Tech Students Display Individuality in Nerding Habits
Few people enjoy it, yet everybody does it. What else could it be, but studying. Whether it is done in quest of knowledge for knowledge's sake, or simply as a means of achieving a necessary academic end, studying is the major pastime of the Georgia Tech student.

Studying in itself is not a very unusual activity, but what is interesting about the whole process are the unique twists that each student combines into their studying routine. There are those who head for the library's third floor nightly, the sun worshipers who flock to Grant Beach on the first day of spring, and of course, there are the students that find peace, quiet and academic solitude within the confines of their own dorm room.

Studying and all of its trappings: the homework, books and cramming prepare the student for the inevitable: the test.

TOP, LEFT TO RIGHT - The library provides a quiet place to study. Even dorm room distractions do not deter calculus study. Project teams can often be found in the library. BOTTOM, LEFT TO RIGHT: A student concentrates on his assignment. Another revised program is run. Careful thought goes into each class.
Traditions Thrive From the Nature of Georgia Tech
Georgia Tech, of course, has its traditions! Colleges and universities are more associated with traditions than are other organizations in our society. Some traditions are almost compulsory. You must have school colors and you must have a school song — good or bad. How lucky we are to have such an outstanding and world-renowned "fight" song.

But we also have some traditions that are special and unique, such as that wonderful little Model A Ford, the "Reck," which is so much in evidence at football games and special events. And then the "Ramblin' Reck" Parade, certainly the most unique in the country among homecoming events.

These traditions are apparent, are enjoyed, and help identify us with our beloved Georgia Tech.

But then there are other less apparent but deeper traditions of Georgia Tech, which are not conspicuous but more pervasive. I speak of the hidden psychological environment of Tech, whereby students come here from many places and many backgrounds, but, in the end, become more industrious, more competitive — both in academics and sports — and better organized in running their daily lives. It is this tradition that makes Tech graduates so strongly sought by the hundreds of employers who come to Georgia Tech each year.

Where did traditions start, who keeps them alive, and do they ever end? No one seems to know or want to admit that a tradition wasn't always with us. But if one reads the history of an institution like Georgia Tech, it becomes evident that traditions do come and go, and that the institution is well served when good traditions are replaced by better ones. Some traditions need special cultivation to keep them alive and vigorous, such as the Ramblin' Reck Club does for many of the traditions. Others, like our academic environment, are less conspicuously perpetuated, but seem to have a life of their own because of the particular kind of faculty and students who live here.

Our traditions thrive from the nature of Georgia Tech, but they also help to keep Georgia Tech what it is. Let's enjoy them, appreciate them, and perpetuate the best of them.
Tech Administrators Plan the Institute’s Future Courses
The scope of the office of Vice President of Academic Affairs includes five basic areas of education ranging from the library to registration. But, the office requires much more than simply administration. It is a matter of addressing and handling the pressing issues facing the Institute. Here, Georgia Tech's new head of Academics, Dr. Henry C. Bourne addresses some of these issues.

The academic quality at Georgia Tech is ultimately measured by the quality of the graduates. We can improve that quality by improving the quality of the incoming students and improving the quality of the education at Georgia Tech. The best way to improve the quality of the educational experience is to improve the quality of the faculty. We need to attract the best and then to provide an environment in which faculty members can develop to their maximum potential. Such an environment will also result in the recognition, reward, and retention of the best faculty.

The quantitative measurement of academic quality as described is difficult. We can measure the quality of the incoming students by the usual grades and test scores but the high motivation which is the essential ingredient for success here is hard to measure. In any case, we have a relatively new and well planned program to attract increasing numbers of the truly outstanding high school graduates.

The quality of the faculty is measured by the degree of excellence in teaching and research, and I include advising as part of the teaching function. We can only use student ratings and the opinion of peers to measure teaching effectiveness. Hopefully, the results are not completely lacking in accuracy. Research effectiveness is measured more easily in terms of the quantity and quality of PhD output, the quality and quantity of peer-reviewed publications, successful research proposals, and our general and individual reputation among the peer community of researchers. With greatly increased support from the Georgia Tech Foundation, we are strengthening old programs and adding new programs to make Georgia Tech more competitive in attracting top faculty. We are also mounting a new effort to strengthen our PhD programs. Finally, of course, we need to obtain significantly increased resources in order to reduce average class size and teaching loads.

The Vice President of Academic Affairs is charged with the responsibility of maintaining the academic quality at Georgia Tech. What are the gauges by which this intangible quality can be measured?

"The problem of obtaining increased resources for Georgia Tech is a complicated one. With the certainty of decreasing federal funds both to the universities and to the states, a decrease which will affect the universities indirectly, public universities such as Georgia Tech will have to depend increasingly on their own efforts. Of course, we need to operate more wisely and assume a leaner posture. However, in many areas we are touching the muscle of the Institute.

Aside from this generally bleak outlook, several brighter aspects of our situation are apparent. Support from the Georgia Tech Foundation is increasing; a revised funding formula for state support of the university system that recognizes the unique requirements of different types of institutions is probable; recognition is beginning that internally generated overhead funds represent true costs and are not appropriate to offset instructional cost; and finally resources will increase from tuition and fees. We will all have to work together in this changing and challenging environment to make sure that our long-range goals for increased quality are met."

"Tuition and fees must certainly be increased as one among many steps needed to increase our resources. The announced policy is that 25% of instructional costs should be supplied by such funds. Georgia Tech will still remain a bargain at this level. We must be careful to increase our financial aid so that the highly qualified, but truly needy have the opportunity to come to Georgia Tech. If we remain in the bargain basement and quality decreases, soon we will be cheap, but no longer a bargain. I do not think any of us admits this future as a possibility."
Students and Faculty of the College of Architecture have settled into their new west wing and the "charettes" have taken over. Although the west wing is still referred to as the "new architecture building" or the "annex", both undergraduates and graduates have absorbed the newness and replaced it with the comfortable feeling of being "lived-in." To complete the consolidation of the college's faculty, staff and students, the City Planning Program will join the facility within the year.

The college is spreading its wings further with the proposal of a Doctoral program in architecture and planning. The proposed program will produce research scientists, teachers, and professionals who can make outstanding contributions to both professions, and whose work will add to the knowledge base from which the professions function.

Research in the college continued its history of successful development with the establishment in the college, through OIP, of a new center for rehabilitation technology. Also, faculty of the college have developed notable research strength in the area of energy issues in architecture, and a proposed new center for preservation technology is now in the formative stage.

The college continues to wrestle daily with problems of budget and "hassle pressure," but remains firm in dedication to the highest quality standards. It can do so because of the quality of people in the college, as exemplified by those in the student chapter. The final measure of the quality of the college is and will be the quality of its people.

TOP, LEFT TO RIGHT: A student discusses his project. Mr. W. L. Fash, Dean of the College of Architecture. Many hours are put into a project. A model building begins to take form. BOTTOM, LEFT TO RIGHT: Drafting can be tedious work. A floorplan is reviewed.
The goal of the College of Engineering was to provide a basic understanding of the engineering sciences along with a background knowledge of mathematics and the natural sciences, and a firm knowledge of the humanities and social sciences. With eleven unique degree-granting schools in the College, this general statement cannot do justice to the tremendous diversity of programs that exists within the framework of the College.

Amid the struggle for funds and faculty, a continued rise in the quality of incoming students shone as a beacon for the College. Industry demands have made a career in engineering quite lucrative for the student, and the longstanding reputation of Georgia Tech's engineering programs has enabled the College to reap the best of graduating high school students.

While the demand for engineers had tapered off somewhat from the boon years of 1979-80, industry was still not able to meet all its demands for young engineers. Without a doubt, the most pressing issue facing the College of Engineering was the ever increasing cost of running a technology-based field of instruction. The demand for quality faculty, coupled with the cost of laboratory equipment had strained the financial resources of many of the departments in the College. But undaunted, quality students continued to enroll and graduates continued to uphold the engineering tradition of Georgia Tech.

TOP, LEFT TO RIGHT: Dr. W. M. Sangster, Dean, College of Engineering. Kirk Thornberg adjusts an instrument. A student questions the roving operation. A simulator aids in research. BOTTOM, LEFT TO RIGHT: Glass fibers are tested. Students thread a knitting machine.
Communication Skills Stressed as an Academic Study

Although Aerospace Engineering is concerned primarily with various flight systems, the field has a variety of other applications. The different research projects conducted by the Aerospace Engineering Department range from a study on the heart disease of arteriosclerosis to fire safety. The department's research facilities include variable speed wind tunnels, a helicopter stand, a combustion chamber, scanning electron microscope, fourier analyzers, and temperature test machines.

Computers play an increasingly important role in aerospace design, and in response, the department has taken great strides in an attempt to develop a computer-aided design program. The extensive use of computers coupled with the department's fine lab facilities provides students with a strong background of practical knowledge.

Since good communication is an integral part of a successful engineering project, the department has placed increased emphasis on writing skills, and working with the English Department, has developed a program for seniors working on their research papers, which are submitted to industry councils.

TOP, LEFT TO RIGHT: Dynamic forces are tested. A form is poured. BOTTOM, LEFT TO RIGHT: Cindy Vitale writes up her lab. Dr. A. L. Ducoffe, Director of Aerospace Engineering. A mold is taken from the oven. Dr. J. L. Pentecost, Director of Ceramic Engineering.
CERAMIC ENGINEERING

Students Prosper With New Options

Ceramic engineers are first engineers and second, specialists in materials and processing. Accordingly, job demands are quite varied as ceramic materials and components are used in the designs of EEs, MEs, CEs, NEs, and even TEs. The interface between the ceramic industry and the many industry segments that consume its products offers opportunities for ceramic engineers to be innovators for new designs and problem solutions.

With only thirteen schools nationally who graduate ceramic engineers, a strong program at Georgia Tech is vital to the interests of the ceramic industry, and, because of this, the industry supports the school generously with over $20,000 of unique scholarship funds available to ceramic engineering students annually.

Using only the raw materials of common clay, sand, and minerals found in the earth’s crust, ceramic engineers formulate and produce a myriad of useful products — ranging from brick and portland cement up to electronic components.

While not traditionally considered a high technology field, ceramics has shown rapid growth in that direction to involvement with the space program and the electronic industry. Research work simultaneously has enjoyed much success at Georgia Tech through work with crystal growth, an electron field emitter and refractory research — some of which has already been integrated into the industry.
As a direct result of overcrowding, the School of Chemical Engineering gained the reputation of being among the toughest of Georgia Tech's undergraduate programs. Not only is the curriculum difficult, but the school mandated that every required chemical engineering course be passed with a grade of C or better.

Yet, in requiring much of the student, the school too had much to offer. Undergraduates were able to participate in research work within the school — an option virtually unique to the school among Tech's engineering programs. Chemical engineers could be found in industry fields ranging in great diversity — such as the space program and the textile industry. Because of this wide scope of application, chemical engineers have proven themselves to be as versatile as they are knowledgeable.
Where man goes he builds, and what he builds stands as a monument to his civilization. Just as the great temples of the Greeks and Romans have endured as marks of their achievement, so too do the buildings, roads, and dams of today stand as a signpost of the achievement of modern man. Such is the work of the civil engineer.

A civil engineer is concerned primarily with shaping the world around him. And indeed, civil engineers at Georgia Tech are involved in a number of diverse yet uncannily related fields. These different areas of specialization include construction, environmental engineering, hydrodynamics, and soil mechanics just to name a few.

Undergraduates are greatly aided by the reasonable size of classes that the school is known for, while the work of the graduate students and faculty is aided by the department's fine laboratory areas, which are capable of sustaining trace environmental analysis as well as laboratory and pilot-scale process systems.

Included in the current list of research projects are an evaluation of roadside hazards, landfill stabilization analysis, a study of an exciting young field — biomass fermentation and computer aided construction management.
The School of Electrical Engineering acknowledged the arrival of the single-chip microcomputer by expanding its curriculum to include courses in computer networks, distributed processing and Very Large Scale Integration. Equipment grants from companies such as Honeywell, Data General and Texas Instruments have provided critical assistance for further development in computer engineering.

Scholarly research, supported largely through record level grants and contracts, involved the majority of the faculty, a large fraction of the 350-plus graduate students, and even some undergraduates. This past year, the School became a full member of the Joint Services Electronics Program, a distinction held by only fourteen well-known institutions in the country.

By means of curriculum enhancement, an active research program and the addition of new faculty in expanding areas, the school continued its efforts to provide a high quality, constantly updated learning environment.

TOP, LEFT TO RIGHT: Students measure amplitude of test circuit in sophomore EE lab. Dr. Demetrius Paris, Director of Electrical Engineering, looks over a program. Dr. Milton Raville, Director of Engineering Science and Mechanics. BOTTOM, LEFT TO RIGHT: Gary Harrel adjusts sweep on oscilloscope. Jerry Deluca performs stress analysis in ESM lab.
Electives Foster Many Interest Areas

The primary objective of the School of Engineering Science and Mechanics is to prepare students for careers in all areas of engineering and applied science. As a result, the curriculum emphasizes mathematics, engineering sciences, solid and fluid mechanics, materials science, electrical science, heat transfer and thermodynamics. Problem-solving courses such as these provide knowledge necessary to all engineers.

Aside from its renowned difficulty, the department is unique among the other engineering schools in that it provides for and encourages undergraduate students to explore curricula outside their major. By offering eighty-two hours of electives, the school enables its students to develop a special area of interest in an ESM related field.

The school's graduates are employed in all areas of engineering where wide breadth yet ample depth in the fundamentals of engineering are required. Such a range of knowledge leaves the widest possible choice for specialization in graduate study, as well as enabling him to work with interdisciplinary engineering and science areas such as information and computer science, engineering mechanics, structures, energy engineering, and bioengineering.
School Celebrates Its First Decade

The School of Health Systems is now in its tenth year of operation. Although its origins go back to 1958 when health options were first introduced in the Industrial and Systems Engineering curricula, the School as a separate academic unit had its beginnings in the 1972-73 academic year.

Starting as a "program" in that year, the School has since gained both national and international recognition for its unique and timely programs of study leading to the Bachelor of Science and Master of Science in Health Systems. Its alumni have found an extremely receptive market for their particular skills and knowledge and are holding positions as hospital management engineers, health care consultants, health planners and administrators, health care marketing managers, and other managerial positions in the health field.

Currently the School is expanding its Community Outreach Program whereby student externs, graduate research assistants, graduate field trainees, and the faculty and staff work with community health institutions and agencies in reciprocal agreements to analyze and solve a variety of health care delivery problems. The School’s Health Systems Research Center continues to pursue research in the areas of emergency medical services, health manpower productivity, alternative health care delivery systems, cost containment strategies, international health care systems, health care technology, computerized medical information systems, management engineering, and health care technology.

Dr. Harold E. Smalley, the director, recently completed a new book, *Hospital Management Engineering*, and another member of the faculty, Dr. Justin Myrick, associate professor, has been elected president of the Hospital Management Systems Society, the national professional organization for practitioners in the field of health systems management engineering.
The continually expanding School of Industrial Systems Engineering finally saw construction begin on the Industrial Engineering/College of Management complex which will eventually ease its growing pains. The school, the largest such program in the United States with over a thousand students simply out-grew the facilities available in the A. French Building, therefore necessitating the additional space.

The complex houses facilities which will greatly enhance the educational and research opportunities for graduate and undergraduate students alike. For example, Litton Unit Handling Systems, a major materials handling manufacturer has agreed to donate a half-million dollars worth of equipment to organize a materials handling laboratory in the new building. In addition, Dr. Bill Rouse, a specialist in the field of Man/Machine Systems, has recently joined the staff to guide the organization of a Man/Machine Systems Research Center, which will utilize a PDP 11-780 (VAX) computing system.

The department continues to enjoy wide recognition for their research accomplishments in the area of interactive computing capability through the efforts of the Production and Distribution Research Center — a division within the department which has been established by the Office of Naval Research. Accordingly, numerous industrial corporations are now bringing problems in areas such as scheduling, routing, facilities location and layout to the center for problem solving advice.
Growth and realignment sum up the activities of the School of Mechanical Engineering during the past year. A new syllabi was introduced into the transport phenomena course sequence in an effort to provide a more fundamental and comprehensive understanding of the material. Also, an expanded program of free electives was integrated into the undergraduate curriculum making twelve hours of technical electives available to students in addition to six hours of free electives in the students' freshman year. An administrative reorganization accompanied these program changes as Dr. Walter Carlson, who most recently was a dean and executive director at Southern Tech, was appointed active director.

In an attempt to alleviate the department's nagging overcrowding dilemma, five professors were added to the faculty during the year, along with five local, part-time professionals who served as special instructors. This expanded faculty did accomplish its goal by allowing for a reduction in the class size of required courses from seventy-eight students to seventy-three.

Exciting research projects in the fields of thermal processing, heat pipes, and lubrication were continued, while new ones were begun in solar energy and plasma engineering. The most fascinating and profitable of the department's work has been taking place with Lockheed-Georgia and Cincinnati Milicron in the rapidly expanding field of robotics, that area of manufacturing which is predicted to revitalize the industrial complex of the modern world.

TOP, LEFT TO RIGHT: Dr. Walter Carlson, Director of Mechanical Engineering. Students measure voltage. TA Jim Royalty explains a concept in fluid flow. BOTTOM, LEFT TO RIGHT: A gauge is monitored during a transport lab. Two students test plate tolerances.
New Health Physics Option Added

During the past year the name of the School of Nuclear Engineering was expanded to include Health Physics; this reflects the role that health physics plays in the application of radiation in industry and medicine. Also, the nuclear engineering program received a substantial increase in outside funding for research and last year was second in the Engineering College in new research awards. The School was awarded a sizeable increase in student support through fellowships and scholarships given by the Institute of Nuclear Power Operations and the Department of Energy.

The vitality of the School remained strong as once again, Georgia Tech granted the largest number of degrees in this field of any university in the United States. To meet the demands for continuing education and the requirements for broader and more fundamental education of reactor operators, the School cooperated with the utility industry in developing a video-based instruction program.

As authorities within their fields, the faculty published a number of articles in professional journals, and several received national recognition for their contributions to the development of technology in these fields.
The School of Textile Engineering prepares students to be engineers who design, develop, and implement systems for fiber production, handling and utilization. These engineers combine many of the talents, the background, and the characteristics of Mechanical, Civil, and Materials Engineers.

This year, the school made progress in the development of a strong program in polymer science and engineering, in a joint effort with the Schools of Textile and Chemical Engineering. A new polymer laboratory course has been approved, and a new course in Rheology of Polymer Fluids was taught for the first time as a Special Topics Course.

The Textile School is currently a major source of technically trained personnel for the textile industry. The employment prospects are good, as the principal employers of textile engineers have traditionally been firms associated with the fiber-textile-apparel industrial complex which is the largest employer in the United States. As fibers have found increasing usage in buildings, airplanes, automobiles, and sports equipment, other industrial employers have found that engineers trained in design of fiber containing structures and fiber handling systems are critical for development of their products and processes.

In addition to Textile Engineering, the Textile School offers degrees in Textiles and Textile Chemistry. Textile students are generally interested in management careers in the textile industry complex. Textile chemists combine a strong chemistry background with expertise in polymer science and dyeing and finishing technology. This background is good preparation for positions in research and development or technical service with the large fiber producers, dyestuff manufacturers or specialty chemical formulators.
New Finance Class Introduces Computer Application

A new building and many new programs are but a few of the highlights of the past College of Management's activities during the past year. Construction began on the complex that will jointly house the College and the School of Industrial Engineering. Among the features of the building that will benefit the College are its semi-circular tiered classrooms that will promote interaction between students and faculty and a fine academic equipment lab, and word processing equipment.

A completely revised Industrial Management graduate program marked a great achievement for the College. An internship period was added to the program and its structure was rearranged in an attempt to, as Dean Charles Gearing felt that it provided a mechanism for students to find the relevance of classroom work. Among the projects initiated to achieve the goal was a joint program with Industrial Design students to conceptualize and market a high technology product. A strong effort was made on the undergraduate level to upgrade the curriculum advisory system.

Exciting research was conducted in the area of cash management, and in conjunction with Georgia Power, in the field of energy management. Additionally, a joint venture was begun with IBM which will result in Georgia Tech receiving a System 34 computer. This move should further enable the College to realize its dream of integrating computers into courses in finance and accounting. The College also produced a short movie in an effort to recruit students for its graduate program.

The College rounded out a complete academic program by sponsoring several seminars for students and Atlanta businessmen which explored topics such as Strategic Planning in a Global Context and Managerial Functions of the Future. The College also initiated a lecture series that was highlighted by an address by a Tech graduate and former Assistant Secretary of the Treasury for Economic Policy, Dr. Paul Craig Roberts.

TOP, LEFT TO RIGHT: Dr. C. E. Gearing, Dean, College of Management. Optimization problems are analyzed. Mack Moore gestures during his class. BOTTOM, LEFT TO RIGHT: The new building takes shape. Ms. McCarty advises freshmen. Dr. Allvine answers a question about marketing.
The College of Sciences and Liberal Studies encompasses fifteen academic units consisting of eight degree-awarding schools, four departments, and three ROTC divisions. The College, characterized by its role as a part of a technical institution, serves two major functions: to educate students in their respective major areas and to assume a service role for the majority of engineering, management, and architecture students of Tech.

The overwhelming influence of strict engineering curriculum creates a visibility problem for the numerous schools and departments as students are often unaware of the many opportunities available. However, better advisement from the engineering schools and student information programs combine to combat this ongoing problem.

Changes within the College of Science and Liberal Studies have centered around scholarship expansion. The trend toward more types of degree offerings continues in areas such as biology and applied physics while certificate programs in subjects including language, history, and social science attract students with interest and electives to fulfill. Underlying all of these changes is the concern for the maintenance of adequate funding, a problem the College, Georgia Tech, and the State Board of Regents have yet to completely solve.

TOP, LEFT TO RIGHT: Dr. H. S. Valk, Dean, College of Science and Liberal Studies. A sensitive experiment is performed. Gestures are important in public speaking.

BOTTOM, LEFT TO RIGHT: A reaction takes place. Errors are picked out of a program. The chorale practices a new set.

100 / College of Science and Liberal Studies
The School of Biology prepares students to fill the demand created by academic, industrial and government laboratories. The broad curriculum is supported by a strong program of research in biological, chemical and physical sciences. Undergraduate students can involve themselves in selected research areas by taking advantage of special study programs.

In the past, most graduates in biology have applied their education to medical or dental school, or have continued on to earn master's degrees or doctorates. Today, however, the explosive growth of biotechnology and bioengineering firms offers new opportunities for graduates to market their expertise, drawing them away from traditional postgraduate study and adding greatly to the value of their bachelor's degrees.

Dr. Thomas G. Tornabene, the school's newly appointed director, anticipates that these new trends will translate into increased enrollments as more and more applications for biotechnology become widespread. A greater involvement of engineering disciplines in the program will also grow out of new research in these areas. Keeping abreast of these changes in knowledge and technology will be vital if students are to maintain their present edge in specialized training.
Graduates of the B.S. degree program in chemistry attain top jobs in industry upon graduation — if they opt to pursue a technical career. However, an increasing number of students with undergraduate degrees in chemistry are proceeding into graduate work in advanced degree programs and have one of the highest success rates for admission to professional schools of medicine, dentistry, business and law.

The Graduate School of Chemistry is one of the most vigorous in the country, offering diverse programs of graduate study and research leading to the M.S. and Ph.D. degrees. More Ph.D. students have been graduated from chemistry than from any other school on the campus. Graduate research gained momentum in such areas as mass spectrometry, organic synthesis and quantum chemistry, while new projects began on the study of laser chemistry and natural product chemistry. These endeavors have been facilitated by the facility's success to the latest in research instrumentation in the Boggs Chemistry Building.

TOP, LEFT TO RIGHT: Another mouse prepares to give its life to advance the march of science. Dr. Thomas Tornabene, Director, School of Biology. Freshman labs teach the basics of chemical reactions. Dr. Leon Zalkow, Director, School of Chemistry. Culture study occupies this student's attention. Student monitors reaction.
The English Department provides Georgia Tech students with training in written and oral communication and offers a wide range of humanities courses as well. Each quarter electives are available in traditional literature, southern authors, literature in scientific contexts, and in the arts allied to literature. Courses in film have become increasingly popular. The department plans to offer a certificate in literature that will provide an outlet for students interested in ordering and extending their liberal arts studies. The department also offers credit for structured participation in DramaTech, the campus theatrical group.

For several years the department has offered a certificate in technical communication, teaching the means of oral and written communication appropriate to the audiences Tech graduates will face in their professional careers.
GEOPHYSICAL SCIENCES

Broad Curriculum Unites a Variety of Earth Sciences

Geochemistry and Geophysics at Georgia Tech, in the form of the School of Geophysical Sciences, have progressed from the traditional earth sciences to orientation in a program designed to meet the needs of the future. The present development of a new program alleviates the difficulty of prejudice in any specific region of the geophysical sciences.

Curriculum ties together the varied aspects of geologic chemistry and physics, from atmospheric chemistry to oceanography, under the ideology that atmosphere, ocean, and earth sciences are all interrelated and cannot be adequately dealt with separately. Typical problems dealt with in the course of study are pollution, ozone deterioration, and chemical changes in the biosphere.

While future breakthroughs in the environmental sciences are expected to be in areas requiring a multidisciplinary background, students may specialize in a multitude of areas ranging from mineralogy to atmosphere dynamics. Upon commencement, graduates have acquired a basis of fundamental knowledge which, coupled with specialized expertise, provide techniques of understanding which promote problem solving using a variety of techniques.

TOP, LEFT TO RIGHT: Dr. P. Kelly, Director, Department of English. A coed listens to a lecture. The solution is explained. BOTTOM, LEFT TO RIGHT: A professor discusses the Regent's Test. A student concentrates. Dr. C. S. Kiang, Director, School of Geophysical Sciences.
The School of Information and Computer Science possesses a unique combination of well-funded research projects spanning many areas of information and computer science, high quality education programs, and an excellent environment for both work and recreation. These aspects were reflected in the school's ever-growing enrollment. There were 550 undergraduate ICS majors and approximately 275 graduate students.

Thanks to the large and well-equipped ICS Computer Systems Laboratory and two, more specialized, smaller, laboratories, the working environment in the school is very good. In addition, the main computer systems of Georgia Tech, a CDC 6400 and Cyber 70, are also available to ICS students and faculty.

The School sponsored several activities to benefit students and faculty, with the ICS newsletter published monthly to keep students, faculty, and staff up-to-date on these events. Also, on Thursday afternoons, the Doctoral Tea was held, allowing Ph.D. students and faculty to meet in an informal setting. Finally, there were frequent colloquia, which enabled the students and faculty to keep abreast of the latest research results.

Activities of the ICS students included the Georgia Tech ACM chapter and the programming team. The former provided many services to the school, from running a library to sponsoring social events.
Reduced Class Size Facilitates the Learning Process

Computers continue to play an increasingly large role in the mathematics curriculum. This reflects advances in the technology of computers, the needs of Georgia Tech students, and a forward-looking facility. A variety of microcomputers and the CYBER are used as lecture-demonstration tools, for the treatment of complex applications, for scientific computing, and in the computer laboratory. The school is considered by the national community to be a leader in this use of the technology. As part of the effort, the capacity of the School of Mathematics computer laboratory was doubled in the fall of 1981.

In addition to the use of computers, the school has improved its curriculum through a significant reduction of class sizes; notably, the maximum capacity of all freshman calculus recitations and all classes at the sophomore level and above was reduced to 35 students this past year.

The research programs of the school continued to develop at a rapid pace. The average annual dollar level of external research support for the 1978-81 period represented a more than five-fold increase over the previous annual average.

Faculty members of the School traveled all over the world in response to invitations to lecture on their research. Countries hosting math faculty in the last two years include Austria, Belgium, Canada, Czechoslovakia, England, Egypt, France, Germany, Holland, Israel, Italy, Mexico, and Poland.
The Department of Modern Languages enables Georgia Tech students to supplement their technological educations with the knowledge of a second language. Bilingual ability is of growing importance as the international barriers shrink due to technological advancement, and as major businesses expand to various parts of the world. Therefore, a graduate with a knowledge of a language other than English has a distinct advantage over others when seeking employment with these international firms.

In addition to the French, Spanish, German, Portuguese, Italian, Chinese, Russian, and linguistics courses offered by the Department, there are also courses taught which deal with international affairs. These classes allow students to learn about the society of the country whose language they are learning while simultaneously improving their knowledge of the language.

For the foreign undergraduate students at Tech, the Department offers courses in English as a foreign language, as well as the equivalency examination in English language proficiency which is equivalent to the Regent’s Test.

The Department of Modern Languages plans to cooperate with other schools so that there may be a coordinating of efforts to improve the status of humanities and social sciences on the Tech campus. Plans include the possibility of a combination language-management undergraduate degree.

TOP, LEFT TO RIGHT: Dr. Nuedling adjusts the volume control of the tape player. A test is taken in the language lab. Members of the Chorale practice for an upcoming tour. BOTTOM, LEFT TO RIGHT: Dr. L. J. Zahn, Director, Department of Modern Languages. The French horn section polishes its performance during practice. Mr. G. Colson, Director, Department of Music.
MUSIC

Band Continues Amidst Cutbacks

Serving as both an outlet for the creative talents and as an entertainment medium for Georgia Tech students, the Department of Music was continually faced with the problem of drawing technically oriented students to the intangible quality of its courses.

In spite of the demand placed upon its students, music provided diversity to the strict Georgia Tech curriculum for students through their participation in the Marching Band, Concert Band, Chorale, and the relatively new Jazz Ensemble Band. Not only did the various groups perform on the Georgia Tech campus, but they also had numerous scheduled appearances in the Atlanta area and in neighboring states. The selections performed by the groups included both traditional and popular music.

A severe blow was dealt to the department in mid-October when it was announced that cut-backs within the College of Sciences and Liberal Studies (COSALS) would in large part be directed towards the department. While not threatening the most visible of the departments programs, the Marching Band, the cut-backs did loom as a potential nemesis to many of the less visible and fiscally responsible programs of the department. Alternate funding was hoped to be realized.
New School Head
Reviews Courses

The past year witnessed Professor Edward Thomas assume the Directorship of the School of Physics replacing Professor Braden, who had been serving on an interim basis. In addition to the service courses provided for most Georgia Tech students, the School has degree programs which currently enroll about 160 undergraduates and 60 graduate students. Research interests of the faculty include acoustics, atomic and molecular physics, biophysics, the theory of elementary particles and fields, statistical mechanics and many-body theory, and solid state physics including surface physics. Through the offering of a broadly based group of core courses supplemented by a variety of electives, particularly in areas related to the research specialties of the faculty, the School endeavors to appeal to students whose interests encompass a deep understanding of scientific principles and the application of these principles to practical problems.
Professors Stress the Fundamentals

Education in the School of Psychology is based upon the principle that one cannot practice something that one does not thoroughly understand. Heavy emphasis on fundamentals with a rigorous curriculum have produced undergraduate and graduate programs among the top in the nation. Undergraduate students are prepared to either directly enter the field or to pursue a further degree. The bachelor's degree serves as a stepping stone to higher education for close to sixty percent of all undergraduate Psychology majors. Coursework is broad enough for diversification, yet emphasis is placed upon human development.

A key strength of the school is its excellent advisory system. Each major student is paired with a selected advisor. Student-faculty meetings are held on a regular basis, at which ideas are exchanged concerning current and future programs.

Certificate programs are offered in specific areas such as Social/Personality Psychology, Experimental Psychology, Engineering Psychology, Industrial and Organizational Psychology, and Biopsychology. The programs recognize students who have passed with at least a C in a specified number of courses in their region of interest. Dual degree programs are also available to the Tech student. These are most beneficial for a specific type of future work which requires both degrees.
Fitness Course Becomes Required

There was growth and achievement for the Department of Physical Education this past year as the Callaway Student Athletic Complex was complemented by three new fields for physical education classes, intramural competition, and informal recreational activities. The fields, capped with special turf designed to accommodate athletic activities, are surrounded by a measured one-half mile running track. Outdoor racquetball/handball courts, a basketball/tennis court, and facilities for horseshoes and sand volleyball were also recently opened.

Other activities of the department centered around curriculum changes. Academic offerings in exercise physiology were made available to students for the first time. A newly implemented required course which exposed students to basic concepts in health and fitness was also added, while a special course prepared non-swimmers for the required drownproofing class.

Intramural goals for the year centered around improved participation by offering several new activities and more women's and co-recreational sports. The department continued to seek increased student input into administering intramurals and improving program supervision, publicity, and record keeping.
The School of Social Sciences this year admitted its first graduate students to the Master's degree program in Technology and Science Policy. This new program prepares students who have appropriate undergraduate degrees for careers in the formulation and implementation of Science and Technology policy both in government and industry.

Also, an increasing number of students participated in the Minor's Certificate program of Specializations in History; International Affairs; Philosophy; Political Science; Science, Society, and Technology; Sociology; and Urban Studies, taking a total of eighteen hours in their particular area of interest. With both the degree and certificate programs the school is equipped to broaden the education of the interested engineering student.

TOP, LEFT TO RIGHT: Dr. J. Reedy, Director, Department of Physical Education. Clarence Darlow lives through an impersonation. Studying can be lonely. BOTTOM, LEFT TO RIGHT: Drownproofing is a necessary evil. Students practice on the uneven bars. Racquetball tones bodies. Professor Reed lectures. Dr. D. S. Papp, Director, School of Social Sciences.
The long standing tradition of Reserve Officer Training Corps (ROTC) programs at Georgia Tech posted another banner year with increased participation in each of the three branches of the armed forces represented on campus. The strongest recruiting tool available to these programs was the scholarship and salary plans each of the branches had to offer.

The largest of Georgia Tech’s ROTC programs, the Air Force ROTC, attempted to condition students through real Air Force activities as preparation for commissioning as an officer and eventual participation in the armed forces. This was accomplished by stressing communication skills, and offering counseling services. These services involved frequent trips to Elgin Air Force Base where cadets were exposed to actual Air Force operations.

The Naval ROTC introduced a new school year with a new and permanent home for its headquarters. The demolition of the old NROTC building in order to make room for the athletic complex, displaced the unit for a year until it found its eventual home in the old Ceramic Engineering building.

Continuing its reputation as Georgia Tech’s most active military detachment, the Army ROTC once again provided a vigorous program with overnight retreats to neighboring Army bases for cadets that included actual battlefield simulation.
Georgia Tech offered students the opportunity to combine work experience with studies by means of the cooperative plan. The approximately two thousand co-op students currently enrolled alternated quarters between going to school and working for one of over four hundred industries throughout the country. The plan required that the student's employment be related to some phase of his field of study and that it be diversified to provide a spread of experience. Also, the type of work the co-op students are involved in increases in difficulty and responsibility as the student progresses with the college curriculum.

The co-op plan enabled many students to earn money to help defray the costs of college, while at the same time experience the real world of industry and business prior to graduation. Also, students gained experience in human relations, as well as budgeting time and money. Because of these valuable insights provided by the work experience, co-op students can easily justify the extra year spent earning an undergraduate degree.

Although they are close to twenty percent of the student body at Georgia Tech, graduate students play a seemingly limited role in daily campus activities. This is not to say that they are not busy, however. While the graduate student is excluded from most of the campus' major organizations, his input into the campus can be seen in the form of research assistant, grader, lab instructor and teaching assistant.

Many live off-campus, while still others reside in married student housing. Graduate students can be found in virtually every school and department at Georgia Tech; they are represented by the Graduate Student Senate and they come from all over the United States and the world to take advantage of the graduate programs offered by Tech.

TOP, LEFT TO RIGHT: Yi Ren Woo researches fluid dynamics. John Farino adjusts a gas chromatograph. Geological testing takes place outdoors. BOTTOM, LEFT TO RIGHT: A concept in metallurgy is explained. Wes Pidgeon conducts an impulse test lab. A project receives final touches.
Students Traverse Globe to Pursue Tech Studies
Students Mature Through Ma Tech’s Scholastic Rigor

The Georgia Tech Experience — aside from the social and cultural life, there is only the obvious, the basic ... the academic. The common link between the student body, which is composed of people from virtually every walk of life, is the same as the purpose which brings them together. The Georgia Institute of Technology has one on-going function: to educate her students. One can see that this educational process is undertaken to insure a successful future, but how one is affected by this process is much more intriguing and interesting to observe.

The education of the Georgia Tech student is actually a growth process. From the FASET Orientation Program to Graduation Day, each student is subjected to a multitude of academic experiences, which have the overriding goal of educating him. Just as a person is shaped by his environment, so too is a student shaped by his curriculum. Each passing year at Georgia Tech signifies more academics, more education, and hence, more growth.

For most engineering students, the freshman and sophomore years are roughly equivalent as far as classes are concerned. The junior year begins with a funneling into one’s major while the senior year, and college career, ends with specialization within a chosen major.

Who can forget their initial jitters and fears during freshman orientation, their first chemistry lab in Lyman Hall, P.E. 1010, the last math course, and finally graduation? A college career at Georgia Tech does not necessarily produce a changed person, simply a more mature, better educated one. And so in essence, this is the Georgia Tech Experience — the growth of a student.
Graduation Ceremony Marks the Start of a New Life
Who's Who Among Students in American Colleges and Universities

Since 1936, Who's Who Among Students in American Colleges and Universities has been providing national recognition to outstanding campus leaders. Nominees are judged on academic standing, community service and leadership in extracurricular activities by a committee of administrators, faculty and students. Candidates must be college juniors, seniors or graduate students.

Jane Ames
John Block
Ula Coffey
Danny Dunlap
Raymond East
Dennis Frendahl
Douglas Fuller
Mitchell Galloway
Lisbeth Gibson
Karen Glaze
Helen Gould
Jeffrey Griffin
Ken Gwinner
Frank Irizarry
Martin Karlovic
Galen Kilpatrick
Frankie Little
Stephen Martucci
Sally McRobert
John Mooney
Marcus Sachs
Cristy Sellers
Horace Seymour, III
Alan Solomon
John Spiller
Robert Spretnak
Cynthia Vitale

Omicron Delta Kappa

NATIONAL LEADERSHIP HONORARY

Founded in 1930, Georgia Tech's chapter of Omicron Delta Kappa honors juniors and seniors who have proven themselves outstanding in the areas of academics, athletics, social service, journalism and creative and performing arts. Only distinguished leaders with at least a 2.8 GPA are considered for membership.

Staylton Addison
Jane Ames
Susan Bailey
Lisa Berson
Dr. Carl Biven
Thomas Blake
John Block
Dr. Walter Bloom
Mark Bradley
Phillip Brooks
Philip Bush
Dr. James Bynum
Gina Carr
James Cartwright
James Chalmers
William Curry
James Dorsey
Dean James Doll
Julie Ellis
James Fowler
Shelton Fox
Doug Fuller
Jeffrey Gallinat
Ellis Gardner
Gary Gauthier
Dr. Thomas Gaylord
Christine Gorby
Helen Gould
Dean George Griffin
Jeffrey Griffin
Peter Heffring
Dr. James Herod
Dr. Harold Johnson
Marilyn Jones
Gregory Kerschner
Edward Krikorian
Gregory Larkin
Paul Lindemann
Dr. William Lnenicka
Kenneth McClain
Chris McGahey
Dr. Robert McMath
Sally McRobert
Dr. Paul Mayer
William Mizell
Karen Owens
Thomas Parham
William Paterson
Robert Pearse
Dr. John Peatman
Sharon Penn
Dr. Joseph Pentecost
Dr. Joseph Pettit
Edward Reese
Susan Reese
Homer Rice
Dr. Peter Rodrigue
Edward Rogers
Nelson Rogers
Glen Rolader
Dr. William Sayle
Bryan Shelton
Dr. Peter Sherry
Robert Spretnak
Dr. James Stevenson
Dr. Miller Templeton
Walter Tracy
Dr. Maxine Turner
Douglas Valenti
Cindy Vitale
Teresa Volmar
Dr. William Woolf
James Wilson
Dr. William Woolf
Dr. James Young
Phi Kappa Phi

SENIOR SCHOLASTIC HONORARY

The twelfth chapter in the nation of Phi Kappa Phi was established at Georgia Tech in 1914. Recognition and encouragement of superior scholarship in all academic subjects is the purpose of this honor society. To be considered for membership, candidates must rank in the top ten percent of their class as well as display good character and superlative academic achievement.

Jeffrey Alan Aaron
Paul James Ausbeck, Jr.
Donald Wayne Bagwell
Carter K. Barnett
Coleman T. Bentley
Jimmy Chancy Black
Thomas Gregory Bradberry
Kenneth Morgan Brooks, Jr.
Mark Smith Byers
James E. Cartwright, Jr.
Richard T. Casper
Robert S. Caverhill
Bruce C. Ching
Paul H. Cleveland
Linda Conradsen
James A. Crunkleton
Mitchell B. Diamond
Kathryn D. Dunlop
Gary S. Epp
Laurence D. Epstein
Peter Warren Estelle
Vaughn R. Evans
Paul Timothy Fastenau

Lowell S. Garrett
Gary D. Gauthier
Lisbeth Randol Gibson
Geoffrey W. Gilbert
Robert Alan Hall
David M. Hitch
Kevin Hsu
Joseph W. Humphrey
Eric P. Jack
David M. Jackson
Steven C. Johnson
David Alan Kemp
Marion Mark King
Gregory J. Kintz
Norman M. Kreutter
Christian A. Lange, III
James C. Leathers
Stephan A. Martucci
Lindsay K. McKinley
Andrew H. Miller
William Morley Mizell
Jeffrey P. Murphy
Robert David Nabow

Roger W. Nelson
G. Howard Pennington
Laura Kerstin Pitts
Dennis P. Roach
Steven C. Sanders
Edward A. Schlatter
Robert P. Spretnak
Brock Stanton
Eric Steinhauser
Samuel Albro Taylor
Paul Alan Thurner
Thomas L. Thompson
Teresa Anne Volmar
Frank David Wagner
Rebecca Barkley White
Timothy A. White
Brian Daniel Whittemore
Charles G. Wier
Jonathan C. Wilson
Sanford Lloyd Wilson
Terry O. Woods
James A. Worsham, Jr.
Tau Beta Pi

HIGHEST ENGINEERING HONORARY

Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of engineering, are recognized by Tau Beta Pi. Undergraduate students who rank in the top eighth of their junior class or the top fifth of their senior class are considered for membership.

Christopher P. Albano
Michael R. Alexander
Katherine A. Alland
Rae Ann Alton
Mark W. Andersen
Michael C. Andrews
Glenn S. Arnold
Stephen W. Attaway
Paul J. Ausbeek
Stephen J. Babb
George P. Backhaus
Ernest B. Bahm
Susan L. Holmes
James R. Morgan
James R. Mosher
W. Arlyn Moulder, Jr.
Robert G. Muscat
Roger W. Nelson
Steven P. Newman
Hai Q. Nin
John T. Odom
Carol R. Ostrander
Edward J. Ostrowski
Michael S. Page
Scott B. Pantaleo
William C. Papa
Thomas C. Parham, Jr.
Colleen M. Parry
Richard A. Patrick
Wayne L. Patten
Terry L. Patterson
William G. Patterson
Robert G. Pearse
Sharon C. Penn
Michael Prez
James L. Perry
Thomas B. Peters
Gary A. Pilgian
Charlene R. Plumb
Vicki Lynn Polance
Robert C. Ramsdell
Carlos A. Ranaldi
Richard K. Reeves
Andrew H. Register
Robert L. Rehberg
Thomas G. Rich
Richard P. Ritch
Denis P. Boerner
Emory B. Roberts
Jorge Rodriguez
Charles Rowland
Michael D. Rucker
Joseph E. Rumlev
David C. Rutland
Euugenia M. Ryan
Michael M. Morley
Jeffrey A. Saitas
Susan L. Sammons
Aileen G. Sampson
Donald L. Sanders
John S. Anderson
John R. Schlumpf
Mark S. Schutz
John S. Scogin
David A. Sedacca
Wassim A. Selman
Joseph M. Serina
Kyle H. Seymour
Kathy S. Shanklin
James E. Shea
Clyde A. Sheehan
Ronald S. Slaymaker
Order of Omega

GREEK HONORARY

The Order of Omega honors exceptional leadership in IFC activities. Junior and senior fraternity members are judged on outstanding scholarship as well as leadership qualities.

Tricia Becker
Tom Blake
Tom Bruning
Patty Caudle
Frank Clements
Jean Cole
Wes Combs
Tracy Garner
Betsey Goff
Bill Gartner
Mark Hemmer
Jack Hopkins
Russ Johnson
Jack Markwalter
Kelly McKeague
Mike McShane
Noell Marier
Jim McCalley
David Nenon
Turner Plunkett
Jim Richards
Don Russell
Chuck Schockley
Tony Taylor
Mike Williams
Terrye Volmer
Mark Loch

Anak

HIGHEST SENIOR HONORARY

Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

Herbert Adams, Jr.
Susan F. Bailey
Thomas M. Blake
J. Frank Clements
Douglas N. Fuller
Helen A. F. Gould
L. Rene Lampley
Michael G. McShane
W. John O’Callaghan
Robert G. Pearse
Edward M. Rogers
David K. Scott
David A. Vogel
Teresa A. Volmar
Briarean Society

CO-OP SCHOLASTIC HONORARY

Founded at Georgia Tech on July 16, 1922, the oldest co-operative honorary society in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative grade point average and have completed five quarters of academic study in the Co-operative Department.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karen Adams</td>
<td>Glenn DiGiavanni</td>
<td>Vivian Johnson</td>
<td>Charlene Plum</td>
</tr>
<tr>
<td>Mark Adelman</td>
<td>Todd Dogge</td>
<td>Marilyn Jones</td>
<td>Scott Pounds</td>
</tr>
<tr>
<td>Edwin Agee</td>
<td>Mark Dunn</td>
<td>Lawson Jones</td>
<td>Mary Jo Preti</td>
</tr>
<tr>
<td>Bo Alexander</td>
<td>Eric Eason</td>
<td>Tony Jordan</td>
<td>Bill Ralph</td>
</tr>
<tr>
<td>Calvin Alford</td>
<td>Max Eddy</td>
<td>Vince Kegel</td>
<td>Mark Rambeau</td>
</tr>
<tr>
<td>Mark Anderson</td>
<td>Dan Jeff</td>
<td>Charles Kerr</td>
<td>James Raynor</td>
</tr>
<tr>
<td>Barbara Angert</td>
<td>Vaught Evans</td>
<td>Greg Kershner</td>
<td>Robert Reeve</td>
</tr>
<tr>
<td>Paul Asbeck</td>
<td>Kevin Erikson</td>
<td>Larry Kibrough</td>
<td>John Reichert</td>
</tr>
<tr>
<td>Stephen Babb</td>
<td>Liz Fanning</td>
<td>Galen Kilpatrick</td>
<td>Dennis Roach</td>
</tr>
<tr>
<td>John Austin</td>
<td>Raymond Foster</td>
<td>John Kirk</td>
<td>Jeff Robinson</td>
</tr>
<tr>
<td>Richard Bass</td>
<td>H. J. Fincannon</td>
<td>Clarence Kluever</td>
<td>Stephen Roberts</td>
</tr>
<tr>
<td>Jeffery Bates</td>
<td>Dennis Frendahl</td>
<td>Terry Kneeborg</td>
<td>Kevin Roy</td>
</tr>
<tr>
<td>John Bell</td>
<td>Scott Fleming</td>
<td>Lula Knight</td>
<td>Michael Rucker</td>
</tr>
<tr>
<td>Mark Bennett</td>
<td>Steve Fleming</td>
<td>Ed Krikorian</td>
<td>Kevin Rusche</td>
</tr>
<tr>
<td>Coleman Bentley</td>
<td>Rick Foley</td>
<td>Carol Kunkel</td>
<td>David Rutland</td>
</tr>
<tr>
<td>Joseph Bibler</td>
<td>Leo Frantz</td>
<td>Julie Lange</td>
<td>Phillip Sasse</td>
</tr>
<tr>
<td>Dan Biffle</td>
<td>Steve Frazier</td>
<td>Donna Lantz</td>
<td>Adria Schildaresis</td>
</tr>
<tr>
<td>Robert Bowen</td>
<td>Doug Fuller</td>
<td>Bill Lansford</td>
<td>David Schierenbeck</td>
</tr>
<tr>
<td>Daniel Bradley</td>
<td>Ben Fulmer</td>
<td>John Lentine</td>
<td>Susan Schramm</td>
</tr>
<tr>
<td>Scott Brewer</td>
<td>Robert Gault</td>
<td>Ruth Litman</td>
<td>Kathy Shanklin</td>
</tr>
<tr>
<td>David Bridges</td>
<td>Lisa Gibbs</td>
<td>Russell Lowery</td>
<td>Clyde Sheehan</td>
</tr>
<tr>
<td>Roy Brittain</td>
<td>Andy Gerrick</td>
<td>Jeff Malcon</td>
<td>Steve Sheetz</td>
</tr>
<tr>
<td>Phillip Brooks</td>
<td>Wanda Gilbert</td>
<td>Wayne Mangum</td>
<td>Ron Slaymaker</td>
</tr>
<tr>
<td>Charles Brown</td>
<td>Forrest Goodwin</td>
<td>Carl Marinelli</td>
<td>Wesley Smith</td>
</tr>
<tr>
<td>Michael Brown</td>
<td>David Graham</td>
<td>Stephen Martrucci</td>
<td>David Spring</td>
</tr>
<tr>
<td>Gary Brust</td>
<td>Greg Green</td>
<td>Charles Matthews</td>
<td>Patricia Stancliff</td>
</tr>
<tr>
<td>Mike Bryan</td>
<td>Laurie Greenbery</td>
<td>Patrick McCann</td>
<td>Diana Stephen</td>
</tr>
<tr>
<td>Catherine Burns</td>
<td>Thomas Cyzywacz</td>
<td>Angela McCormick</td>
<td>Helen Stroyall</td>
</tr>
<tr>
<td>Chet Burroughs</td>
<td>Tom Gurley</td>
<td>Kyle McDonald</td>
<td>Gwen Strickland</td>
</tr>
<tr>
<td>Phil Bush</td>
<td>Carl Gessler</td>
<td>Susan Minor</td>
<td>W. C. Strickland</td>
</tr>
<tr>
<td>Martha Campbell</td>
<td>Anne Hageman</td>
<td>Kim Mitchell</td>
<td>Jerry Stroud</td>
</tr>
<tr>
<td>Steven Campbell</td>
<td>April Hall</td>
<td>Hugh Moore</td>
<td>Jeff Sullivan</td>
</tr>
<tr>
<td>Cathlyn Carley</td>
<td>Michael Hamilton</td>
<td>Russell Mullinex</td>
<td>William Tarpley</td>
</tr>
<tr>
<td>Michael Carnvale</td>
<td>Norman Hansen</td>
<td>Chris Muller</td>
<td>Douglas Taylor</td>
</tr>
<tr>
<td>Robert Carson</td>
<td>Gary Harrell</td>
<td>Roger Nelson</td>
<td>Linda Taylor</td>
</tr>
<tr>
<td>Lisa Carter</td>
<td>Penny Harrell</td>
<td>Steve Newman</td>
<td>Kathryn Taylor</td>
</tr>
<tr>
<td>Wayne Chase</td>
<td>Chris Harvey</td>
<td>Michael Norman</td>
<td>David Trask</td>
</tr>
<tr>
<td>Norman Chu</td>
<td>Karen Hennessey</td>
<td>Larry Nelson</td>
<td>Doud Valenti</td>
</tr>
<tr>
<td>Chris Ciampaglio</td>
<td>Richard Hernandez</td>
<td>Katherine Nesbit</td>
<td>Bob Vaughn</td>
</tr>
<tr>
<td>Harry Cikanek</td>
<td>Rick Hergert</td>
<td>Brian Nutt</td>
<td>Theresa Volmar</td>
</tr>
<tr>
<td>Theresa Comerford</td>
<td>Rosalind Hill</td>
<td>David O'ferral</td>
<td>Steve Wallace</td>
</tr>
<tr>
<td>Oliver Coates</td>
<td>Bill Hitch</td>
<td>Michael Oles</td>
<td>David Walker</td>
</tr>
<tr>
<td>Cheryl Cupepper</td>
<td>David Hitch</td>
<td>Kathleen Ossman</td>
<td>Max Weinberg</td>
</tr>
<tr>
<td>Dale Dangler</td>
<td>Carla Holtschneider</td>
<td>Carol Ostrander</td>
<td>Andrea Weiss</td>
</tr>
<tr>
<td>Dick Dardon</td>
<td>John Hotchkiss</td>
<td>Keith Owens</td>
<td>Jay Welch</td>
</tr>
<tr>
<td>Ronald Daugherty</td>
<td>Jessie Hoyer</td>
<td>Scott Page</td>
<td>Thomas Wienczko</td>
</tr>
<tr>
<td>Mark DeBoe</td>
<td>Joseph Humphrey</td>
<td>Tammy Page</td>
<td>Lee Williams</td>
</tr>
<tr>
<td>Mike Delange</td>
<td>Dan Hurney</td>
<td>Scott Panteleee</td>
<td>John Wilson</td>
</tr>
<tr>
<td>Clinton Demetriasis</td>
<td>Brian Ivey</td>
<td>Hugh Parks</td>
<td>David Word</td>
</tr>
<tr>
<td>Diane Denagel</td>
<td>William James</td>
<td>Richard Patrick</td>
<td>William Zanzinger</td>
</tr>
<tr>
<td>Dave Detter</td>
<td>John Jay</td>
<td>Terry Patterson</td>
<td>Barry Zimmerman</td>
</tr>
<tr>
<td>Mitchell Diamond</td>
<td>Larry Jens</td>
<td>James Paulino</td>
<td>Dana Zipperer</td>
</tr>
<tr>
<td>Richard Dickson</td>
<td>John Johnson</td>
<td>Richard Pearson</td>
<td>Donald Zyrich</td>
</tr>
<tr>
<td>David Dieters</td>
<td>Robert Johnson</td>
<td>Cary Pincus</td>
<td></td>
</tr>
</tbody>
</table>
Superior scholastic achievement among college freshmen is recognized through the honor society of Phi Eta Sigma. Founded in 1923 and chartered at Tech in 1930, the society rewards freshman academic excellence. All students who attain a 3.5 GPA or better during their first freshman quarter or by the end of their freshman year are eligible to join.

Paul Abraham
Scott B. Allison
Charles D. Anderson
Stephanie R. Anderson
Angelos A. Apostolides
Joseph A. Arcuri
Karen E. Ballew
David S. Barnes
Joel F. Barrett
Thomas E. Bell
David J. Bessinger
Keith D. Blankenship
Benjamin W. Blankenship
Robin Jon Booth
Terry J. Bordelon, Jr.
Kaia Lee Burkett
Leonard A. Bush
Robert J. Caesar, Jr.
Robert J. Cain
James B. Caldwell
Gerald N. Cameron
Paul D. Carey
John E. Chabay
Nancy J. Chamberlain
Floyd B. Chapman
Timothy S. Chasteen
Michael C. Childers
Richard B. Clendenning
Jeanie R. Coleman
Albert N. Danial
David W. Dannenberg
Samuel C. Davis
Andrew J. Delany
Robert A. Delk
Michael A. Drago
Steve R. Duke
David P. Durand
Clifford K. Eubanks
Mario Ferman-Parker
Michael P. Fink
Robert J. Flowers
David W. Fountain
Christopher L. Fouts
Amory E. Gabel
Mark A. Gaudino
Amanda Gearing
Charles C. Geiger
Lawrence D. Gibson, III
Mary E. Gibson
Darlene K. Gieseking
Frank A. Giordano
Steven L. Good
Timothy J. Hall
Keith A. Hansen
Francis J. Harbist
Marilu S. Harrell
David M. Harris
Robyn L. Harrison
J. Riley Hawkins
Edward J. Hendriks
John L. Hibbard
Mary J. Hinton
Gregory T. Hodgdon
Kenneth S. Holsten
Nancy E. Holt
Lisa D. Hong
Jeffrey A. Howe
Keith F. Hugenberg
Curtis E. Ide
Steven H. Isabelle
Barabara E. Jackson
William E. Jennings
Jeffrey W. Jerrell
Matthew A. Johnson
Robert T. Johnson
Walter E. Johnson
Angela Y. Jones
Greg M. Jung
Laura M. Kenline
John J. Kimsey, Jr.
John C. Knight
Warren J. Kudman
Joel B. Larnier
Danh Cong Le
Edward Y. Lee
Thomas J. Lewis, Jr.
Dong Nguyen Luong
Douglas B. Lynch
Paul D. MacLeod
Kevin M. Madsen
Scott B. Mains
Raymond L. Man, III
Gary F. Martin
Patrick K. Martin
David L. Martucci
Joseph M. Massari
Gary S. May
William F. McKissack, III
Nelson McRay
Mark A. Mitchell
Shari M. Mitchell
Stanley A. Mitchell
Daniel J. Monahan
Sue I. Oliver
John E. Parker
Jane M. Parks
Russell S. Peak
Debra E. Peck
Gregory L. Perras
Joseph R. Perri
Perry A. Pettet
Archie E. Pickels
Angela M. Pike
Julian P. Raines
Matthew D. Rao
Marc A. Reiskind
Donna L. Robinson
David L. Rollins
Leor Ron
Stephen V. Rosenkrans
Paul R. Rouk
Patricia M. Saker
Yiannakis C. Savoillis
Arnold Schaeffer
Sharon A. Schmidt
Richard R. A. Siergiej
Luis Silberwasser
Surendra Pal Singh
Kathryn E. Sklenak
Eric P. Slipp
Wendy D. Slurzberg
Hyeri So
Shannon R. Soupiset
Richard Steele, Jr.
Joseph M. Steiner
David E. Steinfield
John R. Stevens
Daniel J. Sullivan
Stephen M. Suter
Matthew P. Synchronaki
John G. Taylor
Jeff M. Terry
Philip P. Thomas
Bruce H. Thompson
Nola A. Thompson
Samuel K. Todd
Charles M. Tomlinson
Jeffrey T. Trim
Laurie L. Tucker
Stephen W. Valdez
Julia A. Vanhoe
Antonio Vizuarraga
Lisa J. Volmar
Alfred von Campe
William J. Waldron
Cathy J. Walters
Michael T. Weber
Malcolm G. Wells
Deanna D. Williams
Thomas L. Winters
Peter N. Wolff
Michael H. Woolsey
Ingrid I-Ching Wu
Mark E. Zimmerman
Renay A. Zimmerman