GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT INITIATION

Date: February 29, 1980

Project Title: The Chemistry of New Functional Groups in Enzymes

Project No: G-33-NO2

Project Director: Dr. Edward M. Burgess

Sponsor: DHEW/PHS/NIH - National Institute of General Medical Sciences; Bethesda, Maryland 20014

Agreement Period: From March 1, 1980 Until February 28, 1981 (10 year)

Type Agreement: Grant No. 5-R01-GM12672-10

Amount: $87,722 New PHS Funds (G-33-NO2) 8,731 GIT Contribution (G-33-355) $96,453 Total

Reports Required: Annual Progress Reports with Continuation Applications; Terminal Progress Report upon Grant Expiration

Sponsor Contact Person(s):

Technical Matters
Dr. Carl A. Keuther
Program Administrator
National Institute of General Medical Sciences
Bethesda, Maryland 20014
(301) 496-7181

Contractual Matters
(thru OCA)
K. McKnight
Grants Management Specialist
Office of Associate Director for Program Activities
National Institute of General Medical Sciences
Bethesda, Maryland 20014
(301) 496-7166

NOTE: Continuation of G-33-678 (07 & 08 Budget Periods) & G-33-N01 (09 Budget Period)

Defense Priority Rating: None

Assigned to: Chemistry (School/Laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director - EES
Accounting Office
Procurement Office
Security Coordinator (OCA)
Reports Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
EES Reports & Procedures
Project File (OCA)
Project Code (GTRI)
Other
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT TERMINATION

Date: 2/24/81

Project Title: The Chemistry of New Functional Groups in Enzymes

Project No: G-33-N02

Project Director: Dr. Edward M. Burgess Grant # 5-R01-GM12672-10

Sponsor: DHEW/PHS/NIH - National Institute of General Medical Sciences;
Bethesda, Maryland 20014

Effective Termination Date: 2/28/81 (year 10)

Clearance of Accounting Charges: ________________________________

Grant/Contract Closeout Actions Remaining:

- Final Invoice and Closing Documents
- Final Fiscal Report
- Final Report of Inventions

X Final Report of Inventions
- Govt. Property Inventory & Related Certificate
- Classified Material Certificate

X Other Annual Report of Expenditures due by 5/31/81

NOTE: Follow-On Project (11 year) is G-33-N03

Assigned to: Chemistry (School/Laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director-EES
Accounting Office
Procurement Office
Security Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other OCA Research Project Coordinator
SECTION IV—SUMMARY PROGRESS REPORT

APPLICATION: REPEAT GRANT NUMBER SHOWN ON PAGE 1

GRANT NUMBER
GM 12672-11

SECTION IV—SUMMARY PROGRESS REPORT

PRINCIPAL INVESTIGATOR OR PROGRAM DIRECTOR (Last, First, Initial)
Burgess, Edward M.

NAME OF ORGANIZATION
Georgia Institute of Technology

TITLE (Repeat title shown in Item 1 on first page)
The Chemistry of New Functional Groups in Enzymes

1. List publications: (a) published and not previously reported; (b) in press. Provide five reprints if not previously submitted.
2. List all additions and deletions in professional personnel and any changes in effort.
3. Progress Report. (See Instructions)

1. None

2. Professional Personnel

Deletions:
Van Derveer, Donald
Campbell, D. C.

Additions:
Zoller, Uri

3. Progress Report:
The numbering of topics in this report follows from our proposal.

1. Hypervalent First and Second Row Molecules.

The structure of the product, 1, resulting from the reaction of the
1,2-dipole, 2, with CF₃OF has been determined by NMR F¹⁹ spectroscopy
to have non-equivalent fluorines. This would seem to end our search

for hypervalent carbon. In one last attempt, we carried out the
following reaction and obtained the result indicated.

\[
\begin{align*}
\text{2} & \rightarrow \text{1} \\
\text{CF₃} & \text{N} \\
\text{C} & \text{F} \\
\text{C} & \text{N} \\
\end{align*}
\]
No evidence for the hypervalent species, 3, was forthcoming.

2. Thione Ylides

(a.) Ylides from Bis-thioimidazolium salts.

The reaction of gem-dihalides with dimethylimidazolethione give the corresponding bis-salts, 4, whose base catalyzed decomposition give the substituted ethylene derivatives, 5, at temperatures of 30-80°.

This coupling reaction would have some synthetic utility if the following transformation of the produce 5 could be developed.

and we are currently studying the reaction of 5 with "soft" nucleophiles such as PhSH, PhS⁻ or PhSeH, PhSe⁻ with the hope of finding a reaction:
(b.) Selenone Ylides

The first example, 6, of a stable selenone methyldie has been isolated and characterized by x-ray crystallography. The non-planarity of substituents about the CSeC plane was similar to that

\[
\begin{align*}
\text{CSeC plane was similar to that previously determined for the} \\
\text{corresponding sulfur ylides. Such selenium derived ylides decompose} \\
in solution to tetra substituted ethylene derivatives at temperatures \\
\text{much below (0-30°) those of the sulfur congenus. As in (a.) above} \\
we are currently looking into this coupling reaction as a general} \\
\text{C=C bond formation synthetic method. Some reactions now under} \\
\text{investigation are:}
\end{align*}
\]

\[
\begin{align*}
\text{steps A and E are well known and we have carried out step B via:}
\end{align*}
\]
3. Synthetic Application of Hypervalent Intermediates

(a.) Thione Methylides

We have discovered the reaction conditions (time, temperature) which effect the "psuedo" wittig reaction of 7 with ketones (formerly only a reagent for aldehydes).

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{S} & \quad \text{CH}_2\text{CO}_2\text{CH}_3 \\
& \quad \rightarrow \\
& \quad \text{CH}_2\text{CO}_2\text{CH}_3
\end{align*}
\]

This will allow us to proceed toward the synthesis of the important agent (for severe acne and possibly useful as an antineoplastic agent) 13-cis-retenoic acid. We have begun, as follows:

\[\text{Diagram of chemical structures}\]
(b.) Phosphile Sulfide and Selenide Methylides

We have extended our studies on the reaction of the title ylides with aldehydes and found the stereochemistry of the acrylate ester product to be a function of the method of generating the ylide (below).

\[
\begin{align*}
[(\text{CH}_3)_2\text{N}]_3\text{P}^-X^- + \text{BrCH}_2\text{CO}_2\text{CH}_3
\end{align*}
\]

\[
X=\text{Se} \quad \quad \quad \quad \quad X=\text{S}
\]

\[
[(\text{CH}_3)_2\text{P}^-X\text{CH}_2\text{CO}_2\text{CH}_3 \quad \text{Br}^-]
\]

\[
\text{BF}_4^-
\]

\[
\begin{align*}
-P^-X-\text{CH}_2\text{CO}_2\text{CH}_3 \quad \text{RCHO} \quad \text{RCH=CHCO}_2\text{CH}_3
\end{align*}
\]

\[
\text{BF}_4^-
\]

A. DBU, CH$_3$CN
B. DBU, CH$_3$CN, LiI
C. NaOH, H$_2$O, CH$_2$Cl$_2$, Et$_3$P, N, Cl$^-$
D. NaOEt, EtOH

R=Ph

<table>
<thead>
<tr>
<th>X=S</th>
<th>A</th>
<th>60</th>
<th>40</th>
<th>B</th>
<th>75</th>
<th>25</th>
<th>C</th>
<th>70</th>
<th>30</th>
<th>D</th>
<th>0</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>E</td>
<td>60</td>
<td>40</td>
<td></td>
<td>98</td>
<td>2</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>X=Se</td>
<td></td>
</tr>
</tbody>
</table>

Thus, a stereospecific formation of either isomer may be selected using as variables the central atom of the ylides or its method of preparation. Interestingly, ylides generated with ketone stabilizing substituents (rather than ester) undergo the following internal rearrangement and fragmentation faster than reaction with
an external aldehyde. We can offer no explanation for this.

\[
\begin{array}{c}
\text{R= Ph, } CH_3 \\
\end{array}
\]

In another study, we attempted the isolation of a phosphine sulfide methylide,

\[
\begin{array}{c}
\text{X-C=C-R} \\
\text{P}^+ \text{O}^- \\
\end{array}
\]

however, after a few hours in solution this ylide underwent rearrangement to

\[
\begin{array}{c}
\text{X-C=CH} \\
\text{P} \text{O}^- \\
\end{array}
\]

Finally, in an attempt to generate an isolable hypervalent species:
we subjected tri-dimethylaminophosphine sulfide to bromination. The product isolated and characterized by x-ray crystallography is shown below.

\[
\begin{align*}
[(\text{CH}_3)_2\text{N}]_3^+\text{P}^-\text{S}^- & \xrightarrow{\text{Br}_2} \text{P}^+\text{S}^- \\
& \quad \downarrow \text{Br}^- \\
& \quad \downarrow \text{Br}
\end{align*}
\]

The undersigned agrees to accept responsibility for the scientific and technical conduct of the project and for provision of required progress reports if a grant is awarded as the result of this application.

12-16-80
Date

Edward W. Dennis
Principal Investigator