Project Title: Scientific and Engineering Assistance on Mine Defense Problems
Project No.: A-937
Project Director: A. L. Bennett
Sponsor: Dept. of the Navy, Navy Purchasing Office
Effective: 4-29-66 Estimated to run until: 6-30-67
Type Agreement: Contract No. N00014(24)55885
Amount: $10,000 (estimated) *
Reports: Monthly Letter Reports
 Final Technical Report
Contact Person: Navy Purchasing Office
 Washington Navy Yard
 Washington, D. C. 20390
 Attn.: Contracting Officer
 (for admin. matters)
 U. S. Navy Mine Defense Laboratory
 Panama City, Florida
 Attn.: Dr. R. A. Hogge, Code 710
 (for tech. matters)

* No additional funds have been added to the contract at this time. Funding
will come from A-874 pending the
addition of funds to the contract to support this work.

Assigned to Physical Sciences Division

COPIES TO:

- Project Director
- Director
- Associate Director
- Assistant Director(s)
- Division Chiefs
- Branch Head
- General Office Services
- Rich Electronic Computer Center
- Engineering Design Services

- Technical Information Section
- Photographic Laboratory
- Shop
- Security Officer
- Accounting
- Purchasing
- Report Section
- Library

Report requirements are the same as A-531; A-770; A-874

R. E. Bryan
GEORGIA INSTITUTE OF TECHNOLOGY
Engineering Experiment Station

PROJECT TERMINATION

Date 12-11-67

PROJECT TITLE: Scientific and Engineering Assistance on Mine Defense Problems

PROJECT NO: A-937

PROJECT DIRECTOR: A. L. Bennett

SPONSOR: Dept. of the Navy, Navy Purchasing and Mine Defense Program Office

TERMINATION EFFECTIVE: 12-11-67

CHARGES - SHOULD CLEAR ACCOUNTING BY: All charges have cleared

Physical Sciences

REPORT
300. A-937

COPIES TO:
Project Director
Director
Associate Director
Assistant Directors
Division Chief
Branch Head
Accounting
Engineering Design Services

General Office Services
Photographic Laboratory
Purchasing
Report Section
Library
Security
Rich Electronic Computer Center
Department of the Navy
U. S. Navy Mine Defense Laboratory
Panama City, Florida

Attention: Dr. E. A. Hogge, Code 710

Subject: Monthly Progress Letter Report 2, Project A-937
"Scientific and Engineering Assistance on Mine
Defense Problems"
Contract No. N600(24)-59885
Covering the Period from June 1 to June 30, 1966

Gentlemen:

During this reporting period the analysis of the frequency-shift
detection scheme has been completed indicating it is not a practical
approach. The results of this work however have provided some in-
sights into the general interrelations of parameters and practical para-
meter magnitudes. Therefore, it is now easier to estimate the potential
of a proposed scheme and quantitatively evaluate its operation.

The basic concept of the proposed schemes is that of inducing a
current in the mine wire through the mutual inductance of the wire and a
driven search coil. Detection of the wire then reduces to some means of
sensing the current induced in the wire. The major problem however is
the relatively high impedance of the wire-circuit and the relatively low
value of attainable mutual inductance.

The wire-circuit is easily visualized in the following manner.
Consider a metal conductor or conductors surrounded by an insulating
layer, submerged in sea water. At frequencies 1 MHz and less in sea
water, the ratio

\[
\frac{\omega \varepsilon}{\sigma} < 10^{-3}
\]

\(\omega = 2\pi \text{ frequency}\)
\(\varepsilon = \text{ permittivity}\)
\(\sigma = \text{ conductivity}\)
which demonstrates that displacement currents in water are negligible compared to conduction currents. Hence the wire can definitely be considered as a coaxial cable with the sheath being the sea water. The parameters of the cable then consist of series R and L, where R and L are determined primarily by the effective sea water sheath and shunt C and G depending on the insulation. Thus a length of wire submersed in sea water would have the following approximate equivalent circuit, where R and L are frequency sensitive.

![Equivalent Circuit Diagram]

As a first approximation to the line, a length of 100 meters is assumed and the total inductance, resistance and capacitance are lumped into a Pi equivalent as follows:

![Pi Equivalent Circuit]

Although we initially thought the series inductance would be negligible it has been found that this is not true and that above 65 kHz the inductive reactance predominates. In the figure, the current I induced is the current which must be detected.

The impedance of the insulated cable-sea water return combination is discussed by von Aulock. A discrepancy was found in the equations for

the \overline{E} and \overline{H} fields in water as they did not satisfy the boundary conditions. Therefore, these calculations were carried out from a slightly different approach in order to be assured that the results were correct. The corrected equations for \overline{E} and \overline{H} in the sea water return as developed are:

\[
H_\phi = -\frac{I}{2\pi b_2} \frac{\text{ker}' x}{\text{ker}' \left(\frac{b_2 \sqrt{2}}{\delta} \right)} + j \frac{\text{kei}' x}{\text{kei}' \left(\frac{b_2 \sqrt{2}}{\delta} \right)} e^{-j\omega t}
\]

\[
E_z = -\frac{I \sqrt{\mu \sigma}}{2\pi b_2 \sigma} \frac{\text{ker} x}{\text{ker}' \left(\frac{b_2 \sqrt{2}}{\delta} \right)} + j \frac{\text{kei} x}{\text{kei}' \left(\frac{b_2 \sqrt{2}}{\delta} \right)} e^{-j\omega t}
\]

Next, rather than the energy approach to calculate R and L as was carried out by von Aulock, an impedance approach as proposed by Ramo & Whinnery was used. Carrying through this development, we arrived at the identical final equations of von Aulock. Simple plots of the resistance and reactance of the transmission line equivalent circuit versus the frequency of the detection system are shown on page 4.

Somewhat more meaningful plots for later discussion would be magnitude and phase plots of the transmission line impedance.
A block diagram representation of the frequency-shift system is shown below.

![Diagram of Frequency-Shift System]

The resonant frequency of the tank circuit is the frequency of the oscillator. The coil of the tank circuit is the primary detecting device. When the coil approaches the cable it couples inductively with the transmission line. Due to the mutual coupling, the impedance of the transmission line is reflected into the tank thereby decreasing the frequency of the oscillator.

The impedance of the transmission line reflects into the tank circuit as an impedance in series with the coil and this reflected impedance is given by:

\[Z_{ref} = \frac{(\omega M)^2}{Z_{TL}} \]

where \(M \) is the mutual inductance
\(\omega \) is the radian frequency
\(Z_{TL} \) is the transmission line impedance

For a coil of reasonable size, \(M \) is approximately \(0.3 \times 10^{-6} \) henries. The self inductance may be varied somewhat without significantly affecting the mutual inductance, but \(0.8 \times 10^{-6} \) henries is a reasonable figure. Referring back to the magnitude plot of the transmission line impedance, the value of \(Z_{TL} \) at 50 kHz was chosen. This value was chosen because at this frequency the real part of the impedance was small.
and the imaginary part was large enough to cause a phase angle of approximately the same order of magnitude as the real part \(Z_{TL} = 17.6 - j \ 29 \text{ ohms} \). The frequency shift of the oscillator is dependent on the imaginary part. When the values mentioned above were substituted into the formula, it was found that the magnitude of the reflected impedance differed from the magnitude of the impedance of the coil by approximately four orders of magnitude. This difference is too great to cause a significant change in the frequency of the oscillator. If the value of the self inductance is changed to decrease this difference, then the value of the capacitor to cause resonance is prohibitive. Therefore, the solution of the problem had to be discarded.

Future Plans

During the following reporting period a null-system similar to that employed in the Swimmer Ordnance Locator Mark 9 Mod 0 will be evaluated. Such a system allows more degrees of freedom in design since the null coils and the search drive coil can be independently adjusted for optimum performance. If time permits an initial analysis of RF energy radiated from the above-water portion of the mine wire will be carried out.

Respectfully submitted,

F. L. Grismore

Arthur L. Bennett
Project Director

FLB/ALB/brj
Department of the Navy
U. S. Navy Mine Defense Laboratory
Panama City, Florida

Attention: Dr. E. A. Hogge, Code 710

Subject: Monthly Progress Letter Report 6, Project A-937
"Scientific and Engineering Assistance on
Mine Defense Problems"
Contract No. N600(24)-59865
Covering the Period October and November 1966

The work planned for this reporting period, outlined in Report No. 5, has been delayed; the needed manpower is expected on 15 December.

The specimen forwarded by MDL letter, Code 712/0662 of 25 November 1966 has been analyzed spectroscopically. The specimen was vaporized in the DC arc first at 24A and then at 5A. Examination of the spectra gives the following analysis:

\[
\begin{align*}
\text{Pb} & \quad \text{very strong} \\
\text{Ag} & \quad \text{weak (< 10}^{-5}) \\
\text{Ca} & \quad \text{weak (< 10}^{-4})
\end{align*}
\]

Another sample was then run in the AC arc which emphasizes surface effects. The analysis is

\[
\begin{align*}
\text{Pb} & \quad \text{strong} \\
\text{Si} & \quad \text{trace} \\
\text{Ca} & \quad \text{weak}
\end{align*}
\]

Respectfully submitted,

Arthur L. Bennett
Project Director