>
<td>134</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>158</td>
</tr>
<tr>
<td>Music</td>
<td>165</td>
</tr>
<tr>
<td>Physical Training</td>
<td>175</td>
</tr>
<tr>
<td>Physics</td>
<td>178</td>
</tr>
<tr>
<td>Psychology</td>
<td>186</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>191</td>
</tr>
<tr>
<td>Geology</td>
<td>69</td>
</tr>
<tr>
<td>Geophysics</td>
<td>179</td>
</tr>
<tr>
<td>German</td>
<td>160</td>
</tr>
<tr>
<td>Grading</td>
<td>34</td>
</tr>
<tr>
<td>Graduate Studies, Division of</td>
<td>206</td>
</tr>
<tr>
<td>Grant Field</td>
<td>251</td>
</tr>
<tr>
<td>Health Service</td>
<td>218</td>
</tr>
<tr>
<td>Historical Sketch</td>
<td>12</td>
</tr>
<tr>
<td>Honorary Societies</td>
<td>229</td>
</tr>
<tr>
<td>Industrial Design</td>
<td>56</td>
</tr>
<tr>
<td>Industrial Education</td>
<td>213</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>113</td>
</tr>
<tr>
<td>Industrial Management</td>
<td>121</td>
</tr>
<tr>
<td>Infirmary</td>
<td>218</td>
</tr>
<tr>
<td>Information Science</td>
<td>132</td>
</tr>
<tr>
<td>International Students</td>
<td>25</td>
</tr>
<tr>
<td>Languages, Modern</td>
<td>158</td>
</tr>
<tr>
<td>Legal Residence</td>
<td>26</td>
</tr>
</tbody>
</table>
General Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>221</td>
</tr>
<tr>
<td>Loan Funds and Scholarships</td>
<td>232</td>
</tr>
<tr>
<td>Marking and Grading</td>
<td>34</td>
</tr>
<tr>
<td>Master of Science</td>
<td>206</td>
</tr>
<tr>
<td>Mathematics</td>
<td>134</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>142</td>
</tr>
<tr>
<td>Mechanics</td>
<td>103</td>
</tr>
<tr>
<td>Medals and Prizes</td>
<td>245</td>
</tr>
<tr>
<td>Medical Attendance</td>
<td>218</td>
</tr>
<tr>
<td>Military Science</td>
<td>150</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>158</td>
</tr>
<tr>
<td>Motor Vehicles</td>
<td>29</td>
</tr>
<tr>
<td>Music</td>
<td>165</td>
</tr>
<tr>
<td>Naval Science</td>
<td>167</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>173</td>
</tr>
<tr>
<td>Officers of Administration</td>
<td>9</td>
</tr>
<tr>
<td>Physical Training</td>
<td>175</td>
</tr>
<tr>
<td>Physical Examination</td>
<td>29</td>
</tr>
<tr>
<td>Physics</td>
<td>178</td>
</tr>
<tr>
<td>Placement</td>
<td>33</td>
</tr>
<tr>
<td>Prizes</td>
<td>245</td>
</tr>
<tr>
<td>Professional and Technical Societies</td>
<td>229</td>
</tr>
<tr>
<td>Psychology</td>
<td>186</td>
</tr>
<tr>
<td>Publications Board</td>
<td>226</td>
</tr>
<tr>
<td>Public Health</td>
<td>46</td>
</tr>
<tr>
<td>Public Relations Department</td>
<td>33</td>
</tr>
<tr>
<td>Regents, Board of</td>
<td>8</td>
</tr>
<tr>
<td>Refund of Fees</td>
<td>29</td>
</tr>
<tr>
<td>Religious Organizations</td>
<td>230</td>
</tr>
<tr>
<td>Reports</td>
<td>34</td>
</tr>
<tr>
<td>Research</td>
<td>210</td>
</tr>
<tr>
<td>Residence Halls</td>
<td>30</td>
</tr>
<tr>
<td>Residence Requirements</td>
<td>30</td>
</tr>
<tr>
<td>R.O.T.C.</td>
<td>42, 150, 167</td>
</tr>
<tr>
<td>Russian</td>
<td>162</td>
</tr>
<tr>
<td>Safety Engineering</td>
<td>119</td>
</tr>
<tr>
<td>Scholarships</td>
<td>232</td>
</tr>
<tr>
<td>Selective Service Deferments</td>
<td>30</td>
</tr>
<tr>
<td>Short Courses</td>
<td>213</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>191</td>
</tr>
<tr>
<td>Sorority</td>
<td>228</td>
</tr>
<tr>
<td>Spanish</td>
<td>163</td>
</tr>
<tr>
<td>Statistics, School</td>
<td>293</td>
</tr>
<tr>
<td>Student Council</td>
<td>225</td>
</tr>
<tr>
<td>Student Motor Vehicles</td>
<td>29</td>
</tr>
<tr>
<td>Technical Institute, Southern</td>
<td>215</td>
</tr>
<tr>
<td>Textile Engineering</td>
<td>195</td>
</tr>
<tr>
<td>Textile School, A. French</td>
<td>195</td>
</tr>
<tr>
<td>Three-Two Plan</td>
<td>24</td>
</tr>
<tr>
<td>Transfer Students</td>
<td>19</td>
</tr>
<tr>
<td>Transient Students</td>
<td>20</td>
</tr>
<tr>
<td>Tuition and Fees</td>
<td>28</td>
</tr>
<tr>
<td>Units Required for Entrance</td>
<td>18</td>
</tr>
<tr>
<td>Veterans Program</td>
<td>23</td>
</tr>
<tr>
<td>Water Resources Center</td>
<td>223</td>
</tr>
<tr>
<td>Women, Admission of</td>
<td>23</td>
</tr>
<tr>
<td>Whitehead Memorial Infirmary</td>
<td>218</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>28</td>
</tr>
<tr>
<td>Y.M.C.A.</td>
<td>227</td>
</tr>
</tbody>
</table>