BROOKWOOD ALLIANCE PLAN

GEORGIA INSTITUTE OF TECHNOLOGY
URBAN DESIGN STUDIO SPRING 2010
Brookwood is located on the periphery of the core of Atlanta. The neighborhood sits between the major urban growth poles of Buckhead to the north and Midtown to the south. The Brookwood Alliance is comprised of the four neighborhoods of Ardmore Park, Brookwood Hills, Collier Hills and Collier Hills North combined with the commercial corridor of Peachtree Road. Peachtree Road serves as the spine of the community and acts as the major north-south point of access. On either side of this spine, the Alliance neighborhoods consist predominantly of single-family detached homes along with low-rise multifamily developments. Peachtree is characterized by low to high rise office buildings interspersed with single story retail. The neighborhood experiences a large volume of vehicular traffic throughout the day, driven by large visitor and employment attractors and a lack of access infrastructure in the area. With few roads capable of distributing traffic, it ends up funneling down quiet residential streets.

Land values in both Midtown and Buckhead have risen substantially over the last decade, putting serious development pressure on the Brookwood neighborhood. The recent economic downturn is seen as an opportunity to better define the future of the neighborhood. The Georgia Institute of Technology Urban Design Studio was charged with engaging the community in their pursuit of a coherent vision of the future of their neighborhood. The intent is to take this vision and arm the community with a set of design strategies that can be used in implementing this vision.

This report will begin with a brief overview of the existing conditions in Brookwood, followed by a detailed explanation of each of three design strategies relating to: the Peachtree Street Design, Peachtree corridor Development and transportation Accessibility. Through multiple public meetings, this organizing scheme emerged as a means of focusing on the core problems facing the neighborhood.

DESIGN STUDIO PARTICIPANTS

Student Team:
Laurence Nguyen Duy – M.S. Architecture, M.S. Urban Design
Salma Bano – M.S. Urban Design
Nathan Lawrence – M.S. City Planning, M.S. Urban Design
Sandy So-Jung Lee – B.S. Architecture
Michael Deilinsky – B.S. Architecture
Derrick Tittle – B.S. Architecture
Logan Tuura – B.S. Architecture

Faculty Advisors:
David Green – Professor of Architecture and Urban Design
Richard Dagenhart – Associate Professor of Architecture and City and Regional Planning

PUBLIC MEETING SCHEDULE:
Meeting 1, Introduction/Brookwood Background: January 31st
Meeting 2, Existing Conditions Analysis: February 28th
Meeting 3, Draft Design Proposals: April 13th
Meeting 4, Final Design Proposals: May 18th
The first homes were constructed in Brookwood Hills between 1922 and 1924. During the late 1920's, the area experienced a transition from strictly residential to a residential/commercial mix. This commercial development further spurred additional residential development. In 1957, the Piedmont Hospital Campus relocated to the Brookwood area.
The developed commercial corridor contrasts with the residential communities surrounding it. The mature forest envelope the neighborhoods, revealing a unique identity that residents cherish.

The Brookwood Alliance includes the neighborhoods of Collier Hills, Collier Hills North, Ardmore, Brookwood and Brookwood Hills.
Peachtree Road functions as the spine of the community, but is often congested due to a lack of alternative routes from north to south. East-west connectivity is also hampered by a lack of route options. Many of the residential streets dead end rather than forming a coherent gridded street network. Interstate proximity incites people who don’t live in the area to utilize Peachtree Road, further adding to congestion.

Buses are currently the only mode of transit serving the area—running along Peachtree Road. The Atlanta Beltline transit corridor is proposed to run through the core of the site, intersecting Peachtree near Piedmont Hospital. A PATH bicycle/pedestrian trail is partially completed, and will ultimately provide east-west connectivity for cyclists and pedestrians.
There is a large contrast in the buildings scales in the study area. The Peachtree corridor is constituted by buildings with large footprints while the surrounding residential neighborhoods consists of single family and multifamily housing. Many of the large buildings along Peachtree are not directly oriented to Peachtree, creating a disorganized streetscape.

As evident in this map, there is a lack of public spaces in the Brookwood community. Streets, in total, form the largest public space.
Two creeks run through the study area, posing as a major environmental feature. There is a great deal of floodplain throughout the area as a result. Topographically, Peachtree forms a ridge running from north to south.

Park area is concentrated in a few places, while many residents are located far from any green space.
Most of the corridor is zoned C-3 (Commercial Residential). It is directly adjacent to many parcels zoned R (Single-Family Residential) and RG (Multi-Family Residential), both of which involve a number of zone adjacency regulations such as height planes, setbacks and buffers.

The Peachtree corridor is zoned HDC (High Development Commercial). Surrounding the corridor are areas zoned SFR (Single Family Residential), MDR (Multi-Family Residential), and HRD (High Residential Development). A special zone has been added along the Beltline corridor (TCU).
BACKGROUND

Residential Buildings

There are many different residential buildings types (single family, multi family) and ages present in the study area. These differences form a rich and varied neighborhood composition.
There are many different kinds of uses along Peachtree, such as offices, retail, and restaurants. As a result, there are also a lot of different buildings types and heights related to the various activities they house.
The major institutions present on the Corridor are Piedmont Hospital and the Amtrak Station. The hospital serves as a major trip attractor to the study area.
Streetscapes

There is generally poor pedestrian quality along Peachtree Road. There is a lack of sidewalk width and in some places the sidewalk is lower than the level of the driving surface creating an unsafe situation for pedestrians. Some of the streets completely lack sidewalks. Some of the streetscapes along Peachtree have been upgraded along with redevelopment, but have been done so in a very irregular and illogical manner.
There are several different park areas located in the study area. Among them, are the green spaces along the Peachtree Creek and Tanyard Creek.
Peachtree Road is characterized predominantly by six lanes of high speed, motorized traffic. This character has degraded the street’s ability to adequately serve the needs of the local community. Rather than establishing a coherent framework for development to adhere to, Peachtree has seemingly repelled street-oriented development along its length. The street serves the needs of regional drivers at the cost of local users. It is a street battling for an identity, despite being bestowed with the most well known street names in the city.
The existing streetscape along Brookwood’s section of Peachtree Road has been identified as facing many serious issues. This studio team set out to address these problems and identify the vision the surrounding area has for this major roadway. An exhaustive site analysis was done in order to fully understand all the issues this area faces so that the proper changes could be made to solve these issues and make Peachtree Street/Road a unique and enjoyable experience for all who use it.
CHALLENGES:

Cars: This area is poor for cars, as it lacks both a designated left turn lane and a median. In some places, three through lanes will turn into one—with left and right lanes becoming turn lanes or bus stops.

Pedestrians: Safety for pedestrians along Peachtree Street/Road is a very large concern. The sidewalks are very narrow, and in some places very poorly constructed and kept up (the road is actually higher than the sidewalk). There is also no buffer between the street and sidewalk, and the multitude of curb cuts make it dangerous for pedestrian and driver alike. The lack of street trees and other plant life also makes this area completely unattractive to walk through.

Bicyclists: There is absolutely no infrastructure set up along Peachtree Street/Road for bicyclists, making it extremely dangerous for a biker to travel on such high speed roadway.

Transit: Because of the inefficient distribution of vehicular infrastructure, and the narrow right-of-way overall, it is difficult to accommodate alternative modes of transit. This reduces the viability of the bus transit that runs along the corridor now and severely hampers the development of higher quality transit in the future.

Retail: With little to no pedestrian activity, retail along Peachtree Street/Road does not engage the streetscape at all, increasing the sense of isolation generated by the large, under utilized areas between storefronts and the street. The lack of on-street parking also encourages retail stores to orient themselves towards rear parking lots rather than towards the street.

Based on Survey Results, Meeting Discussions and Site Evaluation:

The existing right-of-way of Peachtree Road does not adequately serve the needs of either vehicular traffic or pedestrian movement and hampers the development of viable neighborhood retail.
When visiting this site, it felt very hostile and barren (aside from the multitude of cars). While walking around, few pedestrians were spotted—a large hint that this street was not functioning for local users who may opt for walking rather than driving. The overall chaos of the environment gave the sense that even driving down the corridor was not a pleasant experience.
The existing Right of Way on Peachtree Street/Road is 80 feet wide. It consists of six car lanes and a sidewalk on each side. There is no buffer between the fast moving traffic and pedestrians, as well as no bicycle infrastructure or any type of vegetation.
This is a study of the actual space spanning from building front to building front, across Peachtree Road. Much of the narrow right-of-way of Peachtree Road can be extended in width without redevelopment. There are some places that are very constricted and redevelopment may need to occur in order to provide the opportunity to widen Peachtree Street/Road. Shown are narrow, moderate, and wide portions of Peachtree Street/Road around Piedmont Hospital.
Survey and Meeting Results:

Meeting:
In the meetings, the general consensus seemed to converge around 4 main points. First, sidewalks need to be present throughout this area, and should be well maintained. There was some contention on the issue of the streetcar, but almost everyone agrees that there is a need for better public transit. Peachtree street itself needs much improvement, including proper lane widths, better drainage, wider sidewalks, better crosswalks, many more street trees, more restaurants and more retail. Finally, the volume and speed of traffic on Peachtree Street/Road is dangerous to all users.

Survey:
Through a series of surveys, information on the general community was gathered. A hierarchy was ascertained from this information.
In order to improve Peachtree Street/Road, extensive research was done on existing streets that would be considered by most to be “great” streets. These streets are preferred by drivers and pedestrians alike. This research shows how others have solved similar problems to those faced in Brookwood and can be used as a framework on which to base improvements to Peachtree Road.
Commonwealth Avenue West is known as a great street because of its wide, busy sidewalks, on-street parking, and light rail transit accommodated in the middle of the street.
Commonwealth Avenue East is considered a great street because of its very large, wide median occupied by mature trees and generous greenspace. It only has two lanes of through traffic going in each direction and on-street parking provides adequate traffic calming. On-street parking also allows for a consistent street wall lining a pleasant pedestrian realm.
Michigan Avenue is another street known for its green space. Not only does it have rows of street trees on both sides, but provides generous tree planting wells that are host to a variety of flowers and bushes. This planting strip in addition to on-street bicycle lanes provide a generous buffer between traffic and pedestrians.
5th Avenue, despite being relatively narrow, is another highly pedestrian friendly street. Very wide sidewalks coupled with street trees and on-street parking provides the safe buffer that pedestrians tend to prefer.
Market Street is known for having a street car system which does not have designated lanes, meaning any automobile is allowed to use the lane that the street car track is laid on. This allows the area to be serviced easily by transit without creating major traffic issues on this narrow street. There is ample buffer space between the roadway and pedestrians provided by street trees, on-street parking, and a shared bike lane.
5th Street, much like 5th Avenue, is considered pedestrian friendly for its sidewalk width, street trees, and on-street parking. Businesses use this ample sidewalk space to their advantage, offering outdoor dining/seating options in many cases. On-street bicycle lanes raise awareness of bikers traveling to and from Georgia Tech's campus.
Peachtree Street in Midtown does well to create a pedestrian friendly street despite a narrow width and heavy traffic demands. The sidewalk width is desirable and street trees provide a buffer between the road and the pedestrian.
Reasons for on-street parking:

When researching these precedents, it was found that most great streets use on-street parking. This is because there are numerous advantages. It is considered the most effective form of traffic calming on busy roadways, provides a generous pedestrian buffer, increases retail viability, and gives retail a strong incentive to orient towards the street. In the case of our study area, on-street parking can also reserve space for future transit should it be introduced to Peachtree Road.
RESULTS:

Based on the precedent studies done, as well as the analysis of the existing conditions, meetings, and survey results, it was determined several elements are needed to improve Peachtree Street/Road. These elements are wider sidewalks, on-street parking, street trees, bicycle infrastructure (off-street), and adequate medians.

Wider sidewalks allow for safer and enjoyable pedestrian usage.

On-street parking is useful in many ways, including traffic calming, acting as a buffer for pedestrians, and is desired by neighborhood retail.

Street trees are very desirable in developed areas too soften urban surroundings and to provide shade and buffering for pedestrians.

Bike lanes are very important in areas with high traffic as they provide an important alternative to driving and also act to buffer pedestrians from traffic.

Medians are an easy way to divide traffic and provide safety, while also allowing designated left turn lanes to keep through lanes moving.
In order to create a truly great Peachtree Road, a strategy had to be developed based on the lessons learned from precedent analysis, but also from the existing conditions along Peachtree itself.

STREET DESIGN GOALS:

Design a street that accommodates the needs of pedestrians, bicyclists, and transit users as well as drivers.

Design a street that fosters the development of successful neighborhood-oriented retail.

Design the public realm so that it can be implemented today but easily adapted to realize the ideal street in the future.
STREET DESIGN

The existing Right of Way on Peachtree Street/Road is 80 feet wide. It consists of six lanes and a narrow sidewalk on each side. There is no buffer between traffic and pedestrians, as well as no bicycle infrastructure or any type of vegetation.

Existing ROW study.

Plan and section of the existing ROW.
Based on public surveys and meetings, an ideal streetscape was designed to be applied to the whole corridor. It includes wide sidewalks, off-street bike lanes, parking and medians with designated left turn lanes, on-street parking, and a median with designated left turn lanes.

The proposed right-of-way is 120 feet wide.
Constants:
- 70 foot cartway (four travel lanes and median at minimum)
- 5 foot minimum sidewalk width
- Bicycle infrastructure (either on or off street)

Variable:
- Sidewalk over 5 feet wide
- Location of bicycle infrastructure (on or off-street)
- Landscape strip

After overlaying the 120 foot ROW over the existing Peachtree corridor, conflicts were found with some existing buildings. A strategy was developed to solve these conflicts until future development could allow the full realization of the ideal streetscape. A 70 foot section of the street was set as constant, providing for the median/left turn lane and four total travel lanes. Also considered non negotiable were minimum 5 foot sidewalk widths and the provision of bicycle infrastructure—either on or off-street. Other elements of the streetscape were deemed flexible and could be sacrificed in areas where existing buildings prevented the realization of the ideal street.
The 120 foot ideal streetscape

The first variable in the narrowing streetscape strategy: Sidewalk widths in excess of 5 feet. Sidewalks can be added along with redevelopment the most easily of all elements.

The 100 foot streetscape to be implemented where needed
The 100 foot streetscape

The second variable in the narrowing streetscape strategy: Off-street bicycle paths shift to on-street bicycle lanes. Parallel parking is removed to make way for the bicycle lanes. A 5 foot striped buffer is retained for bicycle safety.

The 90 foot streetscape to be implemented where needed
The 90 foot streetscape

The third variable in the narrowing streetscape strategy: Street tree planting strips.

The 80 foot streetscape to be implemented where needed
With a strategy developed, the conflicts between the vision of the ideal street and the existing conditions were found using these diagrams. From there, the conflict areas were solved using the strategy previously outlined. In the future, redevelopment will allow for the full 120 foot streetscape to be realized.
There are five areas that encompass all the conflicts found between the ideal streetscape and the existing conditions.
CHOKING POINT 1

Conflicts diagram

Focus on Choke Point 1

Looking north at Choke Point 1

Choke Point 1 solution
C H O K E P O I N T 2

Focus on Choke Point 2

Conflicts diagram

Looking south at Choke Point 2

Choke Point 2 solution
Brookwood Alliance Plan

STREET DESIGN

STRATEGY

Conflicts diagram

Focus on Choke Point 3

Looking south at Choke Point 3

Choke Point 3 solution

Brookwood Alliance Plan
CHOKED POINT 4

Conflicts diagram

Focus on Choke Point 4

Looking west at Choke Point 4

Choke Point 4 solution
C H O K E P O I N T 5

Focus on Choke Point 5

Looking north at Choke Point 5

Choke Point 5 solution
The final step in the street design process was to apply the streetscape and strategy of implementation to the entire stretch of Peachtree Street/Road in the study area. The rendering on the left maintains all existing current curb cuts. On the right, future redevelopment is shown along with the realization of the full street plan. Curb cuts are reduced to ease the flow of traffic and increase pedestrian safety.
The ideal streetscape applied to existing conditions

Section 1 of the ideal streetscape applied to existing conditions
Section 1 of the fully realized ideal streetscape
The ideal streetscape applied to existing conditions

Section 2 of the ideal streetscape applied to existing conditions
Section 2 of the fully realized ideal streetscape
STREET DESIGN

Section 3 of the ideal streetscape applied to existing conditions
Section 3 of the fully realized ideal streetscape
Section 4 of the ideal streetscape applied to existing conditions
STREET DESIGN

Section 4 of the fully realized ideal streetscape
STREET DESIGN

The ideal streetscape applied to existing conditions

Section 5 of the ideal streetscape applied to existing conditions
Section 5 of the fully realized ideal streetscape
The ideal streetscape applied to existing conditions

Section 6 of the ideal streetscape applied to existing conditions
Section 6 of the fully realized ideal streetscape
ADVANTAGES

- Better accommodates pedestrians, cyclists, and transit users.
- Adds greenspace to the right-of-way.
- Incorporates on-street parking.
- Easy/low cost modification to realize ideal street after redevelopment.
- Provides better traffic flow through designated left turn lanes in median.
- Better provides space for bus stops.
- Enhances retail viability.
- Major improvements within right-of-way (sidewalks on private land).
- Reserves space for future transit lane should it be needed/desired.

CHALLENGES

- GDOT can implement further restrictions/necessities.
- Designed traffic flow is uncertain.

SOLUTIONS

- Peachtree may become a city street
- GDOT has made considerable progress in permitting flexible design
 (Context Sensitive Design Manual 2006)
- Traffic studies
Gateways

In addition to the Peachtree streetscape design explored, a concept also arose for creating two gateways leading into Brookwood. These give the neighborhood unique character and give a positive impression to visitors.

Beltline

These renderings were done for the Connect Atlanta plan, and show what this area (just north of Piedmont Hospital) might start to look like in the future.

Overpass

This rendering below shows what the overpass into Brookwood from Midtown may start to look like in the future.
Loud concerns have been raised over an appropriate transition from the high activity, high density Peachtree corridor into the lower density, quiet residential neighborhoods. This stark juxtaposition has also given rise to concern over the form of development along Peachtree Street. Brookwood has a character not unlike many neighborhoods that sit peripheral to urban cores along major arterial streets. Existing development rights combined with the pressure of urban growth has led to a precarious situation where neighborhood residents are worried about future redevelopment rather than excited by the benefits it will bring. We aimed at exploring future scenarios where the corridor developed into a truly urban place while being respectful of a low density residential context.
C3 ZONING

Existing conditions of the Peachtree Corridor are mainly Commercial (C3) which allows a combine maximum Floor Area Ratio of 8.2 (5.0 commercial and 3.2 residential). The maximum building height is 225 feet and typical lot depths range from 260’ to 400’. Transitional Height Planes are also exacted by regulation where the district adjoins a district in the R-1 through R-G classification without an intervening street. No portion of any structure can protrude through a height-limiting plane beginning 35 feet above the buildable area boundary nearest to the common district boundary and extending inward over this district at an angle of 45 degrees. There is also a minimum rear yard setback that varies from 30 feet to 50 feet based on lot depth. Side yards shall not be paved or used for parking, loading or servicing and must be left in an undisturbed state unless there is an additional planting or screening provided.

BELTLINE OVERLAY

The purpose of Beltline Overlay is to maximize transit accessibility and street connectivity, while protecting the quality of life of the adjacent neighborhoods. The Overlay regulations require a reduction of curb cuts—none are allowed on Peachtree where a side street exists. For development of buildings, they should be consistent with a scale, street width and architecture of surrounding neighborhoods. It requires streetscape (20-foot min. sidewalk zone required). It also provides transitional zoning and density to existing single-family residential neighborhoods along with various other site limitations.
HEIGHT PLANE REGULATIONS

We have seen that the height plane regulations are avoidable through legal channels. Where the height plane is respected, however, it leads to the reduction on realizable FAR on many parcels.

The height plane regulations are regulated by the depth of the parcel rather than through some type of comprehensive height plan.

CURRENT BUILDING HEIGHT REGULATIONS

Currently the same maximum height requirement (225') is applied regardless of adjacent residential context. Neither the maximum height or height plane regulations address exposure to light and air along Peachtree Road. There are also no requirements for a consistent street wall, which could produce buildings that fail to engender the kind of pedestrian environment desired by the community.
EXISTING STUDIES

There have been three major studies that have been undertaken that propose alternative regulatory frameworks for Brookwood.

These studies include 15-Year Future Land Use Plan, Beltline Subarea 7 Plan, and Peachtree Corridor Plan.

In these studies there are many controversies and few points of agreement on the issues of density, use, and height definition.
Based on the survey results, meeting discussions and site analysis we have concluded that the existing regulatory framework has the potential for modification to more clearly articulate and define the appropriate type, size, location and form of development. The main challenge of the area is promoting a walkable and healthy environment for the users of the Peachtree Street and at the same time successfully regulating development that allows for appropriate impact on the neighborhood.

To figure out how to regulate height to allow for the varying contextual conditions along Peachtree, we studies several cities: New York City, New York, Vancouver, Canada, Paris, France and Atlanta, Georgia.
Height and form regulations in New York are comprised of the “Sky Exposure Plane” (essentially a height plane measured from the street), a minimum and maximum building street wall height, a maximum overall building height, and by permitting slender towers to break the Sky Exposure Plane in high density settings.

The zone map of Atlanta, GA 1929 Ordinance shows the maximum height and density as regulated by the height map.
In Vancouver, slender vertical development is encouraged on top of building base and the maximum height is regulated by a height map.

In Paris, maximum height is related to the depth of the street. Density is pushed towards the street and access to light and air is preserved for adjacent development through the use of a height plane.
Our strategy strives to satisfy the needs of developers and residents of the Brookwood Alliance alike. In order to implement the concepts derived from the precedents and to maintain existing development rights we devised a unique solution to the regulation of development. The concept of a height map, as we explored in the Atlanta 1929 and Vancouver precedents will be employed for clarity of implementation and to eliminate the possibility of circumventing development regulations. Paris’s concept of density being pushed towards the street has been adopted as part of Brookwood strategy to protect adjacent single-family development. Vancouver and New York’s regulation encouraging slender vertical development allows us to accommodate higher intensity development while allowing light and air to reach single-family residences and the Peachtree Corridor.

S T R A T E G Y

DEVELOPMENT GOALS:

-Apply regulations in a manner that is straightforward to avoid potential loopholes.

-Regulate the form of development in a way that does not reduce the actual amount of development that can be built today.

-Define building form in a manner that is responsive to Peachtree and the adjacent residential context.

Existing Allowable Profile

Proposed Allowable Profile
Vertical development atop a building base.

As explained, to maintain existing FAR along the Peachtree Corridor while creating a form that is respectful to adjacent homes, we decided to utilize a building form which sets vertical development atop of a building base. The base establishes a consistent street wall that is ample in height to provide a sense of enclosure for pedestrians. The vertical portion allows for the realization of existing development rights while consuming less of the sky—letting light and air penetrate to adjacent homes.

The width and height of the towers are directly related. As the width of the towers are reduced, the height must be increased in order to maintain the same quantity of buildable floor area. There is a trade-off at work here. In order to maximize the amount of light and air reaching adjacent development, a taller, more slender form of building was decided to be optimal.
Development Prototypes

Brookwood Development Regulations include Single-Family Protection Zone, Vertical Development Zones I & II.

The Single-Family Protection Zone is applicable to any portion of a parcel that is currently zoned commercial which lies adjacent to any parcel zoned R, RG1, RG2, RG3. The Single-Family Protection Zone includes a rear setback requirement of 40 feet, 20 feet of which is required to be a planted buffer. Beginning at the rear setback line extending 100 feet into the parcel there is a maximum building height of 38 feet. The Single-Family Protection Zone is designed to permit the construction of three to four story buildings in the zone adjacent to single-family development.

The Vertical Development Zone I (VDZ1) applies to all commercially zoned parcels adjacent to a “Single Family Protection Zone.” The setbacks of all building in this zone is measured 60 feet from the center line of Peachtree Street in order to accommodate the streetscape program explored earlier in this book. To establish a constant street wall, the ground floor is to be built to side property lines. The VDZ1 establishes appropriate maximum and minimum height to the building bases and also allows for the construction of 2-3 story “pedestals” above the bases (illustrated on the next page). Above the building bases and optional pedestal, slender vertical development is permitted up to a maximum height. Vertical development must be spaced a minimum distance from other vertical development, and must be setback from the side and front of teh building base/pedestal.

The Vertical Development Zone II is similar to VDZ1 in most ways, but allows for the realization of additional floor area be an increase in the minimum/maximum base height, pedestal height, and tower height. This zone is generally located adjacent to commercial or multifamily development, this it is normally not required to adhere to the requirements of the Single-Family Protection Zone. This permits additional intensity to be realized adjacent to the future belt-line station—encouraging transit usage.
Vertical Development Zone I Regulation Map

- Single Family Protection Zone
- Vertical Development Zone I (lower intensity)
- Vertical Development Zone II (higher intensity)

Development Prototypes

- Section Diagram
 - Existing Grade
 - No Build Zone
 - Single-Family Residential
Development Prototypes

Zone-I Existing

Zone-I Proposed

Brookwood Alliance Plan

DEVELOPMENT

P. 87
Vertical Development Zone II Regulation Map

- Single Family Protection Zone
- Vertical Development Zone I (lower intensity)
- Vertical Development Zone II (higher intensity)
- Existing Grade
- Property Line
- Multi-Family Residential Commercial
- No Build Zone

Development Prototypes

Strategy

Development Regulation

Brookwood Alliance Plan
Development Prototypes

Zone-II Existing

Zone-II Proposed
Development Potential Under Existing Regulations

Bird Eye Profile
Development Potential Under Proposed Strategy

Bird Eye Profile
Development Potential Under Proposed Strategy

Birdeye View
Development Potential Under Existing Regulations

Street View

Birdeye View

Profile
Development Potential Under Proposed Strategy

Street View

Birdeye View

Profile
Usable Open Space Analysis

A Usable Open Space provision is currently required for all properties located along the Peachtree corridor, calculated based on the realized FAR of a development. Usable open space is defined by the City of Atlanta as open space that is “appropriately improved and located for outdoor living space for residents as well as for aesthetic appeal. Such space includes lawns, other landscaped areas, walkways, paved terraces and sitting areas, outdoor recreational areas and landscaped portions of street rights-of-way.”

Despite the intention to create open space, the spaces produced by these regulations generally lead to the creation of fragmented pieces of land, forced into places where it is not necessarily appropriate. Meanwhile, areas of the community that could truly benefit from larger open spaces and parks are under served.
Usable Open Space Analysis

TRANSFER OPTION:

Considering the lack of significant park spaces in the Brookwood study area, our studio devised a strategy that would provide truly usable open space for the residents of this community.

Instead of requiring developers to adhere to the existing Usable Open Space Requirements, we chose to allow a second option. The amount of open space required would be calculated in the same fashion as the existing requirement, however, instead of being required to provide the open space on site, developers would be permitted to contribute to a fund. This fund would then be used in the acquisition and development of a designated park area. This concept is illustrated on the left.

For example, because a majority of the existing Colonial Holmes site is located inside of the 100 year FEMA floodplain, much of the site is not suitable for development. The portion of this site inside of the floodplain could be designated as a “Receiving Park” that would receive open space funds from “Sending Parcels” that are developing along the Peachtree corridor.
The problem of vehicular congestion in the neighborhood owes itself mainly to a lack of accessibility. Accessibility can be increased in three ways: by increasing the capacity of the existing network, by increasing the amount of connectivity in the existing network, or by adding alternative means of transport other than driving. The community has clearly voiced that there is no desire to widen any of the streets in Brookwood. In light of this fact, only the other two options remain. As we have seen, our street design strategy provides for the addition of a transit corridor running down Peachtree Road in the future. The addition of the Beltline will also add the ability to shift trips away from driving. Since we have explored the transit option, this section is mainly focused on identifying and categorizing potential future connections should the opportunity arise to make them a reality.
A comparison of regional connectivity between Brookwood and the Backbay neighborhood in Boston reveals a significant difference between the two areas. In Brookwood, major north-south and east-west connections are few and spaced far apart. In the case of Back Bay, the dense street network provides a greater ability to distribute traffic leading to generally less congestion and less cut-through residential neighborhoods.
Comparison at local scale reveals much a much greater amount of access to Commonwealth Ave. within a 5 minute walk of the entire Back Bay. In Brookwood, the walk paths radiating out from Peachtree Road barely penetrate the adjacent neighborhoods.

The rectilinear block pattern in the Back Bay allows pedestrians a variety of routes to reach the same destination—further encouraging this mode of travel. In Brookwood, residents must walk a much greater distance to reach Peachtree due to the lack of such a coherent street grid.

From a vehicular perspective, the availability of alternative routes allows for more uniformly distributed traffic and thus less congestion.

It is clear that Brookwood will never be the Back Bay, but there are lessons to be taken away from this comparison: enhancing connectivity enhances pedestrian activity and can reduce congestion.
The photographic documentation and site survey shows that there are many dead end streets in this area. Though the distance between these spots and Peachtree is small, due to the nature of the street network, a person has far to access the street.
The Walkability analysis for Brookwood revealed that the number of households located within 1/4 and 1/2 mile distances of Peachtree is significantly less than what has been observed in the Back Bay relative to Commonwealth Avenue:

5-minute walk of Peachtree Road: 30 households per intersection
10-minute walk of Peachtree Road: 60 households per intersection
5-minute walk of Commonwealth Avenue: 920 households per intersection

Number of Houses/Intersections: Brookwood

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family</td>
<td>¼ m.</td>
<td>26</td>
<td>30</td>
<td>43</td>
<td>24</td>
<td>43</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>½ m.</td>
<td>10</td>
<td>14</td>
<td>77</td>
<td>8</td>
<td>55</td>
<td>49</td>
<td>124</td>
</tr>
<tr>
<td>Multi-family</td>
<td>¼ m.</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>½ m.</td>
<td>0</td>
<td>11</td>
<td>23</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Accessibility

Brookwood Alliance Plan
PRECEDE NTS

Based on Survey Results, Meeting Discussions and Site Evidence, we have determined that overall Brookwood has poor accessibility. Traffic is not effectively managed by the existing infrastructure and it appears that it will be difficult for the existing infrastructure to accommodate future development.

The quality of the pedestrian environment is low, as examined previously, thus discouraging the viability of walking. Also, few households can reach desirable destinations in a short walk. There is poor overall vehicular connectivity, leading to increased congestion on Peachtree Road and on neighborhood streets. Finally, access to mass transit is poor, providing no viable alternative for commuting.

The challenges facing Brookwood are not unique to Brookwood. Cities across the nation and the globe have been coping effectively with issues of congestion in much higher density settings. They have managed to provide for multiple transportation choices where Brookwood has only promoted one—the car. What can be learned from the strategies employed by other cities?
Brookwood, Atlanta
- City-wide density: 6.3 people/Acre
- Average Block size: 1500' x 2100'

Downtown, Atlanta
- City-wide density: 6.3 people/Acre
- Average Block size: 450' x 550'

Paris, France
- City-wide density: 102.7 people/Acre
- Average Block size: 600' x 400

Midtown, New York
- City-wide density: 119 people/Acre
- Average Block size: 250' x 400'

On the left, a group of precedent studies showing a 5-10 min walk along main streets of each city.

The density of Brookwood neighborhood is much less than downtown Atlanta and the average block size is much larger. As a result, you can travel to many more destinations in downtown than you can in Brookwood.

Same situation can be observed in both Paris and New York, which have similar population densities. The density is much higher in Paris and the block size is much smaller.

We find that those urban neighborhoods that are most successful at accommodating higher density development are those that have smaller block sizes. Both pedestrian and vehicular traffic are much better accommodated.
Mission District, San Francisco

- Population Density: 39.6 people per acre
- General Building Height: 3-4 stories
- Mix of uses: Neighborhood commercial transit and office down Mission Street and Valencia, with residential on either side.
- Employed strategies: Connected grid structure with smaller streets and wider sidewalks, small blocks, easy access to transit.

Back Bay/Beacon Hill, Boston

- Population Density: 35.2 people per acre
- General Building Height: 5 story average with a few buildings around 10 stories
- Mix of uses: Residential with neighborhood retail and some office
- Employed strategies: Low rise but high density, orthogonal, connected grid, walkable streets, and easy access to transit.

Latin Quarter, Paris

- Population Density: 102.7 people per acre
- General Building Height: 6-8 stories
- Mix of uses: Residential and neighborhood retail, and institutional
- Employed strategies: Velib stations, easy access to transit, bus and metro, connected urban form, walkable streets

While delving further into precedent research it was found that a higher degree of connectivity has been provided through the provision of a bountiful hierarchy of streets ranging from local to regional in scale. Another critical key in all of these cases is the provision of mass transit that lies within easy walking distance of where people live. The provision of a high quality pedestrian realm further enforces transit ridership and walking.
These images show how different modes of transport can affect congestion:

Image #1 shows a street that has been congested due to the large number of cars occupying the space on the street.

Image #2 shows the total number of people traveling in these cars.

Image #3 shows the same number of travelers occupying a much smaller area as the result of traveling by public bus.

Image #4 shows again the same number of travelers traveling by bicycle and by walking—leading to a non-congested street.

These examples are extremes, of course, but are meant to illustrate the spatial demands that single-occupancy travel puts on transportation infrastructure. Accommodating a variety of modes or transport is one strategy to managing congestion.
These two maps are prepared based on previous planning proposals and feedback gathered from the community. By gathering all of the suggestions made, we hope to establish a database to manage a list of improvements. When funding becomes available, this resource should prove invaluable.

The Street Improvements map illustrates the new streets and paths proposed in the Connect Atlanta and Beltline Subarea-7 plans. Also included are observations made by the public during the course of this studio.

The Pedestrian Improvements map shows the existing sidewalks in the neighborhood overlaid with new sidewalks proposed by the studio team. Red spots highlight other locations where specific recommendations have been requested by the community for improvements to pedestrian safety.

ACCESSIBILITY GOALS:

- Design Peachtree Street to accommodate transit if desired in the future.
- Create a database to track all proposed improvements to pedestrian and vehicular street infrastructure.
- Explore all possible options for improvements in neighborhood accessibility.
The street and sidewalk improvement databases are listed here. Each item refers to an item called-out on the maps listed on the previous page.

Map Showing the new street proposals by Connect Atlanta plan and Beltline subarea 7

SIDEWALK DATA BASE

<table>
<thead>
<tr>
<th>Sidewalk</th>
<th>Location</th>
<th>Description</th>
<th>Street</th>
<th>Sidewalk</th>
<th>Date</th>
<th>Condition</th>
<th>Purpose</th>
<th>Rating</th>
<th>Project</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>Woodward Way</td>
<td>Install sidewalks along Woodward Way (estimated $344,000/mile)</td>
<td>2,896.97</td>
<td>Atlanta CIP, TAD</td>
<td>City of Atlanta, Beltline</td>
<td>Beltline</td>
<td>P-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-2</td>
<td>Havenridge Dr</td>
<td>Install sidewalks along Havenridge Dr. (estimated $344,000/mile)</td>
<td>2,062.31</td>
<td>Atlanta CIP, TAD</td>
<td>City of Atlanta, Beltline</td>
<td>Beltline</td>
<td>P-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-3</td>
<td>Peachtree Road</td>
<td>Complete streetscape with street trees and pedestrian scale lighting along Peachtree</td>
<td>5,145.79</td>
<td>Atlanta CIP, TAD, City of Atlanta, Beltline</td>
<td>Beltline</td>
<td>P-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-8</td>
<td>Ardmore Road</td>
<td>Install sidewalks along Ardmore Road (estimated $76,000/100 linear feet)</td>
<td>1,745.73</td>
<td>Atlanta CIP, TAD</td>
<td>City of Atlanta, Beltline</td>
<td>Beltline</td>
<td>P-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-1</td>
<td>Redland at Collier</td>
<td>Pedestrian improvement</td>
<td>Meeting 1 Survey</td>
<td>PS-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-2</td>
<td>Collier at Collier</td>
<td>Pedestrian improvement</td>
<td>Meeting 1 Survey</td>
<td>PS-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-3</td>
<td>Collier</td>
<td>Collier at Northside, Tailwall, Tailwood, Ardmore</td>
<td>Meeting 1 Survey</td>
<td>PS-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-4</td>
<td>28TH & Peachtree</td>
<td>Crosswalk without a light across 6 lanes of traffic flanked by visual distractions</td>
<td>Meeting 1 Survey</td>
<td>PS-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-5</td>
<td>Peachtree and Collier</td>
<td>Cut the corner at Peachtree and Collier heading south and add a lane all the way to Northside with Boulevard elements with a pedestrian gap</td>
<td>Meeting 1 Survey</td>
<td>PS-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-6</td>
<td>Collier Road</td>
<td>Pedestrians & Peachtree</td>
<td>Meeting 1 Survey</td>
<td>PS-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-7</td>
<td>Peachtree</td>
<td>Complete Streets</td>
<td>Meeting 1 Survey</td>
<td>PS-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-8</td>
<td>Collier</td>
<td>Complete Streets</td>
<td>Meeting 1 Survey</td>
<td>PS-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-9</td>
<td>Huntington</td>
<td>Exit from Brookwood Hills from Huntington onto Peachtree by Mellow Mushroom. Many cars run the light on Peachtree going</td>
<td>Meeting 1 Survey</td>
<td>PS-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-10</td>
<td>Howell Mill</td>
<td>Howell Mill at Collier</td>
<td>Meeting 1 Survey</td>
<td>PS-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-11</td>
<td>Collier Road</td>
<td>Need officer at intersection from 7-9am, 11-1pm, and 3-5pm</td>
<td>Meeting 1 Survey</td>
<td>PS-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-9</td>
<td>Collier</td>
<td>Need wider sidewalks</td>
<td>Meeting 1 Survey</td>
<td>P-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-10</td>
<td>Northside</td>
<td>Need wider sidewalks</td>
<td>Meeting 1 Survey</td>
<td>P-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-11</td>
<td>Peachtree</td>
<td>Sidewalks would be 10' at a minimum and 15' where adequate right-of-way can be acquired.</td>
<td>Peachtree Corridor Task</td>
<td>P-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side walks -Existing and proposed by Beltline Subarea-7 and local interviews

PROPOSED PROJECTS - STREET CONNECTIONS

<table>
<thead>
<tr>
<th>Bridge</th>
<th>TAD</th>
<th>Public/Private Developers</th>
<th>Beltline Foundation Support</th>
<th>Beltline, TAD City Responsible for Funding</th>
<th>Beltline</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1</td>
<td>2302.26 TAD</td>
<td>Public/Private Developers</td>
<td>Beltline Foundation Support</td>
<td>Beltline, TAD City Responsible for Funding</td>
<td>Beltline</td>
<td>Notes</td>
</tr>
<tr>
<td>PS-2</td>
<td>63.98 TAD</td>
<td>Public/Private Developers</td>
<td>Beltline Foundation Support</td>
<td>Beltline, TAD City Responsible for Funding</td>
<td>Beltline</td>
<td>Notes</td>
</tr>
<tr>
<td>PS-3</td>
<td>1874.56 Beltline/Howell Mill at Collier</td>
<td>Public/Private Developers</td>
<td>Beltline Foundation Support</td>
<td>Beltline, TAD City Responsible for Funding</td>
<td>Beltline</td>
<td>Notes</td>
</tr>
</tbody>
</table>
This final map serves as a collection of all potential connections proposed for the greater Brookwood area. This includes all of the previously proposed street connections from Connect Atlanta Plan, Beltline Sub-Area 7 projects, which are illustrated in dashed blue lines. The dashed green lines show the PATH network trails proposed. The dashed red lines represent potential connections that have been proposed by experts who have worked on previous planning efforts in the area in addition to proposals by the studio team. Each of these dashed red connections is not presupposed to be a street, simply a place where a connection would be beneficial to the health of the network of the entire community. A connection could become a street, or possible a pedestrian pathway. The goal is to simply illuminate the opportunities to establish a connected network to ensure the viability of the neighborhood moving into the future.
In the end, there remains a great deal of work to be done in order to secure the future of Brookwood according to the vision that the community has put forth. The studio team believes that this project has been successful in garnering some general agreement over the basic strategies that should be employed when moving forward in this process. As opposed to the assumption that residential and commercial property owners cannot see eye to eye, we have uncovered a middle ground. By recognizing the realities of what can and cannot be done given the existing physical context and regulatory framework, we can begin to build the framework for the future based on a foundation of reality. Moving forward, the concepts proposed by this studio should be utilized in the formation of an overlay district or a new set of zoning classifications for the neighborhood. Whatever road the community decides to take, we must reiterate once more the central strategies proposed over these many pages:

- Design Peachtree to accommodate the needs of all users today while allowing for incremental enhancement in the future.
- Regulate the form of development in a manner that is straightforward, fair, and responsive to context.
- Consider the needs of future generations while exploring all possible opportunities for increasing accessibility.