Competitive Atmosphere Sparks Academic Motivation

Who knows what lurks in the minds of Tech students as they continuously compete for that elusive 4.0? For a few of the aspiring scholars on this campus, a grade point of this caliber is definitely a reality, for most merely a goal, and yet for some a seeming impossibility. The potential is great in each and every student. Unfortunately though, the odds against are often just as formidable.

Competition could never be more blatant than it is in the classroom. There you will find a wide assortment of people all working for the same "A." Unfortunately we are not all geniuses, (although Tech has her share) and certainly we are not all nerds (although Tech has more than her share) — so how is the majority labeled? Merely "average" might be an intelligent answer. We study and attend class, yet when the dreaded test day comes around the chaff is separated from the grain and we, the average students, are once again victims of Ma Tech's unyielding standards of excellence. Often the student who was outstanding in high school finds he must struggle to attain even average grades at Tech. This is a source of motivation for the conscientious student and promotes the competitive spirit that prevails in every classroom.

Research promotes competition among students and professors encourage research outside the classroom through labs, special projects and papers. The student who takes advantage of these extra activities finds a wealth of knowledge to be had as he applies material learned from lectures and texts to experimenting, designing and researching. In this type of atmosphere, students can view the progress of their classmates and learn from each other. They compete for innovative approaches which lead to recognition and a more complete understanding of the subject.

Competition for grades and academic recognition is indeed an important motivation in working toward that diploma from the Georgia Institute of Technology.
Co-ops Pursue Professional Training
Education at Tech is not limited to the classroom only. The Co-operative Program offers Georgia Tech students a chance to gain an invaluable asset — job experience. By alternating quarters of work with quarters of school, a co-op is able to acquire professional training while pursuing a diploma at the same time. A degree candidate can complete the requirements and graduate in approximately five years.

Participation in the co-op program is available to students in sixteen different fields of study. With co-op majors extending from chemical engineering to management and textiles, 2,000 students are annually employed by about 370 businesses and industries. Many co-ops try to find work in their own town so that they can live at home, while others jump at a job offer in different areas. Such companies as McDonnell Douglass and Coca-Cola hire co-ops for work in Atlanta and across the country.

The advantages of being in the co-op program stretch beyond the goal of a degree though; students also gain experience in human relations in the actual business world. Another obvious advantage is the ability of the student to earn money which helps to pay for the next quarter in school. All of these factors tend to point out that the co-op program is a very positive means of education. During their quarter in school, co-ops may participate in activities sponsored by the Co-op club. These activities include Monte Carlo Night, a road rally, and a Co-op picnic.

Though a large amount of time in school is spent dealing with theoretical aspects, the co-op student is able to gain first hand experience in preparation for a career. Many students are offered permanent positions with their respective employers as a result of the efforts put forth during their years at Tech.

TOP: Wayt King adjusts CO₂ flow into a laser at the Engineering Experiment Station. BOTTOM, LEFT TO RIGHT: Mr. John Cross instructs Allen Sherman and Terry Honick in the programming of the IBM 5120. Robert Killett drafts up mechanical drawings for a radio communication van. Tech students gain valuable experience in gambling.
Nerding Out Quickly Becomes an Obsessive Pastime

How many times have we all walked up the "Hill" and passed some guy with a calculator swinging from his belt, six textbooks under one arm, and a review sheet for next week's test in his free hand? At one time or another, most everyone has faced an encounter such as this. Walking across the Georgia Tech campus (generally in the vicinity of the library), one often notices the many diverse groups that make up the Institute's student body. Of these, perhaps the most well-known and at the same time much maligned characters have to be the Georgia Tech nerds.

Nerds affect us all. It is evident when the prof hands back the last test and there is no curve: someone made a "95." All eyes scan the room for the "lizards" who camped out in the library before the test. Disgusted and defeated, we curse the nerds who ruined the class average. Some of us rationalize saying that we don't mind having to cram the night before the big test. It just isn't worth having to give up an EE movie or a two hour "V" run only to study. Or is it?

Nerding out at the library becomes a daily habit. We have all the materials that the class geek possesses, a calculator, books, and six mechanical pencils. Only we carry them all in a knapsack, not a briefcase, just to avoid stares.

When the test comes back, we realize we've done it — there will be no class curve. An uneasy feeling begins to creep up on us as eyes are directed toward us. Yes, we've done it; and they know it. There's a little bit of nerd in all of us.

TOP, LEFT TO RIGHT: Tech coed prepares for Monday morning on Saturday afternoon. Student enjoys intensive homework assignments. BOTTOM, LEFT TO RIGHT: ME students anxiously await the return of a test. Last minute cram session before the test. Nerding out doesn't have to be in the library.
Hard Work and Tradition Sum Up the Tech Experience

Whether you know Tech as a student, faculty member, or alumnus — you know the "Tech Experience." It is the outgrowth of years of teaching young men and women to become outstanding engineers, scientists, managers and architects.

Georgia Tech is an institution rich in a heritage of traditions that are purely its own. There is nothing at any other college quite like the "Ramblin' Wreck" song, the Reck Parade, rat hats or a mythical student named George P. Burdell — these all contribute in part to the "Tech Experience."

Whether the school's popularity has grown out of its unique traditions or through its technological excellence, it is an internationally recognized and respected institution of higher education.

Every Georgia Tech student has reason to be proud, for the admission process is very selective and acceptance indicates an exceptionally high scholastic ability. The competitive environment of Georgia Tech students is apparent in the Scholastic Aptitude Test; Tech students score two to three hundred points higher than the national average. Out of more than 7,000 applicants for the class entering in Fall '79, only 3,000 were accepted.

Georgia Tech graduates usually receive four to five job offers, so they can look forward with optimism to a successful and rewarding career. According to a survey sent to 10,000 alumni, sixteen percent had achieved positions as president, chairman of the board or top executive of their corporations.

Your college years at Georgia Tech can be more than an educational fulfillment, because Georgia Tech is much more than an educational institution — it is a living pervasive spirit, all of our lives — it is "home."
Administration Strives for Significant Improvements

PRESIDENT'S STAFF

STANDING, LEFT TO RIGHT: John P. Chiver, Vice President Development and Public Relations; Edwin E. Rentro, Director Contract Administration; James Stevenson, Acting Vice President, Academic Affairs; Richard A. Fuller, Assistant to President; James E. Dull, Dean of Students; Warren Heemann, Vice President, Development and Public Retreat. SEATED, LEFT TO RIGHT: Gene M. Nordby, Vice President, Business and Finance; Ethel J. Baker, Assistant to Vice President, Academics; Clyde Robbins, Vice President Planning.

DEAN OF STUDENTS STAFF

TOP TO BOTTOM, LEFT TO RIGHT: James Strickland, Director, Counseling Center; Gary Schwartzmueller, Director of Housing; Roger Wherle, Director of Student Center; Edwin P. Kohler, Associate Dean of Students; John A. Wilhelm, Director of Student Health Services; Barry Birkhead, Assistant Dean of Students/Fraternity; W. Miller Templeton, Assistant Dean of Students/International Student Advisor; Keith Ivey, Director, New Students/Parents Program; James E. Dull, Dean of Students.
Crawford Fills Chancellor’s Post

The Board of Regents of the University System of Georgia was organized in 1931. Since that time, many changes have occurred that directly affected Georgia Tech. Almost always the Board of Regents has been the driving force behind Tech’s answers to these changes. True to form, the past year, too, has produced many issues requiring the Regent’s attention.

Early in the summer, Chancellor of the University System, George L. Simpson, Jr. was fired. To fill the vacancy, the Board of Regents appointed Georgia Tech’s Vice-President for Academic Affairs, Dr. Vernon D. Crawford, Acting Chancellor. In a related matter, Georgia Tech was further honored by the selection of President Joseph M. Pettit as Chairman of the committee, formed to appoint the new permanent chancellor.

Outside the Board of Regents’ interior turmoil, the question of Southern Tech’s separation from this Institute to become a four year senior college occupied the greatest board scrutiny. In the past, Georgia Tech has provided guidance and protection in all Southern Tech affairs. Now, however, as a result of Southern Tech’s status change Georgia Tech relinquishes this responsibility. In addition, the Board of Regents acted on plans for a new Industrial Management-Industrial Engineering building. Approved were designs which provided for a building to be completed in phases as funding is made available. The purchase and successive renovation of O’Keefe Middle School also received approval. O’Keefe was used for registration this year, but its future lies as office and lab space for the Engineering Experiment Station.

The Board of Regents go beyond the responsibility of policy-making only, directly involving themselves in the education of students. A primary example of this concern is the Regent’s scholarships. These scholarships are awarded throughout the year reaching $200,000 annually. The students of Georgia Tech and other schools in the University System of Georgia appreciate not only these scholarships, but also the effort put forth by the Board of Regents to improve education within the state.
Arnold L. Ducoffe  
Aerospace Engineering

Joseph L. Pentecost  
Ceramic Engineering

Gary W. Poehlein  
Chemical Engineering

J. Edmund Fitzgerald  
Civil Engineering

Demetrius T. Paris  
Electrical Engineering

Milton E. Raville  
E.S.M.

Harold E. Smalley  
Health Systems

Wayne C. Tincher  
Textile Engineering

John W. Crenshaw  
Biology

J. Aaron Bertrand  
Chemistry

Karl M. Murphy  
English

Gregory Colson  
Music

David Finkelstein  
Physics

Edward H. Loveland  
Psychology

James A. Reedy  
Physical Education
School and Department Directors

Michael E. Thomas
I.Sy.E.

S. Peter Kezios
Mechanical Engineering

L. E. Weaver
Nuclear Engineering

Charles E. Weaver
Geophysical Science

Lucio Chiaraviglio
I.C.S.

Les A. Karlovitz
Math

Louis J. Zahn
Modern Languages

Jon Johnston
Social Science

James L. Priest
Air Force R.O.T.C.

David B. Garvin
Army R.O.T.C.

George N. Henson
Naval R.O.T.C.
Student Skills Developed in Lab

Competitiveness at Georgia Tech is felt by all of her illustrious scholars, but the need to compete provides a very special sort of motivation for the student in the College of Architecture. Only there will you find the Tech record for “all-nighters.” Characterized by drooping eyelids, mass quantities of junk food, and graffiti-filled walls, these charrettes provide classmates with a very unique sense of togetherness. Competition on the whole is a good influence on the final product of the serious student. Rather than being a driving force, this rivalry affects the individual in more subtle ways. It creates an atmosphere where competitiveness and mutual support of classmates coincide. This sense of unity is probably best demonstrated by “design lab.” Here, individualized instruction combined with much emphasis on project critiques help the student to increase in his skill and knowledge in the art of design.

The EE parking lot is the site of the newest addition to the College of Architecture, as well as being the most recent construction on the Tech campus. This building will help to bring together students from such remote and diverse confines as the Couch Building, Naval Armory, and C.E. Annex.

The College of Architecture is presently working on research in many areas of building design and performance. The research program continues to grow in size, capabilities and importance as new proposals are made and grants awarded. A fairly new branch of this college, the research program is gaining national recognition and esteem as was evidenced by its acceptance of the “Human Environment Award” this past year. This award, presented by the American Society of Interior Designers, recognized outstanding contributions in the exploration of relationships between man and his physical environment. Examples of this included studies into energy efficiency and the welfare of elderly and/or handicapped individuals.

The student in architecture at Tech today is presented with more vehicles for learning than ever before. With highly successful design labs, a new building on the way, and a rapidly growing program in research, the College of Architecture is meeting the needs of its students and is providing them with the necessary tools to become proficient in their field. Dean William Fash and his staff are constantly searching for innovative ideas to improve the professional degree.
FAR LEFT: Graduate student sketches ideas.
UPPER LEFT: Johnny Hillock renders project.
OPPOSITE: Wayne Guskind examines drawing.
TOP: William Buschman ponders design problem.
ABOVE: Dean William Fash excited about new building.
Standards Tighten Despite Growth

If competition binds Georgia Tech students together in class, sports and activities, the Engineering College typifies the Tech experience with its success at admitting quality high school students. This success was best demonstrated by the fact that this year's engineering class was 12% larger than last year's class. As the demand for engineers rises, the College of Engineering will continue to experience growth and some unfortunate consequences of that increase, including overcrowded classes, overused lab equipment and stress on the physical facilities of the college. These problems, however, should have no effect on the quality of the curriculum, only on the way in which it is delivered. Some relief was expected to come in the form of teaching assistants as a direct result of the increasing number of graduate students. Thus, the Engineering College, long respected for its undergraduate instruction, is pushing for expansion within the graduate programs.

Research plays a major role in the College of Engineering. The faculty and students, especially those at the graduate level, work together to gain insights as well as practical experience in their chosen fields of interest. Published results of the instructors are common and help to spread the news of the advancements in engineering at Tech. Research is encouraged so that the instructors will be better prepared in the classroom to provide both learned knowledge and motivation for the future Tech graduate.
TOP, LEFT TO RIGHT: ChE student gets first hand experience. Dean William Sangster. BOTTOM, LEFT TO RIGHT: Industrious student experiments with new equipment. Health Systems extern examines a respirator. Cathy Goodrum cleaning out a card.
Growth Forces Program Revision

The demand for Aerospace Engineering graduates continues to increase, and the projections for the 1980's indicate that the supply will be short even with the increasing enrollment of the School. The net growth as determined by the fall quar-

ter enrollment has been at the rate of approximately 50 students per year for the last five years; this rate of growth has resulted in a doubling of the number of students over that period. Two full-time faculty members have been added in anticipation of the increased demand for upper level courses.

The undergraduate and graduate programs are continually revised to reflect the current state-of-the-art. This is particularly true at the graduate level where the research in the School makes a direct contribution to the educational programs of these students. An increasing number of undergraduate students are also being involved in the research programs, and they are encouraged to prepare papers for regional competitions. The research is not only in the conventional aerospace fields, but it is also in the areas of bioengineering, fire safety, noise and solar energy. Many aspects of the curriculum are being revised, including the senior design course which now places more emphasis on the practical aspects involved in the construction of models and mock-ups.
The small size of the School of Ceramic Engineering allowed the faculty to know and take a personal interest in each student. Although Tech's new, stricter admission requirements hurt the school's undergraduate enrollment, this fall the department accepted a record number of graduate students including scholars from seven foreign countries.

The current job outlook for ceramic engineers is better than ever. Employers compete for graduates to work in such fields as brick, tile, glass, and electronic components manufacturing. In addition to work in these areas, new developments by ceramic engineers have included rocket nozzles, jet engine components, electronic circuitry, and fiberglass products for nose cones and missiles.

Several research projects are presently gaining recognition for the school. Among these are a project using a new composite material to develop an electron emitting system. This new material has doubled the capacity of any other substance, and still has enormous potential for growth. The high-capacity material may be very valuable for nuclear fusion and has also been used to excite high-

...research projects are presently gaining recognition for the school...

powered lasers. New research funds and new fellowships for both undergraduates and graduates will result from the establishment of a federally funded Mining and Minerals Research Institute in Georgia. The research and funds generated by this Institute will also benefit the Schools of Civil and Chemical Engineering.
The School of Chemical Engineering added nine new instructors in April, 1979. With enrollment on the rise, the understaffed faculty was given a much needed boost. The research interests of these new staff members was investigated, and the school looked forward to seeing their contributions in areas differing from those of current faculty. A broader area of research interest would serve to expand both the graduate and undergraduate programs.

Ongoing research in chemical engineering continued to be an integral part of the functions of the school and covered a wide range of topics, including air pollution control, biomedical engineering, fine particle technology, polymer science and minerals processing. To expose students and faculty to progress in research, speakers from academic, government and industrial centers were heard.

A better understanding of international research was achieved by those students taking part in the exchange program between Tech and the University of Loughborough in London. Combining efforts with the Engineering Experiment Station and various academic departments at Tech, the School of Chemical Engineering established and developed a Fracture and Fatigue Research Laboratory which provided educational opportunities in the field of material stresses.
Graduate Success Due to Faculty Concern and Research

Each year Georgia Tech graduates approximately two hundred scholars from the School of Civil Engineering. As a result of the School’s comprehensive curriculum, these graduates are fully prepared to enter into professional practice as an engineer or continue their major studies in more advanced areas such as construction, environmental engineering, soil mechanics and surveying. The success of the C.E. graduate is partly due to the outstanding faculty and their concern for improvement.

Both faculty and students are currently involved in many costly research projects. Funding for new contracts this past year totaled over one and a half million dollars. Some interesting projects included a grant from the DuPont Corporation to investigate the use of fabrics in repairing and reinforcing roads and one from the National Science Foundation to analyze the role of cladding systems in structuring modern high rise buildings.
During the '79-'80 academic year Tech's Electrical Engineering department experienced unprecedented growth, as enrollment reached nearly 2000 students. Due to this increase Director Demetrius Paris believes Tech's Electrical Engineering School may be one of the largest in the country.

Striving to balance the emphasis between theory and practice in the wake of expanding numbers, the department offered a certificate program in computer engineering for the first time this year. The program awarded a special certificate in expertise with computers with a student's diploma, if the student finishes an approved sequence of computer courses.

With a continued emphasis on electronics in today's world E.E. research is having a greater impact than many other engineering curricula. Tech's department currently is exploring many facets of electronics including computers, solar energy, electric power, laser systems and communications. Solid state and optic research also offer exotic futures and Tech remains strong in electromagnetic and circuit theory.
The curriculum leading to the Bachelor of Engineering Science and Mechanics is generally regarded to be among the most demanding at Georgia Tech, but the E.S.M. students are up to the challenge; year-after-year they lead the Engineering College in performance on the Engineer-In-Training Examination, and about 50 per cent of them are on the Dean's List at any given time. Experience has shown that graduates of the Engineering Science and Mechanics curriculum perform very successfully in a wide variety of engineering occupations. They function in the same general areas as B.S. graduates in A.E., M.E., and C.E., but they possess greater knowledge of stress analysis (theoretical and experimental), failure analysis, dynamical systems, certain aspects of flow phenomena, and of the fundamentals of structural design.

Students with M.S. and Ph.D. degrees from the School of Engineering Science and Mechanics are especially well-equipped to deal with challenging new problems in stress analysis, vibrations, fluid mechanics, and mechanical and structural design. Most E.S.M. graduate students are experienced in the use of finite element methods of analysis and in the utilization of computer systems. Current areas of specialization at the graduate level include Acoustics, Bioengineering, Composite Materials, Fracture Mechanics, Three-dimensional Scattered-Light Photo-elasticity, and Structural Optimization Techniques.
Externs Gain Insights Through Experience

The School of Health Systems, a field of study using management analysis to improve health care services, developed a program comparable to that of various medical institutions across the nation. A valuable asset of the School is the Senior Externship, enabling students to gain first hand experience in the services of such health care units as hospitals, rehabilitation centers and health centers.

Twelve hours credit are awarded for this quarter of training. Through the experiences of externship the student develops a project, serving to improve health care services at the facility and demonstrate his own learning growth during the program. Another requirement of the extern is the submittal to his professors and peers of a formal, written report and oral presentation upon completion of his studies. Competing with the management of health agencies the School of Health Systems continued to apply management theory to practical experience, allowing students to analyze and revise health services.

Graduating seniors can expect excellent job opportunities as the demand for qualified Health Systems majors greatly surpasses the present supply. Outlets for the utilization of technically oriented H.S. majors are found in agencies such as nursing homes, drug companies, universities and medical centers, hospitals and health-insurance companies.
INDUSTRIAL AND SYSTEMS ENGINEERING

Employment Opportunities Increase

For years even engineers have been puzzled by the question, "What exactly does an Industrial and Systems Engineer do?" But if Tech's department is any indication, the age of the I.E. has arrived. A five-fold increase in government and industry sponsored research over the last five years has made potential employers realize that industrial engineers can often help find the most efficient means to utilize resources.

Spearheading this research increase is the use of computers to solve any type of scheduling and routing problems, ranging from efficient warehouse location to the minimizing of miles for bus routes. The newest innovation in this field is the department's color-graphics computer which displays possible schedules or routes in color-codes, giving the operator a multi-dimensional look at possible solutions.

Dr. Michael Thomas, director of the school, reveals the plans for keeping the reputation built through extensive research. The crux of the changes is a gradual shift in I.Sy.E. curriculum to emphasize "mainline" industrial engineering. This includes more courses in such topics as materials handling and facilities monitoring. To complement this change a large number of new professor slots are beginning to be filled. These measures, assures Thomas, will keep the Tech I.Sy.E. competitive with any other graduate in the country in the job market.

Without a doubt the new I.M. facility will aid in the recruiting of the needed professors. Plans are already on the drawing board for the $9 million project, which will also make Tech more attractive to potential I.Sy.E. graduate students. Primed by the enthusiasm for the new building Thomas hopes what is now the largest I.Sy.E. department in the country will stay one of the best.
School Supports Diverse Research

The industrial demand for today's Mechanical Engineering graduate is increasing at an ever growing rate. There seems to be no shortage of M.E.s, at least on the campus, for it is the second largest school at Georgia Tech. Both the undergraduate and graduate programs attracted record numbers of students. This, coupled with a large number of research projects, produced a faculty shortage. Though a principal need in this program remains qualified instructors, the benefits produced by diverse research has to be considered a positive aspect of the School. These extensive research programs served to broaden students' knowledge and allow them to become more aware of the M.E. job market.

Current research involved many diverse problems. One research project was involved with the investigation of other energy resources and has led to a classroom which is air-conditioned by solar energy. Research is also being conducted in the area of acoustics, where a technique is being developed for the detection of underwater objects. Another project involves improving tool life using ion implantation by vacuum techniques. Despite the strong emphasis on the technical aspects of a problem, M.E.s are still concerned with the effects of their work from a psychological aspect. They realize they must go beyond purely commercial considerations and determine how their endeavors influence society as a whole.
ANS Works to Regain Public Trust

In the wake of the recent Three-Mile Island incident, the School of Nuclear Engineering has been actively involved in working to regain the public trust. A National Nuclear Energy Day held on May 1, 1979 and organized by the American Nuclear Society, a student-run organization, yielded valuable information on the benefits of nuclear engineering. Enlightening speakers and exhibits served to make the day a learning experience for all.

The Department also presented another program on the nuclear energy question at local high schools. This presentation, consisting of a slide show and a question and answer session, dealt with the procurement and disposal of nuclear fuel. A third project, instituted by the school’s faculty involved the use of a computer simulator. Here the audience participated in deciding the future of energy resources.

The purpose of these programs was to dispel any myths which may have been created by the media. The programs also sought to inform the public of the contributions made by, and the necessity for, nuclear engineering.

... the School of Nuclear Engineering has been actively involved in working to regain the public trust.
TEXTILE ENGINEERING

Specialization Is Key to Study

The Textile Engineering School at Georgia Tech is a major academic center for the textile industry. Textile students must learn to adapt to the rapidly changing textile market. In an effort to meet the needs of the students, three different degree programs are offered. A textile undergraduate student may major either in textile engineering, textile chemistry, or textiles. By specializing in this manner, basic study is done in the areas of either engineering, chemistry, or industrial management. These courses serve to give the textile student a broad background with which to enter the job world.

Increasing demands within the textile field have created the need for extensive research projects. One program funded by the U.S. Department of Energy dealt with developing modifications in the processes of dyeing, drying, and finishing textiles. This work has produced up to a 40% reduction in energy use. A study involving the development of fiber-reinforced plastics which are not only light, but strong, was sponsored by the Office of Naval Research. The Textile School developed a research facility specializing in carbon fiber exploration.
TOP, LEFT TO RIGHT: Dr. Dallas teaches management principles. Dean of College of I.M., Dr. Charles Gearing. Computer printout reviewed and revised by I.M. student. BOTTOM, LEFT TO RIGHT: Management Science interests I.M. students. Current affairs demand knowledge of economics.
The need to excel at Georgia Tech is probably felt by students of Industrial Management more than those of any of the other colleges. This competition is a driving force for students, as they strive to prove that I.M. is not an easy major. Compared to that of other degree programs at Tech, the course of study for I.M. is certainly not any less rigorous, and in fact often demands much more of her students. Not everyone is cut out for management. The College of I.M. at Tech is highly respected for the quality of its students and curriculum. These strong points are a direct indication of the outstanding faculty and administration found within the school. Drawing students from across the nation, the graduate program also reflects the quality of this college and the excellence of the Institute in general.

Plans for improving the facilities inside the I.M. College are under way. A three-winged complex to be shared with the School of Industrial and Systems Engineering hopefully will be completed by fall of 1982. The site for this long-awaited and needed building is the field across from the Student Athletic Complex.

The Executive Forum, a lecture-type program presented by the College of Industrial Management, enjoyed another successful year as renowned specialists in various areas of management spoke on their respective fields. The forum seeks to assist practicing executives in keeping up with the current problems and insights towards a more effective managerial environment. The program enables business executives and I.M. faculty to interact with other business leaders and nationally prominent academicians. This past year, the forum provided a learning experience by presenting a diversity of views and contrasting perspectives focusing on current issues in the field of management. The works of the Executive Forum are helping to enrich the faculty of the college and in turn the students they instruct.
Certificate Programs Stimulate Student Interest

The seven schools and eight departments that make up the College of Science and Liberal Studies provide a means by which the Georgia Tech student can develop his interests beyond the confines of his chosen major. The diversity of the program offers all students a change of pace and even serves to strengthen many aspects of their particular major. The College realizes the basic need for traditional, humanistic thought, and through its curriculum attempts to satisfy that need. Since graduates from technical institutions are faced with the responsibility of helping man cope in the advanced world, a long-term goal of the C.O.S.A.L.S. is to offer a program in conjunction with the other colleges to prepare the student in this particular area. Research is presently underway in the Department of Social Sciences to investigate the matter. Supported partly by the Exxon Foundation, the results of this study could become a model for social science education in other technical institutions.

Student enrollment jumped significantly from past years in all C.O.S.A.L.S. major schools, especially in the Information and Computer Science area, presently accounting for nearly one third of the total. Changes have been implemented in all schools and departments to meet the needs of the students. Freshman courses, especially in chemistry and English are constantly being reviewed and revised to identify and help the capable but under-prepared student. For the student of a higher rank, the College offers a Minor's Certificate Program in the Social Science, English and Modern Languages Departments. This program calls for the completion of a required sequence of courses enabling the student to receive a degree like that of a minor. The program continues to gain popularity.

The College of Science and Liberal Studies witnessed a year of growth and improvement. The faculty and staff continued to be aware of the needs of the students of not only the C.O.S.A.L.S., but also of its three sister colleges and were willing to make changes as needed.
TOP, LEFT TO RIGHT: Freshman lab provides a strong base in chemistry. Keypunch machines used by students of all majors. BOTTOM, LEFT TO RIGHT: Biology students analyze starch content. Dean of College of Science and Liberal Studies, Dr. H. S. Valk.
Graduates Seek Advanced Degrees

An increasing need for the study of the biological aspects of energy production, pollution, and overpopulation has demanded a well-trained biologist. The School of Biology at Georgia Tech seeks to produce an individual with the knowledge to meet these demands. The principal thrust is toward preparing students to be competitive in gaining admission to graduate and medical schools. Almost two-thirds of Tech's graduates go on to postgraduate study. For those who do not, the job market is great.

An excellent opportunity for study is made available through a summer program at the Skidaway Institute of Oceanography in Savannah, Georgia. This program places an emphasis on marine biology and is under the direction of Georgia Tech biology professor, Dr. David Gillespie.

The success of biology graduates is due in part to quality faculty members, 75% of whom possess research grants. Current research deals with issues such as chemical evidence of biological life on Mars, DNA study and exploration into cancer antibodies.

Though the school is small, it is growing and will continue to do so as long as biology plays a large part in the study of world problems.
Demanding Curriculum Required by Department

The curriculum in the School of Chemistry at Georgia Tech offers one of the most intensive degree programs in the country. Requiring more hours in lab than needed for professional certification, the Bachelor of Science curriculum demands as much chemistry as the combined B.S./M.S. programs at many schools. Chemistry is further strengthened by the work of its graduate students. Because of the extensive research effort undertaken by this School, graduates and undergraduates alike have access to modern instruments, facilities and grants allowing for part-time employment. These opportunities provide students in the School of Chemistry with a background few institutions can match. Georgia Tech chemistry majors are well prepared to enter both medical and dental schools, as well as careers in industrial and government laboratories.
Courses Draw Student Interest

The English Department at Tech, which is predominantly an engineering school, has long been forced to take a back seat to the "Maths and Sciences." In an effort to increase student interest, this department has recently imple-

... Writers in the Age of Darwin, Chaucer, Contemporary Fiction, the Literature of the Bible, and Shakespeare.

mented a series of courses designed to integrate the humanistic and technical aspects of a Georgia Tech education. The department now offers a wide range of elective courses in literature such as Writers in the Age of Darwin, Chaucer, Contemporary Fiction, the Literature of the Bible, and Shakespeare. These courses have gained popularity with Tech students. Because of this growing interest, the department is presently designing a Certificate in Literature which would require the completion of five assigned courses with a grade of C or better. Somewhat like a Minor in Literature, this certificate will be the second to be implemented as part of the course of instruction for the department. The popularity of the first, the Certificate in Technical and Business Communication, has steadily increased as Architecture, Engineering, Industrial Management, and Science majors realize the need for effective written and oral communication skills. Through the efforts of Dr. Murphy and his staff, English at Tech is becoming almost as important a tool as the calculator.
**GEOPHYSICAL SCIENCE**

Environmental Problems Examined

Studies under the School of Geophysical Sciences include both the physical and chemical makeup of the earth, its waters and its atmosphere. Contemporary emphasis has been placed on studying man's modifications of his environment, considering both present and long term effects. The curriculum at Tech is especially conducive to studying environmental problems and encourages joint efforts with engineers in researching solutions to these problems. A Certificate Program is offered for students who wish to complete a designated sequence of courses in Geophysical Sciences. Three areas of study constitute this program — geochemistry, geophysics, and engineering geology.

As society has become more aware of its adverse effects on the environment, the school has experienced a significant increase in faculty and student enroll-ment. This increased awareness has resulted in greater research. Nearly two million dollars of funding for research enabled faculty and students ample opportunities to investigate various aspects of the science. Some of the major areas of concern include atmospheric sciences, geophysics, and geo-

chemistry. In addition to the efforts in these areas, a great deal of emphasis is placed on understanding some of the earth's major processes and problems. Trends in environmental awareness and concern for natural phenomenon insure the future growth and importance of the school.
Increasingly computers are becoming an integral part of daily existence, and statistics from the School of Information and Computer Science point this fact out. In the last five years the total number of I.C.S. majors at the undergraduate level has increased by over 125 percent. Georgia Tech is the base for one of the largest university departments in information and computer science, producing nearly five percent of the graduate degrees awarded in this field in the nation.

The School also has one of the largest computer labs devoted to computer research and education and presently houses seven minicomputers. Future expansion calls for five extra minicomputers and an increase in the number of peripheral terminals available for student and research activities to fifty-five by the end of next year. In addition to the Computer Systems Laboratory the School also operates a Digital Hardware Laboratory, a Human Information Processing Laboratory and a CDC Cyber-70 and a CDC-6400, Georgia Tech's main computers.

Besides stressing undergraduate teaching, research also played an important role in the efforts of the School. The most heavily funded project deals with fully distributed processing systems being done in conjunction with the Office of Naval Research, the U.S. Air Force, the Rome Air Development Center and the General Systems division of I.B.M.
Microcomputers Expand Facilities

This year the School of Mathematics continued to develop and improve teaching methods with several new approaches to classroom instruction and the permanent adoption of some experimental projects. Dr. Les Karlovitz, Director of the School, was mostly responsible for the addition of microcomputers to aid the student in understanding and comprehending concepts on all levels of math courses. These computers are equipped to send graphics to monitors in several classrooms and lecture halls across campus. Programs are used by the lecturer to clearly convey mathematical concepts, process and application. Students have access to the microcomputers during scheduled lab hours to stimulate their interest and encourage experimentation.

Recitation type classes and the Math Lab have become integral parts of math instruction and are now considered permanent fixtures in the program. In addition, the School has made available a student lounge. Although designed to encourage interaction of math majors, the lounge has become a popular meeting place for math students of all disciplines. This area is used for homework, exam preparation or simple relaxation.

Math courses are a very important part of every major school’s curriculum. Thus, the School of Math continues to be open and responsive to any advancements that might aid the student in his mathematical endeavors.
Language Lab Enhances Learning

When thinking of modern languages, one usually thinks of French, Spanish, or German, but what about English as a second language? To many students at Tech, English is a foreign language, and their need to learn English has brought about some changes in the Modern Language Department. The enrollment for English as a Foreign Language has almost doubled from last year. Three new courses designed particularly for non-native speakers of English have been proposed. There has also been an increase in laboratory teaching aids for courses in English as a Foreign Language. These changes will help non-native English speakers to be more competitive in the job market and will help to lower the barriers raised by language differences.

This year's enrollment in the Modern Language Department reached an all-time high. Spanish and French continued to be the most popular of the foreign languages at Tech. In addition to these, German, Russian, and Portuguese were taught, and Italian was offered this year for the first time.

As American corporations expand their offices to different lands, it becomes increasingly necessary for businessmen to be able to communicate in the language that is predominant in that country. Sometimes it is not enough to speak the language of math or science, but one must go beyond that and relay information to people in their native tongue.
Musical enthusiasts were welcomed by all groups of the Music Department and could find the band, chorale and jazz ensemble on the ground floor of the Couch Building in Area III. Members of each group are forced to hold late afternoon rehearsals, avoiding conflicts with their normal academic schedules. Limited academic credit is given for participation, even though most consider these groups to be extracurricular in nature.

Fall quarter saw the Georgia Tech Band on the football field clad in new uniforms and playing many tunes with the Rambling Wreck being the all time favorite. The musicians worked to entertain the fans by marching through the football season and continued entertaining through winter and spring playing in the concert band. These later quarters also saw the students studying basic theory, styles and periods of music.

Hoping to accommodate as many voices as possible, the Tech Chorale met in the late afternoons three days a week. Students earned free elective credit for their efforts, one per quarter with twelve as the maximum to be awarded each student. In keeping with all aspects of Chorus, members studied the composer’s style and vocal techniques. A spring tour scheduled for this year included performances in many sections of the nation and songs in four different languages. The Chorale continued to search for ways to bring out and fully demonstrate the talents of each of the eighty members.

Teaching any humanity or art-related subject in a technical institution challenges even the most talented liberal arts major. Ron Mendola, director for the Jazz Ensemble, has not only lived up to this challenge, but has also proven the genuine talent of his dedicated students. The band concentrated on improvising works of many popular artists, including Maynard Ferguson, Stan Kenton and Woody Harmon. Plans for the ensemble’s future included a host of concerts for Tech students with greater emphasis on campus bookings.
Strength Exhibited in Job Market

Trapped in a decade when the engineers turn up their noses at pure science, Tech's Physics Department combines a solid program and heavy research to hold its own in the fight for students and research funds. Under the direction of Dr. David Finkelstein for the past year the department has increased its research, both in basic scientific study and sponsored projects. The most active area this year is atomic and molecular physics, which alone brings in over half of Tech's physics research funds. Other popular areas include solid state physics, biophysics, statistical and thermal physics, and optics.

But the strength of Tech's department might best be exhibited in the job market. After several dry years of physics job opportunities graduate physics majors are now actively being sought. Armed with this fact the Physics Department is hoping to attract more graduates to help with the expanding instruction and research activities.

The Physics Department prides themselves on being a department for those students who wish to see beyond the plug-and-chug of engineering and who are intrigued with the theory of pure science. For these reasons many physics majors are transfers who have gravitated from other departments when they found engineering stifling their creativity.
School Offers Joint Courses of Instruction

In a continuing effort to reach out to the people and the situations that make up life at Tech, the School of Psychology has been extremely innovative in its endeavors. This program has combined with the College of Architecture as well as with the College of Industrial Management to offer joint courses of instruction. These courses mark the beginning of what hopefully will become a trend in technical education toward a better understanding of the student and the problems he faces.

The teaching assistants in the School of Psychology are among the most highly qualified of any on campus. Before the student is allowed to teach he must complete a rigorous program which involves various seminars as well as instruction on teaching methods and lecture planning. Once he has met the requirements he is allowed to instruct in the classroom. During this time, however, his personal learning experience continues as he is videotaped while teaching. The assistant reviews the tapes along with fellow instructors and uses their criticisms to improve his techniques. This program of training has proven beneficial to both students and instructors and will continue to be employed.

Many Tech students studied in Kenya, East Africa last summer through the efforts of Dr. Terry Maple and the School of Psychology. “Field Study in Animal Behavior” is a six hour course in which the student follows and observes wildlife to study their interactions with the environment and the people of Africa. The six week adventure requires the student to complete four to five books on wildlife, keep a daily journal of field observations, and take a final exam. The course is especially effective in the analysis of the total ecosystem of East Africa and the preservation of wildlife in their natural habitats.
PHYSICAL EDUCATION

Human Performance Lab Implemented

Innovative ideas were the key to a year of growth and expanding curriculum for the Physical Education Department. Under the watchful eye of Dr. Jim Reedy the department's ample stock of courses was strengthened by the addition of the

Designed to be the first of many such lab-based courses, it investigates the effects of physical activity . . .

Human Performance Laboratory. Designed to be the first of many such lab-based courses, it investigates the effects of physical activity, exercise and fitness. Participants in this new program learn of their personal physiological state. Lab and classroom combine to involve the student in physical workouts as well as conceptual approaches to fitness. The future core of Tech's physical education requirements will be based on this course in basic fitness concepts.

Planning is underway to use the laboratory to serve the Institute in an AdultFitness Program. This will benefit faculty, staff and alumni and will include educational presentations on fitness, fitness evaluations, and programs for exercise and weight control.

Research continues to be an important part of an expanding curriculum. As more funds become available to the department the lab will become a greater resource, as it provides the best possible foundation for intensive research.

TOP: Dr. Carpenter distributes material in Philosophy of Science and Technology class. BOTTOM, LEFT TO RIGHT: Students learn the fundamental eight points of attack in foil fencing; Testing in Human Performance Lab to determine physical fitness; Students discusses current issues in history class; Dr. Matthews analyzes the industrial democracy of Germany.
SOCIAL SCIENCES

Exxon Foundation Funds Project

The Social Sciences Department assumes an important responsibility; it aids in providing a base for the formation of human understanding. Their goals are to generate student interests, sharpen ideals and occasionally change values.

The faculty use their findings to enhance classroom instruction, and students are encouraged to investigate projects with their instructors.

Through the studying of history, philosophy, political science and sociology, the department seeks to acquaint the students with the diverse thinking of past and present civilizations. One program that has been established allows the student to gain a certificate in one of several areas associated with the social science disciplines. Through this program he can gain knowledge in personal areas of interest. In addition, the department offers several courses in conjunction with the Architecture, I.M. and Engineering colleges, as well as the Physics and Psychology schools.

Research conducted in the social sciences has increased steadily in scope and total contribution to the department. The faculty used their findings to enhance classroom instruction, and students are encouraged to investigate projects with their instructors.

The Exxon Educational Foundation funded a project this past year to examine the role of the humanities and social sciences in technical and professional education. Information has been gathered from various sources including students, alumni and faculty members. This long-term analysis could result in a model program for social science education in technical institutions across the country.

A genuine concern for the Institution and the students she attracts keeps the Department of Social Sciences open and responsive to better ways of increasing the vast store of knowledge they have already attained.
TOP: Flight Commander Davis and assistant prepare to lead marching drills. BOTTOM, LEFT TO RIGHT: Rangers compare notes on future mission. NROTC's enjoyed their last year in the Armory, one of the six original facilities of its kind in America.
Record Scholarship Recipients Enhance ROTC Program

As the largest ROTC detachment on campus this year, the Air Force ROTC continued to receive record numbers of scholarship students, with the second largest number of recipients in the nation. Total enrollment for AFROTC has doubled in the past three years, and out of the 280 students enrolled, fifty-five were women. Emphasis in the leadership lab has been on the "real AF" with activities paralleling those of members on active duty. The content of courses has been updated to keep current military objectives in order with contemporary needs.

With the addition of Lt. Col. David Garvin, the Army ROTC department increased its numbers while keeping standards high. More scholarships were given by the Tech detachment than any other school in the South, and over 50% of those who chose Tech are on scholarships. The average SAT score was 1250, and curriculum was reorganized and expanded, with emphasis on leadership and management training. Extracurricular activities involved field training, while voluntary outings included mountain climbing and rapelling in the north Georgia mountains and rafting on the Chattahoochee. Public attitude toward the ROTC's changed greatly with events occurring in Iran and Afghanistan. An increase in interest stimulated general awareness on the subject of world affairs, with a growing number of questions arising as to the role of Army ROTC in military activities.

The Naval ROTC detachment at Tech, celebrating its fiftieth anniversary on campus, is spending its last year in the old Naval Armory. One of the six original NROTC structures in the country, it will be demolished to make way for the new Athletic Complex, and the naval unit will be moved to the old CE building. In the naval program, which is composed mostly of engineering majors, 60% of an individual's grade is based on academics. Most students take a heavy course load with an 18 hour per quarter average, but through the tutorial program offered, they are able to maintain a higher than average GPA. Summer cruises, which are required for those students on scholarship, occur after the freshman, sophomore, and junior years. Assigned to the Mediterranean or West Pacific Ocean, they learn about lifestyles, mechanics, and administrative procedures.
Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

NOT PICTURED: Bob Holloway, Patrise Perkins Hooker, Jack Markwalter

Founded in 1930, Georgia Tech’s chapter of Omicron Delta Kappa honors juniors and seniors who have proven themselves outstanding in the areas of academics, athletics, social service, journalism and creative and performing arts. Only distinguished leaders with at least a 2.8 GPA are considered for membership.

NOT PICTURED: Bob Holloway, Patrise Perkins Hooker, Jack Markwalter

124 / ANAK — Omicron Delta Kappa
Phi Kappa Phi

SENIOR SCHOLASTIC HONORARY

The twelfth chapter in the nation of Phi Kappa Phi was established at Georgia Tech in 1914. Recognition and encouragement of superior scholarship in all academic subjects is the purpose of this honor society. To be considered for membership, the candidate must rank in the top ten per cent of their class as well as display good character and superlative academic achievement.

Roger B. Ackerman
James Bruce Akins
Julie Ann Armstrong
Michael Joseph Ashworth
Nelson Carlton Baker
David E. Ball
Daniel Ragon Barnett
Irene A. Belinfante
Christie Marie Bellah
David R. Bell
Roger Otis Blackwell
Lee S. Blankenstein
Kevin Currie Boteler
James Louis Bruister
Gary S. Brush
David H. Burgess
Robert H. Callaway, Jr.
William P. Cameron, III
Michael Cantrell
Daniel Louis Castagno
Jerome C. Cecelic
Nathaniel Chafee
Pamela D. Chandler
Alexander Te Chen
Patsy Braden Chipman
Alane Ingrid Clay
Peter Vincent Colan
Laura K. Colesman
Thomas R. Collins
Larry William Colwell
Mark Alan Corbin
Richard J. Corbin
Patrick Lee Cox
Daniel Hammond Craft
Thomas Daniel Crowley
Bruce Milburn Cummins
Betty B. Dalton
James M. Darchuk

Robert Bruce Darling
W. Gordon Davis
Bruce Eisenman
Alec Kaleo Epting
David B. Etzkorn
Thomas John Farish
Nancy Jo Flint
Eugene Paschal Foeckler, Jr.
Yum-Leung Frederick Fong
Robert Scott Fortenberry
Kelley Sue Franzman
Leo V. Ghitis
Edward Bryan Gibson, III
James Allen Godsey
Thomas J. Gratzek
Robin B. Gray
Michael John Hadsell
Christopher J. Hall
John Michael Ham
James G. Hampton
Douglas P. Hardin
Beverly Jananne Harrison
Jason D. Harry
John Hartka
David Stimson Harvey
Robert Steven Hasty
Donald A. Hawley, Jr.
Catherine Spreen Hearn
Lisa B. Hibbard
Joanne Louise Hilton
Bradley G. Houk
Billy K. Huh
Lila Alise Humphries
James J. Jakittsch
Raul Ernesto Jimenez
Harold Timothy Johnson
William Glenn Kenney

David E. Kirsch
Ann Louise Knickmeyer
John Anthony Koegler, Jr.
Peter M. Krasnoff
Joel Stephen Langsfeld
Jeffrey Scott Lantz
Louis Anthony Leskosky
Brenda Lorie Long
J. Clay Loyless
Tanya M. Mamantov
William A. Matthews
Timothy Marvin Mann
David Massie
James S. McFarland
Kenneth W. McLain
Laura Miller
Michael Grady Miller
Richard B. Miller
Andrew Gilbert Morgan, Jr.
James A. Mosser
Jorge A. Mottoa
Tamara B. Nahari
Helen Harrold Naugle
Peter Michael Nelson
Teressa J. Newberry
Randolph C. Nicklas
Patricia E. Olcott
Robert F. Olliff
Henry Walter Lilly Owen, III
Meridee E. Owens
Wallace L. Palmer
Stephen G. Pearse
Edward John Pearson
John B. Peatman
John Edward Penn
Mary Ellen Pfister
William Allan Poe

Scott R. Preston
Stephen E. Ralph
James William Rembert
Richard B. Robbins
John William Maynard Roberts
Raymond T. Roberts
Ernesto Rodriguez
Timothy Ray Rowland
Wilburn Eric Rowland
Jon A. Sanford
Martin H. Sauser, Jr.
John B. Savage
Paul William Schwotzer
Waymond R. Scott, Jr.
Paul B. Semmes
Joan Sexton
John William Shriver, III
James Gregory Smith
Michael Stuart Smith
Stephan David Solleau
Walter Hunter Stamper, III
Wayne Robin Stanford
Richard A. Steenblick
Thomas William Stevens
James R. Stevenson
Glen Thomas Swanger
David A. Talley
Charles T. Vaughan
Gordon L. Warren, III
Joseph C. Whitaker
Dale Edwin Wickizer
Franklin Pierce Williams, III
Michael F. Williamson
Michael J. Willis
Barbara J. Winship
Janice Wiseman
Louise S. Wyatt
Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of their engineering discipline are recognized by Tau Beta Pi. Undergraduate students who rank in the top fifth of their senior class or the top top eighth of their junior class are considered for membership in this honorary.
Superior scholastic achievement among college freshmen is recognized through the honor society of Phi Eta Sigma. Founded in 1923 and chartered at Tech in 1930, the society rewards freshmen academic excellence. All students who attain a 3.5 GPA or better during their first freshman quarter or by the end of their freshman year are eligible to join.

Michael C. Andrews
Kevin E. Atkinson
Stephen W. Attaway
Alan S. Bach
George P. Backhaus
Andrew S. Baltinger
Craig S. Barber
Dewey F. Baxter, Jr.
James L. Begley
Fran C. Bell
John T. Bell
Christopher J. Billings
Anthony C. Bills
Martha N. Biggerstaff
Howard P. Blount, III
Nancy E. Bradley
Alan T. Brady
Mike A. Bryan
Mark D. Buckholz
Michael S. Bucko
Edward C. Burdell
Norval F. Burgy
Joseph A. Burks
Allan D. Butler
Donna J. Bynum
Steven P. Caldwell
Bradley H. Calhoun
John L. Calvert
Nigel A. Campbell
Richard L. Cannon, Jr.
Richard T. Casper.
John C. Chamberlain
Glenn H. Champion
Susan T. Chapman
Christopher M. Ciampaglio
Edgar R. Clintron-Rosa
Joseph A. Clements
James R. Cobb
Mark A. Collins
Charles K. Cole
Stuart S. Collins
Matthew F. Conner, Jr.
Thomas F. Cotter
Robert A. Crab
James C. Craig
John D. Cresoler
Oliver J. Cross, III
Lee D. Daley
Leo E. Daugherty
Donald J. Daugherty
Susana C. Deskpo
Cheryl A. Dorson
Kathryn D. Dunlop
Robert A. Dukes, III
Eric S. Eason
Michael A. Ernst
Jon A. Faulkner
Joseph F. Ferguson
James N. Ferguson
William M. Fields, Jr.
Anthony E. Fiorito
Stephen R. Fleming
Mark A. Fletcher
Daniel F. Flowers, Jr.
Steven A. Fluevog
J. Fleming Free
Peter D. Friedman
Robin K. Friedrich
Mark D. Fries
Jeffrey S. Gallinat
Ellis P. Gardner
Mary M. Garth
James H. Gerlaugh
Vincent M. L. Gieo
Griffith A. Godwin
David R. Graham
Lori S. Greenberg
Lee B. Grey
Herald D. Groh
Mark D. Guastafredo
David J. Guildry
Don S. Gumas
John D. Guzak
William R. Hardell, Jr.
Paul H. Harris
Keith E. Hark
Karen L. Harrill
Jeffrey E. Harris
Pamela L. Hartman
Catherine H. Harvill
James R. Hicks, Jr.
Jacqueline M. Hill
Dwayne R. Hipp
William R. Hohorst
Roger J. Holden
Clyde W. Holt, Jr.
Jacqueline Holt
Craig L. Horn
Rickey S. Howington
Jamie N. Hulett
Robert T. Hutcherson, Jr.
Peter A. Jensen
David P. Joyce
Cory F. Juhl
Eric T. Kaufman
Kenneth S. Keen
Robert J. Keller
John A. Kennedy
Linda K. Kenner
Alexander G. Kiehl
Gregory J. King
George F. Kirkman
Robert G. Kraus
Carol A. Kunkel
Mitchell E. Lambert
Ludenia R. Lampley
Thomas Q. Langstaff
Frances L. Langton
Robert T. LeCroy
John H. Lee
Wai Lee
Lauren N. Lewis
Neal Sumner Lewis
April LouNora Love
Govanitz L. Lowndes
Paul F. Ludlow
Scott M. Luettich
Allan L. Lydon
Norman E. Lynch
Keith H. Maberry
Karen P. Magee
Andrea Markwalter
Julia N. Martin
Thomas G. Martin
Charles W. Matthews
Michael J. McCarthy
Sharon A. McCune
Walter R. McKibben
William K. McKibben
Lindsay K. McKinley
Kimberly L. McMahon
John H. McNeill Jr.
Sandra G. Meredith
Andrew H. Miller
Brenda B. Miller
Jeffery G. Miller
Kathleen A. Miltiken
Julio I. Miranda
Joseph G. Mitchell
Jack C. Mitchell
Paul M. Morris
John C. Moss
Scott Mosteller
Michael F. Muncy
James M. Murphy
Thomas J. Murphy
Steven P. Newman
Hai Quang Ninh
Amy L. Nottingham
John T. Odom
Steven N. Osterman
Karen L. Owens
James R. Palmer
William C. Papa
Alan T. Parish
Steve H. Park
Wayne A. Patten
Guy Patterson
Katherine A. Petman
Ronald Pels
Sharon R. Penn
James L. Perry
David L. Petree
Acy C. Platt
Suksan Pocharasaangkul
Daniel D. Polhoy
Daniel C. Polstra
George M. Pomery
Katherine D. Porter
Katherine M. Proctor
Alan A. Rakes
William H. Ralph
Mark D. Rambeau
Carlos A. Ranaldi
William K. Reeves
Robert L. Reihgen
FRESHMAN SCHOLASTIC HONORARY

Phi Eta Sigma
Briarean Society

CO-OP SCHOLASTIC HONORARY

Founded at Georgia Tech on July 16, 1922, the oldest co-operative honorary society in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative grade point average and have completed five quarters of academic study in the Co-operative Department.

Michael Abadie
Judy Adams
William Ayres
Robert Baltar
Richard Barcori
Walter Barry
John Battler
Eric Berkooh
Karin Boettcheher
Byron Brasseux
Karen Brooks
Gary Brown
Wesley Bryan
Alan Burgess
Edwin Carlile
Reid Castrodale
Ralph Carter
Mitchell Cline
David Coleman
Danny Colestock
William Conwel
Greg Corcoran
Bruce Cummins
Joe Davidson
Irene Doris
Shawn Dunleavy
Greer Emmonds
James Epstein
James Etherton
Melvin Ferebee
Carol Fleishman
Paul Franklin
Robert Friedman
Robert Gemmel
Lisa Gibbs
Clay Goudy
Albert Gray
Gregory Green
Doug Guillory

Clyde Gumbert
Brenda Harrison
Paul Hassink
Kenneth Hawkins
Gordon Hays
Richard Helkowski
Lisa Hibbard
Mary Beth Hinson
Doug Hintz
Bill Hitch
Doug Hornaday
Keith Huking
Joseph Humphrey
Gordon Hyatt
David Johnson
Rick Johnson
Bill Jones
Mark Kaiser
Vince Kegel
Bob Kipp
William Krepps
Julie Lange
Bill Lansford
Donna Lantz
Tim Libert
Robin Little
Russell Lowery
Dan Maddox
Robert Mann
Michael Martucci
William Matthews
Peter McCann
James McKenzie
Doug McMillan
Robert Menger
Robert Merkel
Issac Moore
Mark Morgan
Jim Morrison

Deborah Murphy
John Nestor
Brian Nutt
Bernard Oles
Dave O'Neil
John O'Rourke
Nancy T. O'Rourke
Patrick O'Rourke
Linda Podger
Mary Jo Preti
Robert Rabun
John Rahaim
Robert Rice
Mark Robb
Dave Rucinski
David Sellinger
Mike Sheff
Stephen Solleau
Jean Souza
Daniel Sparks
Dave Stewart
Denise Stokes
Richard Tankersley
Douglas Taylor
Walter Thain
Terry Tibbits
John Tumblin
Gary Turbeville
Meeks Vaughn
Sam Venable
Frank Wagener
Paul Walker
Tim White
Skip Wiggins
David Williams
Frank Williams
James Wolford
James Worsham
Order of Omega

GREEK HONORARY

The Order of Omega honors exceptional leadership in IFC activities. Junior and senior fraternity members are judged on outstanding scholarship as well as leadership qualities.

Scott Blackstock
Anne Cox
Tim Franke
Randi Friedman
Emily Ho
John Hodges
Margaret Hutchinson
Ralph Kytan
Noelle Marier
Debbi McGill
Mary McGowan
Matt McKenna
Will McKnight
Mike Miller
Tamara Phillips
Mike Reise
Marie Russell
John D. Snodgrass

Who's Who Among Students in American Colleges and Universities

Since 1934, Who's Who Among Students in American Colleges and Universities has been providing national recognition to outstanding campus leaders. Nominees are judged on academic standing, community service and leadership in extracurricular activities by a committee of administrators, faculty and students. Candidates must be college juniors, seniors or graduate students.

Frederick C. Anderson
Julie A. Armstrong
Phillipe P. Bergeron
Paul R. Beshears
Kenneth G. Bonning
George T. Bruning
Stephen J. Callahan
Jerome C. Cecelic
Laura K. Coleman
Daniel H. Craft
James M. Darchuk
Bruce A. Files
Lisa A. Gareis
Clay F. L. Goudy
John W. Harder
Brenda D. Harrison
Rosemary Higgins
Robert S. Justice
William G. Kenney
Ralph LaSalle, Jr.
James J. Lesinski
Richard A. Luetlich, Jr.
Michele K. McCullough
Susan G. McGuffin
Glenn Michael Miller
Andrew G. Morgan, Jr.
Teresa J. Newberry
Patrise Perkins Hooker
James T. Petroski
Tamara E. Phillips
Richard B. Robbins
Howard L. Rubin
Richard C. Sapp
Dawn M. Schisler
John W. Shriver, III
Catherine N. Spreen
Patrick R. Trischitta
Robert J. Viguet, Jr.
Dale E. Wickizer
Mixed Emotions Fill Last Moments

What can be said about graduation that has not been said a thousand times? The feelings are so universal, yet they vary from one individual to the next. By most standards it is considered to be an honorable occasion, the ceremony marking a genuine turning point in the life of the graduate, highlighted by special garb, decorations and an invitation to the president’s home.

Years of blood, sweat and tears are brought to a grand finale as the Ramblin’ Reck is sung and the graduates march onward. To many it is a time of anxiety. Questions distort the magic of the moment as to the meaning of it all. Was it worth it? Am I really more intelligent now? What next? To others the day still seems somewhat of a disappointment.

As a rat at Tech it seems so far away, and the following years spent in preparing for the degree all had that single day as a goal to aim for. The years flew by and before you knew it the final grades were calculated; the walk was taken; President Pettit’s hand was shook, and then it was over; another day at Tech ended. Graduation is a unique experience full of mixed emotion and anticipation to be had only if the student is willing to put forth the effort that it takes.

TOP, LEFT TO RIGHT: Graduation reception took place on President Pettit’s lawn. Professor Bush places hood on doctorate recipient. FAR RIGHT: Jack Shriver shows imagination at graduation. BOTTOM, LEFT TO RIGHT: Graduate and family pose in front of the Ramblin’ Reck, a Tech tradition. President Pettit rewards graduate with a handshake and a diploma.