ACADEMICS
Georgia Tech will always be an academic wonder. At no other institution in the Southeast do students face such an extremely rigorous educational system. How and when they study are what puts Georgia Tech students in a class by themselves. They could find ways to study while eating, sleeping, and socializing.

Perhaps in response to the highly academic atmosphere of Georgia Tech, this year was characterized by campus improvement and modernization. It seemed that no matter which route one took that someone leaning on a shovel was blocking his path. The unfamiliar shadow of the new IM-IE complex showed that progress could occur through persistent inactivity. In spite of the construction, Tech will continue an enduring tradition.

Academic Standards Inspire Improvement
Reports Express Concern Over State of Academics

The SGA report, "A Question of Priorities: The Status of Georgia Tech Academics," focused on four areas: instructional loads, library facilities, laboratory facilities and financial trends. The concern over instructional loads was based on facts such as the Student/Faculty ratio. This has increased 70% since the mid 1970's, according to W. H. Wiseman, spokesman for the Georgia Chamber of Commerce. Library facilities are a second major area of significance, the same amount of money was spent in 1981 as in 1971; for example, 1300 journal subscriptions and 70% of all serial orders have been discontinued. A letter to President Pettit from the College of Engineering recognized the serious impact of laboratory facility deterioration, "We must view with concern the results of our next accreditation visit, when viewed in the light of the rapid obsolescence of our teaching laboratories." Finally, the basis of almost all the trouble at Tech is stressed — Money. Expenditures per student are decreasing while higher saleries are needed to attract professors in the Engineering disciplines. The cost of providing even adequate laboratory facilities for a technical education is also increasing.

In his slide presentation to the Board of Regents President Pettit sought to document the inadequacy of Tech's share of state revenue. State appropriations per effective full-time (EFT) student as measured in constant 1976 dollars have declined while monies for other schools have risen. Additionally Tech students' fees pay for the highest percentage of their school's general operations. In 1971 Tech had the fourth highest state appropriations per EFT student, by 1981 Tech had dropped to tenth.

Pettit concluded his presentation with some desired objectives for Tech: A stable overall enrollment; stable state funding — with incentives to bring in outside money; higher budgeted operations per professor — to permit Tech to compete for quality in the faculty marketplace; higher budgeted operations per student — to reflect the high cost of Tech's laboratory based curricula; and more effective governance relationships between Tech and the Board of Regents. Inadequate and inequitable funding was the common theme of each report. The quality of a Georgia Tech education has always been high on a national scale, and without the rectification of fiscal problems this prominence will decline. The State of Georgia and future Tech students stand to lose or gain equally in the forthcoming decisions.

Every Tech student experienced it — a phase of his education that led him to the choice of either changing majors, changing universities, or, as a last resort, suffering through it. It was that element of the Tech learning experience that went beyond getting a shaft professor in a required course or taking the Regent’s Test for the third time. It was what made Tech a memorable, regrettable experience: torture.

Of course, torture came in many shapes, sizes, and guises. The most familiar form of torture at Tech was probably the Cyber computer. The Cyber was a slow, harsh punishment for both ICS majors and normal students and made them yearn for the long-forgotten luxuries of life: food, drink, sleep, and reality.

Torture is individual; it destroyed us in a variety of ways. The architect died a slow death, as the endless hours of lab can result in malnutrition, and forgetting what your roommate looked like. Statics left the engineer helplessly wondering why he never saw a moment arm in real life. For those who were into masochism, physical chemistry expands on the already impossible science of Bohr’s model, Boyle’s Law, and Bayer aspirin.

Tech also offered physical tortures such as the grueling, grunting, and gasping of aerobic conditioning.

The Tech student could find many means of expanding his mind, and wasting away to nothing. Although we could not accept it, we had to respect it — torture made Georgia Tech the legend that it is.

TOP, LEFT TO RIGHT: Architects try to reconstruct rooms from memory. Jogger grumbles under his lack of breath. A student endures P. Chem. **BOTTOM, LEFT TO RIGHT:** Statics students stare in intent bewilderment. Former human caught in an infinite loop.
Quality Administrators Lead Tech Rapidly Into the Future

TOP, LEFT TO RIGHT: Dean of Students Staff — FRONT: Barry Birkhead, Asst. Dean of Students/Fraternity Affairs; Gary Schwarzmueller, Director of Housing. SECOND: James E. Dull, Dean of Students; James Strickland, Director Counseling and Career Planning; Nicholas Gordon, Director of Student Health; Carole Moore, Asst. Dean of Students/Women's Activities; Jo Ivey; New Student and Parent Programs; Edwin P. Kohler, Assoc. Dean of Students; Roger Wehrle, Director Student Center. BACK: Miller Templeton, Asst. Dean of Students/International Students and ORGT. Student Body Vice-President Denise Ellis entertains Dean Dull at the banquet to honor John Young. President Pettit presents a degree to a happy co-ed.

BOTTOM, LEFT TO RIGHT: President's Staff — Richard Fuller, VP Business and Finance; Warren Heemann, VP Institute Relations and Development; James Stevenson, Executive Asst. to President; John Gibson, Asst. to President for Affirmative Action and Employee Relations; Al Shepard, Assoc. Director Engineering Experiment Station; Clyde Robbins, VP Office of Planning; John Culver, Asst. VP Institute Relations and Development; Jesse Poore, Assoc. VP Academic Affairs; Walter Bloome, Special Asst. to President; James E. Dull, Dean of Students; Henry Bourne, VP Academic Affairs; Janice Gosdin-Sangster, Asst. to President; Joseph M. Pettit, President. Dr. Gearing speaks with John Young as President Pettit looks on.
Board of Regents Approves Doctoral Degree Program

The College of Architecture officially received approval from the Board of Regents earlier this year to begin its Doctoral Program. The college hoped to eventually enroll 15-30 doctoral students at a time. Dean Fash sees the Ph.D. program as a boost to the already active research efforts within the school, which will also contribute greatly to the education of the doctoral students.

Current efforts by the faculty were directed toward behavioral factors of architecture, stairs, pedestrian and handicapped facilities, energy conservation through passive systems, and architectural preservation and restoration.

The college also received the report on the accreditation survey taken last year, one of the "most positive I've seen," says Dean Fash. Three experts viewed the college as being in a "position to demonstrate greatness." The remark recognizes progress made by the college, yet challenges it to continue its evolution of programs while building on the work of the last few years. Accomplishing this while budget cuts are making "survival" difficult will be a real challenge.
The College of Engineering faced the difficult task of educating over two-thirds of Georgia Tech's student body. This responsibility was heightened by the growing and shifting demand within the job market for engineers.

To accommodate the needs of the students, the college's trend was toward flexible curricula and facility development. Student awareness of different career options within their majors was important. New developments included the A.E. Center of Excellence, which began with a five million dollar grant to expand curricula and research activities in rotary wing technology. The new I.M./I.E. Complex was a much-needed facility for two rapidly expanding majors.

Responding to changes in the field of technology, the College of Engineering allowed for the growing needs of its students through extra funding, courses, and facilities. Its flexibility allowed for career diversity among its students.

TOP, LEFT TO RIGHT: Alan Parish works on a circular knitter. A student concentrates in an AE lab. Dean Sangster, Head of College of Engineering. Students gather for an ME materials class. BOTTOM, LEFT TO RIGHT: A student works on machinery. ChE students monitor gauges.
Trends Develop Toward a More Flexible Curriculum
A “Center of Excellence” in helicopter technology was established at the School of Aerospace Engineering. The school was awarded 5.8 million dollars for the next five years. Georgia Tech was chosen as one of the three schools to receive the honor out of seventeen excellent institutions. The grant was awarded by the Army to encourage lagging development in rotocraft, which are much less developed than fixed wing.

The benefits of this program are extensive. Full M.S. and Ph.D. level curricula in rotary wing aircraft technology will be established as well as fellowship and research assistance programs. A new static thrust stand as well as upgrading of the wind tunnel are immediate boons. Hard and software for computer-aided design will also be added.
One of only thirteen such schools nationwide, the school of Ceramic Engineering enjoys strong support from industry. The school also boasts one of the lowest student/faculty ratios at Tech. These advantages combined with a strong background in chemistry and practical lab experience provide a solid base for industry or graduate school.

Not only is there a large demand for C.E.'s in traditional fields such as brick, ovens, and portland cement, but also in high technology areas such as electronic components and radiant heaters. Other expanding areas are optical wave guides, improvement of diesel engines and processes to improve abrasive cutting ability.

TOP, LEFT TO RIGHT: AE student checks reading. Dr. Pentecost, Dir. of C.E. Richard Pike uses spectroscope. BOTTOM, LEFT TO RIGHT: Dr. Ducoffe, Dir. of A.E. A group of AE's check instruments. Henry Larmie conducts materials experiment.
This past year, the School of Chemical Engineering instituted a controversial policy concerning enrollment restrictions. In an effort to improve the quality of graduating seniors and reduce the student/faculty ratio, a proverbial "three strike" rule was imposed. The school mandated that if a student had accumulated a total of three grades of D, F, or W in required Ch.E. courses, then he was no longer eligible for a chemical engineering degree from Georgia Tech.

Despite such strict requirements, which have given the school a reputation as being one of the toughest on campus, the School of Chemical Engineering has much to offer. Undergraduates have the chance to participate in research activities, an opportunity usually relegated only to graduate students.

The school also made minor changes within its curriculum. The transport and unit operations courses were condensed and reorganized to allow students greater flexibility when choosing design courses. Together with the high starting salary realized by many Ch.E. graduates, these improvements helped chemical engineering continue to be a desirable major.

Because of their wide scopes of application, Chemical Engineers can be found in industry fields displaying great diversity — such as the space program and the textile industry.
"Survival" is the key word in describing the School of Civil Engineering, according to Director Fitzgerald. Recent budget cutbacks forced the delay of many projects including the introduction of computers to engineering graphics. However, although the school suffered from funding problems, achievement and progress were prevalent. The student/faculty ratio remained excellent, and the school was able to achieve a ranking as one of the top five undergraduate CE programs in the United States.

Innovative faculty brought in new awards for research well ahead of the previous year's level. Broad-based research activities included endeavors to control water pollution and solid waste and work on computerized structural analysis.

For the future, the school hoped to integrate computer graphics into the curriculum and to expand the use of high technology in general. The school continues to stress rehabilitative construction in the CE program. The School of Civil Engineering also hopes to see the graduate program grow, a shared goal of the Institute, without jeopardizing the quality of the undergraduate curriculum.

TOP, LEFT TO RIGHT: Dr. Fitzgerald, Director, School of Civil Engineering. Students conduct experiments in CE 4145, soils lab. Dr. Paris, Director, School of Electrical Engineering. BOTTOM, LEFT TO RIGHT: C.E. student adjusts large dam model. Students adjust instruments in EE lab.
Future Lies in Intelligent Machines

The initiation of the Microelectronics Research Center in the School of Electrical Engineering headed a year of research by the school's faculty. Supported by outside industry, the faculty is striving to make advances in the areas of artificial intelligence, robotics, and image processing.

As an outgrowth of this research, strong programs within the EE curriculum have been established in these areas. According to Director Demetrius Paris, the future within EE lies with the development of "intelligent machines." Their growing importance will give EE students at Tech advantages over other EE students not having had the benefit of such strong programs in these vital subjects.

The school continued its efforts to reduce the student faculty ratio and at the same time increase the doctoral student output. The school hoped to continue its advances in research while improving the quality of education, especially at the undergraduate level.
As its name implies, Engineering Science and Mechanics is a broad, fundamental, engineering and science based field of study. Emphasizing the technical areas of stress analysis, failure analysis, dynamical systems, certain aspects of flow phenomena, biomechanics, and the fundamentals of structural design, the undergraduate curriculum is generally recognized as one of the most difficult on campus, according to Director Milton Raville, and therefore attracts better than average students.

Students receiving M.S. and Ph.D. degrees from the School of Engineering Science and Mechanics are well equipped to deal with new and more difficult problems in vibrations, stress analysis, fluid mechanics, and mechanical and structural design; most are also experienced in the use of finite element methods of analysis and in the utilization of computer systems.

Faculty research activity and graduate level specialization in the areas of continuum mechanics, biomedical engineering, three-dimensional scattered-light photo elasticity, and structural optimization techniques keep the school up-to-date and the curriculum fresh with new ideas and methods relating to ESM. Recent budgetary limitations have made it difficult to maintain the traditionally high standards of quality in its academic programs, but the school still strives to do all it can for its students without sacrificing its basic principles of education.
Through the application of systems science and management engineering, the School of Health Systems trains students to improve the delivery of health care services to the public. Although trained in health systems analysis and health systems planning, the student has a great deal of flexibility in his curriculum. Depending upon the student's career goals he may elect to pursue either the Pre-medical option or the Health Planning option. The flexibility of the Health Systems curriculum attracts many students who are interested in controlling their educational background. Tailoring one's studies to meet future career objectives not only makes sense, but it increases interest in the classes themselves.

TOP, LEFT TO RIGHT: Dr. Milton Raville, Director of ESM. A student is engrossed in Dynamics. Dr. H. E. Smalley, Director of HS. BOTTOM, LEFT TO RIGHT: A Dynamics Prof explains state of stress. Video tapes are helpful in Health Systems class.
Industry Helps to Equip Complex

The expanding school of Industrial and Systems Engineering is looking forward to moving into the new Industrial Engineering/College of Management building by the fall of 1983. The complex brings much needed room and facilities to the nation's largest IE program. The complex will include an office/lab building for each school and a classroom building which will be shared.

The school also has big plans to provide better equipment with the help of private industry; Litton Industries has donated a half million dollars worth of materials handling equipment. Other private donors included Charles Muench, who enabled the school to acquire color graphics terminals. A DC-8 flight simulator has also been supplied to provide hands on experience to men and machine systems.

Like many schools at Georgia Tech, efforts will be made to reduce the size of enrollment into the school. This policy has been made due to faculty restrictions and other budget problems. A commitment to provide a smaller student/faculty ratio was also a factor in the decision not to allow a student to drop ISyE courses.
Director's Position Is Assumed by Dr. John Brighton

Dr. John Brighton was named Director of the School of Mechanical Engineering and inherited a severe shortage of faculty. But with the hiring of five new faculty members, plus efforts to restrict enrollment, the school made advances to correct the problem.

The school remained up-to-date through its developments in the areas of robotics, microprocessors, and manufacturing processes and materials. The curriculum was also reviewed in an effort to utilize computer applications, while the undergraduate labs experienced an upgrading. Research endeavors encompassed the areas of microbiology, energy and combustion, and computer integrated manufacturing.

TOP, LEFT TO RIGHT: Dr. Thomas, IE Director, Dr. Brighton, ME Director. MIDDLE LEFT: Brian Thorn teaches Statics. BOTTOM, LEFT TO RIGHT: IE/IM building. The learned Dr. Desai. Dr. Berry helps a student.
NUCLEAR ENGINEERING

Most Degrees Granted in America

Although Tech granted more Nuclear Engineering degrees last year than any other school in the nation, graduates had no trouble finding jobs. The department has gained an excellent reputation despite its youth. Small classes, self-study programs, and laboratory experience keep the quality of graduates high, increasing demand for graduates.

The new Health Physics Department has had much success. Dealing with the role that radiation plays in industry and medicine, the job market looks promising for these graduates.

Although some money has been cut from the school’s budget, Nuclear Engineering continues to lead Tech in research grants awarded to faculty. Members of the faculty published a number of articles in professional journals and are working with students to jointly develop a computerized safety control system for Georgia Power’s plant Vogel.

Former acting director of Mechanical Engineering, Dr. Walter Carlson, became director of the school of Nuclear Engineering this year, bringing his expertise in administration.

TOP, LEFT TO RIGHT: NE lab. Dr. Albin Turbak, Dir. of Textiles. BOTTOM, LEFT TO RIGHT: Dr. Walter Carlson, Dir. of NE. Students monitor NE lab. Pam Patterson and Ken Pharoah adjust a water jet loom. BOTTOM: Bill Manning ties warp ends on the NASA loom.
TEXTILES

Dr. Albin Tubak Takes Charge of Burgeoning Program

New blood was infused into textiles this year as Dr. Albin Turbak assumed the directorship of the school. His expertise in the administrative and technical aspects of the textile field promises to be a boon to the textile school.

In addition to Textile Engineering, the school offers degrees in Textiles and Textile Chemistry. Textiles students are generally interested in management in the textile industry while Textile Chemists combine a background in chemistry with knowledge of polymer sciences and dyeing and finishing.

Students in all textile disciplines are eligible for considerable financial aid in the form of scholarships provided by the Textile Education Foundation whose contention is that no deserving student at Georgia Tech should not get an education for lack of money.

The increasing use of textiles in building, aeronautical, automotive and geotextile applications is making a knowledge of fibers and fiber handling systems increasingly valuable. With the only accredited Textile Engineering program and one of the strongest graduate polymer programs in the country, opportunities for Tech students are promising, as the job market could accommodate twice as many graduates in all three areas of Textile studies.
COLLEGE OF MANAGEMENT

Sports Management Program Begins

The near completion of a new building and the initiation of a heavily publicized sports management program were two important successes of the rapidly changing College of Management this year. Changes were due in part to a substantial jump, 40%, in enrollment.

As the college prepared to move to its new facility, it underwent many modifications in the areas of equipment, academic curricula, and administration. Plans were made for a dedication year for the new IM building focusing on telecommunications and computer applications rather than the traditional business side of management.

The acquiring of new IBM personal computers and other facilities and equipment changes have characterized the management technologies emphasis.

In the fall reports from skeptical journalists of a "bogus" major for athletes surrounded the creation of a sports management program. However, the addition is merely an organized career-oriented combination of the B.S.I.M. curriculum and specified electives relating to sports management. Additional changes on the undergraduate program were geared to emphasize communication skills, computer literacy, and the internationality of management.

Problems of inadequate funding and equipment have delayed some plans within the college. However, with a new building and additions to the curricula, the College of Management is prepared for future adaptations.

TOP, LEFT TO RIGHT: Dr. Biven discusses economics. Students participate in computer learning. BOTTOM, LEFT TO RIGHT: Dr. Levy lectures on supply and demand. Prof. Beret. Dean Gearing. Prof. Comiskey considers cost accounting.
The goals of the College of Science and Liberal Studies during this year were to attract students to its degree programs and to maintain high standards in the basic curriculum it offered to Tech students. Recently promoted to Dean of COSALS, Dr. Les Karlovitz guided the college in the struggle of providing a vast number of liberal arts programs at a technical institute.

Graduate enrollment and research improvement have been difficult areas because of rapidly changing technology, inadequate funding and the need for equipment. The service area of the college provided the fundamental education by concentrating on improving communications skills and basic understanding of technological processes.

Upgrading instructional laboratories and modernizing equipment have also been problem areas due to inadequate funding. However, a continual improvement of faculty excellence has allowed the college to continue to offer high quality educational programs.

TOP, LEFT TO RIGHT: Large lecture hall is typical of calculus class. Dr. Karlovitz, Director, School of Mathematics. Co-ed studies graph. BOTTOM, LEFT TO RIGHT: AFROTC cadets listen intently. Russian teacher explains map. A student appears bewildered.
In his second year as Director of the School of Biology, Dr. Tournabene reemphasized the applied side of biology. Consequently microbiology and genetic engineering are being stressed and curriculum changes are being made. The school has added a course in fermentation; this is the process of growing microorganisms to take the place of chemical reactions. Custom-built equipment has been ordered for the purpose of growing large amounts of these. Biology majors also have a background in chemistry, and biotechnology, making them attractive to industry and graduate schools.
CHEMISTRY

Labs Redesigned

By revising their curriculum, the Chemistry School hopes to add versatility to its degree program. Changes would include three redesigned labs for freshman, organic and physical chemistry. The required courses would also be condensed into the first three years, to allow students more electives during the senior year. These electives could make the graduate more attractive to industry by allowing either more versatility or more specializations in biochemistry, textiles, physics and ceramics.

TOP, LEFT TO RIGHT: Dr. Tournabene, Dir. of Bio. Prof. Gordon, Dr. Zalkow, Dir. of Chem. BOTTOM, LEFT TO RIGHT: A bio student uses microscope. Genetic research. Chem. co-ed reads light meter.
School Faces Fund Cuts

The English Department offers a variety of courses in literature, written and oral communication, language, and linguistics. Participation in DramaTech and courses pertaining to the arts also yield English credit as well as cultural enhancement and creative expression.

In response to the demand for engineers skilled in professional communication, the department offers a Certificate of Technical and Business Communication. The program requires fifteen hours of specified electives including public speaking and advanced writing.

Faced with funding problems due to a struggling economy, the English Department strives to maintain the quality of the basic humanities education it offers. Staff and course improvements have been directed toward enhancing the freshman-sophomore required curriculum. The main thrust of the department continues to be focused on the improvement of communication skills.
Undergraduates Offered Three Certificate Programs.

To be admitted to the masters program an undergraduate degree in geology, meteorology, atmospheric science, chemistry, physics, mathematics, biology, or engineering is required. Many areas of specialization are offered as well as interdisciplinary studies. Cooperation in research and study of oceanography at Skidaway Institute also provide expanded studies.

Offering only masters and doctoral degrees, the school stresses understanding of the earth and the environment. However, the undergraduate is not forgotten as certificate programs are offered in geochemistry, geophysics, and engineering geology. Individual programs of study are tailored for each degree.
Beginning programming courses of the School of Information and Computer Science will soon be revolutionized thanks to a grant from Hewlett Packard. The HP300, a large “mini” computer with thirty-two terminal work stations, will allow students to see the instructor’s demonstration and then try it out immediately, eliminating large lecture classes and the confusion caused by trying to relate class notes to actual procedures.

Although Director R. E. Miller admits the school has only half as many faculty members as it should have, efforts have been made to correct the imbalance by actively recruiting in the very competitive industrial field. The school has made progress in upgrading the program by hiring in this area, as well as placing restrictions on entering freshmen.
Practical Problem Solving Is Crucial to a Tech Education

Dr. W. F. Ames was named acting director of the School of Mathematics Dr. Les Karlovits, left to become the Dean of College of Science and Liberal Studies. Under new leadership, the department hopes to continue its trends of encouraging abstract thought and promoting practical problem solving.

Advanced mathematics is crucial to students of Georgia Tech. To comprehend the concepts presented in major area classes they must understand the mathematical percepts involved. Besides using mathematics to solve problems in the classroom, students also find many practical applications of their knowledge when they enter industry. Many major scientific discoveries have been preceded by mathematical breakthroughs.

TOP, LEFT TO RIGHT: A student struggles with a computer program. Dr. Miller, ICS Director. Math 1307 students get help. BOTTOM, LEFT TO RIGHT: Lines form at the computer center. Mr. Ames, Director of the School of Math. Students attend Math 1309 classes.
Observing twenty-five years of offering intensive English for foreign students, the Department of Modern Languages continues to change in order to accommodate the diverse needs of Tech students. Courses in Chinese have been officially implemented in addition to French, Spanish, Russian, German, and Linguistics. The department currently offers over 150 courses with a full time faculty of only eight.

In spite of the problems of providing such a large curriculum, the Department of Modern Languages is proposing new courses in business-oriented Spanish, French, and German, but inadequate funding and staffing will be obstacles. These and other changes are being made in recognition of the increase in the internationality of science and engineering.
Variety Offered

Three distinct groups provide an outlet for the musical talents of Georgia Tech Students and give academic credit at the same time. On the first floor of the Couch building the Band, Chorale and Jazz Ensemble can be found practicing two or three times a week. Humanities credit for these courses is given for the second and third years of participation.

The Marching Band under the direction of Kenneth Durham provides entertainment at Tech Football games. Trips to out of town games are an extra bonus for members. During the winter and spring quarters a Concert Band is formed which performs at Tech and around the Atlanta area. Another project is the well known and spirited pep band which performs at home basketball and baseball games.

Directed by Gregory Colson, the Choral performs at Tech functions as well as locally. The Chorale also gives students a break during their annual Southeastern winter tour. The Jazz Ensemble, directed by Ron Mendola, further exposed the metro area to talented students.
Job opportunities in this versatile field surpass the number of qualified applicants. Only twenty graduates were available to interview with over 150 interested companies.

The School of Physics is revising its course offering to increase the versatility of its already popular graduates. Along with the traditional bachelors program, the new study tracks will deal with computational physics, acoustics, optics, and material science. Both new and established faculty members are working to revamp the curriculum.

The school hopes these options will appeal to students whose interests require a deep understanding of scientific principles and the application of these principles to practical problems. The school will accomplish this by offering a broadly based group of core courses and supplementing them with a variety of electives in areas related to the research specialties of the faculty.
Minors Offered in Five Disciplines

Georgia Tech's undergraduate program in psychology is unique in the United States. Requirements are designed not only to provide a first-rate college education, but also to prepare students to obtain employment upon graduation, as well as to continue their education in graduate or professional schools. The program combines in-depth study of fundamentals of psychology with course work in applied psychology, thereby equipping students with knowledge and skills sought in the job market.

The School of Psychology offers five certificate programs for students majoring in other fields at Georgia Tech who feel they could benefit from a working knowledge of psychology. These certificates are given for completion of minor programs of study in bio-psychology, experimental psychology, industrial/organizational psychology, and social/personality psychology. Each program focuses on a limited area of psychology, which may be of interest and use when examining the psychological complexities inherent in their major fields. By providing a sequence of progressively more advanced courses covering a wide variety of basic and applied areas of psychology, and by providing a large number of elective courses, the program has permitted students to obtain an intensive and broad educational experience and, at the same time, acquire knowledge and skills necessary for employment in job areas of their choice.
Striving to convince the students that there is more to life than lack of food and sleep, the Physical Education Department offers courses in understanding Physical Fitness. The new required PE 1060 course, "Fitness: Theory, Evaluation and Conditioning," stresses the need and assessment of fitness and its relation to the quality of life. This is taught through lectures, demonstration, and conditioning. Other advanced courses are also offered in Exercise Science. The basic PE courses are also offered, from the infamous PE 1010 Drownproofing, which is no longer required, to fencing and soccer.

Other areas the department is involved in include research and the PEACH Program. PEACH (Physical Evaluation and Conditioning for Health) aids the entire Tech community in their effort to shape up. One area of research is underwater weighing to determine ideal body weight in relation to percent of body fat.

TOP, LEFT TO RIGHT: Volleyball is popular in P.E. Dr. Reedy, Dir. of P.E. Student in class. Dr. Papp, Dir. of S.S. BOTTOM, LEFT TO RIGHT: Roger Moltar tests Leslie Henry in the Health Lab.
The use of economics, philosophy, sociology, and political science in engineering and technological fields is the current emphasis of the School of Social Sciences. A continuing success is the graduate program in Technology and Science Policy. This two-year-old program attracted those students interested in the impact of government policies, specifically those affecting business and corporate responses.

The general curriculum of the School of Social Sciences has essentially remained the same, although there is an increasing enrollment in Philosophy of Science and Technology classes. The school strives to increase student awareness of the Minor Certificate programs it offers. These course concentrations include traditional history, philosophy, political science and sociology disciplines as well as interaction of science technology and society, and urban studies. This goal as well as the expansion of curricula was adopted in order to broaden student understanding of technical impact through study of the social sciences.
Cadets Expand Scope of Education

The reserve officer training corps at Tech offer an extra dimension to the lives of many students. Although money in the form of scholarships as well as pay is always a factor with college students, some students join ROTC with no monetary incentives at all. Many students join ROTC for the job stability, leadership training or responsibility.

The cadets learn in class as well as practical training. Free electives in most majors at Tech are arranged to accommodate ROTC courses. Tuesdays and Thursdays at 11:00 a.m. are always left open in the course offerings because of drill instruction.

The army unit participates in a variety of exercises throughout the year. These include trips to Fort Benning for air mobile training in helicopters and instruction in the use of M-16's. Summer trips are also arranged for training in such areas as air borne, otherwise known as parachuting.

Much of the practical training for the Air Force unit comes during the summer following the sophomore year. The upperclassmen do a great deal to help prepare the sophomores for this summer field training. Other exposure comes from field trips to such places as Florida's Elgin Air Force Base to observe engineers in action.

Navy training consists principally of three summer cruises. These cruises can range in destination from Norfolk, Va. to Copenhagen, Denmark.

The units also encourage a wide range of extra-curricular activities. Cadets participate in almost all intramural sports as well as sporting and drill activities with other schools. Social activities from Navy mixers to the military balls round out the program.

Mr. William Hitch received the directorship of the Cooperative Division last summer, following thirty-two years of service. He inherited a program which has doubled in size over the past ten years and now consists of over 2200 co-op students.

A substantial portion of the current growth is upperclassmen from within Tech itself, as only 50 percent of all new co-op applicants are entering freshmen. Mr. Hitch expects this trend to diminish and the growth of the co-op roles to level off as word of the co-op program’s benefits becomes well known to all.

The job outlook has remained bleak in the recent past, causing the already strained staff to work even harder in placing all of the applicants into a co-op position. But despite these hinderances, the division hopes to initiate a graduate level co-op program for the 83-84 school year. The graduate level co-ops would either be undergraduate co-ops who continue their work assignment, students who begin working during their junior or senior year and work through the completion of their graduate studies, or newcomers to the co-op program once they begin graduate school.

In order to continue its growth and to maintain its past levels of performance for the student, the co-op division plans to install a co-op fee which must be paid for each quarter the student works. The income from these fees will be used to hire two additional coordinators as well as increase the travel funds used by the staff to track down jobs and keep in touch with over 400 active co-op companies across the nation.
Unsatisfied with merely attempting to absorb all that is known in a chosen field, graduate students are those special people who research and investigate in order to create their own additions to an already insurmountable pile of knowledge. Graduate students do, however, provide Georgia Tech with invaluable service.

The graduate student is a grader, a research assistant, a lab instructor, and/or a teaching assistant. As budgets are cut and professors become harder to recruit, graduate students are increasingly relied upon in teaching capacities. Not totally separated from the average "struggling to get out of here" undergraduates, graduate students are found in many campus organizations and are represented in the Student Government by the Graduate Student Senate.

TOP, LEFT TO RIGHT: Architecture student. Dr. Bynam, Dir. of Graduate Studies. Students help in math lab. BOTTOM, LEFT TO RIGHT: Stan Belyeu works in robotics lab. CE students work on dam model. Gil Mays explains chem lab.
Superior scholastic achievement among college freshmen is recognized through the society of Phi Eta Sigma.

Founded in 1923 and chartered at Tech in 1930, the society rewards freshman academic excellence. All students who attain a 3.5 GPA or better during their first freshman quarter or by the end of their freshman year are eligible to join.

Charles J. Adkins
Thomas G. Alexander
David R. Allen
Michael H. Allen
Scott L. Arnold
Robert C. Attig
Christopher F. Bannister
Preston R. Bates
Carlyle S. Bernard
Michael P. Boling
Blake S. Bradley
Scott H. Braverman
Robert P. Bryant, Jr.
Tracy Lee Budd
Lewis G. Burton
Timothy W. Calvin
Edward G. Cape
Willie D. Caraway, III
Demenico N. Castaldo
Vincent A. Castiglione
Kristina R. Catlin
Alejandro Cedeno
Christopher H. Chandler
Kenneth W. Chin
Hing-Fai Chow
Richard H. L. Cole
Harold W. Council, III
Jerrri H. Cresap
Darin H. Davis
Alan D. Diamond
Ralph D. DiGuilio
Mark A. Donihe
William B. Doty
John P. Drake
Christopher M. Durham
Steven L. Eddins
James D. Edwards
Susan C. Espig
Peter T. Finlay
Brian S. Fogle
John R. Foreman
Thurston DuPuis Futch, III
Erick J. S. Gaunt
Pedro R. Gelabert
Gena L. Ginn
John D. Gleiser
David A. Grable
Timothy L. Grantham
Mark E. Greene
William W. Gregory
Douglas M. Grimmer
Gregory C. Gurski
Samuel J. Haines
Charles A. Hall
Steven A. Hamsness
Russell B. Hanson
Timothy J. Harben
Nancy D. Harmer
Pamela Hatch
Gerald A. Helms
Connie M. Hembree
Randolph Henderson
Frederick Q. Herschelman
Russell K. Hill
Quyhn Thi-Ngoc Hoang
Joanne Holland
Edward Holman
William E. Hood, IV
Cheryl A. Hopper
James D. Huffaker
Raymond L. Humphries
Philip A. Husain
Jose A. Izquierdo
Elspeth T. Jinks
Randall A. Johnson
Jeffrey D. Keeseer
Elizabeth A. Ketcham
Lisa L. Kimberly
Michael R. Kimmons
Charles B. Koman
Paul A. Kreii
Cori D. Lampsphere
Brady A. Lantis
Maurice S. Laster
Mark E. Lee
Michael L. Leetzow
Michael A. Lehr
Elijah L. Lewis
Yvette C. Lupien
Janet E. Luth
Eric C. MacLennan
Cecil H. Macoy, Jr.
Sandra L. Mager
Ida E. Malavenda
Brian A. Mathewson
Raymond A. Matthes
MarkL. May
William M. McClamroch
Michael F. McKenna
Chris C. McNulty
Susan A. Mercier
Blair D. Milburn
Eric E. Miller
Richard B. Miller
Michael S. Mitchell
Paul A. Mogan
Lydia R. Musterer
Dung Anh Ngo
Susan M. Nicklow
Eric A. Nielsen
Roy D. Ogletree, Jr.
Steven M. Orr
Jon M. Payne
Bryan E. Pierce
Andrew G. Philpot
Jefferson D. Powell
Wanda R. Puckett
Kimberly P. Ragsdale
Balsubramaniam Ravichandran
Jose R. Rodriguez
Dwayne E. Rocker
Jonathan L. Rucker
Jeanny Bin-chin RuO
Deirdre A. Ryan
Patricia A. Ryan
Sarah S. Ryan
William J. Samples
Marcel J. Sarzen
Steve G. Skinner
Kayne M. Smith
Lori S. Sorrow
Garland S. Starnes
Howard J. Storr
David H. Straun
Anders J. Sullivan
Kari R. Swensen
David A. Sykes
Choon Peng Tan
Kent B. Terry
Barrett M. Thompson
Maurice A. Trebuchon
Wayne T. Trimmier
Gregory M. Turner
Karla N. Vaughn
Ashish S. Vazirani
Paul G. Wagner
Jeffrey S. Warner
Eric R. Wartell
Donald G. Watson, Jr.
Ellen D. Watson
Mark K. Weingarten
Paul F. Wellborn, III
Stephen K. Weltlich
Kenneth C. Whitehead
Carlton M. Wilson
Alex C. Wright
Allen C. Wynn
Robert J. Wysocki
Robert M. Zarbalan
Robert E. Zimmerman
Briarean Society

CO-OP SCHOLASTIC HONORARY

Founded at Georgia Tech on July 16, 1922, the oldest co-operative honorary society in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative grade point average and have completed five quarters of academic study in the Co-operative Department.

Joni Adams
Karen Adams
Mark Adelhelm
Calvin D. Alford
Pamela Amato
David Anderson
Barbara J. Angert
Thomas Anschutz
Denver Atwood
Frank A. Bailey
David Baker
John Bell
Mark Bennett
Robert J. Berinato
Daniel Biffi
Paul Bishop
Curt Bost
Robert L. Bowen
Daniel Bradley
Mark Bradley
John Branan
Scott A. Brewer
Charles R. Brown
Gary J. Brust
Mike A. Bryan
Chet Burroughs
Philip S. Bush
Martha J. Campbell
Steven Campbell
Kristi Carley
Robert J. Carson
Jo Ellen Carter
Lisa L. Carter
Wayne K. Chase
Alan Chervitz
Norman Chu
Chris Ciampaglio
Jeffrey D. Clarkson
Archie Clemons
Anthony A. Coker
Jean Cook
Jeff Cook
Donald Corbett
Doug Cox
Oliver Crooms
Cheryl Culpepper
Dale Danger
Mark Danielson
Todd Danielson
Richard Dardon
Frank Dauby
David Deaton
Clinton A. Demetriou
Diane C. Denagel
Mark A. Deveo
Jennifer Dowe
Eric S. Eason
Maxson V. Eddy
Eric Elfner
Kevin Erickson

Michele Evans
Marcel Farina
Jeff T. Farmer
Courtney Fazekas
Neal Flanagan
Steve Fleming
Richard Folea
Leo Franz
Dennis M. Frendahl
Robin Friedrich
Mark D. Fries
Lisa Gibbs
Wanda A. Gilbert
Warner Golden
Forrest Goodwin
David R. Graham
Glenn Greathouse
Greg Green
Lori S. Greenberg
Thomas K. Grzywacz
Tom Gurley
Karla Hagans
April Hall
Michael D. Hamilton
Norman B. Hansen
Gary L. Harrell
Chris Harvey
Michael Helges
Karen Hennessy
Andrew Henshaw
Richard Hergert
John Hermes
Ann Hitch
Bill Hitch
Nicholas J. Hobbs
Adria M. S. Hogan
Brett Holland
Charla Holltschneider
John Hotchkiss
Jessie Hoyer
Daniel Hronec
Chanh Vinh Hua
Robert Hughes
Timothy L. Hunt
Robert Hutcheson
Michael Ingraham
John A. Jay
Larry Jens
Jeffrey Johnson
John C. Johnson
Daryl Jones
Harmon Jones
Lawson E. Jones
Greg Jordan
Tony D. Jordan
David Joyce
William E. Kahn
Robert T. Kaufman
Christopher Kemple

Gregory Kershner
Haruko Kinoshita
George F. Kirkman
Richard C. Kluever
Terry Kneeburg
Lula Knight
Carol A. Kunkel
Mitchell E. Lambert
Gary E. Landriau
Bill Lansford
Robert T. LeCroy
Laura C. Lindsay
Ruth Litman
Dave Loftus
Thomas Lyons
Jeff Malcolm
Wayne D. Mangum
Brian Markwalter
Stephen Martucci
Charles W. Matthews
Patrick L. McCain
Mark McClanahan
Scott W. McConnell
Kyle McDonald
James L. Milam
Russell L. Mullenix
Kathleen A. Millikin
David B. Mills
Kimberly Mitchell
Gary Moland
Hugh Moore
Joan A. Nelson
Katherine Nesbit
Steven Newman
David E. Niederhauser
Michael A. Norman
Steve Norman
Philip North
Robert Northrup
Brian Nutt
David O'Ferrell
Michael Oles
Keith J. Owens
M. Scott Page
Tammy Page
Hugh D. Parks
Teresa Parsons
Richard Patrick
James Paulino
Richard Pearson
Charlene Plumb
W. Scott Potter
Scott Pounds
Paul D. Pratt
Mary Jo Pratt
Alan A. Rakes
Bill Ralph
Mark D. Rambeau
James E. Raynor

Robert N. Reeve
John P. Reichert
Keith Richardson
Stephen Roberts
Kevin Roy
Michael D. Rucker
Doug Rule
David M. Rurak
Kevin Rusche
Ann Rush
Carl Rush
David C. Rutland
Joe C. Sarphie
Philip Sassé
Daniel J. Schaefer
Richard P. Scheff, Jr.
David A. Schierenebeck, Jr.
John Schierman
Todd Schmidt
Susan J. Schramp
Craig Schulz
Christopher G. Scott
John Sears
Tom Segatta
Steve Sheetz
Alan N. Sherman
Stephen A. Sherman
Sarita Shirley
Wesley Smith
Todd Smithgall
Steve Spann
Glen Spivak
Scott Spivak
Laura E. Steel
William M. Story
Helen C. Storyell
Jeff H. Sullivan
Tanya Targonsky
William W. Tarpsey
Katherine Taylor
Wayne Tinklepaugh
David H. Trask
Bob Vaughn
Todd Vaughn
Grace Vorhis
Steven Wallace
Stan Ward
Anthony D. Weathers
Jay S. Welch
Phil Whitmer
Thomas Wiencko
John D. Wilson
Dorothy L. Wise
David Word
Mark W. Yambert
John Yntema
Julia A. Youtes
Charles R. Young
Dana R. Zipperer
Who's Who Among Students in American Colleges and Universities

Who's Who Among Students in American Colleges and Universities has been providing recognition for outstanding campus leaders. Candidates must be juniors, seniors, or graduate students and are judged on academics, community service and leadership in extracurricular activities.

Mark Stephen Adelhelm
Linda Lee Brennan
Raymond Ivo Bruttomesso, Jr.
Philip Scott Bush
Cathlyn M. Carley
Madeline Delianides
Stephen Richard Fleming
Edmund A. Fortier
James Willard Fowler, IV
Ellis Peniston Gardner

Lee Bradley Grey
Nicholas Jones Hobbs
Jane Catherine Karwoski
Michael Gilbert Kilgore
David N. Ku
Frances Louise Langton
Paul B. Lindemann
Wayne Keith McMullins
Alexis Munoz
Karen Louise Owens

Ann Lynn Parker
Ella Parks
Sharon Ree Penn
Mark Herman Schultz
Joseph Bryan Shelton
Linda Susan Taylor
Carol Anne Wise
Carol Lynn Wise
Phillip Scott Wofford

Omicron Delta Kappa
NATIONAL LEADERSHIP HONORARY

For fifty-two years, Georgia Tech's chapter of Omicron Delta Kappa has honored juniors and seniors who have proven themselves outstanding in academics, athletics, social service, journalism and creative and performing arts. Candidates must have a 2.8 cumulative grade point average for consideration.

Skip Addison
Mark Adelhelm
Frank Bailey
Patricia Bailey
Dr. Carl Biven
Dr. Walter L. Bloom
Elizabeth Bradley
Jennifer Braswell
Linda Lee Brennan
Phil Bush
Dr. James J. Bynum
Cathlyn M. Carley
Kristi Carley
Gina Carr
R. Alan Cartledge
Jim Cartwright
Elizabeth Chandler
Dr. Wister J. Cook
David Cree
Mr. William Curry
Mr. James E. Dull
Jack Eckles
John Entrekin

Stephen Fleming
Eddie Fortier
Jeanene Fowler
Jim Fowler
Sheldon Fox
Dennis Frendahl
Ellis Gardner
Dr. Thomas K. Gaylord
Mike Gibbons
Dr. John J. Goda
Dr. Barry Goodno
Chris Gorby
Dr. James N. Gordon
Dr. Robert E. Green
John Griffin
Ken Gwinner
Gary Harrell
Sarah Harrell
Dr. James V. Herod
Peter Howard
Dr. Harold L. Johnson
Marvin Kilgo
René Lampley

Lauren Lewis
Martin Light
Paul Lindemann
Dr. William J. Lnenicka
Rick Lockwood
Govantz Lowndes
Charles Matthews
Dr. Paul G. Mayer
Bruce McIntyre
Robert C. McMath
Valerie Montgomery
Joan Nelson
Karen Owens
Tom Parham
Dr. John B. Peatman
Sharon Penn
Dr. Joseph L. Pentecost
Michael Perez
Dr. Joseph M. Pettit
Dr. G. Alvin Pierce
Mike Polak
Susan Raffensperger

Dr. Homer C. Rice
Dr. G. Peter Rodrigue
Mr. Nelson K. Rogers
Glen Rolader
Dr. William F. Sayle
Clyde Sheehan
Bryan Shelton
Dr. Peter B. Sherry
John Staak
Dr. James R. Stevenson
Dr. Richard D. Teach
Mr. W. Miller Templeton
Walt Tracy
Dr. Maxine T. Turner
Dr. James W. Walker
Dr. John A. White
Anne Wise
Dr. William E. Woolf
Rosalind Wright
Jon Wyatt
Dr. James D. Young
Clifton Youngblood
Phi Kappa Phi
SCHOLASTIC HONORARY

The Georgia Tech chapter of Phi Kappa Phi was established in 1914. Recognition of superior scholarship in all academic subjects is the purpose of this society. Candidates rank in the top ten percent of their class as well as display a good character and academic record.

Rae Ann Alton
Heidi L. Arter
Bruce W. Bakke
Craig S. Barber
Donald J. Barry
Anita R. Bausman
Julie Bercegeay
Howard P. Blount
Jennifer T. Braswell
Michael B. Brown
Raymond L. Bruttomesso
Chester R. Burroughs
Kimberly A. Callender
Michael E. Callnek
Reginald A. Cartledge
Chris M. Chen
Eric M. Clementi
Diane S. Clements
Robert R. Collier
Gregory W. Cook
Lila A. Dellingher
Charles T. Dickson
Eric S. Eason
John C. Eidsen
Victor M. Farinas
Alan B. Fletcher
William D. Freeston
Sarah M. Foreman
Daniel T. Gainey
Vincent M. Gioe
Chris H. Goheen
Lori S. Greenberg
Sara E. Griffith
Christopher A. Grimmell
Thomas D. Gros
Holly H. Hamilton
James J. Harford
Keith E. Harp
Richard R. Harris
Neil C. Hawkins
John G. Hotchkiss
Jamie N. Hulett
Timothy L. Hunt
Mehmet Ilgaz
Luis F. Illingworth
David P. Joyce
Cory F. Juhl
Farrokh Khandaghabadi
Mitchell E. Lambert
Joseph D. Lattanzi
David W. Lloyd
Jeffrey D. Malcolm
Jack Manevich
Brian E. Markwalter
Julia N. Martin
Walter R. McKibben
Kevin S. Mepham
Thomas R. Mergens
Kathleen A. Millikin
William D. New
Steven P. Newman
Richard T. O'Brien
Sue I. Oliver
Michael Perez
Paul R. Peronard
James A. Perry
James L. Perry
Acy C. Platt

Outstanding Teachers of the Year

Nominations for this award are solicited by the Institute's Faculty Honors Committee from faculty, staff, students, and alumni. The awards are in recognition of excellence in teaching, extraordinary effort in the classroom, the degree and quality of inspiration transmitted to the students, direct impact involvement with students, and the intellectual integrity and scholarship of the professor.

MALCOLM G. LITTLE
DAVID H. RAY
JOHN A. WHITE

Phi Kappa Phi, Outstanding Teachers / 187
HIGHEST ENGINEERING HONORARY

Tau Beta Pi

Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of engineering, are recognized by Tau Beta Pi. Undergraduate students who rank in the top eighth of their junior class or the top fifth of their senior class are considered for membership.

Lila A. Dellingier
Robert S. Abernathy
Robert T. Hutcheson
Karen E. Illingworth
Luis F. Illingworth
Mary A. Ingram

Russell A. Desimone
Charles T. Dickson
Hal Dobbs
John M. Donnicaucio III
Robert A. Dukes

Michael Distazio
Hal Dobbs
John M. Donnicaucio III
Robert A. Dukes

Lily A. Dellingier
Russell A. Desimone
Charles T. Dickson
Michael Distazio

Hal Dobbs
John M. Donnicaucio III
Robert A. Dukes

Merrilynne Hodgkinson
Samuel G. Hollowell
Deborah A. Holmes
Charla S. Holtzschneider
Jeffrey W. Howard

Lily A. Dellingier
Russell A. Desimone
Charles T. Dickson
Michael Distazio

Hal Dobbs
John M. Donnicaucio III
Robert A. Dukes

Jeffrey T. Cook
Duane T. Cooper
Donald M. Corbett III
Thomas J. Corbo

Steve S. Cox
Carl A. Cozine
David C. Crisp
Oliver J. Crooms III

Cheryl W. Culpepper
Dave A. Danger
Terry S. Danner
Leo E. Daub

Mary C. Davis
David N. Deaton
ANAK

HIGHEST SENIOR HONORARY

Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

Tsali D. Bentley
N. Elizabeth Braddley
S. Denise Ellis
Edmund A. Fortier
Ellis F. Gardner
Gary L. Harrell

L. Rene Lampley
Govantez L. Lowndes
Susan M. Raffensperger
C. Anne Wise
Clifton G. Youngblood

Order of Omega

GREEK HONORARY

The Order of Omega honors exceptional leadership in IFC activities. Junior and senior fraternity members are judged on outstanding scholarship as well as leadership qualities.

Phil Bush
Susan Cloyes
Jack Darnell
Jeanene Fowler
Geoff Gilbert
Mitch Ginn
Gary Harrell

Greg Larkin
Gary Pilgian
Rick Purser
Laura Thomas
Walt Tracy
Dave Trask
Chris Troutman
The Real World — It's Got to Be Easier Than Ma Tech

Graduation at Georgia Tech was both an end and a beginning for the men and women that lived and survived the Georgia Tech experience. It signified the end of a long career of trying to fit studying and other academic processes into an intense schedule of recreation, relaxation, inebriation, and procrastination.

Graduation meant the end of preparations for the "real world." Tech molded its graduates into marketable, prospective employees and, just in case jobs don't come easily, Ma Tech gave them the power of endurance through poverty and other adverse circumstances.

But, while the curtain draws on the past, the true tone of graduation is one of a joyous beginning. The graduate does not notice the lost burden of education nearly as much as he feels the responsibility and individuality of his new life settling on his shoulders. Looking back on his departure from home four, or maybe even a dozen years ago, the graduate was now leaving the sheltering arms of Ma Tech to begin a new life.
Georgia Tech is clearly all work and no play. Tech students even manage to extend academics into their spare time. All over the Tech campus students found new applications of their studies.

The Tech campus is actually a laboratory. Every day students are found performing such noble experiments as determining the capacity of the human body for storing hydroelectric power and predicting the saturation point of grease in a controlled environment of Varsity french fries. Tech students are not limited to engineering experiments, however. Aspiring psychologists were always ready to test the minds of unassuming engineers. An example was the familiar optimist/pessimist test in which mechanical engineering students were asked to determine whether a poorly parked automobile was half on or half off of a specified curb.

Academics also infiltrated the social life of Georgia Tech. For example, the Arm-Ful kissing booth was in reality a statistical survey of left-handed people asking which side they preferred to put their noses while kissing. Everywhere students could be seen walking arm in arm discussing the effect of Newton’s Third Law on their relationship.

Tech students just couldn’t get enough education, even though their eating, drinking, and social activities all rendered useful tidbits of information. Perhaps the purpose of classes at Tech was to give students a break from the academic rigors of their spare time. Maybe the academic load should be made more difficult in the future because sitings of extremely premature gray hair and wrinkles have been reported.

TOP, LEFT TO RIGHT: Psychology students debate the independent variable of a five speed transmission. Another all-nighter victim heads for a test. Soon to be martyrs Ed Campbell and Andrea Goss raid the Varsity. BOTTOM, LEFT TO RIGHT: A couple discusses electromagnetism. A couple does research on electromagnetism.