GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT INITIATION

Date: May 1, 1978

Project Title: Nuclear and X-Ray Spectroscopy with Radioactive Sources

Project No: G-33-632

Project Director: Dr. R.W. Fink

Sponsor: Department of Energy; Oak Ridge Operations; Oak Ridge, Tennessee 37830

Agreement Period: From 2/1/78 Until 1/31/79 (Contract Period)

Type Agreement: Contract No. EY-76-S-05-3346; Modification A014

Amount: $74,100 DOE Funds (G-33-632)
15,120 GIT Contribution (G-33-319)

$89,220 Total

Reports Required: Publication Preprints; Publication Reprints; Annual Progress Reports; Final Report

Sponsor Contact Person(s):

Technical Matters

Mr. Walker Love/Mr. Earl Mason
Research Contracts, Procedures & Reports Branch
Contract Division
U.S. Department of Energy
Oak Ridge Operations
P.O. Box E
Oak Ridge, Tennessee 37830
Phone (615) 483-8611

NOTE: FOLLOW-ON PROJECT TO G-33-622 (MOD. A013)

Defense Priority Rating: None

Assigned to: Chemistry (School/Laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director—EES
Accounting Office
Procurement Office
Security Coordinator (OCA)
Reports Coordinator (OCA)

Library, Technical Reports Section
Office of Computing Services
Director, Physical Plant
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other

CA-3 (3/76)
SPONSORED PROJECT TERMINATION

Date: May 22, 1979

Project Title: Nuclear and X-Ray Spectroscopy with Radioactive Sources

Project No: G-33-632 (continuation of G-33-622)

Project Director: Dr. R. W. Fink

Sponsor: U. S. Department of Energy; Oak Ridge Operations; Oak Ridge, TN 37830

Effective Termination Date: 1/31/79 (Mod. A014 Period)

Clearance of Accounting Charges: 1/31/79

Grant/Contract Closeout Actions Remaining:

- [] Final Invoice
- [X] Final Fiscal Report (Annual Statement of Costs)
- [] Final Report of Inventions
- [] Govt. Property Inventory & Related Certificate
- [] Classified Material Certificate
- [] Other

NOTE: FOLLOW-ON PROJECT WILL BE G-33-645.

Assigned to: Chemistry (School/Laboratory)

COPIES TO:

- Project Director
- Division Chief (EES)
- School/Laboratory Director
- Dean/Director - EES
- Accounting Office
- Procurement Office
- Security Coordinator (OCA)
- Library, Technical Reports Section
- Office of Computing Services
- Director, Physical Plant
- EES Information Office
- Project File (OCA)
- Project Code (GTRI)
- Other

CA-4 (3/76)
NUCLEAR AND X-RAY SPECTROSCOPY WITH RADIOACTIVE SOURCES

Fourteenth Annual Progress Report
U. S. Department of Energy
Contract EY–76–S–05–3346

R. W. Fink
Professor of Chemistry & Principal Investigator
and
John L. Wood
Research Scientist & Co-principal Investigator

October 31, 1978

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMISTRY
ATLANTA, GEORGIA 30332

Tel. (404) 894–4030
TITLE OF PROJECT:

NUCLEAR AND X-RAY SPECTROSCOPY WITH RADIOACTIVE SOURCES (1979/80)

NAMES, DEPARTMENT, AND OFFICIAL TITLES OF PRINCIPAL INVESTIGATORS AND OTHER PROFESSIONAL SCIENTIFIC PERSONNEL: (not including graduate students) engaged on the project, and fraction of man-year devoted to the project by each person.

Dr. R. W. Fink, Professor and Principal Investigator
Dr. John L. Wood, Research Scientist and co-principal investigator
Dr. Robert A. Braga, Postdoctoral Associate
Dr. Warren R. Western, Postdoctoral Research Associate

NO. OF GRADUATE STUDENTS ON PROJECT: 4 NO. OF GRADUATE STUDENT MAN-YEARS: 2

SUMMARY OF PROPOSED WORK: (200-300 words, omit Confidential Data). Summaries are exchanged with government and private agencies supporting research, are supplied to investigators upon request, and may be published in documents. Make summaries substantive, giving initially and for each annual revision the following: OBJECTIVE; SCIENTIFIC BACKGROUND FOR STUDY; PROPOSED PROCEDURE; TEST OBJECTS AND AGENTS.

This program is a systematic study of nuclei far from stability with radioactive sources produced with heavy ions from the Oak Ridge Isochronous Cyclotron and mass-separated on-line by the UNISOR facility. Such experiments complement in-beam reaction spectroscopy (which is confined to high-spin states) and are the only means of exploring the low-spin structure of nuclei far from stability. This research investigates: (1) core-particle coupling models and the role of the Fermi energy; (2) shapes of transitional nuclei; (3) pairing correlations in transitional nuclei; (4) shape and pairing isomerism; (5) shell model intruder states; and (6) proton-neutron correlations; as well as a search for new radioactive nuclides. Currently the emphasis is on transitional regions bordering Z = 82 (isotopes of Pt, Au, Hg, Tl, Bi, and Po).

These studies are complemented on-campus by related work on x rays from radioactive sources (fluorescence and Coster-Kronig yields for Z = 64-83), lifetimes of certain nuclear excited states, computer codes for data analysis, and radioactive nuclides produced in the 5 MW Georgia Tech Research Reactor.

For 1977/78, there were 18 publications appearing in the literature or in press, and one Ph.D. thesis will be completed December, 1978 (M. A. Grimm), based on UNISOR work under an ORAU fellowship.
NUCLEAR AND X-RAY SPECTROSCOPY WITH RADIOACTIVE SOURCES

Fourteenth Annual Progress Report
U. S. Department of Energy
Contract EY-76-S-05-3346

R. W. Fink
Professor of Chemistry and Principal Investigator
and
John L. Wood
Research Scientist and Co-principal Investigator

October 31, 1978

School of Chemistry
Georgia Institute of Technology
Atlanta, Georgia 30332

Telephone: (404) 894-4030
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 NUCLEAR SPECTROSCOPY</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Nuclear Systematics and Models</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Completed Experimental Studies</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Odd-Mass Hg Decays</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2 Odd-Mass Tl Decays</td>
<td>5</td>
</tr>
<tr>
<td>2.2.3 Odd-Mass Pb Decays</td>
<td>6</td>
</tr>
<tr>
<td>2.2.4 The Decay of 43 sec 183mPt</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Current Experimental Studies</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Decay of 185,187Hg Isotopes</td>
<td>7</td>
</tr>
<tr>
<td>2.3.2 Decay of 201mPo and 201mBi Isobars</td>
<td>9</td>
</tr>
<tr>
<td>2.3.3 Decay of Odd-Mass $^{185-189}$Au Isotopes</td>
<td>10</td>
</tr>
<tr>
<td>2.3.4 Decay of 201,203At Isotopes</td>
<td>10</td>
</tr>
<tr>
<td>2.3.5 Nuclear Lifetime Measurements</td>
<td>11</td>
</tr>
<tr>
<td>2.4 International Comparison of γ-ray Intensity Standards</td>
<td>12</td>
</tr>
<tr>
<td>3.0 FAST NEUTRON RESEARCH</td>
<td>12</td>
</tr>
<tr>
<td>4.0 X-RAYS FROM RADIOACTIVE SOURCES</td>
<td>13</td>
</tr>
<tr>
<td>4.1 Tables for Handbook of Spectroscopy</td>
<td>13</td>
</tr>
<tr>
<td>4.2 L-Subshell-ray Fluorescence and Coster-Kronig Yields at $Z = 64$ and 67</td>
<td>13</td>
</tr>
<tr>
<td>5.0 MISCELLANEOUS TOPICS</td>
<td>15</td>
</tr>
<tr>
<td>5.1 Computer Software Improvements</td>
<td>15</td>
</tr>
<tr>
<td>5.1.1 Nuclear Data ND-4420 Codes</td>
<td>15</td>
</tr>
<tr>
<td>5.1.2 CDC-Cyber 70, Model 74 Codes</td>
<td>15</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.0 EQUIPMENT ADDED DURING 1978</td>
<td>17</td>
</tr>
<tr>
<td>7.0 PERSONNEL</td>
<td>18</td>
</tr>
<tr>
<td>8.0 LIST OF PUBLICATIONS, PRESENTATIONS AT MEETINGS, AND</td>
<td></td>
</tr>
<tr>
<td>OUTSIDE SEMINARS 1978</td>
<td>19</td>
</tr>
</tbody>
</table>
NUCLEAR AND X-RAY SPECTROSCOPY WITH RADIOACTIVE SOURCES
14th Annual Progress Report

R. W. Fink Professor and Principal Investigator

and

John L. Wood, Research Scientist and Co-principal Investigator

October 31, 1978

1.0 INTRODUCTION

One of the major areas of our research program for this year has been the experimental confirmation (utilizing the UNISOR facility at Oak Ridge) and extension of the nuclear systematics and models that we have been investigating for the last several years in the regions adjacent to the $Z = 82$ closed shell.

The systematic features of the odd-mass Hg isotopes have been elucidated, based upon the Ph.D. thesis of G. M. Gowdy. The coupling of the $i_{13/2}$ quasiparticle to the (triaxial) core shows a simple dependence on the Fermi energy, in agreement with the predictions of the Meyer ter Vehn model. Some simple rules have been developed for the use of nuclear systematics, and their use suggests a number of low-lying states in ^{187}Hg, ^{187}Au, and ^{185}Au are strongly-deformed prolate (Nilsson) ones, coexisting with the many weakly-deformed oblate triaxial (shell-model) states, characteristic of this transitional region. Also, in the case of ^{187}Au, we have evidence for different types of oblate triaxial states, resulting from the coupling of the $h_{9/2}$ proton particle to the $^{186}\text{Pt} \ 0_{1}^{+}$ (ground state) and 0_{2}^{+} (475 keV) configurations. Our results suggest that the two types of structure differ significantly in their pairing structure or in their inertial mass structure. The study of the $A = 187$ isobaric chain constitutes the Ph.D. thesis research of one of our graduate students, Mr. Marvin Grimm, who is in residence at Oak Ridge as an ORAU fellow.
We have pursued the properties of intruder states above the Z = 82 shell closure, and we find the $s_{1/2}$ hole states in 199,201Bi as isomers. In 201Bi we observe decay to the $h_{9/2}$ particle ground state by an M4 isomeric transition, with B(M4) retarded by a factor of about 4500 relative to the Weisskopf estimate. A compilation of B(M4) values has been made for all known cases in odd-A nuclei (75 cases), and only 199,201Bi are retarded. Possible explanations of this highly unusual phenomenon, involving hole → particle and/or possible λ-forbiddenness, are discussed below. In the region beyond Z = 82 we have also started to study the structure of the Po isotopes populated by decay from $^{201-205}$At parents. This constitutes part of the Ph.D. thesis research of Mr. Chris Papanicolopulos. In connection with studies of intruder states, the fast coincidence timing equipment at Georgia Tech has been used in lifetime measurements of members of the $g_{7/2}$ intruder band in 109Ag populated by decay of 109Pd sources prepared in the Georgia Tech Reactor.

Our investigation of quadrupole pairing and the possibility of proton pair-neutron pair interactions continues. The microscopic picture emerging for an interacting boson approximation (IBA) for collective motion in nuclei (Iachello, Arima, Talmi, and Otsuka) strongly suggests that this correlation of neutron and proton pairs is directly related to the interaction of proton and neutron bosons in the IBA. Our understanding of the IBA has benefitted from the attendance by J. L. Wood at the "Workshop on the Interacting Boson Approximation" held in Erice, Sicily, June 6-9, 1978.

During the year J. L. Wood spent 2 1/2 months with the Isotope Separator group at GSI-Darmstadt, West Germany, working on γ-ray spectroscopy of decays of light iodine and lead isotopes, in a collaboration with E. Roeckl and our former graduate student, G. M. Gowdy.
This year considerable progress has been made in software development for both our Nuclear Data ND-4420 system and the CDC-Cyber 70 central computer at Georgia Tech, in order to enable UNISOR data to be evaluated in our laboratory using the ND-4420 system.

Our long-standing investigation of $L_2^*-L_3^*$ Coster-Kronig transition probabilities and subshell x-ray fluorescence yields has been revived in a study at $Z = 64$ and 67, due to significant improvements in both the experimental technique and experimental determination of tailing corrections. This work constitutes part of the thesis research of Mr. Bruce Gnade.

Following below are further details and references to work highlighted above and to additional work.

2.0 NUCLEAR SPECTROSCOPY

2.1 Nuclear Systematics and Models

Our use of nuclear systematics and simple models has matured considerably in the past year. We have been developing nuclear systematics as a tool for a number of years and have now arrived at a set of simple rules (ref. 15) which permits detailed nuclear structures (single-particle states, collective states) to be followed from the region of stability, where a rich variety of spectroscopic information is available (e.g., one- and two-nucleon transfer reactions, Coulomb excitation), to the far beta-unstable regions. The set of rules currently in use is:

(i) If $E(4_1+)/E(2_1^+)>3.1$, the Nilsson model and the rigid rotator can be used;

(ii) For odd-proton (-neutron) nuclei: Use of isotope (isotone) systematics must be made. A changing Fermi energy is very difficult to systematize unless the Nilsson model is applicable to the region;
(iii) If \(\Delta \epsilon(2_1^+)/E(2_1^+) > 10\% \) for a change of two mass units, great caution is needed when following systematic trends (however, few nuclei away from closed shells exhibit this);

(iv) Odd-proton nuclei near closed shells possess shell model intruder states with well-defined band structures, which appear below 1 MeV;

(v) For transitional nuclei the rigid triaxial rotor model of Meyer ter Vehn is an excellent basis for systematization in that it predicts the correct number of states, adequately describes trends in changing shapes, and is simple to use;

(vi) Above the pairing gap, only yrast states and intruder states can be systematized.

In practice, what these rules dictate is that a particular excitation in a given nucleus will appear in a neighboring nucleus (differing by two protons or two neutrons) with only minor changes in its properties, particularly its energy. By minor is meant, for example, the energy of the state relative to the ground state is the same in the two nuclei within about 50 keV. The power of this set of rules is that new degrees of freedom entering a particular nuclear region are readily identifiable. We discuss the application of these rules (and exceptions to them) in the region \(183 \leq A \leq 203 \) for special cases below.

In last year's annual report (ORO-3346-214), we described in some detail the behavior of the \(h_9/2 \) intruder state in the odd-mass Tl, Au, and Ir nuclides. The conclusion was that, due to quadrupole pairing, excitation of the odd proton into the \(h_9/2 \) intruder orbital removes the blocking effect for proton pairing correlations and permits proton pair — neutron pair correlations to occur. In the past year we have been trying to understand the nature of this completely
new type of correlation. A clue is now available from the microscopic model of the interacting boson approximation (IBA). In this model, the bosons are described by nucleon pairs and are of two types, proton bosons and neutron bosons. The central feature of the model is the importance of the interaction between these two kinds of bosons. We are now exploring the possibility that what we observe in the $h_{9/2}$ intruder state behavior in the Tl, Au, Ir region is a manifestation of this proton-neutron (pair or boson) interaction.

(J. L. Wood)

2.2 Completed Experimental Studies

2.2.1 Odd-Mass Hg Decays

The preparation for publication of our results from the decay scheme studies of 189,191,193Hg continues. Owing to our plans to study further the excited states of the nucleus 189Au (see the accompanying renewal proposal), we will publish our results to date in two papers: one on the decay scheme of 193Hg and one on the systematic features and theoretical interpretation of the odd-mass Au nuclei (which will include our 189,191Au results).

2.2.2 Odd-Mass Tl Decays

In the past year we have successfully elucidated the systematic features of the excited states of the odd-mass Hg isotopes populated in the decays of $^{187-197}$Tl. The key to this was the identification of the positive parity states, which constitute triaxial bands built on the $i_{13/2}$ neutron quasiparticle. Although the Fermi energy is changing through these isotopes, it is the occupancy of the $i_{13/2}$ subshell alone that is changing. Further, the core shapes (represented by the neighboring doubly-even Hg isotopes) are...
essentially constant, and thus the systematic trends are described by the Meyer ter Vehn triaxial rotor model with a single variable - the changing Fermi energy. This is a rare exception to systematics rule ii above and is the first time that the dependence of the Meyer ter Vehn model on the Fermi energy has been explored over a broad sequence of nuclei. A letter on the $^{13/2}_1$ band systematics in the odd-mass Hg isotopes is in preparationb).

b "The Positive Parity States in $^{187-199}$Hg Isotopes," J. L. Wood, G. M. Gowdy, and R. W. Fink, Phys. Rev. Lett. (to be submitted)

Our study of the decay scheme of 195Tl is in press (ref. 1), and of 197Tl is about to be submittedc). The decay schemes of 193Tl and 191Tl are being finalized. We plan to conduct further measurements on the decays of 189,187,185Tl (see the accompanying renewal proposal).

c "Decay of 197Tl(2.83 h) to 197Hg," R. A. Braga, J. L. Wood, G. M. Gowdy and R. W. Fink, Nuclear Phys. A (to be submitted)

2.2.3 Odd-Mass Pb Decays

The studies of the decay schemes of 193,195,197Pb have been completed and submitted for publication (refs. 8, 13, 14).

2.2.4 The Decay of 43 sec 183mPt

In the past year we have begun studies in the $A = 183$ mass chain. We find a very simple fast beta-decay mode involving the Nilsson states $v_7/2-[514]$ and $v_9/2-[514]$ for an isomer in 183Pt. Details of this work are in press (ref. 12). We note that the observation of the Nilsson state $v_7/2-[514]$ in 183Pt is an exception to our systematics rule i. There is clear
evidence that the odd-mass Pt isotopesd) with $A \leq 185$ behave like the odd-mass Hg isotopese) with $A \leq 185$, in that they are strongly prolate-deformed, whereas the even-mass Pt and Hg neighbors are weakly oblate-deformed, indicating shape isomers nearly degenerate in energy (see Sect. 2.3.1 below)

d E. Hagberg, et al., to be published in Phys. Lett.

e J. Bonn, et al., Z. Physik A276, 203 (1976)

2.3 Current Experimental Studies

2.3.1 Decay of 185,187Hg Isotopes

Our detailed experimental work on the extraordinarily complex decay scheme of the 187m,2Hg isomers to excited states of 187Au are nearing completion. This constitutes the major part of the Ph.D. thesis of Mr. Marvin Grimm, who is at UNISOR as an ORAU fellow. The structure of 187Au has been a leading example of the use of the systematics rules given above. Using systematics to identify the high-spin and the low-spin states in 187Au, it has been possible to deduce that both the high-spin ($J^\pi = 13/2^+$) and the low-spin ($J^\pi = 3/2^-$) 187Hg isomers are produced in the heavy ion reactions used (the low-spin isomer presumably is populated following the decay of 187Tl). We obtain half-lives for these 187Hg states of 2.4 min ($13/2^+$) and 2.2 min ($3/2^-$) by following the decay of specific γ-ray lines.

We have evidence for strongly-deformed prolate (Nilsson) states within 600 keV of the weakly-deformed oblate ground state, indicating prolate and oblate shape isomerism that is almost degenerate in energy. We also see the particle-core couplings $\pi h_{9/2} \otimes ^{186}$Pt($0^+,g.s.$) and $\pi h_{9/2} \otimes ^{186}$Pt($0^+,475$ keV) as triaxial bands with connecting transitions that have $E0$ components. What is still puzzling is that in a picture of triaxially-deformed shapes, the
two bands have almost the same shape. We are considering the possibility that these two bands have very different pairing structure or maybe even very different inertial mass structure; i.e., this may be an example of pairing isomerism or inertial mass isomerism. These two bands will be the subject of a forthcoming letterf.

f M. A. Grimm, J. L. Wood, and R. W. Fink, Phys. Rev. Lett. (to be submitted)

We have made considerable progress on the decay scheme of 185Hg to excited states of 185Au. The high-spin states populated in 185Au fit the systematic trend observed in the heavier odd-mass Au isotopes, and it is evident that this population comes from the beta decay of an $i_{13/2}$ state in 185Hg to which we assign a half-life of 26 sec and which has been identified as a spherical state by laser spectroscopyg) at ISOLDE. The low-spin states that we observe in 185Au are, for the most part, still not understood. They are unquestionably due to the beta decay of the well-knownh) strongly-deformed 185Hg ground state $1/2^-[521]$ ($T_{1/2} = 51$ sec). We also have evidence for a third beta-decaying state ($T_{1/2} = 17$ sec) which we interpret as the strongly-deformed configuration $7/2^+[633]$, for which there is some evidence from laser spectroscopyg',i) and systematics (ref. 12). There is much work still to be done on this decay scheme, and it is clear that to understand fully the decay, data of higher statistical quality will be needed (see the accompanying renewal proposal). The study of the 185Hg decay scheme is being conducted in collaboration with Dr. E. F. Zganjar of LSU (Physics).

g P. Dabkiewicz, et al., J. Phys. Soc (Japan) 44 (1978) Suppl. p. 503
h J. Bonn, et al., Z. Physik A276, 203 (1976)
i H. J. Kluge, private communication (1978); C. Ekström, private communication (1978)
The structural features of excited states in 185,187Au that are well understood will appear in a paper on the systematic features and theoretical interpretation of the odd-mass Au isotopes.

2.3.2 Decay of 201mPo and 201mBi Isobars

An analysis of the decay of 201mPo (9 min, 14 min) and 201mBi (59 min, 1.8 h) isobars is in progress under the direction of Dr. W. R. Western. The primary area of research this year has been the analysis of the band built upon the $1/2^+$ shell model intruder state in Bi, and of the 846 keV isomeric transition depopulating this state. This isomeric transition in 201mBi decay (59 min) is the only known "ι-forbidden" M4 transition in odd-A nuclei and is further expected to be hindered because it is a hole \rightarrow particle transition. Alpsten and Astner\(^1\) reported this transition as

\[\text{probably } M4 + (54 \pm 20)\% \text{ E5 with an M4 retardation of more than 1500 compared to the Weisskopf-Moszkowski single-particle estimate.} \]

The analysis of this transition is complicated by the existence of a 201Pb γ-ray 1.2 keV higher in energy and populated by the beta decay of both 201mBi and 201gBi (this was unknown to Alpsten and Astner). The amount of contamination from the 201Pb γ-ray was obtained from a comparison of relative intensities in a projected $\gamma\gamma$ coincidence vs. a γ-singles spectrum, the 846 keV isomeric transition being absent in the coincidence spectrum. With this correction, our experimental value of the K-shell internal conversion coefficient is $\alpha_K = 0.225 \pm 0.075$, and this may be compared with theoretical value of $\alpha_K(M4) = 0.216$ and $\alpha_K(E5) = 6.96 \times 10^{-2}$. This is consistent with the expectation that the 846 keV isomeric transition in 201Bi is pure M4, although the possibility of as much as 50% E5 admixture cannot be ruled out within the limits

of uncertainty in the experimental value. If a pure M4 assignment is accepted, this results in a hindrance factor of 4.5×10^3, which is typical of particle-hole transitions of lower multipolarity, but which has not been observed for M4 transitions in odd-A nuclei previously. We are currently looking at additional data that were taken during these experiments to ascertain if we can reduce the uncertainty in the value of $\alpha_K(847$ keV), and thus the possibility of E5 admixture in this transition.

2.3.3 Decay of Odd-Mass $^{185-189}$Au Isotopes

During the past year we have obtained conversion electron data on the decay of 8.4 min 187Au. The level schemes of 185,187,189Pt isotopes are still far from being fully worked out. The structure of the nucleus 187Pt is expected to be extremely complicated due to the possibilityk of both weakly-oblate and strongly-prolate deformed shapes at low energies. We observe a number of transitions with E0 components below 500 keV, suggesting low-energy structures that have very different mean-square radii. The study of levels in 187Pt is part of the thesis research of Mr. M. A. Grimm.

2.3.4 Decay of 201,203At Isotopes

This year we have begun a study of neutron-deficient At isotopes to obtain information on excited states of Po isotopes. The extraction of At activities from the UNISOR integrated target/ion source proved straight-forward. Detailed γ-ray singles and $\gamma\gamma$-coincidence spectroscopy is being completed on 203At decay. These data are under analysis, and the decays of 201,205At are now under study. The systematics of the excited states in the odd-mass Po isotopes are expected to show similarities to the odd-mass Hg isotopes. A

comparison will provide a general test of the models that we have used for a
description of the odd-mass Hg isotopes; and, it will show the difference
between the coupling of the two-proton holes (Hg) and two-proton particles
(Po) to the various neutron configurations, thus providing a basis for
microscopic models. This work constitutes part of the Ph.D. thesis of
Mr. Chris Papanicoloopulos.

2.3.5 Nuclear Lifetime Measurements

Our on-going program of nuclear lifetime measurements, led by
Dr. R. A. Braga, involves the application of the computer-based multiple time
analysis technique (MTA) at UNISOR and a study of $g_{7/2}$ intruder bands in
odd-mass Ag isotopes at Georgia Tech. During the past year, the program has
progressed from development to application.

The MTA technique for lifetimes in the millisec to microsec region has
been used at UNISOR to obtain data following the decay of 187Hg isomers.
However, since by the nature of the method [see the detailed description in
our Twelfth Annual Report, ORO-3346-196 (1976)], a complete knowledge of the
decay scheme is required, our analysis of the MTA data has been deferred
until the decay scheme study is completed. This study, which is part of the
Ph.D. thesis of Mr. Marvin Grimm, is expected to be completed in 1978, and
the lifetime analysis will then follow immediately.

Measurements of lifetimes of states in 109Ag believed to be members of the
$g_{7/2}$ intruder band have been performed with delayed coincidence techniques at
Georgia Tech. A system, consisting of a plastic scintillator and a Ge(Li)
detector, was used to study lifetimes of levels populated in the decay of
$13.43 \text{ h } ^{109}\text{Pd}$, sources of which were prepared by the enriched $^{108}\text{Pd}(n,\gamma)$
reaction in the Georgia Tech Reactor. The evaluation of several runs to date
resulted in a value for the lifetime of the $3/2^+$, 724.4 keV level, believed
to be the second member of the intruder band, in the range of $0.3 < \tau < 1.0$ nanosec. However, no lifetime for the $1/2^+$ band head member at 707.0 keV was obtained. This may be either the result of the lack of statistics, since only 0.0018% of all decays populate this level, or the possibility that a doublet existsm near 707 keV and that the member populated in the decay of ^{109}Pd is not the band head. Additional measurements are in progress.

2.4 **International Comparison of γ-ray Intensity Standards**

The participation of our group in the international comparison of γ-ray emission-rate measurements on ^{152}Eu sources, organized by the Working Group on Alpha-, Beta-, Gamma-ray Spectroscopy of the International Committee for Radionuclide Metrology (ICRM) under the chairmanship of Dr. K. Debertin (Physikalisch-Technische Bundesanstalt, Braunschweig, West Germany), and administered in this country through the National Bureau of Standards, has been completed and submitted for publicationn). In addition, our group has agreed to participate in the international comparison of γ-ray emission-rate measurements on ^{133}Ba sources organized by the ICRM and furnished by PTB, Braunschweig, West Germany.

3.0 **FAST NEUTRON RESEARCH**

The work on an enriched ^6LiD capsule for production of 14 ± 2 MeV neutrons in the Georgia Tech Reactor has been published this year (ref. 2). From correspondence received following publication, there is interest in the use of this method for the preparation of such short-lived $(n,2n)$ products as

m F. E. Bertrand, Nuclear Data Sheets 23, 229 (1978)

10 min ^{13}N, 110 min ^{18}F, etc. for nuclear medicine, for fast neutron activation analysis, and for preparation of long-lived (n,2n) products for basic studies. In addition, energy profile of the neutron flux in the H4 position of the reactor has attracted considerable attention. However, the proposed decay scheme study of 8 hour ^{173}Tm, prepared by the enriched $^{173}\text{Yb}(n,p)$ reaction in the capsule, has been abandoned, since we learned that this decay is being extensively studied elsewhere. The work on the enriched ^{6}LiD capsule constitutes part of the Ph.D. thesis of Mr. Chris Pananicolopulos.

4.0 X-RAYS FROM RADIOACTIVE SOURCES

4.1 Tables for Handbook of Spectroscopy

We have continued to update our tables of x-ray and Coster-Kronig yields for our chapter in the forthcoming new edition of Handbook of Spectroscopy. R. W. Fink serves on the Advisory Board of this Handbook and

has arranged for additional chapters on thermal neutron cross sections (ref. 5) and 14 MeV neutron cross sections by S. M. Qaïm of Jülich, West Germany, and γ-rays arranged by energy and half-life by G. Erdtmann, also of Jülich. These chapters are useful for neutron activation analysis.

4.2 L-Subshell X-ray Fluorescence and Coster-Kronig Yields at $Z = 64$ and 67

Our investigation of L_2-L_3 Coster-Kronig transition probabilities and L-subshell x-ray fluorescence yields at $Z = 64$ and 67, initiated last year, is
nearing completion. Owing to significant improvements both in experimental
technique and the experimental determination of pulse shape corrections, values
of \(f_{23} \) can be reported to an accuracy not previously attained. The investigation
consists of three-parameter coincidence measurements performed with high resolution
Si(Li) and intrinsic Ge planar x-ray detectors and sources of 4.7 y \(^{155}\)Eu and 10.4 h
\(^{165}\)Er and irradiated in the Georgia Tech Reactor.

Previously, corrections in the x-ray gated intensities were made only for
contributions from beta-feeding and \(\gamma \)-ray cascades, and subtracting the contribution
due to the tail of the unresolved \(K_{\alpha 1} \) x-ray line appearing in the \(K_{\alpha 2} \) gate. The present
work indicates the necessary of making such tailing corrections using the true
coincidence peak shape rather than the singles shape. To examine this, we applied a
self-gated technique (ref.18) utilizing a RaDEF (22 y \(^{210}\)Po) source of 46.5 keV \(\gamma \)-rays.

A preliminary analysis of the data, taken as of September, 1978, yields values
of \(f_{23} = 0.150 \pm 0.035 \) for \(Z = 64 \) and \(0.155 \pm 0.025 \) for \(Z = 67 \). The uncertainties
quoted here are the variance of the extremes and are not representative of the
precision of the measurements. However, The evaluation of the contribution to the
L x-ray peaks resulting from the \(K_{\alpha 1} \) tail in the \(K_{\alpha 2} \) gate must take into account
the difference between the intensity of L x-ray peaks in coincidence with the \(K_{\alpha 1} \)
line and the intensity in coincidence with the \(K_{\alpha 1} \) tail. Therefore, it is necessary
in the determination of \(f_{23} \) to evaluate the effect on the L x-ray coincidence
spectrum of differing risetimes in the \(K_{\alpha} \) tails. In all reported previous work,
the effect on \(f_{23} \) of the coincidence shape of the \(K_{\alpha 1} \) tail, and of risetime
differences between the full-energy peak and the tail, which affect the L x-ray
coincidence intensities have not been taken into account. This investigation, which
is part of the Ph.D. thesis research of Mr. Bruce Gnade, is being completed (ref.11)
this year, along with a re-evaluation of previous data, in view of our improvements
in tailing and pulse shape corrections (see the accompanying Renewal Proposal).
5.0 MISCELLANEOUS TOPICS

5.1 Computer Software Improvements

5.1.1 Nuclear Data ND-4420 Codes

With the development of codes (see below) to permit the reading of UNISOR data tapes into the Nuclear Data ND-4420 system in our laboratory, a higher level computing language was needed to facilitate data analysis. For this purpose the conversational, interpretive calculating language ORCAL ("Oak Ridge Calculating Language") has been implemented. This language, combining the floating-point arithmetic package supplied by the Nuclear Data Corporation, with an implementation of FOCAL handler routines into the command set of the ND-812 computer, permits programs written in FOCAL to be run on the ND-4420 system. The ORCAL program has functions for calculating the sine, cosine, log and exponential, and has X-Y plotter and oscilloscope display functions. A routine is also incorporated for reading in data tapes via the Teletype tape reader. (R. A. Braga and W. R. Western)

5.1.2 CDC-Cyber 70, Model 74 Codes

The major goal of software development in our group this year has been the capability of transferring data from the CDC-Cyber 70 system to the Nuclear Data ND-4420 system in our laboratory. The reasons for doing this include the interactive graphics capabilities of the ND-4420 system, which are not yet available with the CDC-Cyber 70, the convenience of the ND-4420 system, and the potential for interactive data analysis which requires a graphics capability and prompt response from the system.

The most important development this year then is the development of a CDC-Cyber 70 code LISTND which records spectra on magnetic tape using the magnetic tape format of the ND-4420 software. These spectra then can be
examined or analyzed using the ND-4420 system. This code has been particularly useful for storing the hundreds of coincidence spectra generated by the code GATESCN on magnetic tape instead of on a large volume of plots and/or listings. The magnetic tape then can be easily examined for coincidences using the ND-4420 system. Other features include the ability to add spectra with gainshift corrections, to compress spectra, and to split the spectrum into shorter spectra that will fit into the ND-4420. The latter feature is necessary for uncompressed 8K spectra and to use the NUTRAN overlay software of the ND-4420. (NUTRAN is an interpretive type of code which uses FORTRAN type instructions.)

A code, LVLSCN, for producing drawings of nuclear level schemes using a Calcomp plotter has been implemented on the CDC-Cyber 70. The drawings include spins, parities, and energies of the levels, the energy and intensity of the γ-ray transitions, and the coincidence information.

A linear regression CDC-Cyber 70 code for polynomials, FITR, was developed for fitting efficiency curves and determining energy calibrations. It performs weighted or unweighted fits and an optional log-log transformation before fitting.

In addition to the implementation of these codes, a simpler, smaller input code was developed and included in the SKEWGAUS code. The resulting version of SKEWGAUS can accept only Nuclear Data format magnetic tapes or character input and does not include the ability to add spectra together, but it requires less than half the amount of memory of the original version. With the LISTND code, any currently accepted spectral format can be transferred into the Nuclear Data format and the spectra can be added together. (W. R. Western)
6.0 **EQUIPMENT ADDED DURING 1978**

During the past year, equipment purchases have been in the area of support electronics. As a result of experience with the importance of deadtime and pileup corrections involved in our participation in the international intercomparison (PTB, Braunschweig, West Germany and National Bureau of Standards), on gamma-ray intensities in 152Eu decay, a Berkeley Nucleonics model DB-2 random pulse generator was purchased. This pulser, by simulating counting conditions, permits determination of system deadtime and pileup losses, and its use also excludes the necessity of a radioactive source in the initial setup and checkout of system electronics. In addition, a Canberra model 3002 high voltage power supply was purchased for use with our plastic scintillation detector.

For use in a second Tennecomp system at UNISOR to provide the configurational capability of handling three-parameter experiments, we purchased a Nuclear Data model ND-570 8192-channel, 80 MHz ADC unit. We also provided to UNISOR a Nuclear Data NIM bin providing 6 volts (5 amps) to accommodate three such ADC units in the Tennecomp system.

Our Chemistry Electronics Shop has constructed an electronic controller for a new UNISOR tape transport system for radioactive source collection, and, in addition, the Chemistry Machine Shop fabricated several ion source and miscellaneous items for UNISOR.

(R. A. Braga)
7.0 PERSONNEL

Senior Staff:

Dr. R. W. Fink Professor and Principal Investigator
(1/4 time, 12 months)

Dr. J. L. Wood, Research Scientist and Co-principal Investigator
(October 1, 1972-present; full-time DOE, 12 months, except
May 10-July 31, 1978 on leave-of-absence while at GSI Darmstadt,
West Germany)

Dr. R. A. Braga, Research Associate
(October 1, 1974-present; 63% DOE research, 37% teaching for the
School of Chemistry, 12 months)

Dr. W. R. Western, Research Associate
(November 1, 1976-present; full-time DOE research)

Graduate Students:

(1/2 time DOE since June 1, 1975)

(on ORAU fellowship and full-time in residence at UNISOR,
Oak Ridge National Laboratory)

Mr. Bruce Gnade (Chemistry). Continuing Ph.D. thesis research.
(1/2 time DOE September 1, 1977-December 31, 1977; then 1/2 time
teaching assistantship due to insufficient funding from DOE)

Mr. Guy J. Tonti, Jr. (Chemistry). New graduate student.
(1/2 time teaching assistant from September 1, 1978)
(B.S. Chem. 1978 from Arizona State Univ., Tempe, Arizona,
with experience in nuclear chemistry)
8.0 LIST OF PUBLICATIONS, PRESENTATIONS AT MEETINGS, & OUTSIDE SEMINARS 1978

2) "Production of 14 ± 2 MeV Neutrons in a Reactor with an Enriched 6LiD Irradiation Capsule," C. Papanicolopulos and R. W. Fink, Nuclear Instr. & Meth. 151, 53-60 (1978) [ORO-3346-211]

5) BOOK CHAPTER:

6) BOOK CHAPTER:

7) BOOK CHAPTER:

