GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT INITIATION

Date: November 6, 1978

Project Title: Foundations of Deterministic Scheduling of Programs for Parallel Execution

Project No: G-36-630

Project Director: Dr. R. A. DeMillo

Sponsor: The University of Wisconsin - Milwaukee; Milwaukee, WI 53201

Agreement Period: From 6/1/78 Until 5/31/80

Type Agreement: Subcontract No. 144-L729 (P.O. No. UBI-351K374) under NSF Grant No. MCS77-28305

Amount: $30,581.00

Reports Required: Annual Progress Reports

Sponsor Contact Person(s):

Technical Matters
Dr. Kasivisvanathan Vairavan
Department of EE & CS CEAS
University of Wisconsin - Milwaukee
P. O. Box 784/3200 N. Cramer St.
Milwaukee, WI 53201

Contractual Matters (thru OCA)
Mr. Dexter D. Domahoski
Asst. to the Dean, Graduate School
University of Wisconsin - Milwaukee
P. O. Box 413
Milwaukee, WI 53201

Defense Priority Rating: none

Assigned to: Information & Computer Science (School/Laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Associate Dean - EES
Accounting Office
Procurement Office
Security Coordinator (OCA)
Reports Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
EES Reports & Procedures
Project File (OCA)
Project Code (GTRI)
Other

CA-3 (3/76)
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION SHEET

Date 2/22/82

Project Title: Foundations of Deterministic Scheduling of Programs for Parallel Execution

Project No: G-36-630

Project Director: Dr. R. A. DeMillo

Sponsor: The University of Wisconsin - Milwaukee; Milwaukee, WI 53201

Effective Termination Date: 5/30/80

Clearance of Accounting Charges:

Grant/Contract Closeout Actions Remaining:

☐ Final Invoice and Closing Documents
☐ Final Fiscal Report
☐ Final Report of Inventions
☐ Govt. Property Inventory & Related Certificate
☐ Classified Material Certificate
☐ Other ____________________________

Assigned to: I & CS ____________________________ (School/Laboratory)

COPIES TO:
Research Administrative Network
Research Security Services
EES Public Relations (2)
Computer Input
Project File
Other ____________________________
THE GEORGIA INSTITUTE OF TECHNOLOGY

RESEARCH PROGRAM IN

FULLY DISTRIBUTED PROCESSING SYSTEMS

Quarterly Progress Report Number 2
1 December, 1979 - 29 February, 1980

April, 1980

Supported by

Office of Naval Research (ONR)
Contract: N00014-79-C-0873
GIT Project: G36-643

U.S. Air Force Rome Air Development Center (RADC)
Contract: F30602-78-C-0120
GIT Project: G36-649

International Business Machines,
General Systems Division (IBM)
Agreement: GSD-210189
GIT Project: G36-648

National Science Foundation (NSF)
Contract: MCS77-28305
Subcontract from Univ. of Wisc.: 144-L729
GIT Project: G36-630

U.S. Army Research Office (ARO)
Contract: DAAG29-79-C-0155
GIT Project: G36-638

U.S. Army Institute for Research in
Management Information and Computer Science (AIRMICS)
Contract: DAAK70-79-D-0087
GIT Project: G36-647

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332
1. INTRODUCTION

This is the second quarterly progress report prepared on the Georgia Tech Research Program in Fully Distributed Processing Systems (FDPs).

a. Program Description.

The Georgia Tech Research Program in Fully Distributed Processing Systems is a comprehensive investigation of data processing systems in which both the physical and logical components are extremely loosely coupled while operating with a high degree of control autonomy at the component level. The definition of the specific class of multiple computer systems being investigated, and the operational characteristics and features of those systems is motivated by the desire to advance the state-of-the-art for that class of systems that will deliver a high proportion of the benefits currently being claimed for distributed processing systems. The scope of individual topics being investigated under this program ranges from formal modeling and theoretical studies to empirical examinations of prototype systems and simulation models. Also included within the scope of the program are areas such as the utilization of FDPs in their interaction with management operations and structure.

b. Program Support.

The principal support for the program is a Selected Research Opportunity contract from the Office of Naval Research; however, there are a number of other sources of funding which also support the program. A complete list of these is given below.

Title: "Research on Fully Distributed Data Processing Systems"
Funding Agency: Office of Naval Research (ONR)
Contract Number: N00014-79-C-0873
CIT Project No.: C36-645
Principal Investigator: Philip H. Enslow, Jr.

Title: "Research on Distributed Control"
Funding Agency: U.S. Air Force Rome Air Development Center (NADEC)
Contract Number: F30602-78-C-0120
CIT Project No.: C36-645
Principal Investigator: Philip H. Enslow, Jr.
c. Administrative Changes

During this quarter, additional research contracts supporting the FOPS program have been awarded. Specifically, these are the AADC, IBM, NSF, ARO, and AIRMICS contracts described above. Also during this quarter, the final report on one contract was published, completing that project.

Title: "Interprocess Communication in Highly Distributed Systems" (A Workshop)
Funding Agency: U.S. Army Research Office (ARO)
Contract Number: DAAG29-79-C-0010
GIT Project No.: 636-632
Principle Investigator: Philip H. Enslen, Jr.
2. ORGANIZATION AND STAFFING

Faculty

The following members of the ICS Faculty have been identified as participants in the FDPs Research Program.

Crews, Phillip--Assistant Professor
Demillo, Richard A.--Associate Professor
Ensley, Richard H. Jr.--Professor
Griffeth, Nancy--Assistant Professor
LeBlanc, Richard--Assistant Professor
Livingston, Jan--Assistant Professor
Livesey, John--Assistant Professor
 (effective September, 1980)
Lynch, Nancy--Associate Professor

Most of these individuals are presently working on specific projects in the program, while others are completing other work already in progress.

Staff

Jensen, Alton--Principal Res. Eng.
McDonnell, Sharon--Sr. Secy.
Myers, Jeanette--Res. Scientist
Pinion, Nancy--Part-time Secy.

Students

There are 20 students working on various projects in the FDPs Research Program. Of these, 12 are in the Ph.D. program and 5 are preparing their M.S. thesis on topics in FDPs.

3. CURRENT RESEARCH PROJECTS

The specific research projects have been organized into the major areas identified in the basic program proposal.

A. Theoretical and Formal Studies

A.1 Studies of the Theory of Asynchronous Processors
A.2 Decomposition of Parallel Systems
A.3 Reliable Systems
A.4 Time Performance of Distributed Systems
A.5 Audit Algorithms
A.6 Ticket Systems
A.7 Synchronous Simulation
A.8 Distributed Resource Allocation

B. Physical Interconnection and Networking
B.1 Heterogeneous Networking
B.2 Local Networking in Fully Distributed Processing Systems

C. Distributed Operating Systems
C.1 Decentralized and Distributed Control
C.2 Resource Allocation and Work Distribution in an FDPS
C.3 Fully Distributed Operating System - Initial Considerations
C.4 TRA (Distributed Operating Systems)
C.5 Process Support in Distributed Systems
C.6 Non-Homogeneous Operating Systems
C.7 FDOS - Preliminary Implementation Studies

D. Distributed Data Bases
D.1 Implementation of Distributed Database Systems
D.2 Support of "MILPFCEN Data Storage Concept"

E. Fault-Tolerance

F. Special Hardware to Support FDPS

G. Application of Distributed Processing

H. System Design Methodologies
H.1 FDPS Requirements Engineering Techniques
H.2 Coordinating Large Programming Projects

I. System Utilization
I.1 A Language for Distributed Programming
I.2 System Implementation Language Development

J. Security
J.1 Process Structures

K. System Management
L. **Evaluation and Comparison**

M. FOPS Testbed

- M.1 Establishment of FOPS Testbed Facility
- M.2 Remote Load Emulator
- M.3 Fully Distributed Operating System Simulation Testbed

4. **SUMMARY OF PROGRESS**

A.1 Studies of the Theory of Asynchronous Processors

(Lynch, Fischer, Lamport, Lazowska, Schönhage, Arjomandi)

Work continues in the development of models, decomposition techniques, and complexity analysis techniques for distributed systems. Visitors this quarter have included Fischer, Lamport, Lazowska, Schönhage, and Arjomandi. Recent work has inspired projects A.2, A.3, A.4, A.5, A.6, A.7, and A.8 described below.

A.2 Decomposition of Parallel Systems

(Lynch, Fischer)

Synchronization algorithms are decomposed using two stage models, with simulation used to eliminate initial simplifications, such as centralized control and multiple shared variables.

A.3 Reliable Systems

(Lynch, Fischer, Lamport)

Redundancy is used to alleviate the effects of "shutdown", "death", and "malicious failure" of processes. Agreement with faulty inputs is difficult and slow, requiring k+1 "rounds" of information exchange to protect against up to k faults. Special cases are being considered.

A.4 Time Performance of Distributed Systems

(Lynch, Fischer, Lazowska, Schönhage)

Application of complexity theory in developing tools to measure worst-case and expected performance of distributed systems under specified operating conditions. Analysis of arbiter problems includes work on lower (time) bounds, with restricted access to communication variables.
A.5 Audit Algorithms (Griffeth, Fischer, Lynch)

Development of algorithms for auditing distributed assets without delaying transactions, or contradicting information propagated through the system by obtaining a balance that could not have existed at any point in time.

A.6 Ticket Systems (Lynch, Fischer, Griffeth)

Design and analysis of algorithms for ticket distribution, including careful statement of correctness and performance requirements.

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi)

Development and analysis of techniques for converting synchronous, parallel algorithms into equivalent asynchronous algorithms, by devising protocols which insure progress of each process without actually stopping computation to achieve synchronization.

A.8 Distributed Resource Allocation (Lynch)

Development of a simple but realistic model of the resource allocation problem, a fast solution, and time analysis of the solution.

B.1 Heterogeneous Networking (Crews, Bray, Greene, Tuberville)

The IBM Series/1 has been connected to the FDPS test-bed (PRIME P-400's) through a unidirectional communication path. This path has facilitated file transfer from the testbed to the Series/1, and consequently has provided necessary software to initiate work on the common command language facility and software tools. At the same time, a link has been established between the Series/1 and CYBER system, and work is underway to establish an interface at the physical code, operating system, and programming language level.

B.2 Local Networking in FDPSs (Enslow)

A survey of the state-of-the-art in local network technology and equipment has been initiated. It appears that the primary weaknesses of systems currently available or proposed are in the areas of host interaction with the local network and host-to-host interaction.
The first goal of this project is to characterize and analyze models of distributed and decentralized control applicable to highly distributed systems. A major problem facing the research team is the development of a technique or framework by which various control models can be described and catalogued. The principal effort thus far in this project has been focused on identifying various possible models and comparing and analyzing these models with the goal of developing a basis for a complete taxonomy. Major progress has been made in this first step, and a paper is being prepared for presentation at the IEEE Computer Society COMPCON in September, 1980.

Activity during this period has focused on developing a descriptive framework suitable for preparing a taxonomy of allocation and distribution models. The approach taken has been to prepare descriptions of as many models as possible and then to work backwards to develop the framework. An initial framework has been prepared and is being refined.

The organization and outline for the complete specification of an FDOS is being prepared.

No activity this quarter.

A survey and analysis of communication protocols has been initiated to isolate essential features for support of distributed processes. Implications of transport protocols for the IPC interface are being studied.
C.6 Non-Homogeneous Operating Systems (Ratzel)

No significant activity this quarter. Project is still in preliminary stages.

C.7 FDOS - Preliminary Implementation Studies (Myers, Enslow, Gaither, L. Newell, S. Newell, Wice)

The design and implementation of the FDOS has been initiated. The approach being taken is to first address those areas on which there is general agreement as to the functionality required/desired. The first area being designed is that of "message transport".

D.1 Implementation of Distributed Database Systems (Griffeth)

This project is planned to commence in June, 1970.

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham)

Applicable literature and reference documentation has been collected. A site visit to the U.S. Army Military Personnel Center, Alexandria, Virginia, has been made, during which briefings were presented and interviews held.

H.1 FDPS Requirements Engineering Techniques (Underwood, Corley)

No significant activity this quarter.

H.2 Coordinating Large Programming Projects (Enslow, Smith)

A questionnaire to be utilized to gather historical information and manager's perception of the problems and possible solutions has been prepared. This draft questionnaire has been circulated to a number of individuals for comment and recommendations on a wider population to survey.

I.1 A Language for Distributed Programming (LeBlanc, Maccabe, Forsyth)

Existing languages with features related to our goals are currently being studied. This includes the implementation of multi-process programs in YODULA,
in order to gain experience with interprocess communication problems. In preparation for our language design work, design goals have been identified and a computational model on which the language will be based has been established. A paper entitled "A Language Model for Fully Distributed Systems" has been submitted to COMPCON '80 Fall. Another paper is being prepared for submission to the ACM Pacific '80 Conference, which has distributed processing as its theme.

I.2 System Implementation Language Development (LeBlanc, Akin, Strickland)

UV-Pascal is being transported to the PRIME-460 with extensions to support the FDDS development. Significant progress this quarter.

J.1 Process Structures (DeMillo, Lipton, Miller, Davida)

Investigation of several aspects of parallel and distributed system design, including multilevel security, models of synchronization, and efficiency of interprocess communication.

M.1 Establishment of FDDS Testbed Facility (Myers, Elshoff, Gaither, Howe, Flinn, L. Newell, S. Newell, Wice)

The subroutines comprising the Primenet interprocess communication facility are being used and tested by student programmers, and will be used in the near future to implement message transport and message handling.

M.2 Remote Load Emulator (Myers, Enslow, Forsyth, Howe)

Programmable "scripts" have been devised to describe a variety of loads. Student programmers have completed a lexical analyzer and parser to translate scripts for fast interpretation.

M.3 FDDS Simulation Testbed (LeBlanc, Gaither, Maccabe, Myers, S. Newell, Wice)

The FDDS simulation testbed will provide an environment for the initial testing and analysis of operating system algorithms currently being developed. The overall design is complete; a more detailed design is being written, utilizing SIMULA constructs, and is in its final stages.
5. TRAVEL RELATED TO THE FDPS PROGRAM

Dates of Trip: 1 February, 1980
Individuals Travelling: James Skoabo, Steve Malell
Itinerary: Atlanta, Georgia
Purpose: Attend ACM sponsored Professional Development Seminar — Distributed Processing Systems

Dates of Trip: 14 February, 1980
Individuals Travelling: Philip Enslow
Itinerary: Atlanta, Georgia
Purpose: Present briefing on FDPS program and other ICS research projects.

Dates of Trip: 25-29 February, 1980
Individuals Travelling: Phillip Crews
Itinerary: San Francisco, California
Purpose: Attend COMPCON '80 Spring

Dates of Trip: 27-28 February, 1980
Individuals Travelling: A.P. Jensen, John Gebh, Jim Doyle
Itinerary: Alexandria, Virginia
Purpose: Site survey of MILPERCEN Data Facilities.

6. VISITORS

Dates of Visit: 1 January - 31 March, 1980
Visitor: Michael Fischer
Purpose: Research Collaboration
Individual Contacted: Nancy Lynch

Dates of Visit: 11 January, 1980
Visitor: R.J. Linton
Purpose: Research Collaboration
Individual Contacted: Richard DeMillo

Dates of Visit: 14-16 January, 1980
Visitor: Robert Cook, W. Misc., Madison
Purpose: To discuss programming language design and operating system simulation work being done at Wisconsin.
Individual Contacted: Richard Leland, Philip Enslow, Phillip Crews

Visitor: Leslie Laport, Stanford Research Institute
Purpose: Research collaboration on problems involving programming in an environment including faulty processors, and choice of primitive operations for models of asynchronous systems.
Individual Contacted: Nancy Lynch, Michael Fischer
Date of Visit: 4-6 February, 1980
Visitor: Edward Lazowska, Univ. of Washington
Purpose: Research collaboration on problems involving performance evaluations of distributed systems, and design of arbitration protocols.
Individual Contacted: Nancy Lynch, Michael Fischer

Date of Visit: 13-21 February, 1980
Visitor: Fethrat Arjomandi, York Univ., Toronto, Canada
Purpose: Research collaboration on problems involving relationships between synchronous and asynchronous models for parallel computation, and design of distributed graph algorithms.
Individual Contacted: Nancy Lynch, Michael Fischer

Date of Visit: 21 February, 1980
Visitor: Tadaaki Randoh, Hitachi Research Laboratory, Japan
Purpose: Discuss Randoh's work in dataflow machines and our work in EPPS.

Date of Visit: 25 February - 14 March, 1980
Visitor: Arnold Schonhage, Univ. of Tubingen, Germany
Purpose: Research collaboration on problems involving models for parallel computation, stochastic analysis of distributed systems, design of arbiter systems, and techniques for proving lower bounds for arbitration problems.
Individual Contacted: Nancy Lynch, Michael Fischer

7. PUBLICATIONS

Author(s): P.H. Enslow, P. Gordon
Title: IPC Workshop Report
Number: GIT-100-79/11
Date: December, 1979

Author(s): P.A. DeMillo, P.J. Lipton, P.E. Miller
Title: Stochastic Synchronization
Date: June, 1980

Author(s): P.A. DeMillo, C.J. Davida, P.J. Lipton
Title: Secure Key Distribution
Type: Conference Paper
Date: April, 1980
Contents: To be presented at 1980 IEEE Symposium on Security and Privacy.

Author(s): P.H. Enslow
Title: Quarterly Progress Report - Number 2
Type: Quarterly Progress Report
Date: April, 1980