Extracting Short-period Surface Waveforms From Seismic Noise for the Purpose of Estimating Local and Near-Regional Velocity and Attenuation Structure

Sponsored by
US Air Force
Air Force Research Laboratory
Space Vehicles Directorate
29 Randolph Road
Hanscom AFB, MA 01731-3010

Contract No. FA8718-07-C-0005
FINAL REPORT

Principal Investigator:
Dr. Karim G. Sabra
Assistant Professor
Georgia Institute of Technology
School of Mechanical Engineering
771 Ferst Drive, NW
Atlanta, GA 30332-0405
(404) 385-6193
(404)-894-8496 (Fax)
1. Work Completed

As reported in the previous quarterly report, three main research areas were investigated during this research effort:

a) Developing time-frequency analysis tools to improve the measurements of group-speed estimates from the ambient noise cross-correlation waveform. The developed methodology was applied to the cross-correlation waveform obtained from seismic noise recorded southwest of the Hawaiian Islands.

b) The “straight ray hypothesis” used in our previous tomographic inversion from Sabra et al. [2005a] was systematically investigated using a two-dimensional ray propagation code, in Matlab. Significant curvature of the ray path was predicted, especially in the basin areas and its surroundings due to the strong velocity contrast existing in Southern California. Such variations should thus be accounted for to improve surface wave tomography maps.

c) The ambient noise cross-correlation technique was applied to the problem of detecting temporal changes around the Parkfield section of the San Andreas Fault associated with large regional and teleseismic earthquakes. The goal is to better understand the response of fault zone material (i.e., temporal changes of fault zone) to the teleseismic/regional events using ambient noise cross-correlation. In particular, the influence of the number of stacking days (from 1 to 30) used for ech cross-correlation waveforms, as well as the influence of the sensor pair locations (to infer spatial variations of the velocity changes around the San Andreas Fault) was demonstrated.

2. Properties Acquired:
None.

3. Reports, Articles and Presentations:

- Zhao, Z. Peng, K.G. Sabra “High-resolution temporal changes around the Parkfield section of the San Andreas Fault “ for special issue of Earthquake Science (EQS) on ambient noise seismology. (accepted for publication)


4. Finances

The budget has been spent accordingly to initial budget estimate.