GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT INITIATION

Project Title: Non-Heme Iron Oxygenase Catalysis

Project No: G-33-H04

Project Director: Dr. Sheldon W. May

Sponsor: DHEW/PHS/NIH - National Institute of General Medical Sciences

Agreement Period: From 9/1/80 Until 8/31/81 (04 year)

Type Agreement: Grant No. 2 R01 GM23474-04

Amount: $98,568 New PHS Funds (G-33-H04)
5,523 GIT Contribution (G-33-327)
$104,091 Total

Reports Required: Annual Progress Reports with Continuation Applications
Terminal Progress Report upon Grant Expiration

Sponsor Contact Person (s):

Technical Matters
Program Administrator: Dr. Marvin Cassman
301/496-7463
Program Official: Arthur E. Heming, PhD.
Associate Director for Program Activities
National Institute of General Medical Sciences
Bethesda, MD 20014

NOTE: FOLLOW-ON PROJECT TO G-33-H03

Defense Priority Rating: None

Assigned to: Chemistry

(School/Laboratory)

Copies To:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director - EES
Accounting Office
Procurement Office
Security Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
EES Reports & Procedures
Project File (OCA)
Project Code (GTRI)
Other

Property Coordinator (OCA)

Evelyn W. Carlin
Grants Management Officer
Office of Assoc. Director for Program Activities
National Institute of General Medical Sciences
Bethesda, MD 20014

Ruth C. Nonaghan/Linda V. Glen
Grants Management Specialist
301/496-7746
SPONSORED PROJECT TERMINATION

Date: August 20, 1981

Project Title: Non-Heme Iron Oxygenase Catalysis

Project No: G-33-H04

Project Director: Dr. Sheldon M. May

Sponsor: DHEW/PHS/NIH - National Institute of General Medical Sciences

Effective Termination Date: 8/31/81

Clearance of Accounting Charges:

Grant/Contract Closeout Actions Remaining:

- Final Invoice and Closing Documents
- Final Fiscal Report
- Final Report of Inventions
- Govt. Property Inventory & Related Certificate
- Classified Material Certificate
- Other Annual Report of Expenditures due by 11/30/81

NOTE: Follow-on project (05 year) is G-33-H05

Assigned to: Chemistry (School)
January 13, 1981

Grants Management Officer
DHHS/PHS/NIH
Office of Associate Director
for Program Activities
National Institute of General
Medical Sciences
Bethesda, MD 20205

Dear Sir or Madam:

Enclosed is the Annual Report of Research Grant Expenditures for Grant No. 5 R01 GM23474-03 for the period 9/1/79 - 8/31/80.

If you have questions or require additional information, please let us know.

Sincerely,

David V. Welch, Manager
Grants and Contracts Accounting

DVW/BITS/jb
Enclosure
cc: Dr. S. W. May
 Dr. J. A. Bertrand
 Mr. J. W. Dees
 Mr. O. H. Rodgers
 File G-33-H03
DEPARTMENT OF HEALTH AND HUMAN SERVICES

(Instructions are on reverse)

NAME AND ADDRESS OF GRANTEE INSTITUTION

Georgia Institute of Technology
Atlanta, Georgia 30332

INSTITUTIONAL ID NO.
G-33-H03

TRANSACTION NO.
(08)R1GM23474 A

DATE OF THIS REPORTING PERIOD
FROM 9/1/79 TO 8/31/80

PROJECT PERIOD
FROM 9/1/77 TO 8/31/80

1. Expenditures of DHHS Funds for this Reporting Period

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Personnel</td>
<td>$</td>
</tr>
<tr>
<td>b. Consultant services</td>
<td></td>
</tr>
<tr>
<td>c. Equipment</td>
<td></td>
</tr>
<tr>
<td>d. Supplies</td>
<td></td>
</tr>
<tr>
<td>e. Travel, domestic</td>
<td></td>
</tr>
<tr>
<td>f. Travel, foreign</td>
<td></td>
</tr>
<tr>
<td>g. Patient care costs</td>
<td></td>
</tr>
<tr>
<td>h. Alterations and renovations</td>
<td></td>
</tr>
<tr>
<td>i. Other</td>
<td></td>
</tr>
<tr>
<td>j. Total direct costs</td>
<td>$41,246.00</td>
</tr>
<tr>
<td>k. Indirect costs:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate * %</td>
<td>S&W</td>
</tr>
<tr>
<td>Base $ *</td>
<td></td>
</tr>
<tr>
<td>l. TOTAL</td>
<td>$61,766.00</td>
</tr>
</tbody>
</table>

2. Expenditures from Prior Periods (previously reported)

- 109,661.77

3. Cumulative Expenditures

- 171,427.77

4. Total Amount Awarded — Cumulatively

- 171,820.00

5. Unexpended Balance (Item 4 less Item 3)

- 392.23

6. Unliquidated Obligations

-

7. Unobligated Balance (Item 5 less Item 6)

- 392.23

8a. Cost Sharing Information — Grantee Contribution This Period

- 3,730.20

8b. % of Total Project Costs (Item 8a divided by total of Items 1 and 8a)

- 5.7

9a. Interest/Income (enclose check)

-

9b. Other Refundable Income (enclose check)

-

10. Remarks

- 9/1/79 to 6/30/80
 76% x $20,346.83 = $15,463.59
 As of 7/1/80
 73% x 8,519.48 = 6,292.22
 $28,966.31
 $21,755.81

To be reported on SROEAS

I hereby certify that this report is true and correct to the best of my knowledge, and that all expenditures reported herein have been made in accordance with appropriate grant policy and for the purposes set forth in the application and award documents.

David V. Welch, Manager, Grants & Contracts Acctg.

Formerly HEW-489
404/894-4624
REPORT OF RESEARCH GRANT EXPENDITURES
APPLICATION FOR CONTINUATION GRANT

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
PUBLIC HEALTH SERVICE

NON-HEME IRON OXYGENASE CATALYSTS

1A. PRINCIPAL INVESTIGATOR OR PROGRAM DIRECTOR
(Name and Address, Street, City, State, Zip Code)

May, Sheldon W
Georgia Institute of Technology
School of Chemistry
Atlanta, GA 30332

1B. DEGREE
PhD

2C. SOCIAL SECURITY NO.
320-44-5583

4. APPLICANT ORGANIZATION (Name and Address, Street, City, State, Zip Code)

Georgia Institute of Technology
225 North Avenue, NW
Atlanta, GA 30332

5. PHS ACCOUNT NUMBER
1586002023A1

6. TITLE AND ADDRESS OF OFFICIAL IN BUSINESS OFFICE OF APPLICANT ORGANIZATION
Frank Huff
Comptroller
Georgia Institute of Technology
Atlanta, GA 30332

10. DIRECT COSTS REQUESTED FOR BUDGET PERIOD
$77,737

12A. CONGRESSIONAL DISTRICT OF APPLICANT ORGANIZATION SHOWN IN ITEM 4
5th Congressional District

12B. COUNTY OF APPLICANT ORGANIZATION SHOWN IN ITEM 4
Fulton

13A. IS RECOM. DNA RESEARCH SUBJECT TO NHLBI GUIDELINES INVOLVED? NO () YES ()

14. CERTIFICATION AND ACCEPTANCE. WE, THE UNDERSIGNED, CERTIFY THAT THE STATEMENTS HEREIN ARE TRUE AND COMPLETE TO THE BEST OF OUR KNOWLEDGE AND ACCEPT, AS TO ANY GRANT AWARDED, THE OBLIGATION TO COMPLY WITH PUBLIC HEALTH SERVICE TERMS AND CONDITIONS IN EFFECT AT THE TIME OF THE AWARD.

SIGNATURES

<table>
<thead>
<tr>
<th>Position/Title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCIPAL INVESTIGATOR/DIR.</td>
<td>Signature</td>
<td>6/12/81</td>
</tr>
<tr>
<td>OFFICIAL SIGNING FOR ORG.</td>
<td>Signature</td>
<td>6/15/81</td>
</tr>
<tr>
<td>OFFICE OF CONTRACT ADMINISTR.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHS 2990 - OPTIONAL
REV. 4-78

RETURN COMPLETED APPLICATION TO PHS AS SOON AS POSSIBLE:
NO LATER THAN 1 JULY 1981
Non-Heme Iron Oxygenase Catalysis

3. Progress Report

Non-heme iron-containing oxygenases represent more than 80% of all known dioxygenases and a large number of mono-oxygenases, and thus, a definition of the molecular basis of their catalytic action is highly relevant to many key biological processes. The broad objectives of our research program are to continue our analysis of the involvement of non-heme iron in the catalytic pathway of bacterial dioxygenases, and to initiate comparative studies with mammalian mono-oxygenases containing functional non-heme iron or copper. In these studies we utilize physical techniques such as resonance Raman and EXAFS, chemical techniques such as the design of transition state analogs and other active-site directed ligands, metal replacement and chemical modification; and rapid reaction kinetic techniques.

The following paragraphs summarize our progress during the first year of this project.

34S-Protocatechuate-3,4-dioxygenase (PCD): In previous studies of the resonance Raman spectra of PCD the presence of a band at 274 cm$^{-1}$ which disappears with substrate binding suggested to us the possible ligation of cysteine to iron in the active site. To test this possibility we decided to make 34S labeled PCD which should show a shift in the 274 cm$^{-1}$ band, if it indeed reflects sulfur ligation.

To incorporate the labeled sulfur in the enzyme, cells were grown on a 34S enriched medium developed specifically for this purpose in our laboratory. PCD was then isolated by our standard procedure to give an excellent yield of 200mg of 34S labeled PCD, with a specific activity of 70 U/mg. Resonance Raman spectroscopy of 34S-PCD showed no isotope shifts from the spectrum of the native enzyme, thus providing strong support for the conclusion that the low frequency bands do not arise from sulfur ligation of the
active site iron.

54Fe-PCD. In experiments complimentary to those described above, PCD in which the active site iron were isotopically labeled was prepared by reconstitution of the apoenzyme with 54Fe. We expected that Raman bands arising from iron ligands would exhibit the expected isotope shifts, thus providing further insight into the possible origins of low frequency bands in the 270 cm$^{-1}$ region. ApoPCD with a specific activity of 0.51 U/mg was prepared from native PCD with a specific activity of 56 U/mg. Ferric oxide with 97.6$\%$ 54Fe was obtained from Oak Ridge National Laboratories and was reduced to metallic 54Fe. The metallic 54Fe was dissolved in slightly more than a two-fold excess of H_2SO_4 and base was added to just neutralize the pH. The solution was air dried and the 54Fe$\text{SO}_4\cdot\text{NH}_4\cdot6\text{H}_2\text{O}$ crystals were dried with acetone and used to reconstitute ApoPCD. The 54Fe labeled PCD had a specific activity of 49.7 U/mg. Resonance Raman spectra of the 54Fe labeled PCD showed that the band found at 274 cm$^{-1}$ in native PCD had shifted to 277 cm$^{-1}$. This suggests that the bands at 274 cm$^{-1}$ in native PCD reflects an iron ligand bond, but the identity of the ligand is yet to be established.

EXAFS Studies. In collaboration with Drs. Stern and Parson of the University of Washington, we have now successfully initiated EXAFS Studies with PCD, as set out in our proposal. A concern of the Study Section was that X-ray exposure might denature the protein but our work to date with PCD has clearly established that this will not be a problem. PCD samples were sent to the University of Washington and EXAFS run at the Stanford accelerator, after which the enzyme was returned to us for assay and spectral examination. No significant changes in either activity or spectral properties resulted from X-ray irradiation or shipment of the solutions. Although analysis of the data is not yet complete, the very exciting possibility has arisen that we may have obtained the first evidence for a histidine ligand of the active-site iron of PCD. We are very much encouraged by our success in these initial experiments, and our collaborators at the University of Washington have indicated that the data obtained are of high quality. Thus, during the coming year we anticipate being heavily involved in obtaining and analyzing EXAFS data both with PCD and other mono-oxygenases, such as Phenylalanine Hydroxylase and, possibly, Dopamine-3-Hydroxylase.

Transition-State Analogs. Our proposed studies with 2-hydroxypyridine-N-oxides as transition state analogs for PCD have produced very promising results. To date, we have successfully completed the very difficult syntheses involved, fully characterized the compounds, and established that our N-oxides are highly potent inhibitors for PCD. Stopped-flow kinetic experiments are now underway in order to characterize the binding events and differentiate ground state from transition state inhibition. It is our expectation that our results will provide strong support for the mechanistic proposals which we have previously made for non-heme iron dioxygenase catalysis.

Studies With Other Mono-oxygenases. In experiments which we did not foresee at the start of our program, we have begun to obtain comparative specificity data regarding oxygenase catalysis which we anticipate will allow us to suggest a unified mechanism for enzymatic oxidation reactions. Working with Dopamine-β-Hydroxylase we have established two new activities for this enzyme -- stereospecific sulfoxidation of sulfides and ketonization of enantiomers of the normal hydroxylation product. We have now successfully carried out a systematic study of both the effects of substrate secondary structure and of various substituents on the sulfoxidation and hydroxylation reactions. Our results have allowed us to make direct mechanistic comparisons between Dopamine-β-Hydroxylase, Cytochrome-P-450 and chemical model systems, and we anticipate extending similar studies to Phenylalanine Hydroxylase in the near future. The specific details of our mechanistic suggestions will not be presented in this brief report, but are fully discussed in a paper which is in press in the Journal of Biological Chemistry. Copies of reprints will, of course, be provided when available.
During the coming year, our objectives are to continue and amplify our EXAFS studies with both PCD and mono-oxygenase enzymes, to complete the characterization of our transition state analogs for PCD, and to continue our mechanistic studies aimed at providing unified mechanistic information about the pathway of enzymatic oxygenation reactions. In our view, enough of the preliminary work has now been successfully completed so that we can confidently expect to meet these objectives during the coming year. As always, we are grateful to the National Institutes of Health for continued support of our research efforts.