COM/ISYE Complex Opens Bringing Drastic Changes

Classroom and lab facilities were much improved when the College of Management/Industrial and Systems Engineering Complex opened this fall. The complex includes an office/lab building for each school and a shared classroom building. Millions of dollars worth of research equipment, including materials handling machinery and color graphics terminals, strengthened the industrial engineering program. A DC-8 flight simulator was donated by United Airlines to give students hands-on experience.

The Management College underwent many changes as a result of the move. The new facilities allowed the school to focus on more modern aspects of management, especially computer applications.

TOP, LEFT TO RIGHT: Tamara Dasantis and Martha Tuttle program a PC. A tachistoscope tests response time. **MIDDLE:** Outside the complex. **BOTTOM, LEFT TO RIGHT:** Students try out the simulator. The materials handling center. Covered walks connect the three buildings.
Institute Leaders Maintain Standards and Traditions

TOP, LEFT TO RIGHT: Dean of Students staff: FRONT: Carole Moore, Asst. Dean of Students/Women's Activities; Gary Schwarzmüller, Director Housing; Miller Templeton, Asst. Dean of Students/International Students; Jo Ivey, New Student and Parent Programs. BACK: James E. Dull, Dean of Students; Nicholas Gordan, Director Student Health; Roger Wehrle, Director Student Affairs; James Strickland, Director of Counseling and Career Planning; Barry Birckhead, Asst. Dean of Students/Fraternity Affairs; Edwin P. Kohler, Assoc. Dean of Students. President's staff holds a meeting. President Pettit speaks at a general faculty meeting. BOTTOM, LEFT TO RIGHT: President's Staff: FRONT: James Stevenson, Executive Asst. to President; Joseph M. Pettit, President; Janice Gosdin-Sangster, Asst. to President; James E. Dull, Dean of Students; Henry Bourne, VP Academic Affairs; Warren Heeman, VP Institute Relations and Development; John Culver, Asst. VP Institute Relations and Development; Dave Savini, Director Campus Planning; John Gibson, Asst. to President for Affirmative Action and Employee Relations; T. E. Stelson, VP Research; Richard Fuller, VP Business and Finance. Dean Dull submits a proposal to staff.
New Research Center Constructed

Conducting both pure and applied research through the academic colleges and the Engineering Experiment Station, Georgia Tech is the South's largest industrial and engineering research center. Research activity has continuously grown at a rapid pace, with estimated 1983 research expenditures of $83 million. With sixteen on-campus research centers as well as a computer facility, Tech's program encompasses a very wide range of fields.

This increased diversity and demand led to the construction of a new research headquarters this year. The building will provide Tech with the necessary laboratory and office space needed for the added demand. With over 1200 contracts currently in the program, the center will also aid in the organization of the growing research activity.

Tech's research is growing faster than that of any other major research university, and it is also more heavily funded by industry than any other. However, funds are still quite limited. Since money from the state has become increasingly scarce, Tech has been forced to rely more heavily on industrial sponsorship. By better acquainting national industry with the research program at Tech, the School hopes to increase funding from industry.

With this purpose in mind, a meeting was held in September drawing research leaders from more than thirty major American electronics firms. This meeting focused on a dozen specific areas of electronics research, including infrared scene simulation, computer image processing, fabrication of exotic materials for IC chips, radar signal processing, and digital image processing. Other similar meetings were held throughout the year, and the results were favorable. Tech's research continued to grow this year, with many new projects being undertaken.

TOP, LEFT TO RIGHT: Tracking mirrors at the solar facility, inspection of the reactor pool. BOTTOM, LEFT TO RIGHT: Hazardous materials are handled by remote control. Mirrors follow the sun to produce cheap energy. A student checks a recorder in the reactor control room.
Ph.D. Program in Architecture and Planning Added

The College of Architecture embarked on the 1983-84 year buoyed by a number of events which occurred in the latter stages of 1982-83. Foremost among them was approval by the Board of Regents of the Ph.D. Program in Architecture and Planning. The College considered this development to be an historic one, potent in significance for the future. The year also produced implementation of a revised administrative organization. This revision included the movement of the City Planning Program into the Architecture Building complex, substantial modification of the City Planning curriculum, organization of the College of Architecture Association, and successful bidding by the student chapter, AIA, to host the 1983 National Convention of ASC/ALA in November.

Research in the college continued to grow. Dollar volume of contracts achieved by college personnel exceeded $1 million in 1982-83 — a milestone for development of research activity. The College of Architecture has emerged with a national reputation and a leadership role for research in architecture with a wide range and relatively large volume of research in a discipline for which the tradition of research is just developing. The addition of the new Ph.D. program will continue to enhance opportunities for research and development of new knowledge in Architecture and Planning.

However, the school is held back by budget and space constraints. The faculty has lofty ambitions for the college, both for expansion (Ph.D. program, graduate work in Industrial Design, greater research volume, expanded extension offerings) and for quality improvement in all the college’s programs. Space and facilities have become a serious problem. As research activity increases, the need for expansion grows. The most urgent project is to find some resolution. The college examined the possibilities for solving this problem, including the more efficient use of existing enclosed space through minor remodeling of faculty offices and research project spaces currently devoted to other uses.

TOP, LEFT TO RIGHT: William Fash, Dean of Architecture. Student adds color to drawing. BOTTOM, LEFT TO RIGHT: I.D. student works on a model. Class learns about mixing colors.
Special Task Force Study Formulates New Direction

The primary objectives of the Building Construction program are intended to form the bases for strong professional careers in the construction industry. The learning experience develops technical skills as well as management expertise, directing students toward leadership roles in construction.

The program responded this year to a special Task Force Study in formulating a new direction for the program. Changes included an increasing stress on practical applications of specific management techniques such as management of time, cost, and human resources, coupled with a strong technological background in the means and methods of construction and the architectural design process.

Students fulfilling the graduation requirements leading to a Bachelor of Science in Building Construction enter the construction field in areas of individual interests and expertise such as general contracting, architecture, engineering, science, research activities, or a combination of any of these.
INDUSTRIAL DESIGN

Competitive Year Produces Awards

Recent efforts to expand and improve research activity within the Industrial Design department paid off this year. The junior class was given the opportunity to work with NASA in designing a hospital in space: a theoretical problem, the design involved considering various hospital equipment designs that could be used in the zero gravity of orbit.

Interactions with business, industry, and the profession of industrial design were wide ranging. A competition open to all design students, prepared in conjunction with the General Electric Plastics Division in Massachusetts, dealt with engineering plastics and involved the design of products and components of General Electric products. Seniors worked with The Trimble House in the manufacturing of lighting fixtures, and also with the American Iron and Steel Institute, on products designed for the disabled.

Active participation in the profession by the faculty provided valuable insights for the students. Mr. Lee Payne, the school director, received an award this year for the design of a coffee table in a major competition held by the Formica Corporation. Two visiting professors, Mr. Wittner and Mr. Maurice Ward, shared their expertise in exhibit design and two-dimensional graphic design.

TOP, LEFT TO RIGHT: Garvin T. Dreger, director of the School of Building Construction. Lee Payne, Director of the School of Industrial Design. BOTTOM: Students relax and work on their projects in the design labs.
Limited Resources Force Change in Admission Policy

Recent changes in the admissions policies reversed the steady increases in enrollments that have persisted throughout the past decade. Continuation of these policies should begin to bring the instructional loads in the more popular engineering disciplines in line with available resources.

Although resources were increasingly limited, through the generous support of Tech's alumni and many industrial organizations, the latest equipment was installed in the laboratories associated with several electrical and mechanical engineering courses. The recent IBM grant of over $2 million for development of a computer integrated manufacturing system (CIMS) curriculum, enabled them to involve students more intensively in these important new areas. The faculty members of the College of Engineering continue to receive recognition for their accomplishments as evidenced by three having been elected President of the professional society related to their particular area of specialty.

To match the rapid pace of technological innovation, the Institute has begun to place increasing emphasis on the importance of graduate study. The programs have long been recognized as excellent. However, it was particularly encouraging to find in a recent National Academy Study that several of the graduate programs of the College of Engineering were ranked among the top several in the country in terms of improvement during the past five years.

TOP, LEFT TO RIGHT: William Sangster, Dean of Engineering. Students listen in AE structures class. Lab takes tensile strength measurements. BOTTOM, LEFT TO RIGHT: John Lemasters presents a Harris computer to President Pettit. Ceramic engineering lab requires protective clothing.
During the 1983-84 academic year research grants and contracts approximated nearly three and one half million dollars — an all-time high. One significant benefit from a large sponsored research program was the availability of the latest sophisticated equipment and facilities for undergraduate and graduate instruction and research. A second benefit was reflected in the classroom whenever the lectures include information which is generated by the state-of-the-art research. Such lectures added a sense of timeliness and reality to the subject matter being discussed.

Even with the advantages of a strong research program the undergraduate academic programs are being severely penalized because of an almost complete lack of funds for updating existing equipment and for acquiring sophisticated new facilities for laboratories. Plans for implementing new areas of instruction and research for Aerospace Engineering undergraduates have been curtailed as a result of the funding problems.
Monetary Pressures Mount as Budgets Are Tightened

The School of Ceramic Engineering continued to have the smallest enrollment in the College of Engineering with only about seventy-five students. This provided an opportunity for considerable personal attention and personal interaction in classes of fifteen to twenty students. However, the limited number of students also created some fiscal pressures as budgets tightened. Costs per student grew higher, and the result was a severely tightened budget, which was perhaps felt even more than in the larger schools. The Ceramic Engineering curriculum includes a heavy laboratory content, and the expenses for operating effective laboratories is obviously higher than for lecture oriented courses.

Some curriculum changes were planned through combination of similar courses with Metallurgy and possible use of other courses to reduce teaching loads and costs. The budget cuts of most concern are those which have severely reduced the school’s ability to support graduate students and therefore reduced participation in the graduate program. Other sources of funds were sought, and further updating of equipment will be achieved largely through industrial contributions rather than state funds.

Research work continued to be an important activity of the school. Currently, a wide variety of programs exist in refractories, electron field emitters, ceramic oxide-metal composites, and electronic properties of oxide films.

TOP, LEFT TO RIGHT: Randy Cambell listens in lab. Arnold Ducoffe, Director of AE. Joseph Pentecost, Director of Cere. Henry Larnie and Veena Tikare monitor reaction. BOTTOM, LEFT TO RIGHT: Students await AE class. Prof explains experiment.
CHEMICAL ENGINEERING

Major Computer System Installed

The 1983-84 academic year was a period of significant change for chemical engineering. The most dramatic change was the installation of a major new computer system for instructional and research use. This system, a DEC VAX 750 and PDP 11/34, filled a void in the program related to direct computer-laboratory equipment interactions.

Faculty changes included the addition of Professors Jeffery Hsieh and Stephen Antolovich. Dr. Hsieh is an expert in pulp and paper engineering and was made responsible for the certificate program in this area. Professor Antolovich is the head of the Fracture and Fatigue Research Laboratory, and he is currently Acting Director of the Metallurgy Program until plans for Metallurgy are finalized.

Curriculum changes were initiated in the transport/unit operations design and thermodynamics areas. These changes were initiated to give students more flexibility in choosing courses and to broaden the range of topics available for study. Large numbers of undergraduates continued to elect to work on undergraduate research projects.

TOP, LEFT TO RIGHT: Dr. Gary Poehlein, Director of Chemical Engineering. Civil Engineering student performs experiment in C.E. soils laboratory. BOTTOM, LEFT TO RIGHT: Chemical Engineering student checks water coming out of condensation tank in Ch E laboratory. J. Edmund Fitzgerald, Director of Civil Engineering. Civil Engineering students doing surveying are a familiar sight around campus.
Graduates of the civil engineering program may go into areas of planning and design, construction, research and development, operations, or maintenance. This year, a revised curriculum was put into effect including a new course offered on the problems of and possible solutions to the decaying infrastructure. A major portion of the civil engineering faculty lounge was converted to a student computer terminal facility, to help support new courses in computers.

Civil Engineering students not only have to meet the campus-wide requirements for graduation, but they also have additional requirements set by the school. Students must make at least a C in any Civil Engineering course, as well as maintain at least a 2.0 during the last fifty-four hours of study.

The school offers a course normally taken by all engineering freshmen, Introduction to Visual Communication and Engineering Design. This course, designed to teach the student the principles of graphic expression, provides a basis for use in many further engineering courses and thus is a valuable asset to the entire engineering college.
Medical engineering projects spearheaded research efforts at the School of Engineering Science and Mechanics. The Veterans Administration Medical Center sponsored projects on a variety of topics in rehabilitation medicine, including exercise devices and ultrasound imaging of soft tissues.

Dr. Raymond P. Vito worked with Dr. Carl Fackler of Emory University on an improved brace for paraplegics. A prototype brace, designed to hold the legs rigid, was developed using lightweight aerospace-type materials; the device was tested at the Scottish Rite Hospital in Atlanta. If successful the design may be patented by Georgia Tech and later sold to medical supply manufacturers.
This was a very exciting year in the history of the School of Industrial and Systems Engineering. The move into the new building complex on the west side of campus made the year very exciting for the school. It allowed them to accept a $600,000 donation of laboratory equipment which was installed by Litton Unit Handling Systems and provided them with space to install two IBM pick and place robots in the Materials Handling Research Center which was jointly sponsored by the National Science Foundation and twenty-three major industrial firms. The Center Director is Dr. John White, and the Center encompasses activities in the School of Electrical Engineering Information and Computer Science, Mechanical Engineering and the Engineering Experiment Station together with several faculty members and graduate students from the staff of the School of Industrial and Systems Engineering. This was a major new thrust for the school and provided approximately a million dollar per year research program which benefitted both the research activities as well as academic programs.

The continuing enrollment pressures caused the school to become somewhat more restrictive in accepting transfers than had been the case in the past. Since the National Science Foundation has projected that the greatest shortages in the upcoming decade will occur in the fields of statistics, industrial engineering and computer science, the school was reluctant to limit enrollment, but resources are not available to allow further expansion. Additional problems with computer facilities occurred because of resource constraints. The manufacturing floor is rapidly becoming automated, and it is important to expose students to the new computing environment which they will face when they graduate. The school needs to have a significant enhancement in the number of personal computers that are available for students to interface with. Progress is being made but not at a sufficiently rapid pace.

The School of Industrial and Systems Engineering absorbed the School of Health Systems beginning with this year, and the degree programs in Health Systems will be administered by the School of Industrial and Systems Engineering in the future. This was a natural evolution as activities represented by the programs in Health Systems are normally found in industrial engineering departments in many other universities around the country in that most of the health systems faculty had industrial engineering backgrounds.
Transition Planned for Coming Technology-Driven Era

Since the early seventies, Georgia Tech's School of Electrical Engineering has experienced a basic metamorphosis featuring greatly expanded student enrollments, a much improved faculty, and a program of funded research that rose from virtually zero to nationally competitive levels. The reputation of the school has reached new highs, but so have pressures caused by inordinate workloads.

The next era will be technology driven. Barring an unforeseen technological breakthrough, or a second energy crisis, the major forcing function of the next decade is thought to center around integrated electronics and applications in such areas as computation, automation, and information processing, transmission and storage. The applications of microcomputers and of the underlying semiconductor technology is classical and emerging electrical engineering arenas will dwarf all others and will, in fact, permeate each of them. To be sure, micro-electronics and robotics are destined to play major roles in the practice of the profession, but not without a strong support structure in related disciplines both within and outside electrical engineering. The school plans to gradually change its own structure to keep up with the changes within the profession.

Initial conditions are most favorable for achieving the planned transition. Assuming that the necessary support can be secured, the coming years will be characterized by a differently proportioned student body, a streamlined undergraduate curriculum and graduate instructional program; a stronger research program; a much improved doctoral student throughput, targeted to reach 10-15 per year in the near term; and an expanded faculty, able to engage in the broadcast spectrum of normal pursuits. Turning this dream into reality will be a most difficult but exciting challenge.
Obsolete Equipment in Undergraduate Labs Replaced
This year Mechanical Engineering welcomed seven new professors, opened two newly renovated laboratories, and played a major role in the new IBM-sponsored program in Computer Integrated Manufacturing Systems (CIMS). Students began to benefit from a lower student-faculty ratio as faculty recruitment and undergraduate enrollment limits continued. Undergraduate laboratories and lab courses received significant attention with renovations of 5,000 square feet and replacement of obsolete equipment with computers, advanced instrumentation, and new furniture.

New computer-aided design, robotics, and microprocessor laboratories reflected Mechanical Engineering's strong involvement in current technologies. The school also continued to keep pace with developments in more traditional areas such as heat transfer, and in interdisciplinary research such as acoustical engineering and fluid mechanics.

Morale is high within the growing graduate student body. With the addition of faculty, several research areas were strengthened. New opportunities for involvement with industry were made possible through the graduate co-operative program and the CIMS program.

TOP, LEFT TO RIGHT: Students measure material thickness with a micrometer. Robert James, John Bastian, and Chip Epps use a micrometer to gate size of a material sample. Dr. Brighton, ME director.

BOTTOM, LEFT TO RIGHT: Bob Lukasik sets up a tensile strength machine. Students watch a tensile strength experiment on the machine.
Eight Doctorate Degrees Earned

Although research support has fluctuated, nuclear engineering has maintained a strong research program and graduated eight Ph.D's in the past year, and the prospects are good for the coming years. Opportunities for Tech students remained promising and a strong effort will be made to attract more students into nuclear engineering, health physics, and fusion studies.

The school continued to maintain its outstanding national reputation in both nuclear engineering and health physics. Despite the popular misconception of a "dying industry," the job market continued to be very strong, and Tech's graduates continued to be in high demand. While Nuclear Engineering students study the release, control, and utilization of all types of energy from nuclear sources, the health physics program prepares students for work in radiation protection in industry as well as in medical physics.
Like most of the Tech campus, the School of Textile Engineering struggled to cope with low funds and budget cuts. When three years passed with no money available for lab improvements, the situation had deteriorated so that the school’s director, Dr. Albin Turbak, “kicked through rotten benches in the dye lab” during an inspection of the labs.

An appeal for help to the Textile Education Foundation brought fast results. Within six months TEF raised four hundred thousand dollars for the school. The funds were put to good use creating a new computer lab, a new microscopy lab, and a new dye lab “equal to any in the country.” The money also brought lab equipment to be used in a new M.S. in polymers program developed with the School of Chemical Engineering.

These improvements should be important to Georgia, because, according to Dr. Turbak, the state has a five billion dollar textile industry that supports 2.3 million jobs. Students who use the equipment may one day join the four out of ten engineers in Georgia who work in a textile-related job.

TEXTILE ENGINEERING

Textile Engineering Foundation Raises Necessary Funds

TOP, LEFT TO RIGHT: Walter O. Carlson, Director of Nuclear Engineering. Textile Engineering student operates tubular weaver. BOTTOM, LEFT TO RIGHT: Nuclear Engineering laboratory. Al Turbak, the director of the school of Textile Engineering, makes a routine inspection of the equipment in the textile lab. Student adjusts weaving machinery.
More Microcomputers Added to Modernize Curriculum

With the move from the basement of the Skiles Building to the new College of Management/Industrial Systems Engineering complex came many changes and opportunities for the college. The faculty and administration worked to complete what they termed "The Strategic Plan" for the college. The plan was designed to position and guide the college through the expected changes within the field in the coming decade.

Microcomputers will play a vital role in the coming decade for the management field, and the college worked to acquire significant numbers of these computers to better facilitate modern management education. Improvements made in the support services of the college were geared to meet students' needs in placement and career counseling. Plans were also made to appropriately publicize and market the college to potential students.

TOP, LEFT TO RIGHT: Mgt. prof makes a point. G. R. Day, Dean of College of Management. A 3261 class takes notes. BOTTOM, LEFT TO RIGHT: Professor D. Mulford lectures to a Mgt. 2000 class. Dr. F. Levy explains economics to his class. A packed Mgt. 2000 class listens.
LABORATORY RENOVATIONS FINISHED

The College of Sciences and Liberal Studies continues to increase the national prestige of its educational and research programs. Sixteen new faculty members joined the college's staff, bringing with them extensive professional experience. Two new laboratories were put into operation during 1983 — the Hewlett-Packard Laboratory in ICS and the Fermentation Laboratory in Applied Biology. Three other new laboratories are scheduled to become operational in early 1984 — the Electronics Device Laboratory in Physics, the Computer Graphics Laboratory in ICS, and the IBM Classroom-Laboratory for computer based instruction which will be used for courses throughout the college. Several laboratories in chemistry and physics are scheduled to be refurbished.

Two new administrators were appointed in the summer, Professor W. F. Ames as Director of the School of Mathematics and Professor R. A. Pierotti as Director of the School of Chemistry.

The college faculty continue to meet twice each quarter for research presentations designed to communicate new ideas across disciplinary boundaries.
Hands-On Training Aids Students

With the start of the year came the introduction of a new core of courses for biotechnology training. This core included new courses in microbial genetics, industrial microbiology, biology, medical microbiology, and the addition of a fermentation laboratory.

The curriculum change affected the overall course of study for biology majors by extending the classroom instruction on mechanics of action theory and function to new laboratories. By actually performing experiments in the laboratories rather than reading about them in books, students got actual hands-on experience in the "state of the art" in biotechnology.

New laboratories for Recombinant DNA and microbial genetics and fermentation as well as an immobilized cells and enzyme lab were constructed in the fall to support the new curriculum. Funds for the construction and operation of these laboratories were obtained from the Georgia Tech Research Foundation, federal grants, industry, and the school itself. As these funds were quite limited, each new laboratory contained only the basics, however the school plans further attempts to expand into first-class operations by requesting additional funds from federal grants-in-aid and industry.

TOP, LEFT TO RIGHT: Thomas Tournabene, Biology Director. Chemistry students in lab. BOTTOM, LEFT TO RIGHT: Students perform experiments in biology lab. Dr. Pierotti, Chemistry Director.
The School of Chemistry received two new members to the faculty this year. Dr. L. A. Bottomly and Dr. P. G. McDougal both joined the school in the fall and taught freshmen chemistry courses. Newly built laboratories resulted in several new courses being added in the spring, and an additional organic lab will be initiated in the fall.

A transition in the curriculum began this year which will eventually result in more flexibility in choosing courses for chemistry majors. The new curriculum includes a greatly extended number of elective hours. To fill these elective hours, students will choose an "unofficial minor," depending on their own particular interests. Areas to choose from include Geology, Biology, Industrial Chemistry, and computers.
New Certificates Made Available

The Department of English has expanded its offerings in technical writing and has introduced new humanities programs in American literature, drama and film, and literature and science.

Students can work toward a certificate in American literature by selecting either of two series of courses, one devoted to American approaches to poetry, fiction, and drama and the other to the Southern literary tradition. Both series investigate how American cultural events, historical movements, and philosophies influenced and were influenced by our national literature.

A certificate in drama and film was also made available for the first time. Students can choose from such courses as Greek drama, contemporary drama, Shakespeare’s comedies and tragedies, social issues in drama, and the narrative art of the film. Credit can also be obtained by acting in and producing plays.

The department’s offerings in technical and business communication covered more topics than ever before. In addition to oral and written communication in business, science, and industry, courses treat such areas as logic and the use of language, public speaking, and special forms of technical writing. In these courses students can receive training in conference leadership, technical briefings, the art of writing memos and reports, and many other communications skills that will be useful in their future careers.

The new series of courses on literature and science challenges the conventional opposition between the so-called “two cultures.” Two questions guide each course: What is the structure of understanding in literary and scientific inquiry? Historically considered, what relations have existed between the prevailing scientific theories, literary forms, and intellectual perspectives that constitute a society’s way of knowing the world? The program includes interdisciplinary courses on the relations between the thought and the literature of especially pivotal cultural periods from the age of Galileo to the time of Einstein and Freud. Another new course offers a theoretical introduction to the role of assumptions and expectations in reading, poetry, painting, and science. Dr. Paul Armstrong and Dr. Kenneth Knoespel joined the faculty in fall 1983 to develop and teach these courses.
The School of Geophysical Sciences offers study programs in the earth and atmospheric sciences leading to graduate degrees. Programs emphasize fundamental natural processes in the solid earth, the oceans, and the atmosphere. Students with an undergraduate degree in geology, chemistry, physics, mathematics, biology, or engineering may be admitted to the school.

Several areas of specialization are available to facilitate different interests. Interdisciplinary programs are also offered with the Physics and Civil Engineering schools in the areas of crystal physics, geohydrology, engineering geology, and environmental studies.

Undergraduates wishing to develop their background in geophysical sciences may work toward one of the certificate programs available. Certificates are currently available in the following areas: geochemistry, geophysics, and engineering geology.
INFORMATION AND COMPUTER SCIENCE

School Draws Growing Amount of National Attention

As the School of Information and Computer Science began its third decade, its educational and research programs attracted an increasing amount of national recognition. A recent survey by the Conference Board of Associated Research Councils ranked the school "most improved" among the fifty-seven Ph.D. granting computer science departments surveyed. An average of the four most important rating parameters in the survey would place the school in fourteenth place nationally. Not content with this ranking, the school is continuing to add faculty and equipment in an effort to become one of the ten best computer science departments in the country.

Three new faculty members joined the school during 1983-84, including internationally famous computer scientist Les Belady. The program in computer networking and communications systems got off to a good start, with more than $2 million in equipment pledged. In addition, the school's computer graphics program was the recipient of an $80,000 Evans and Sutherland graphics system.
MATHEMATICS

Microcomputer Research Expanded

This year was a time of high potential and expanding horizons for the Math Department as they continued their drive for national dominance. Curriculum changes improved educational programs considerably, and graduates were in demand by industry. Research activities, including grants, were at an all-time high. Several permanent faculty additions strengthened the applied mathematics and scientific computation groups. Visiting faculty also contributed to the department with their individual specialties.

The school attracted considerable national and international attention for its research in iterated maps, Group analysis of differential equations, scientific computation and stochastic processes. Invitations were accepted by various faculty members to present lectures in France, Poland, Italy, USSR, Germany (East and West), Netherlands, Belgium, China, and Canada. Professor David Ho spent four weeks in China on a lecture tour.

The school's microcomputer laboratories and research conducted with them continued to expand with the addition of eight B-20 Burroughs Microcomputers, four of which were a gift by the company. The Osborne Company also gave the department two of their portable Osborne One's.

TOP, LEFT TO RIGHT: Graphics student uses Hewlett Packard system to create designs. W. F. Ames, Director of Math Department. BOTTOM, LEFT TO RIGHT: Programming students struggle in the HP lab. Dr. Miller, Director, Information and Computer Science. Calculus students take notes.
Knowing a foreign language can give students a leading edge when competing for jobs. The department of Modern Languages offers diverse course offerings in many languages, giving students the opportunity to achieve reasonable fluency in writing, reading, and speaking. The school also instructs students in the civilizations and literatures of the countries in which those languages are spoken.

In addition to teaching English-speaking students additional foreign languages, the school also provides instruction in intensive English for foreign students. Included in this program are English grammar, pronunciation, sentence patterns, vocabulary building, spelling, reading, theme writing, and group and individual practice in the laboratory. Special courses have also been designed to specifically compliment study in engineering and science.

TOP, LEFT TO RIGHT: Gail Gershon lectures to her Spanish class. Louis Zahn, Director of Modern Languages. Gregory Colson, Director of Music. The Band boosts spirit during a football game. BOTTOM, LEFT TO RIGHT: Students listen in Spanish II. Chorale performs for new graduates.
Plans were made by the chorale, band, and jazz ensemble for active participation in the upcoming Tech Centennial. The groups planned a multi-media presentation, focusing on some of the more colorful aspects of Tech's history. Curriculum changes included a course in music theory and history, a summer chorale, summer instrumental groups, and several special topic courses.

Under the direction of new faculty member Bucky Johnson, the marching band continued to provide entertainment to football crowds during fall quarter. During winter and spring quarters, the concert band studies and performs a broader instrumental repertory. The concert band members also placed more emphasis on basic theory.

The chorale, directed by department head Gregory Colson, undertook several performances on campus, as well as in neighboring area. The eighty voice singing group also performed at each graduation and Homecoming. Earning humanities credit for their efforts, the chorale members focus on music history, theory, and vocal technique.

The newest of the three musical groups on campus, the jazz ensemble continued to build up its strong reputation on campus and in the metro area. Director Ron Mendola involved members in rehearsals, lectures and discussions, listening sessions, and several performances throughout the year.
Improved Research Laboratories Established for School

The past year was a period of substantial change and accomplishment for the School of Physics, with new faculty additions, a revitalization of teaching facilities undertaken, curriculum changes, and new projects being started. Although fluctuating financial support has affected the School, by stringent control of routine expenditures and donations, the funds necessary for initiating these improvements were secured.

Steps were made toward renovating the facilities in teaching laboratories. The sophomore electricity and magnetism lab was refurnished with new electronics, the junior electronics lab was revitalized with the introduction of digital electronics, and the senior lab received some new materials for experimentation in digital electronics. Two new research laboratories were also set up for work in laser technology.

The curriculum for both physics majors and engineering students taking service courses was also changed. Sophomore curriculum was revised to introduce more work on solid state and other aspects of modern physics. The physics majors' courses were grouped into different programs to allow students to pursue areas closer to their interests.

Another improvement was the development of a closer worker relationship with the Georgia Tech Engineering Experiment Station. Physics graduate students were able to use EES facilities and programs for Ph.D. research in areas that complement activities within the school, and the use of these facilities broadened the programs available to Physics students.
Psychology majors follow a curriculum that stresses fundamentals, providing opportunity for broad training in mathematics, the natural sciences, humanities, social sciences and management. Many elective hours are included, so students can choose courses suiting their particular interests. Psychology graduates are often employed in positions relating to human engineering, personnel research, management and the administration of business, engineering and health programs. Many psychology students also go on to graduate or medical school.

Although the number of psychology majors on campus is small, many students in other schools are either required to take psychology courses, or elect to earn one of the many certificates offered by the school. Certificates are available in biopsychology, engineering psychology, experimental psychology, industrial/organizational psychology, and social-personality psychology. Each program focuses on a limited area of psychology and can be used to provide further insight into a student’s major.

TOP, LEFT TO RIGHT: Dr. Shultz (left) instructs a student in the laser lab. Dr. Loveland, Director of Psychology. Experimental birds discuss escape and retaliation. BOTTOM, LEFT TO RIGHT: Lab partners work with scope. Edward Thomas, Director of Physics. Researcher gathers data.
New Emphases Expand Curriculum

Two new emphases were added this year to the teaching activities of the School of Social Sciences. First, with support from the U.S. Department of Education, the school expanded its course offerings in international studies and is bringing to the campus distinguished guest speakers in the field of international relations. Second, members of the faculty began gearing up to participate in Tech's new IBM Computer Aided Instructional Lab. Coupled with a parallel effort in the Department of English, this effort will make Georgia Tech a leading center of computer aided instruction in the humanities and social sciences.

These new emphases complemented the ongoing work of the school. The graduate program in Technology and Science Policy continued to attract students interested in the connections between public policy and science and technology. The school's broad range of undergraduate courses in history, philosophy, political science, and sociology (as well as interdisciplinary concentrations in urban studies, international relations, and science, technology, and society) continued to draw large numbers of students, many of whom received special recognition through use of school's certification program.

The wide range of instructional activities was matched by an equally broad spectrum of faculty research. This year faculty projects included a study of office automation, a study of women in the Caribbean work force, and a history of Tech, which is being prepared for publication during Tech's Centennial.

In recent years the School of Social Sciences has been consistently represented among the recipients of Georgia Tech's outstanding teacher awards. The members of the faculty remained committed to the twin goals of contributing to the growth of knowledge in their chosen research fields and offering the best possible educational opportunities for Tech's students.
Dr. Phil Sparting, Assistant Professor and Coordinator of the Exercise Science Laboratory, attracted the first research grant in the history of the department by proposing the potential therapeutic uses of cardiorespiratory exercise in the treatment of migraine headaches. The department also received a boost to the outdoor recreation program with the hiring of a coordinator of outdoor recreation and the establishment of a "Wilderness Outpost" in the Student Athletic Complex.

Development of SAC as one of the finest instructional and recreational facilities in the country was continued with the artificial turf project on associated athletic fields. Installation of "SPORTurF" and lights doubled utilization potential for classes, intramurals, and club sports.

New course offerings expanded the range of instruction available to students. These classes include courses in Aerobic Dance, Cardiopulmonary Resuscitation and Standard First Aid, and Weight Control through Diet and Exercise.
Students Prepare for Careers in the Armed Services

Through the three reserve officers training corps (ROTC) at Georgia Tech, students prepare for careers in the armed services. At the end of four years of specialized training in management, history, doctrine, and operations, cadets are commissioned as second lieutenants in the Army, Air Force, Marines, or as Ensigns in the Navy.

While at Tech, Air Force cadets drill, do staff work and attend briefings on Tuesdays, while the Army and Navy meet on Thursdays, doing basically the same thing. There are also one hour "labs" for each group that give the upperclassmen a chance to demonstrate their leadership potential, and gives the freshmen and sophomores a spirit of teamwork.

The summer months are interesting for the cadets as they get hands-on experience in the field. Navy cadets participate in a summer cruise each year. Assignments range from working on a nuclear submarine in Hawaii to supporting the Marines offshore in Beirut. Air Force sophomores attended summer camp at which each cadet was given the opportunity to fly a T-37 trainer. Navy juniors attended the Advanced Training Program (ATP) where they worked with an officer in their field of study. Army cadets attended similar summer camps between their second and third years, and also attended Advanced Training before their senior year.

ROTC is more than just a training program. The groups also participated in many social activities, getting involved in ROTC sponsored intramural teams and Homecoming events. Mixers, "dining outs," and military balls made the year complete for the cadets.

TOP, LEFT TO RIGHT: Susanne Gregory stands at attention. Pete Finlay squints at the Tuesday morning sun. Colonel Bush of AFROTC and Colonel Scharf of Army ROTC. Cadet Thomason presents arms.

BOTTOM, LEFT TO RIGHT: Navy cadets are instructed in the proper method to salute. Air Force cadets perform "dress right dress."
Co-Op Students Hired Throughout the United States

Since 1912, Georgia Tech has offered two types of undergraduate education: the regular program and the cooperative program. During the five year program, students take the same courses that those students in the four year regular program take. In addition to this, they work alternate quarters in industry for the first four years, for a total of six, seven, or eight work periods. Those graduating under this program receive degrees in their respective majors, with the designation Cooperative Plan. Students may apply for the cooperative program when they apply for Georgia Tech as regular students and apply for the co-op program during the freshman year or the beginning of the sophomore year.

About twenty-five percent of the undergraduate students at Georgia Tech take advantage of the cooperative plan. All engineering majors and all management options are available under the plan as well as chemistry, ICS, mathematics, and physics. Architecture majors do not have a co-op option. Army and Air Force R.O.T.C. is not available on this basis.

The students currently enrolled are working in four hundred different companies, throughout the United States. In the Southeast, the table below shows the number of companies employing coops in each state:

<table>
<thead>
<tr>
<th>State</th>
<th>Coops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>17</td>
</tr>
<tr>
<td>Florida</td>
<td>43</td>
</tr>
<tr>
<td>Georgia</td>
<td>153</td>
</tr>
<tr>
<td>Louisiana</td>
<td>5</td>
</tr>
<tr>
<td>Mississippi</td>
<td>2</td>
</tr>
<tr>
<td>North Carolina</td>
<td>13</td>
</tr>
<tr>
<td>South Carolina</td>
<td>13</td>
</tr>
<tr>
<td>Tennessee</td>
<td>15</td>
</tr>
</tbody>
</table>

Students interested in careers in research, development, design, or consulting may benefit by a graduate education. Graduate degrees are available in engineering, science, management, architecture, and city planning. While working toward an degree, students may also assist professors in grading, research, or as teaching assistants.

Dr. James Bynum, Dean of Graduate Studies, developed a cooperative plan for graduate students this year. This program was designed to be similar to the undergraduate program, however the plans centered more around school coordinators, faculty, and students. The program's beginning was a success, as a large number of students joined the program. "They all want the hands-on experience," said Dr. Bynum. A large number of companies also expressed interest in hiring graduate co-ops.

TOP, LEFT TO RIGHT: A student attaches an oscilloscope probe in the advanced microcomputer-based design lab. Dr. James Bynum is Dean of Graduate Studies. CE students measure open channel flow. BOTTOM, LEFT TO RIGHT: Two students work to debug a program in the EE department's advanced microcomputer-based design lab. A physics student conducts experiments in the laser research laboratory.
GRADUATE STUDENTS

Graduate Cooperative Program Successfully Initiated
Phi Eta Sigma
FRESHMAN SCHOLASTIC HONORARY

Superior Scholastic achievement among college freshmen is recognized through the society of Phi Eta Sigma. Founded in 1923 and chartered at Tech in 1930, the society rewards freshman academic excellence. All students who attain a 3.5 GPA or better during their first freshman quarter or by the end of their freshman year are eligible to join.

Glenn Abad
James Acree
Christine Adams
John K. Adams
Lang Adler
Juan Alvarado
Bradley Anderson
Peter Anderson
Luis Aponte
Paul Arata
Karen Armanini
James Arvigo
John K. Adams
Steven Duncan
Sharon Duncan
Godfrey Augustine
John Aver
Christine Adams
James Acree
Glenn Abad
Kevin Dunn
Gary Doss
Olga Desdin
Jimmy Dendy
James Dawson
James Dabbs
Sydney Cook
Shawn Cody
Sandee Coats
Jeffrey Chandler
Jamie Burnette
John Burnett
Thomas Bugg
George Britt
Karen Armanini
Paul Arata
Luis Aponte
Peter Anderson
Luis Aponte
Paul Arata

in 1930, the society rewards freshman among college freshmen is recognized

Founded in 1923 and chartered at Tech Superior Scholastic achievement

their freshman year are eligible to join.

Tony Hogan
John Hirvela
Christopher Herring
Jonathan Heath
Ralph Harkert
Evelio Hernandez
Jesus Regalada
Carroll Reddic IV
Sanjay Raman
Julie Pobert
Gai Pribnow
Zoltan Poleretzky
Arif Rana
Mark Post
Bhyravabhotla Rama
Carroll Reddic IV
Sanjay Raman
Arif Rana
Carol Reddic IV
Sanjay Raman
Arif Rana

Tony Hogan
John Hirvela
Christopher Herring
Jonathan Heath
Ralph Harkert
Evelio Hernandez
Jesus Regalada
Carroll Reddic IV
Sanjay Raman
Julie Pobert
Gai Pribnow
Zoltan Poleretzky
Arif Rana
Mark Post
Bhyravabhotla Rama
Carroll Reddic IV
Sanjay Raman
Arif Rana
Carol Reddic IV
Sanjay Raman
Arif Rana

104 / Phi Eta Sigma

John Lester
Kenneth Lighter
David Little
Don Livingston
Gregory Louden
Alexander Lozada
Michael Lucas
Colleen Lynch
Patricia Lynch
James Magee
James Maloney
Randy Mandel
Thomas Mann
Martin Mannion IV
Armand Marino
Christopher Martinn
Douglas Martin
Jeffrey Youman
Dennis Swan
Steven Watkins
Greg Watson
Clifford Way
Eklet Villalba
D'juro Villaran
Diane Jones
Elizabeth Taylor
Brittin Thompson
Mark Tippens
Wald Tohme
Douglas Turner
Sandra Turner
Robert Unger
John Vanhorn
James Veal
Eklet Villalba
D'juro Villaran
Keith Waldo
Steven Watkins
Greg Watson
Clifford Way
Alisha Weathers
Robert Weaver
James Welch
Sean Wellman
Jennifer Wike
James Wileman
Donald Williams
Philip Wilson
Jeffery Wingard
Joel Wood
Angelyn Wright
Glenn Wright
Jeffrey Wilt
Jeffery Youman
Daniel Yue
Founded at Georgia Tech on July 16, 1922, the oldest co-operative program in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative grade point average and have completed five quarters of academic study in the Co-operative Department.
Anak
HIGHEST SENIOR HONORARY
Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

Sean Cumbie Darryl C. Dykes Jeanene Fowler Gary Harrell
Marvin Kilgo Gary May Hugh Moore Susan Raffensperger
Deborah Underwood Jack Westbrook Clifton Youngblood

Omicron Delta Kappa
NATIONAL LEADERSHIP HONORARY
For fifty-two years, Georgia Tech's chapter of Omicron Delta Kappa has honored juniors and seniors who have proven themselves outstanding in academics, athletics, social service, journalism and creative and performing arts. Candidates must have a 2.8 cumulative grade point average for consideration.

Phil Adler
Frank Bailey
Tricia Bailey
W. Carl Bivon
Walter L. Bloom
Henry Bourne
Lindee Brennan
Mary Bresnahan
Ray Bruttomosso
James J. Bynum
Steve Calva
René Camploy
Carolyn Cannon
Cathlyn Carley
Kristi Carley
Mary Carmichael
Gina Carr
Lisa Carter
Alan Cartledge
Jay Clarke
Wister J. Cook
Bobby Cremins
Bill Curry
Joe Daniel
Bobby Dodd
James E. Dull
Darryl Dykes
Jack Eckles
Michelle Evans
Jeanene Fowler
Thomas K. Gaylord
John J. Goda
Ralph Gomez
Barry Goodno
Chris Gorby
James N. Gordon
Robert E. Green
Ken Gwiner
Holly Hamilton
Greg Harbin
Kevin Harbol
Hugh Hardison
Gary Harrell
Sara Harrell
James V. Herod
Kenneth Howell
Jay Humphrey
Harold C. Johnson
Daryl Jones
Ellen Kerr
Marvin Kilgo
Susan Leather
Whitney Lenihan
Lauren Lewis
William Lincnicka
Jack Manevich
Mike Martin
Charles Matthews
Gary May
Paul Mayer
A. B. Maynard
Bob McMeth
Dave Mills
Hugh Moore
Richard Murdock
Anthony Neaverth
Joan Nelson
Jim Paolino
John Peatman
Joseph L. Pentecost
Michael Perez
Paul Peronard
Joseph M. Pettit
G. Alvin Pierce
Mike Polak
Susan Raffensperger
Patricia Reardon
Homer Rice
G. Peter Rodrigue
Nelson Rogers
Mack Samuelian
William F. Sayle
David Sedacca
Clyde Sheehan
Peter B. Shetty
George Shields
Warren Smith
Melanie Spriggs
James R. Stevenson
Richard Toach
Miller Templeton
Andy Thomas
Maxine Turner
Debbie Underwood
James Walker
Connie Wall
Eileen Webb
Elaine Webb
John A. White
Todd Wood
William Woolf
Rosalind Wright
James D. Young
Clifton Youngblood
Phi Kappa Phi

SCHOLASTIC HONORARY

The Georgia Tech chapter of Phi Kappa Phi was established in 1914. Recognition of superior scholarship in all academic subjects is the purpose of this society. Candidates rank in the top ten percent of their class as well as display a good character and academic record.

Donna L. Alexander
Barry Joseph Bachelor
Felicia L. Bellows
Robert J. Berinato
Glenn P. Bochner
Robert L. Bowen
Linda L. Brennan
Mary K. Brosnahan
Philip S. Bush
Lisa L. Carter
Pablo N. Cejas
Melanie Colleen Ciccarello
Richard Bruce Clendenning
James Herbert Cochran, Jr.
Robert R. Collier
Thomas J. Corbo
John D. Cressler
John Charles Curtis, Jr.
James M. Davis
Russell A. DeSimone
Dawn E. Deardorff
David N. Deaton
Andrew John Delany
David Paul Durand

Robert J. Flowers
Gerard Forstell
David Wilkes Fountain
Amory Elizabeth Gabel
Darlene K. Gieseking
Walter G. Glover
Shahin Hadian
Jong S. Ham
William V. Ingle
A. Jeffrey Jakobowski
Larry A. Jens
Donald A. Jones Jr.
Tony D. Jordan
Constance G. Keen
Kyung K. Kim
George F. Kickman
Glenn A. Kurowski
Paul D. Lamatte
Ronald W. Lee
Lauren N. Lewis
Peter H. Margiloff
Mack T. McGinnis
Marylon R. McGinnis
Gary M. Moland

Hugh C. Moore
Paul M. Morris
John C. Mosher
Christopher M. Ng
Joseph M. Ownbey
Gerald M. Patton
Cynthia Dee Price
David C. Rutland
Carl K. Safreed, Jr.
Philip A. Sasse
Richard A. Schiffler
Craig Leighton Schulz
Alfred Von Campe
Thomas J. Segatta
Ronald K. Shea
John A. Sparks
Richard M. Stevens
William M. Story
Constance M. Watson
Eileen E. Webb
David L. Wilkinson
Johnny S. Wright
Rosalind H. Wright

Outstanding Teachers of the Year

Nominations for this award are solicited by the Institute’s Faculty Honors Committee from faculty, staff, students, and alumni. The awards are in recognition of excellence in teaching, extraordinary effort in the classroom, the degree and quality of inspiration transmitted to the students, direct impact involvement with students, and the intellectual integrity and scholarship of the professor.

RONALD H. BAYOR FRANCES E. KAISER ROBERT H. KASRIEL HENDERSON C. WARD
Tau Beta Pi

HIGHEST ENGINEERING HONORARY

Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of engineering, are recognized by Tau Beta Pi. Undergraduate students who rank in the top eighth of their junior class or the top fifth of their senior class are considered for membership.

Joni Ann Adams
Bilal Ahmed
Donna Lynn Alexander
Charles David Anderson
Stephanie Rene Anderson
David Van Badzik
Barry Joseph Batchelor
Brett Eric Battles
Anita Robin Bauman
John T. Bell
Julie Orr Bercegeay
Robert John Berinato
Belfi Bionigh
Paul Bishop
Glenn Perry Bochner
Robert M. Bourbon
Daniel J. Bradley
John Maury Branen
Linda L. Brennan
Mary Kathleen Brenahan
Todd Joseph Bristey
Nathaniel Jenison Brown
Stuart Blythe Brown
Leonard Allan Bush
Robert James Caesar, Jr.
James Brent Caldwell
Brad Cathoum
James Eugene Cannella
James Grady Cantrell
Daniel T. Carroll
Norman Y. Choll
Rick H. Cavallo
Pablo N. Cejas
Stephen Douglas Center
John Edward Chabey
Craig Stewart Chadwick
Christopher Ming-Po Chen
Alan Chervitz
Norman Y. Choll
Archie Lercy Clemmons Jr.
Lee Roy Cledenning, Jr.
Richard Bruce Cledenning
Charles Kimbell Cole
Gregory Clayton Cole
Dana Harlan Collins
John Peter Condoridis
Robert Lawrence Condors
Jean Marie Cook
Donald M. Corbett
Thomas James Corbo
Steve S. Cox
Carl A. Cozme
Cheryl Ann Culpepper
Henry Marshall Culpepper
Lee David Daley
Dale Alan Dangler
Keith Timothy Daniel
Mark John Danielson
Deborah Darling
David Norman Deaton
Robert Alan Delk
Lila Anne Delinger
Charles Thomas Dickson
William B. Dolan
Michael Anthony Drago
David P. Durand
Susan Marie Davall
William C. Ellis
Charles Whitfield Eppis
Larry G. Estes
Clifford Keith Eubanks
Mark A. Fallis
Victor Marcelino Farinas
Robert Joseph Flowers
Gerard Forstel
David Wilkes Fountain
Mark David Fises
Robbie Lynn Frizell
Amory Elizabeth Gabel
Gary Lee Goggans
Christopher Hembr Goheen
George Albert Gomez
Laura N. Gomez-Durham
Mark Daniel Goodwin
Glenn B. Greathouse
Edward Eugene Greene
Thomas Dean Gros
Patricia C. Guy
Shahin Hadian
Steven K. Haenisch
Louis John Haller
Troy Roger Halverson
Jong Soo Ham
Anita Hamelyn
Holly Haley Hamilton
Michael G. Hanley
Andrew Denny Hans Jr.
Stephen Gregg Hardy
James Joseph Harford
Paul Henry Harms
Gary L. Harrel
David Mark Harris
Robyn Lynn Harrison
Todd Steven Harrison
Neil Charles Hawkins
Martha Susan Henderson
Gary Allan Heidle
John Edward Hermes
Lynda B. Herrig
Mark Evans Hicks
John Edward Hilliard
Gregory Thomas Hodgdon
Deborah Ann Holmes
John Gordon Hotchkiss
Jeffrey Allen Howe
Chanh Vinh Hua
Michael Allan Huff
Timothy L. Hunt
Karen Elaine Illingworth
Luis Fernand Illingworth
Cindy Leigh Jackson
Stanford Royce Jackson
Alan J. Jakobowski
Laura C. Johnson
Stephen P. Johnson
Daryl C. Jones
Timothy Lance Jones
Richard G. Jordan
Tony Dale Jordan
William Allan Joyce
Robert Tarnish Kaufman
Constance Gail Keen
Kyung Kyu Kim
Terri Lynn King
Ron Klinger
Richard C. Kluever
John Craig Knight
Carol Anne Kurjan
Christine Marie Kurjan
Glenn A. Kurowski
Anne Viet-Nga Lai
Nga Thile Lai
Paul David Lamarre
Mitchell Edward Lambert
William Morris Landers
Burce William Landis
Joel Bennett Lerner
Danh Cong Le
Charles Edwin Lemons
Jeffrey Keith Leppla
Laura C. Lindsay
David W. Lloyd
Bruce Kevin MacLaren
Bradford A. Majares
Brian E. Markwalter
Sharon Sue Marky
William Alan Marriott
Marianne Mayberry
A. B. Maynard IV
Donna E. McDonald
John Hugh MeNell Jr.
Maureen Ines Mili
Brian K. Misia
Mark Alexander Mitchell
Jouseff Mitri
Gary Myron Moland
Daniel John Monahan
Hugh C. Moore
Robert Anthony Nash
Gregory M. Nelson
William David New
George Edward Newberg
Steven P. Newman
Christopher Martin Ng
Mark J. Niehaus
Tracey Ann Nielson
Robert D. Stibbup
Riegar Yngreso Obena
Sue Ille Oliver
Edward J. Ostrowski
Nam Wook Paik
Lisa Noelle Palenik
Douglas Arthur Palmia
John Michelle Parker
Teresa Marie Parsons
Thomas Kenyon Patrick
David Wayne Patterson
Eugene Harmon Patton
Andres Karl Payne
Russell Speights Peak
Robert Allan Pette
Tin Hiu Phan
William Louis Pherigo, Jr.
Acy C. Piatt
James Edward Poik
James Everett Powell
Cynthia Dee Price
Patricia Yvonne Reeves
John Paul Reichert
Barbara Catherine Reier
Thomas G. Rich
Keith Lewis Richardson
Richard P. Ritch
Carlos Rafael Rosales
Michael D. Rucker
David Michael Rurak
David C. Rutland
Carl K. Saffrey Jr.
Scott Walker Sanders
Edward Mich Scardaville
David A. Schlenbeck
Richard Alan Schillier
Susan J. Schramm
Thomas Joseph Segatta
Mary Ward Sellers
Kyle H. Seymour
Charles N. Shaughnessy
Ronald Keith Shea
Who's Who Among Students in American Colleges and Universities

Since 1936, Who's Who Among Students in American Colleges has been providing recognition for outstanding campus leaders. Candidates must be juniors, seniors, or graduate students and are judged on academics, community service and leadership in extracurricular activities.

Patricia Marie Bailey
Christopher J. Billings
Glenn Perry Bochner
Gregory Wayne Bohler
Mary Kathleen Bresnahan
Michele Elaine Byrd
Kristi Carley
Edward W. J. Carpenter
Steven Lewis Carter
James O'Sullivan Clarke, III
Gregory William Cook
Terry S. Danner
Charles Thomas Dickson
John M. Donniacuo, III
Darryl Carew Dykes
Richard V. Folea, Jr.
Carey Jeaneve Fowler
Christopher Hembrough Goheen
Sara Ellen Harrell
William Lee Harrison
Louis S. Hureston
Daryl Craig Jones
Jule Leroy Kaylor, Jr.
Ellen Augustine Kerr
Marvin M. Kilgo, III
Leland E. Kornfeld
Louis Henry Lacassagne, III
James Gerard Lertula

Lauren Nell Lewis
Peter Howard Margiloff
A. B. Maynard, IV
Matthew Charles McFee
Blake David Moret
Richard Dale Murdock
Jeffrey D. Nigh
Thomas Edwin Noonan
James Michael Paulino
Joseph James Pierce, III
James Everett Powell
Cynthia Dee Price
Susan Myers Raffensperger
Randolph Lee Scott
Clyde Alexander Sheehan
Warren F. Smith
Steven Lemay Story
Steven Lloyd Striker
Michael Andrew Thomas
Deborah Lyn Underwood
Daniel James Warren
Anthony Weathers
Eileen Edith Webb
Elaine A. Webb
Robert Scott Williams
Todd Leslie Wood
Clifton Gerald Youngblood
Sheepskin Shortage Signifies End of Tech Tradition

Graduation at Georgia Tech has always been full of tradition. A coliseum full of friends and relatives, hundreds of black caps and gowns, a message from a speaker, and joyous celebration has always characterized the end of each quarter on campus. Students were dismayed this year to find that one of Tech's oldest and most unique graduation traditions, the use of genuine sheepskin diplomas, was broken.

According to Frank Roper, the Georgia Tech registrar, the company Tech bought the sheepskin from no longer imports it. "I'm really disappointed. I think that anyone who makes it out of this school definitely deserves a special diploma," said senior class member Nelson Wimpleton. Although the students who graduated this year received parchment diplomas, there is the possibility that Tech's tradition will be revived.

"As soon as it comes back on the market, assuming the price isn't too high, we will get it back again," said Frank Roper. Although the move to parchment upset graduating seniors, the implication of that diploma, whether sheepskin or paper, was the same: they had finally made it through the rigors of Tech, and they were ready to make their way into "the real world."
