OCA contact: Ina R. Lashley 894-4820

Sponsor technical contact
DR YITBAREK MARIAM
(404)681-0251
THE ATLANTA UNIVERSITY
ATLANTA GA 30314-4391

Security class (U,C,S,TS): U
Defense priority rating: N/A
Equipment title vests with: Sponsor
NONE PROPOSED.

ONR resident rep. is ACO (Y/N): Y
N/A supplemental sheet
GIT

Administrative comments -
INITIATION OF A COST-REIMBURSEMENT SUBCONTRACT UNDER A NAVY PRIME SFRC. NO SUBCONTRACTS ARE AUTHORIZED (P.2). GENERAL PROVISIONS OF THE PRIME PREVAIL.
NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 02/21/91

Project No. E-27-636
Project Director POLK M B
Sponsor ATLANTA UNIVERSITY/ATLANTA, GA

Center No. R6616-0A0
School/Lab TEXT ENGR

Contract/Grant No. SUBCONT DTD 880926
Prime Contract No. N00014-88-K-0535
Contract Entity GTRC

Title STUDIES OF LIQUID CRYSTALLINE & PRECERAMIC POLYMERS

Effective Completion Date 890630 (Performance) 890830 (Reports)

Closeout Actions Required: Date Y/N Submitted

Final Invoice or Copy of Final Invoice Y _____
Final Report of Inventions and/or Subcontracts Y _____
Government Property Inventory & Related Certificate Y _____
Classified Material Certificate N _____
Release and Assignment Y _____
Other N _____

Comments

Subproject Under Main Project No. ____________
Continues Project No. _______________

Distribution Required:

Project Director Y
Administrative Network Representative Y
GTRI Accounting/Grants and Contracts Y
Procurement/Supply Services Y
Research Property Management Y
Research Security Services N
Reports Coordinator (OCA) Y
GTRC Y
Project File Y
Other N

NOTE: Final Patent Questionnaire sent to PDPI.
OFFICE OF NAVAL RESEARCH

END-OF-THE-YEAR REPORT

PUBLICATIONS/PATENTS/PRESENTATIONS/HONORS/STUDENTS REPORT

for

Grant or Contract N0001488 K0535

R & T Code 4135023-01

Title of Grant or contract

Studies of Liquid Crystalline and Preceramic Polymers

Name(s) of Principal Investigators

Dr. Yitbarek Mariam
Dr. Malcolm Polk

Name of Organization

Georgia Institute of Technology

Address of Organization

School of Textile Engineering
Atlanta, Georgia 30332

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
Part I

a. Papers Submitted to Refereed Journals

Venkatasubramanian, N., Lavala, D., Balakrishnan, P., Polk, M. B., and Banks, H. D., "Cycloadditions of 1,4-Bis-Trimethylsiloxy-1,3-Cyclohexadiene". Accepted by Synthetic Communications.

b. Papers Published in Refereed Journals

k. Ms. Agnes Thuo of Atlanta University is the only graduate student receiving support on the ONR grant.
Part II

a. Principal Investigator: Malcolm B. Polk

b. ONR Scientific Officer: Harold E. Guard

c. (404) 894-2535 or (404) 894-2490

d. Our objectives were to prepare random and alternating liquid crystal copolyesters which contain the p-phenylenedimethylene spacer. It was thought that the relatively stiff nature of the p-phenylenedimethylene spacer would lead to readily processible fibers with relatively high levels of mechanical properties. Therefore we proposed to produce fibers and/or films of the resulting polymers and determine the mechanical properties (including tensile strength and modulus) and the thermal properties (including DSC and TGA).

Furthermore we proposed to study the effect of the helical nature of cholesteric polymers on the mechanical properties of polymer films by preparing poly[(oxy-2-(2-hydroxyethyl)-1,4-phenyleneoxyterephthaloyl]. We proposed to compression mold films of the polymer and determine the biaxial mechanical properties (including tensile strength and modulus) of the resulting films.

e. We have prepared the following polymers: random poly[(oxy-2-methyl-1,4-phenylene)oxyterephthaloyl-co-oxy(2-methyl-1,4-phenylene)oxy-1,4-phenylenediacetoyl]I; alternating poly[(oxy-2-chloro-1,4-phenylene)oxyterephthaloyl-alt-oxy(2-chloro-1,4-phenylene)oxy-1,4-phenylenediacetoyl]IIA; random poly[(oxy-2-chloro-1,4-phenylene)oxyterephthaloyl-co-oxy(2-chloro-1,4-phenylene)oxy-1,4-phenylene diacetoyl]IIB; random poly [(oxy-2-phenyl-1,4-phenylene)oxyterephthaloyl-co-oxy(2-phenyl-1,4-phenylene)oxy-1,4-phenylenediacetoyl]IIC; and poly[(oxy-2-acetyl-1,4-phenylene)oxyterephthaloyl]IV. The routine characterization of the polymers included infrared spectroscopy, nuclear magnetic resonance spectroscopy, viscometry, differential scanning calorimetry, and polarizing optical microscopy. Polarizing optical microscopy studies showed that polymers I, IIA, IIB and IV formed birefringent fluid states in the melt.

f. Because the microtensile test results were disappointing for polymer IIA fibers, we have chosen to use the acidolysis polymerization technique to prepare high molecular weight random copolymer IIB for microtensile testing. We have prepared and purified the acetylated chlorohydroquinone monomer and completed one synthetic run on the corresponding mixture of terephthalic acid and 1,4-phenylenediacetic acid.

We have prepared poly[(oxy-2-acetyl-1,4-phenylene)oxyterephthaloyl]IV and we are currently developing procedures for converting this starting material to poly[(oxy-2-(2-hydroxyethyl)-1,4-phenyleneoxyterephthaloyl] by asymmetric reduction. After preparing the optically active polyester, we plan
to prepare films by compression molding for biaxial mechanical property tests.

g. Ms. Agnes Thuo
SYNTHESIS AND CHARACTERIZATION

OF LIQUID CRYSTALLINE COPOLYESTERS

CONTAINING THE SEMIRIGID

PHENYLENEDIMETHYLENE SPACER

Sonya Farrow, Shirley Johnson, and Agnes Thuo
Chemistry Department
Clark Atlanta University

Martin Wusik and Malcolm Polk
School of Textile Engineering
Georgia Institute of Technology
STRUCTURES OF THE POLYESTERS SYNTHESIZED
POLARIZING OPTICAL MICROGRAMS OF I ABOVE THE MELTING POINT
As part of our studies of the mechanical and thermal properties of liquid crystal polymers, we have prepared the copolyesters shown in the figure. Copolyester I was particularly interesting because polarized optical micrograms of that polymer above the melting point of 270°C showed clearly the nematic schlieren texture. Copolyester II melted at approximately 250°C into the liquid crystal state and copolyester III melted into the isotropic state.