Changing Perspective Is Crucial to Survival at Tech

Academics . . . the very word often conjures up negative images. If you are an engineering student somewhere in the middle of your career at Georgia Tech, then you are probably in that never-never land which begins when one becomes a sophomore and ends somewhere in the senior year. All around, people you started school with are changing their major or dropping out of Tech altogether. Graduation seems like a pin prick of light in a dark and seemingly endless tunnel. Shaft professors, whose tests seem invincible, the seemingly endless studying for tests only to forget the material afterwards and the anxiety have probably caused you to feel burnt out and wondering why you came here in the first place. To make matters worse, it seems that all that the professors are teaching is theory and that makes for feelings of ill-preparedness for whatever it is that real engineers do in the real world. Have you lost count of all the times you vowed you’d quit and try your luck selling hotdogs and hamburgers? Are you plotting the demise of that sadistic high school guidance counselor who lured a bright, happy kid into four years of slave labor?

What does a degree from Tech mean anyway? Does that piece of sheepskin mean that the owner of the wall that it is nailed to is a certified omnipotent engineering genius? Come on, all it really means is that the student has been exposed to the basic fundamentals and that Tech certifies that he or she is able to learn technical material, work hard and suffer ungodly amounts of frustration.

Are you embarrassed each time you tell someone that you are studying to be an engineer and they expect you to be able to fix things? They say "I thought you said you were an engineer — what kind of engineer are you if you can't fix color t.v.'s? Got all that book knowledge and can't do a thing." Don't worry! Soon you will graduate and begin your apprenticeship as an engineer in an entry level position. There you will begin to receive precious practical experience. Without theory, how can one understand engineering practice? Just try to explain thermal aging and insulation degradation due to voltage transients in flyback circuits to the smart ass with the color television.

What about all the learning only to forget everything after the test? Be real — you can't expect to learn everything perfectly the first time. Throughout your career you will be learning and relearning, over and over again. If you expect that graduation will be the end of studying, maybe the Atlanta School of Bartending is closer to home.

What is it like to graduate from Georgia Tech? Just think about how it must feel to get out of the Marine Corps boot camp. Bruised and battered, but also one of the few and the proud. Georgia Tech, one of the world's most prestigious engineering boot camps . . . what a concept!

TOP, LEFT TO RIGHT: Where's the Mr. Bubble? The Terminator's great granddad Flexes its muscle.
BOTTOM, LEFT TO RIGHT: Fun in another one of those seemingly endless chemistry labs Architecture student prepares for a career of rearranging skylines.
Dear Students:

You are a special breed — one of the fortunate young people of your era who have been endowed by nature with a good mind and strong character to persevere at an institution like Georgia Tech where academic excellence is the valued commodity.

Sooner than you realize is possible, you will join the ranks of thousands of distinguished alumni who have made notable contributions to our society. This outstanding group includes a former President of the United States of America, a U.S. Senator, astronauts, heads of large corporations, bank presidents, world-renown engineers, scientists, architects, doctors, and leaders in large and small communities all over the world.

Take advantage of the wonderful opportunities you have as a student at Georgia Tech to broaden your horizons — to whet your appetite to know more. Your stay here should be a storehouse of pleasant memories for the years to come, but should also be the foundation on which you build the rest of your life — the catalyst to achieving that goal or that dream which will bring fulfillment and meaning to your life.

Henry C. Bourne, Jr.
Acting President
After serving for fourteen years as president of Georgia Tech, Dr. Joseph Pettit died on September 15, 1986. Dr. Henry Bourne, Vice President for Academic Affairs, accepted the position of acting president and will serve in this capacity until a new president is named by two special committees created by University Chancellor H. Dean Propst.

The Presidential Selection Committee (PSAC), comprised of thirteen people, will select five candidates from those who reply to Tech's nationally publicized advertisement. Among the members of the PSAC is a Tech student, Beth Hinnen, representing the interests of the student body.

The Regent's Presidential Selection Committee (RPSC) was comprised of members of the Board of Regents. It will receive the names of the five finalists and, together with the PSAC, will select the new president. The entire process is expected to take approximately one year.

TOP: The Tech Tower, home of the disappearing 'T.' BOTTOM: A conference in progress.
DIRECTORS

Leaders Seek Excellence

Dr. Thomas Tornabene
Applied Biology

Dr. Robert Pierotti
Chemistry

LTC Patrick H. Linhares
Army ROTC

Col. Winston K. Pendleton
Air Force ROTC

William L. Fash, Dean
College of Architecture

Dr. Gerald J. Day, Dean
College of Management

Dr. William M. Sangster, Dean
College of Engineering

Capt. Dennis Y. Sloan
Navy ROTC
Donations Add Many Resources

Georgia Tech depends heavily on gifts from both corporations and private individuals in order to retain its superior position in the academic world. Endowed faculty positions play a vital role in attracting distinguished members in their fields to Tech. The effect of their presence is more than just having one more important name on the roster. Distinguished professors tend to attract other high quality people — both students and faculty. In order to have these faculty chairs, funding needs to be committed from a source outside Tech.

A $1 million endowment from A. Russell Chandler, Ill enabled Tech to add the internationally recognized Dr. George L. Nemhauser to the faculty of the School of Industrial and Systems Engineering in 1985. At present there are over twenty such chairs and professorships at Tech, each playing a role in attracting the top educators and top students in the nation.

Class gifts play a large role in improving the quality of academics at Georgia Tech. A gift of $55,003 from the class of 1929 went to a $100,000 endowment which will turn the Price Gilbert Memorial Library into a "showcase library" having one of the most comprehensive technological collections in the world. This library of the future will utilize the most advanced technology to deliver its resources to its users. Already envisioned is the use of laser discs to store periodicals and computerized catalog systems which users can access from their own PC's.

The class of 1959 pledged over $300,000 dollars which contributed to renovating a section of the Old CE building into a computer-supported instructional lab. This lab, recently completed, contains seventy computer terminals and is used by students of chemistry, technical writing, modern languages and computer science.

Another important type of gift is the corporate gift, and one of the most significant of these was AT&T's donation of 2.5 million dollars worth of equipment. Installation and a one year period of free maintenance were also a part of the gift.

Many of the minicomputers have been distributed to various departments on campus including the Schools of Information and Computer Science, Electrical Engineering, Industrial and Systems Engineering, Engineering Science and Mechanics and Mechanical Engineering. The remainder of the equipment was placed in a special lab in the Rich Building.

The results of these many gifts have been to improve the quality of instruction by bringing the Institute's resources up-to-date.
Top Teachers Are Ingredient For Academic Success

Last year four professors were honored for their contributions to the academic excellence that we have come to expect from Georgia Tech.

Dr. Ronald Schafer, FAR RIGHT, a John McCarty/Audichron Regent’s Professor in the School of Electrical Engineering, was honored with the Distinguished Professor Award. Well known in the field of digital signal processing, his presence has helped to make Tech a leader in this area.

Dr. James Young, TOP LEFT, recipient of the ANAK award, has taught English at Tech for twenty-seven years. In 1966, he was the first professor to be awarded the outstanding teacher award. After receiving his bachelor of science degree from Cal Tech, he decided that he would rather teach English and is currently involved in the Department’s program in literature and science.

Dr. John Neff, BOTTOM RIGHT, who has been a professor of mathematics at Tech since 1961, received the Superior Service Award. He graduated from Case Western Reserve University and enjoys working with state secondary school teachers to improve the instruction of mathematics.

Dr. Dorothy Yancy, BOTTOM LEFT, was awarded the Outstanding Teacher Award. She is an associate professor and the associate director of the School of Social Sciences. Dr. Yancy enjoys teaching and can often be seen teaching such courses as Political Science 1251.
Co-ops Go For Money, Experience

Started in 1912, the Georgia Tech Cooperative Education Program is the fourth oldest continuous cooperative education program in the world. It provides the student with on-the-job training as well as experience with human relations. Students in most majors may opt for the co-op degree and seek employment with one of the nearly four hundred companies hiring co-ops throughout the nation. There is even the possibility of taking part while being enrolled in the Air Force, Army or Navy R.O.T.C.

Under the direction of William Hitch, the cooperative division has almost 2500 students enrolled, a two percent increase over last year. Many are lured by increased job opportunities after graduation or by the financial gains during participation. Others find the professional experience rewarding and look forward to getting away from the books every other quarter.

The division is proud of its high academic standards which are reflected by the 45 to 50 percent of the co-ops who make the Dean's list regularly. Co-ops also gain experience in handling job interviews before graduation.

As its 75th birthday rolls around, the cooperative division can look forward to a continued tradition of providing educational opportunities for Georgia Tech students. Its presence has played an important role in Tech's reputation for academic excellence and will continue to do so in the future.

TOP, LEFT TO RIGHT: A coop checks a printout for bugs. Typing in a program. BOTTOM, LEFT TO RIGHT: Cooperative education gives students unmatched opportunities for hands on experience.
Architects Create the Physical Structures of Society

Often people are so conditioned to think of Tech as a school of engineering, science and management, that they forget that Tech also has a College of Architecture. Asking the other students at Tech about the architecture students leads one to believe that somehow they are quite different, if not downright strange. Aren't they, after all, the people who build strange things out of cardboard and spend sleepless days on end trying to get their creations done?

Sometimes it's difficult for non-architecture students to get a grasp of the role of architecture in our world. Yet all around us are the examples of the architect creativity. If anything, the word "architecture," used in various contexts, such as "computer architecture," has come to denote a sense of structure, and architects are those who are busily creating the physical structure of our society. Architecture is, in a sense, more than just the fulfillment of a function; it's a reflection of the spirit of our society, much in the way the body is said to be a mirror of the soul. In the same manner that the body can impose limitations on the spirit, architecture can serve to limit a society.

The architect, in creating a design, must make certain assumptions about this world and these assumptions affect those who are in contact with his design. Each age with its different perceptions of the roles of the individual and society, cast their indelible marks into the architecture of that period. The Neoclassical period with its preoccupation with the proper place of the individual, the clockwork of the heavens and the beauty of rationalism brought forward a style which reflected symmetry and order. The individual immersed in a Neoclassical culture was unconsciously affected by the tenets of the society carved in cold stone. The visual representation of social ideals thus served to limit society until the social ideals themselves were questioned, bringing into being a new style of architecture.

The power of architecture lies in its ability to communicate with the unconscious mind. Our moods are affected by color, lighting and geometry and though we may seek to guide our life through reason and rationality, our emotions and passions add a certain substance to the bare skeleton of the rational mind. The weight of our emotions can cause us to sway and even collapse. Architects, by designing the buildings in which we conduct our affairs, can alter our moods and thus affect the outlook and productivity of our society.

There is more to architecture than is readily seen. Though we often look at engineering as a force guiding us to the future, it is clear that architects will also play a role in shaping tomorrow.
Architecture Reflects and Shapes the Mood of An Age
FEATURES

More Time Required to Cover Expanding Knowledge

Engineering, the backbone of Georgia Tech, is a relatively young profession as compared to medicine, law or accounting, which have existed for centuries. In the United States, there were no engineers as such until the development of civil engineering departments at a few schools during the 1850's. Prior to this only the military had engineers who built forts and other types of military construction.

Engineering has two separate bodies of knowledge, one based on empirical information and intuition; the other more theoretic and scientific. The successful engineer is able to balance the two; to be both intuitive and analytic. This balance can be seen in the work of early engineers, who used their analytical skills as well as they could and then bridged the gaps in their formal education with intuition to create such things as electric induction motors, incandescent lamps and the airplane.
Curriculum Overhauls Suggested

During the 1950's, the Soviet lead in the early space race caused tremendous pressures for the improvement of scientific training. Engineering had become more of a trade than a profession. Emphasis was placed on scientific and mathematical training, and courses such as metal shop and drafting, the old backbone of technical studies, went the way of the steam locomotive. Though this change in engineering education pushed the engineering student into the modern world, it had the unfortunate side effect of removing much of the intuitive, empirical base of engineering. This left only the more analytic side — the very personality of engineering had changed.

As the decades roll on, this trend continues. The engineers of today bear little resemblance to the Tesla's and Edison's of yesteryear. Today's student is unlikely to be exposed to the nuts and bolts of engineering while in school. Engineering educators are alarmed by the current trends; but given the constraints of a four-year program they are unable to cram more elective, design and important non-engineering courses in a curricula already lacking in liberal arts. There is simply not enough time in the allotted four years. Many technical breadth classes such as thermodynamics, material science, circuits and electronic machinery are forced to cover so much material in so little time that they seem more like reviews for the expert rather than introductory courses.

Presently most engineers believe that it takes more than a four year undergraduate education to practice modern engineering at a professional level. The average student requires 4.5 to 4.8 years to complete the engineering degree requirements. With this in mind, a flurry of ideas have descended into the engineering mainstream, most concerned with extending the amount of time a student should spend in school.

One suggestion is to expand the undergraduate curricula to a five year program, at the end of which the student would receive a professional degree. Some believe that a generalized engineering education for the first few years followed by a specialized engineering program is necessary. Others point to law and medicine and seek to follow the pattern of those professions: an undergraduate degree followed by a three year professional degree leading to a Doctor of Engineering title. The more conservative suggest making the Master's degree the starting point of an engineer's career.

With all this concern over the quality of education, it is helpful to keep one thing in mind. An undergraduate engineering curriculum cannot prepare the prospective engineer for a particular job in a particular industry. On-the-job training and experience cannot be replaced, and an engineer must take responsibility for mastering those areas required during a professional lifetime.

There will always be a shortage of time, and no one can possibly learn all that there is to know. Just as important as having information is the ability to acquire information. Engineering schools often neglect the art of researching technical information, an important skill needed to solve engineering problems. The engineer is not only a technical problem-solver but also a reader and writer of technical literature and, as such, needs to become familiar with both the contents and structure of technical writings.

It is also possible that the apparent shortage of time during college education may be directly linked to the lack of preparation of students by primary and secondary schools. If more efficient use were made of the early years of schooling, many of the traditional freshman subjects such as chemistry, calculus and composition could be taught more thoroughly at the high school level, thus adding extra time for engineering study.

Though engineering education will change in the future, the importance of engineering can only increase, as will the need for a quality engineering education. Hopefully the same profession which put men on the moon will be able to meet the challenge of educating its future generations.
Features

College of Management Makes Plans For the Future

Designed to facilitate joint research efforts between Georgia Tech, industry, and government, the Center for Work Performance Problems tackles such topics as drug and alcohol use in the work place, questions of health and safety, and work and family issues. The Center for the Study of Values and Ethics promotes student/faculty seminars and class discussions upon social choice issues.

The College of Management has initiated steps to address the ethical, regulatory, and strategic issues facing the Financial Services industry. Because this industry is moving from an environment of paper transactions to one of electronic impulses, several of its leading corporations have lent their expertise and financial support so that the College may develop a related curriculum.

While the College of Management has been responding to these changes in the business environment, it has itself seen a change in the caliber and number of its students. Impressive academic credentials accompany an increase in enrollment.

TOP, LEFT TO RIGHT: Dr. Pavia answers graduate students' questions after her Statistics class. Dr. Eugene Comiskey goes over an assignment with his accounting students. Business and pleasure sometimes go hand in hand. BOTTOM, LEFT TO RIGHT: Dr. Steve Smith at the board after class. Sometimes even computers can't help.
All Require A Rounded Education

We live in an age dominated by science and technology. We are bombarded by the latest advances, discoveries, threats, and disease on the nightly news. For every voice giving dire warnings of impending doom there is another proclaiming inevitable utopia. In a world undergoing radical change the importance of science education cannot be underestimated.

Yet with all the apparent incentives for acquiring an education well-rounded with science, it is often only those who seek direct gain through scientific training, doctors, engineers and scientists, who educate themselves in the basics of science. Science for many seems to be a sacred realm, too different and distant for the average man to tread.

It has been often suggested that science should form the core of all liberal arts studies. After all, sciences such as physics, originally called natural philosophy, has been a traditional part of liberal arts for centuries. Extending this idea further, all students seeking a four year degree should follow a curriculum based on a core of science regardless of whether they wish to orient themselves in business or basket weaving.

The average person may feel that this would be a sentence to a terrible ordeal; mandatory left-brained geekdom where imaginary numbers compare with Newton's Laws of Motion to cause a major inferiority complex.
Scientific Education Is A Key to Modern Day Miracles
What arguments can be made for increasing the amount of scientific education required by all college students? It should be remembered that this country, based on a strong sense of individualism, depends on the votes, perceived opinions, lobbying, and actions of individuals. Since the individual has the potential to bring about change in this technologically based society, scientific education is a vital determining factor in deciding whether our society's course is decided by rational, intelligent choices by the knowledgeable or by chaotic change by the misinformed and the misled.

Science can also create a middle ground between blind optimism and the dark pessimism which are both characteristic of our age. We are reminded that Nature gives up its secrets with reluctance and to teach it new tricks requires a great deal of both inspiration and persistence. The miracles of the modern world stand tribute to the hope which science offers. Though science may be inherently flawed, it is the only method available to man which consistently gives concrete answers in certain situations.

Science education can also remove a sense of alienation and powerlessness. Too often we have become dependent on technology which we do not comprehend and feel ill at ease with in a world becoming increasingly machine-like. Education in science can free us from feeling overwhelmed. No longer do we have to be humbled by technical wizards who babble in strange tongues. Though there will always be specialists and laymen, we can at least talk on familiar terms.

The ideal would be a society in which an enlightened public could feel at ease with science and technology and take part in charting the course of society's future. Hopefully, as time passes, we will feel lucky to be blessed with miracles from the men with white coats rather than cursed by black magic.
RESOURCES

Facility Serves the Endless Needs of Tech Students

Most Tech students wander through the doors of the Price Gilbert Memorial Library at least once during their illustrious careers at Ma Tech.

During lunch and between classes, many find their way to the Browsing Area — first floor, dead ahead — where they become absorbed in a popular magazine, newspaper, or nap.

The circulation desk is where you can check out books and, of course, pay your fines; 20¢ a day for each overdue item. The Reference and Information Desk is where you check out books for use in the library — CRC handbooks, dictionaries, Almanacs, etc. — and also ask questions. The payphones are downstairs next to the vending machines; the hours are posted outside. Pick up the "Location of Materials and Services" brochure to find out where the bathrooms are. A little hint ... they are not at the Reference Desk.

Go west and enter the party side/loud study area of the Library. This is termed "reading area" in the nifty brochure mentioned already. Don't be fooled. The west side consists of four floors and there are some good-sized tables for group cram sessions and lab write-ups. There are also a few couches interspersed among the stacks for catching up on that ever evasive commodity, SLEEP! By the way, there are about two million catalogued volumes in case someone has a notion to read.

Online Catalogs and "quiet" study areas are located on the East Side. The online information system provides easy access to the Library's extensive collections in engineering, pure and applied science, industrial and applied psychology, information and computer science, architecture marketing, economics and management. In addition to the two million catalogued volumes, there are nearly 2.3 million micro texts, a large map collection, two million technical reports (AEC, DOE, NACA, NASA, NTIS), 28,000 serial titles currently received, industry and U.S. government and military standards and specifications, scientific and technical society publications, company annual reports and more than four million U.S. patents, that's the largest collection of patents in the Southeast.

Some additional features are Kinko's Copy Service on Three West and a terminal cluster on One West. For those interested as well as for those who need to, ICS 2250 Technical Information Resources and ICS 4250 Literature of Science and Engineering are very useful courses on effectively using the library.
Library Serves As A Professional Resources Center

The Architecture Library, located on the first floor of the Architecture building, serves as a major resource center for architecture and its related professions. Its materials are selected to support the graduate and undergraduate programs of the College of Architecture with a special emphasis on the history of architecture and design. The library houses a collection comprised of architectural and city planning bibliographies, architectural dictionaries, encyclopedias, standards, handbooks, college catalogs, Master’s theses and indexes, and major periodicals and art magazines. In addition, a collection of 42,000 slides, which focuses on the history of architecture is available for use by the Georgia Tech Faculty and for limited use by students.

The main Georgia Tech library houses Visual Search Microfilm files which offer engineering and architectural data such as manufacturers and vendors catalogs, cost standards, C.S.I. product indexes, building product data, specification and ASTM standards. A special collection of approximately 2300 drawings from the architect Neel Reid, presented by Hal Hentz, is currently being indexed and microfilmed.

TOP, LEFT TO RIGHT: The library provides a good place to get in that needed study. *BOTTOM, LEFT TO RIGHT:* Microfiche is a convenient tool to unleash the full resources available. Dang it! Where is that page? A bunch of silicon slivers keeps this place under control.
Computers Are Powerful Design Tools for Engineers

The College of Engineering Computer Aided Engineering/Computer Aided Design (CAE/CAD) Laboratory has made a remarkable impact on undergraduate courses in the field of engineering. This system, housed in the French Building, is based on CDC, Apollo, Xerox, and Flexible computer systems. It has given many students the opportunity to use state-of-the-art technology in courses specifically designed for CAE/CAD, such as senior design projects, and is helpful in preparing reports and theses. Senior aerospace engineering students working in groups of three to five for a period of two quarters regularly use the facilities to design flight vehicles, such as supersonic business jets. The software is used to make wave drag, stability, performance and control calculations during the preliminary design of the vehicle.

Civil Engineering students use the facilities to run a large deformation structural analysis program for a special class whose objective was to design a balsa wood bridge for an ASCE competition. Proof of the power of the (CAE/CAD) system was given when the entry from Georgia Tech took first place, withstanding a load capacity three times that of the first runner up.

Senior mechanical, electrical, and ceramic engineering students worked in design teams on several projects which will be included in a Georgia Tech-designed lunar base. The CAE/CAD lab was used to develop methods to manufacture bricks, mine oxygen from lunar materials and to develop lunar transportation systems.

The unique nature of this facility has been recognized by the staff of the laboratory and the College of Engineering and attempts have been made to stimulate the introduction of CAE/CAD technologies into the classroom. Most of the course work has concentrated on various aspects of interactive graphics, geometric modeling, finite element mechanics and simulation. Though the electrical engineering applications have been limited, effort is increasing in the development of electrical CAD software and attempts are underway to tie the system into a manufacturing facility in the area.

Because the introduction of CAE/CAD in the classroom depends on having qualified instructors, faculty training and classroom assistance is a high priority. Laboratory staff has developed seminars that concentrate on particular CAE/CAD applications and give support at the user level as well as providing assistance with special projects.

As the importance of CAE/CAD increases, Tech students need not fear that they will be left behind. Georgia Tech has what it takes to stay on top.
Apple and IBM Computers Assist Future Managers

Recognizing the importance of the computer, the College of Management has created three computer labs, which contain both IBM and Apple computer hardware, as well as a large library of software.

The IBM PC lab, which is designated for general student use, is located on the first floor of the College of Management building, while the IBM AT lab, which is reserved for graduate management students, is found in a separate lab. Most of the management students use the thirty-odd PCs for a good deal of their course work. Those who are required to use the computers must learn how to use the Lotus 1-2-3 advanced spreadsheet computer program and dBase II database management software. Accounting students use 1-2-3 to generate future projections of financial statements. Marketing students use 1-2-3 to track sales trends, predict future sales, and analyze advertising and research/development effectiveness. Production management students use the PCs to manage physical resources such as raw material and labor.

The PC lab holds the distinction of being one of the few departmental computer labs open to all students. Software programs, such as Microsoft Word, Multimate, PC-Draw, PC-Paintbrush, PC-Storyboard, PC-Write, and Proofreader allow students to create documents, reports, résumés, and graphics with greater ease and impressive results. Spreadsheets and data base programs, drawing ICAD packages, problem-solving software, and word-processing software are also available to help with just about any application.

The Macintosh lab consists of 25 Macintosh Plus’s which are known for their ease-of-use and user friendliness. The lab also has 25 Image Writer II printers, an Apple Laserwriter printer, and a Thunderscan digitizer. The software for the Apples include a free-hand drawing program, MacPaint, word processing software, Microsoft Word, MacWrite, a structured drawing program, MacDraw, spreadsheets, Microsoft Excel, and Top Mail electronic mail software. This collection of hardware and software is the finest in the new field of desktop publishing, making the Apple lab ideal for generating high-quality paper work and résumés.

TOP RIGHT: Groovin' while computin'. BOTTOM LEFT TO RIGHT: Hmm ... According to this printout, you guys need to reenter all your data. All marvel at the pearls of wisdom from an electronic oracle.
Computer Facility Encourages Creative Composition

One of the most exciting things to happen lately in the College of Science and Liberal Studies was the opening of the new English computer lab this fall. Setting the instruction of communication as a top priority, COSALS and the Department of English sought new ways to improve the quality of teaching. After an initial period where personal computers in the old Civil Engineering building were used, the new Department of English computer lab was created with financing from the Georgia Tech Foundation and COSALS, along with IBM's help.

Located in Room 356 of the Skiles Building, the lab contains twenty-six free standing stations. Each station consists of an IBM personal computer and an Epson LX-30 printer. The lab is open forty hours a week and is staffed by student assistants.

During Fall quarter, the technical writing classes and four sections of the ENGL 1001 classes used these computers. Every technical writing student had to produce all course work on the computers and was expected to take a five-class introductory course to learn how to use the Displaywrite software. The students agreed that the PC's greatly contributed to their work output.

The Department of English is very proud of this new addition and the student response is very encouraging. The lab averaged fifteen students per hour. During the first five weeks of fall quarter, twelve sections of the introductory course had to be opened to accommodate all the students. To ensure that all the students enrolled in the class had adequate access to the facilities, only the students enrolled in the classes that required computer work within the Department of English were allowed to use the lab.

It is hoped that new applications will be found each year. Professor Sandra Corse is working on a software called "Elegance" to help students learn the art of revising composition, and Professor Irving F. Foote has developed a computer program called "Speed Reading Tutor." The department hopes to automate the submission and grading of assignments to make the instruction of courses less paper and labor intensive. Another possibility is to combine a computer's abilities with a low-level expert system to facilitate the planning and rewriting of English compositions. These adjustments were well worth the effort.
Tau Beta Pi
HIGHEST ENGINEERING HONOR

Engineering students who show superior scholarship and leadership as well as integrity and breadth of interest, both inside and outside of engineering, are recognized by Tau Beta Pi.

Undergraduate students who rank in the top eighth of their junior class or the top fifth of their senior class are considered for membership.

Glenn F. Abad
Christine K. Adams
Paul B. Allen
Bradley L. Anderson
David M. Anthony
Douglas K. Ash
Godfrey Augustine
Thomas E. Bell
Todd A. Belvo
Douglas A. Bodner
Bradley D. Bolster
Bryant S. Bostalter
William K. Bostic
Mark W. Bowers
James L. Bradshaw
Peter G. Briggs
James S. Brown
John S. Burnett
Thomas P. Byrne
William H. Calhoun
Kristina R. Catlin
Albert T. Chamillard
Jeffrey K. Chandler
Kenneth W. Chin
Philip E. Cohen
Jon M. Coleman
Luis F. Colon
Linda C. Cook
Harold W. Council III
Elizabeth A. Crilly
Mark A. Crow
Connie S. Cumbus
John C. Curtis Jr.
John J. Curtis III
Alexis L. Cusson
Bradley J. Dailey
Bruce D. Dalziel
Albert N. Danial
Darin H. Davis
Paul H. Davis
Walter T. Davis III
James A. Dawson
Brian J. Denheyer
D. Jeffrey Densmore
Olga C. Desdin
Marvin T. Devos
Doyle M. Dillard III
Angela R. Dominy
Gary L. Doss
William B. Doty
William G. Duggleby
Sharon E. Duncan
Lee M. Evans
David B. Farmer
Gabe L. Finke
Karyn L. Fletcher
Brian S. Fogle
Roberto M. Frontera
Thurston D. Futch III
John T. Gallo
Kevin B. Gibson
Elizabeth A. Giesecking
Steven R. Giesecking
Steven D. Giffen
David A. Gillam
Juan P. Gonzalez
Jon T. Goodman
James P. Gratzek
Susan E. Gregory
Dirk A. Grissett
Stephen G. Hall
Julie A. Harrell
Juliet H. Hastings
Randolph Henderson
Ralph M. Herkert
Evelo Hernandez
Christopher M. Herrin
Quynh T. Hoang
Tony M. Hogan
Joanne Holland
Neal W. Hollenbeck
William E. Hood
Anita S. House
Dale K. Huff
Keith F. Hugenberg
Winston P. Hunter
Jennifer L. Jackson
Jon M. Jenkins
Elspeth T. Jinks
Joanna Joiner
Albert S. Koda
Joseph C. Layden III
Phuong N. Le
Edward Y. Lee
Mark E. Lee
Michael A. Lehr
John M. Lester
Linda Lin
David T. Little
Don L. Livingston
Owen J. Loftus III
Michael J. Lucas
Janet E. Luth
Patricia G. Lynch
Ida E. Malavenda
James G. Maloney
Thomas R. Mann
Armand R. Marino
David E. Marino
Michael A. Martin
Brian A. Mathewson
George S. McCall II
Sean McElmagnahan
Catherine E.
McClendon
Edith B. McFarland
Kelly J. McMillan
Anne M. Miller
William A. Miller
John H. Mize
Jose F. Montes
Scott D. Nelson
Carl B. Newell
Eric A. Nielsen
Terry R. O’Bannon
Neil H. Oh
James T. Owens
James H. Pak
Mary Lynn Palmer
Gregory S. Parker
Paul D. Parsons
Lee T. Patterson
Mary L. Patterson
Robert M. Patton
William W. Persyn
Bryan E. Pierce
Daniel S. Pipkins
Kimberly P. Ragsdale
Susan D. Ragsdale
Joseph W. Roberts
Charles E. Rodgers Jr.
Allan D. Ross
Felix P. Ruo
Samuel H. Russ
Mary M. Schneider
Jean M. Schramm
Eric B. Sevy
Randolph J. Sheffield
Elias G. Skoufis
Anthony J. Smith
Eric G. Smith
Helen M. Smith
Michelle L. Stecklein
Erik A. Steeb
Terry S. Strickland
Daniel C. Stubbs
Terry J. Styles
Timothy E. Swanson
Karl R. Swensen
Gregory G. Tarasidis
Brett S. Taylor
Kent B. Terry
Brittain B. Thompson
Samuel K. Todd
Sandra L. Turner
Jane Wallace
Ellen D. Watson
Greg M. Watson
Kenneth S. Weinaug
James D. Welch
Mark E. Westphal
Samuel S. White
Glenn T. Wright
Jeffrey L. Youmans
Robert M. Zaraiban
Mariangeli Zerbi
Founded at Georgia Tech on July 16, 1922, the oldest co-operative honorary society in existence recognizes the scholastic achievements of students enrolled in the co-operative program. To be elected to the Briarean Society, a student must have earned at least a 3.0 cumulative GPA and have completed five quarters of academic study in the Cooperative Department.

Briarean Society
CO-OP SCHOLASTIC HONORARY

DOUG LYNCH, MICHIE MARRAN, HEATHER MARIN, JOE MARTINEK, JAMES MACBRIDE, KATHERINE MCVAY, ED MCDONALD, LISA MEYER, TERRI MILLS, THOMAS MITCHELL, GEN Y NEV, CHIMA NJAKA, NANCY OVERCAST, MIKE PETERSON, NU PHAN, JAMES PLATNER, ZOLTAN POLTEREKSTY, RON PRADO, SCOTT RAGSDALE, MICHAEL RAND, JIM REACH, MA RECY, JUILL REEVES, MICHAEL RICE, TRACEY RICHARDSON, VIRGINIA RUGOS, LEON ROUNTFREE, STEVE ROY, CHRISTINE RUNYEON, RANDY RUPERT, JOHNNIA RUNAK, CARL RUSH, SHERRY SANFORD, BILL SCHMIDT, KEVIN SCHULTZ, CHRIS SCHWARTZ, MADELINE SHELDON, SCOTT SIEGEL, BILL SLURSGEB, ELIZABETH SMITH, SCOTT SMITH, CHARLES SNEED, JAMES SPADEY, JOE STINSON, KEVIN STORZ, TAMMY STUBBS, KEITH TOTH, TROY TRIP, MARK F. TURNER, CINDY TUSHINSKI, JUILL WHITHEAD, ROBERT WHITING, ROYCE WILMSCHEN, JEFFREY WINGARD, GRANT WOOD, DEAN WRIGHT, LEE YOUMANS, SECTION 2, PETER D. ANDERSON, MARY JAN ARNETTE, SCOTT ARNOLD, RICHARD ASHLEY, GODFREY AUGUSTINE, GLENN BALLARD, ISA BARKET, KERRY BARKOW, TOMMY BELL, TODD BELO, ERIC BERGREN, CATHERINE BLANCHER, DAOANAH BOLE, BRADLEY D. BOLSTER, JR., BRYAN BOSTATER, W. K. BOSTIC, ROGER BOWINMANS, JACK BRADEN, LARRY W. BRINSON, JAMES BROWN, PAUL BROON, TONI A. BRUCE, BILL G. BRAUN, TINA BRYAN, WILLIAM CAINON, JUN., TIMOTHY W. CALVIN, ROSS E. CANNIN, CATHERINE CARPELHAN, KRISTINA CATLIN, CAROL CHERSTEEHUTT, KENNETH CHIN, HANK CHOW, MARILY COKER, BARBARA F. CONEY, GORDON CONNELLY, MICHAEL COOPER, HAROLD COUNCIL, DAVID COXRAY, KENNETH COW, ALBERT W. DANIENLS, DARIN DAVIES, JIM DENDY, OLEG D. DILLARD, MELISSA DOTSON, WILLIAM DOWY, KEVIN DOLCIC, STEVE DUKE, DENIS D. DUNCAN, STEVEN L. DUNCAN, JILL DYKEN, JUDITH ECKERT, LEE MONROE EVANS, WILLIAM PATRICK FAIR, ABAIGAL FENNAM, COLIN FIELD, SHERI FORRESTER, RICHARD GAETA, DAVID GARZA, SAM GHOSH, STEVE GIFFIN, GLENN GILBERT, JUAN GONZALEZ, JON GOODMAN, LANCE W. GOFFREDSON, DAVID S. GRAFT, BRADLEY O. GREENE, E. ANNETTE GREENE, DONN GRENZFEIDEL, MIKE HIGHT, MARY ELIZABETH HALL, RICHARD HALL, TIMOTHY HALL, DAVID HAMM, JOHN HAMMOND, CHRIS M. HANCOX, MICHELLE N. HARBAR, AL P HARDSON, JAMES R. HARRELL, RALPH HERKERT, CHRISTOPHER HERRING, MARK HENNIGHTON, F. QUENT HERSCHELMAN, STEPHAN HICKS, RODNEY HILL, LEIGH ANN HINES, JOHN DAVID HIRVELA, QUYNT HUANG, TONY M. HUGAN, GLENN HOPKINS, ANITA HOUSE, DEAN R. HUDADOFF, DALL K. HUFF, KEITH HUGENBERG, TODD HUGENBERG, PATRICK W. HUNTER, DAVID JABOON, JENNIFER L. JACKSON, PAUL E. JENSEN, ANGELA JERGUN, JERRY HOLLAND, MATTHEW JOHNSON, JULI JORDAN, ANDREW KATES, ROBERT KAUFMAN, DWAYNE C. KEARN, RUTH W. KHAN, PAUL KRIEPL, KARLA KREUL, NANNY KREUZ, NUN N KUNZER, JUDITH LAMPERT, CORD LANGHAMPE, BRENDAN LANE, JENIFER LESE, JOHN LEON, DAVID LEPPICOTT, DAVID K. LINDSAY, IDA MALVENA, MICHAEL MANKIN, DINAH MANN, ARMAND A. MARINO, DAVE MARINO, MIKE MARINO, BRIAN MATHEWS, RAYMOND A. MATTHESS, GEORGE S. MCCALL, W. MICHAEL MCLAMORCH, TOM MCCOUGH, MICHELLE MILAM, GEORGE A. MILES, JOHN MIZE, JAMES MOORE, MARK MORELLI, SCOTT D. MORGAN, KEN MORENART, BILL MURPHY, ERIK NILSEN, MARK NIEPMANN, RICHARD NORTON, CATHERINE O'DONNELL, NEIL O. OH, JAMES OWENS, ROBERT MICHAEL PATTON, BEN L. PEETERS, BRYAN PIERCE, JANET PIERCE, ERNEST T. POLITZ, BARRY POWELL, ANNE PROUD, KIMBERLY RAGSDALE, MIKE RENE, JOHN RODHES, RONALD RICE, GREG ROBERTS, JULIE ROGERS, ROBERT ROWLAND, KENNETH RUBIN, JAMES ALAN SANDERS, CATHY SARGH, KAREN SCHEY, NANCY SCHNABEL, JOHN SCHURECK, LORI SCHWARTZ, BRUCE SEEGER, MARK SELMAN, ERIC B. SEVY, CURTIS SHAW, JOHN SIVAK, ASHLEY SLAPPY, ERIK G. SMITH, MARY LYN SMITH, MARK SPEARS, DURAND STANDARD, MICHELLE STECKLEIN, CAROL STEINZEMMER, PHILIP SCOTT ST. GERMAIN, TERRY STRICKLAND, DANIEL STUBB, TERRY STYLES, KARL SWENSON, SHERYL TAILON, JOHN TAMPIN, DREW TAN, KENT TERRY, BRITT THOMPSON, HAI HO TRUONG, DOUGLAS B. TURNER, SANDRA TURNER, KAREN UEBERSCHAER, CARLA P. VARNEDOE, LEE YEAL, SAMYAH VIG, LISA VOIGHT, LARRY WALKER, ALAN WARD, JOE WATWOOD, FRANK WEAR, HEIDI WEIGEL, GLENN WELLS, J. RAYMOND WELLS, MARCUS WHALEY, JAMES WILMAN, J. DEREK WILLIAMS, WILLIAM WILLIAMS, MARK W. WINKLER, MARK WOALER, NANCY WOLF, KAREN WOLFE, ANDREW WOOD, JOEL K. WOOD, ROBERT WYSSOCH, JEFFREY YOUNANS, MARVIN ZIEGLER.
Gamma Beta Phi

The Gamma Beta Phi Society is an honor and service organization for students ranking in the top fifteen percent of their class. Its motto is “Progress Through Education” and its watchwords are Scholarship, Service and Character. The Society works to promote these ideals through a number of service projects benefitting Georgia Tech and the Atlanta community.
Who’s Who Among Students In American Colleges and Universities

Since 1936 Who’s Who Among Students in American Colleges has been providing recognition for outstanding campus leaders. Candidates must be juniors, seniors or graduate students and are judged on academics, community service and leadership in extracurricular activities.

Preston Bates
Jamie Burnette
Paul Clemmons
Harold Council
Robert DeVries
Angela Dominy
Michael Hearn

Sharon Jadrnak
Bartly Jones
Juli Jordan
Lisa Meyer
Charles Morris
Bryan Pierce

Carroll (Bo) Reddic
Eric Smith
Karl Swenson
Robert Whiting
Nancy Wolf
Matt Zakarian

Omicron Delta Kappa
NATIONAL LEADERSHIP HONORARY

For fifty-three years, Georgia Tech’s chapter of Omicron Delta Kappa has honored juniors and seniors who have proven themselves outstanding in academics, athletics, social service, journalism and creative and performing arts. Candidates must have a 2.8 cumulative grade point average for consideration.

Robert Wysocki
Richard Coblens
Beth Hinnen
Kelly Adams
Steve Duke
Alex Payne
Nelson McRay
Joe Daniel
Cathy O’Donnell
Patty Uceda
Renee Dominy
R. K. Whitehead
Alexander Wan
Greg Allen
Sharon Duncan
Sanford McAllister
Scott Ribes
David Clonts
Gabe Finke

Ward Council
Jon Goodman
David Womble
Frank Williams
Glenn Wright
Chris Gaffney
Jamie Evans
Tom Cisewski
David Farmer
Susan Cochran
Sharon Just
Anthony Priest
Jon Jenkins
Peter Stephens
Kim Butler
Micheal Hearn
Ruth McClatchey
Sean McClanahan
Karl Swensen
Who's Who Among Students In American Colleges and Universities

Since 1936 Who’s Who Among Students in American Colleges has been providing recognition for outstanding campus leaders. Candidates must be juniors, seniors, or graduate students and are judged on academics, community service, and leadership in extracurricular activities.

Preston Bates
Jamie Burnette
Paul Clemmons
Harold Council
Robert DeVries
Angela Dominy
Michael Hearn

Sharon Jadrnak
Bartly Jones
Juli Jordan
Lisa Meyer
Charles Morris
Bryan Pierce

Carroll (Bo) Reddic
Eric Smith
Karl Swenson
Robert Whiting
Nancy Wolf
Matt Zakarian

Omicron Delta Kappa
NATIONAL LEADERSHIP HONORARY

For fifty-three years, Georgia Tech’s chapter of Omicron Delta Kappa has honored juniors and seniors who have proven themselves outstanding in academics, athletics, social service, journalism, and creative and performing arts. Candidates must have a 2.8 cumulative grade point average for consideration.

Robert Wysocki
Richard Coblens
Beth Hinnen
Kelly Adams
Steve Duke
Alex Payne
Nelson McRay
Joe Daniel
Cathy O’Donnell
Patty Uceda
Renee Dominy
R. K. Whitehead
Alexander Wan
Greg Allen
Sharon Duncan
Sanford McAllister
Scott Ribes
David Clonts
Gabe Finke

Ward Council
Jon Goodman
David Womble
Frank Williams
Glenn Wright
Chris Gaffney
Jamie Evans
Tom Cisewski
David Farmer
Susan Cochran
Sharon Just
Anthony Priest
Jon Jenkins
Peter Stephens
Kim Butler
Micahel Hearn
Ruth McClatchey
Sean McClenahen
Karl Swensen
Superior Scholastic Achievement among college freshmen is recognized through the society of Phi Eta Sigma. Founded in 1923 and chartered at Tech in 1930, the society rewards freshman academic excellence. All students who attain a 3.5 or better grade point average during their first freshman quarter or by the end of their freshman year are eligible to join.

Cynthia Amburn
Moises Attias
Michael W. Axon
Bart Louis Barbessi
Anthony F. Barnes
Richard L. Barnes
Fred Edmond Bertrand
Deena Alaine Biser
Todd Shane Bockwoldt
Olin Harvin Broadway
Kevin Sean Broe
Craig Maurice Campbell
Jeffrey Caplin
Peter John Chassman
Luis Alberto Colon
Richard Vance Cotton
Glen Tyler Davis
Debra Leigh Dean
Keith Elliott Dennett
Sebastian Joseph DiGrande
Kathryn Ann Dirksen
John Alan Dobberstein
Jeffrey Wayne Dodson
Curtis Lane Doster
Daniel Richard Driscoll
Lisa Reyes DuBois
Russ Vinson Durham
John Malek Ellis
Jerolyn Alicia Etchison
William Keith Fackler
Melissa Ann Fogle
Robert Andrew Forsythe
Carol Ann Fuller
Edvardo Ezra Gateno
Laurie Ann Gilmore
Brian James Gray
Kevin Brent Guske
Tony H. Ha
Ernest William Habicht
Mark Allen Hall
Takoi K. Hamrita
Ronald J. Harper
David Lawrence Hart
Holmes Johnson Hawkins III
Keith Brian Hollingsworth

Gerardo Holmann
Stephen John Homiller
David J. Horvath
Eduardo J. Jacobo
Stephen William Jaklitsch
Anis M.W. Jarrar
Mary Ming-Yuan Kao
Brian Allen Keeton
Kevin Charles Keifer
Jennifer Ellen Kesler
Deborah Lee Klpatrick
Hyon-Kyoung Lauren Kim
Hyun Dae Kim
Eric Scott King
Tracey Joy King
Jody T. Kinney
William Randall King
Carl Scott Kirkconnell
Faouzi Kossentini
Roger Frederick Kromenn
Jeffrey Ray Kuester
Troy Hills Lanier
Carlos A. Leon-York
Charles James Lewis
Lisa Kaye Little
Andrew S.C. Liu
Todd Ivey Long
Charles Hubert Love
Lawrence David Mandes
Anthony Calvin Mason
Michael Sean McBrayer
Shaun Martin McCutcheon
Mark Wayne McDonald
Alfred Iverson Means
Roy Wayne Melton
Nancy Ann Michel
Alice Claire Miller
Christopher Robert Mizell
Jeffrey Franklin Morris
Glenn James Morrison
Michelle Elizabeth Morrison
Martin A. Mueller
Merri Ann Murdoch
Jonathan Wesley Musser
Roger Douglas Nordeman

Deborah Ann O’Neal
Rory Todd Osborne
Juan P. Ospina
Stephen Francis Patterson
Lisa M. Phillips
Perry Andrew Pintzow
Steven Paul Pitts
Wolfram M. Ploetz
Laura Halstead Porter
William Wade Powell
Donald Lee Pozin
Randall Harrison Pursley
Anita Lynn Redic
John Karl Rider
Lisa Annette Riggle
Laura Suzanne Rogers
Paul Stephen Rogers
Craig Martin Rozema
Konny S. Ruo
Kelly Michael Rodriguez
Randall Joseph Ruark
Alyssa Gale Rutland
Sabew Siala
Timothy Carl Siegel
Scott Andrew Simmons
Michelle Marie Smith
Ronald Jamie Spriggs
John Edward Stangel
Glenn Robert Stone
James Allen Stephens
Alan Christopher Stimson
Michael Thomas Strayhorn
John Michael Strickland
Patrick Hsin-Da Jun
Matthew West Taylor
Eden Lynne Thrope
Oliver Wun-lin Tseng
Robert Charles VanGiessen
Gregory Scott Warren
Johnathan Neil Webb
Kerney Daryl Wessinger Jr.
James Edward Williamson
Jochen Wunn
Chien-Meng Yang
Stephen Randolph Zahorodny
Established in 1908, ANAK recognizes students for their leadership ability, personal achievement and strong character. Membership in the society is the highest honor a student can receive while at Georgia Tech. ANAK is unique in that meetings and activities are known only to its members.

Kelly Adams
Tsai D. Bentley
William C. Biven
Keith Boland
Samuel Bracken
Elizabeth Bradley
Russell Chandler
Michael Coley
Jeffrey Cooper
Sean M. Cumbis
Joseph Daniel
Fr. Mario DiLella
Darryl C. Dykes
Charles Easley
Keith Eubanks
Charles Easley
Peter Finlay
Neil R. Fisher
Stephen R. Fleming
Edmund Fortier
Jeanene Fowler (Coleman)
Amory Gabel (Teigener)
Chris Gaffney
Danny Green
Robert E. Green
Kent Holding
Mark Homrich
Julia M. Hunter
John Ivenmeyer
Sharon Jadnark
Bart Jones
Dante Jones
Marvin M. Kilgo
Lisa Landrum.
Mark Leinmiller
Govantez Lowndes
Michelle Mason
Gary S. May
Sanford McAllister
Mike McCloud
Robert McMath
Nelson McRay
Jana Miles
Hugh C. Moore
John Morford
Larry Naylor
Steve Newbern
Mark Price
Susan Raffensperger
George Rodrigue
Julie Rogers
David Schmidt
Peter Sherry
Beth Smith
Jon Strombom
Michael Thomas
Deborah Underwood (Dykes)
Lisa Volmar
Ken Westbrook
Bruce Wheeler
Ken Wihsenhunt
John A. White
Dorothy Yancy
Clifton Youngblood

Phi Kappa Phi

The Georgia Tech chapter of Phi Kappa Phi was established in 1914. Recognition of superior scholarship in all academic subjects is the purpose of this society. Candidates rank in the top ten percent of their class as well as display a good character and academic record.

FALL 1986 INITIATES
STUDENTS
Claud Beckham
James Lee Bradshaw
William Gainer Bryan
Michael John Carney
Roy Christopher Coffman
Victor Cohen-Levy
Pablo Juan Costas
Theodore Kraft Courtney
Elizabeth Ann Crilly
Kathleen Ellen Cummings
Jimmy Ray Dandy
Doyle M. Dillard, III
William Brainerd Doty
Denise Collette Dumais
Sharon Ellen Duncan
James Hamilton Evans
Steven Donald Griffin
James Robert Harrell
Julie Amanda Harrell
Neil Wayne Hollenbeck
Michael Todd Jones
Vernon Levis Mauldin
Sean McClagen
James Lee Mercer, Jr.
Leslie Andrea Morgan
John William Morrison
Terry Robert O’Bannon
Catherine O’Donnell
James Dennis Perrin
Janet Michelle Pierce
Tracy Robert Richardson
Samuel Hargis Russ
Randy Richard Schoen
Jay Schwarzhoff
Elias George Skoufis
Anthony Lawrence Smith
Durand Millard Standard
Carol V. Stelzenmuller
Scott William Stevens
Carol Elizabeth Stugard
Michael Edward Thomaston
Samuel Keith Todd
Philip Kang Wang
Samuel Scott White
David Robert Williams
Glenn Tracy Wright
Jeffrey Laurens Youmans
FACULTY
Dr. John Neff
Dr. Thomas White

SPRING 1986 INITIATES
STUDENTS
Christine Kelly Adams
David Montgomery Anthony
Douglas Keith Ash
Douglas Anthony Bodner
John Alexander Bond
Peter Griffin Briggs
James Steven Brown
John Scott Burnett
Ross Eugene Cannin
Willow Dade Caraway, III
Alejandro Cedeno
Albert Timothy Chamillard
Kenneth Wing Chin
Byron Lee Coker, Jr.
Jon Mark Coleman
Michael Jamie Cooper
Harold Willard Council
Michael T. Cox
James Arthur Dawson
Jerry Owen Dawson
Gary Lamar Doss
Dennis Denard Duncan
Steven Lane Duncan
Christopher McCall Durham
James Hamilton Evans
Pedro Wal-Man Fong
Timothy Donald Foreman
Amar Abdullah Hussain Ghori
Kevin Bruce Gibson
Stephen Ray Gieseking
Joni Thomas Goodman
James Paul Gratzek
Susan Elizabeth Gregory
Kamel Nabil Haddad
William Maclntyre Hargen
Christopher Michael Herring
Joanne Holland
William Robert Holloway
Billy Eugene Hudgins
Dale Keith Huff
Philip Anwar Husain
Sharon Marie Jadnark
Jon Michael Jenkins
Espereth Thompson Jinks
Joanna Jorner
Bartly Wade-Jones
Robert Jay Kaufman
Jim Wayne Latimer
Joseph Calvin Layden, III
Edward Young Lee
Bradley M. Lehman
Don Len Livingston
James Geoffrey Maloney
Thomas Richard Mann
Joseph Peter Martinek
Brian Andrew Mathewson
David Clay Mayfield

Sean McClagen
James Edward Moore, Jr.
Kenneth Alfred Morneault
Charles Michael Morris
Kenneth Ray Osborn
James Thomas Owens
Gregory Scott Parker
Matthew Keith Parker
David Arthur Parks
Paul Douglas Parsons
Mary Leslie Patterson
Alexander Phillip Payne
Mark Allan Post
Sanjay Raman
Raymond Scott Ribes
William Lawrence Rich
James Keith Roberts, Jr.
Elizabeth Ann Robinson
Dwayne Edward Rocker
Felix Pwan Ruo
Sharon Ann Schmidt
Dewey Edward Watson
Brett Scott Taylor
Kent Bennett Terry
Elket Villalba
Alan Keith Ward
Steven Michael Watking
Ellen Denise Watson
Greg Malcolm Watson
Alisha Adrian Weathers
James David Welch
James Michael Willerman
Royce Arthur Willmschen
Glenn Tracy Wright
FACULTY
Gregory Colson

ANAK, Phi Kappa Phi / 171