BLOOD FLOW AND PRESSURE CHANGES THAT OCCUR WITH TILT-IN-SPACE

Sharon Eve Sonenblum, Ph.D.
European Seating Symposium
September 15th, 2009

Pressure Ulcer Development
Possible mechanisms for pathophysiologic responses
1. Ischaemia of soft tissues occurs as a result of the occlusion or collapse of capillaries.
2. A disruption of the equilibrium in the interstitium between cells affects terminal capillaries and lymph vessels.
3. Cell damage results from prolonged deformation.

Tilt-in-Space for Pressure Relief
• Our local seating clinic prescribed >125 in 2007
• Justification – lack of ability to independently reposition or do pressure reliefs (pressure ulcer prevention); history of current or previous skin breakdown

Tilt-in-Space for Pressure Relief
• Studies say interface pressure decreases as tilt angle increases.
 • Chris Maurer, MPT, ATP
 • presented at ISS 2007:
 • Many clinicians teach 45°-55° or “all the way back”
 • Literature varies between > 30° and up to 45°
 • More appears to be better

Tilt-in-Space for Pressure Relief
• How much pressure reduction at the buttocks with tilt?
• Does blood flow change with tilt?
• How much of a tilt is needed to affect pressure or blood flow?
• Do we have to talk about the starting position? (Is a 15° tilt from upright the same as a 15° tilt from 15°?)
Aim: To determine the impact of tilting on blood flow and localized tissue loading.

Hypotheses

- H1. The minimum tilt position required to increase blood flow is less than 45°.
- H2. There is a significant decrease in loading at the minimum tilt required for increased blood flow.
- H3. Small changes in tilt angle (15°) when starting in an upright position result in:
 - increased blood flow
 - decreased pressure
- H4. Small changes in tilt angle (15°) when starting in a tilted position (15°) result in:
 - increased blood flow
 - decreased pressure

Participants

- 11 subjects with SCI
- Gender
 - 9 men
 - 2 women
- Race/Ethnicity
 - 7 African-American
 - 3 Caucasian
 - 1 biracial.
- Years using a wheelchair
 - 9.4 (5.7)
 - Range: 9 months - 18 years

Instrumentation

- Laser Doppler Flowmetry Probe
- Interface Pressure Sensor

Protocol

3 trials per subject

1. Unload for 5 minutes to restore baseline flow.
2. Tilt sequences - in random order
 2 minutes at each position.
Sample data from a single trial

Results:
Normalized Blood Flow

<table>
<thead>
<tr>
<th>Tilt Position</th>
<th>Mean Blood Flow</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>1.08 (0.19)</td>
<td>0.016</td>
</tr>
<tr>
<td>30°</td>
<td>1.24 (0.46)</td>
<td>0.003</td>
</tr>
<tr>
<td>45°</td>
<td>1.84 (1.44)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Max Tilt: 3.34 (5.09) 0.034

Normalized pressure and blood flow values (normalized by providing weight value). Statistics were computed for normalized blood flow compared with a ratio of 1.

Hypotheses:

- **H1.** The minimum tilt position required to increase blood flow is less than 45°.
- **H2.** There is a significant decrease in loading at the minimum tilt required for increased blood flow.
- **H3.** Small changes in tilt angle (15°) when starting in an upright position result in:
 - increased blood flow
 - decreased pressure
- **H4.** Small changes in tilt angle (15°) when starting in a tilted position (15°) result in:
 - increased blood flow
 - decreased pressure

Results: Pressure

- **H1.** The minimum tilt position required to increase blood flow is less than 45°.
- **H2.** There is a significant decrease in loading at the minimum tilt required for increased blood flow.
- **H3.** Small changes in tilt angle (15°) when starting in an upright position result in:
 - increased blood flow
 - decreased pressure.
- **H4.** Small changes in tilt angle (15°) when starting in a tilted position (15°) result in:
 - increased blood flow
 - decreased pressure.
Results: Small Tilts from 15°

<table>
<thead>
<tr>
<th>Variable</th>
<th>15°</th>
<th>30°</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Peak Pressure (mmHg)</td>
<td>87 (30)</td>
<td>79 (27)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Absolute Mean Pressure (mmHg)</td>
<td>71 (25)</td>
<td>61 (22)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Normalized Mean Blood Flow</td>
<td>1.08 (0.19)</td>
<td>1.15 (0.41)</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Hypotheses

- **H1.** The minimum tilt position required to increase blood flow is less than 45°.
- **H2.** There is a significant decrease in loading at the minimum tilt position required for increased blood flow.
- **H3.** Small changes in tilt angle (15°) when starting in an upright position result in:
 - increased blood flow
 - decreased pressure.
- **H4.** Small changes in tilt angle (15°) when starting in a tilted position (15°) result in:
 - increased blood flow
 - decreased pressure.

Preliminary Pressure Relief Guidelines

- 9 of 11: increase in blood flow (≥ 10%) during the maximum tilt
- 4 of 11: increase in blood flow of ≥ 10% at 30° tilt
- A tilt for pressure relief should tilt as far as the seating system permits.
- The use of interim small tilts is also supported, as they also provide some benefit.

How does this apply to actual tilt behavior?

- Monitored tilt behavior of 30 persons with SCI
- Pressure relieving tilts past 40° were performed 0.1 times per hour of wheelchair occupancy

Actual Behavior

- Decreased loading (< 90% upright pressure)
 - Based on average pressure reduction, tilts > 24° reduce pressure by 10%
 - Frequency: 0.5 (0.0 – 7.6) times per hour
 - Time: 7% (0% - 100%)

- Increased blood flow
 - Tilts > 15° increased blood flow some
 - Frequency: 0.5 (0.0 – 7.0) times per hour
 - Time: 18% (0% - 100%)

Conclusions

- Tilting DOES increase blood flow and decrease pressure
- Increase in blood flow probably NOT from pressure change
 - Change in CoP
 - Change in pelvic angle
 - Other factors in pressure ulcer causation
 - Tissue Compression
 - Shear
- Considerable time spent with increased blood flow (18%) and decreased pressure (7%)
- Few pressure relieving tilts, infrequent changes to blood flow or pressure (every 2 hours)
- Possible explanations for not doing more PRTs
 - Large tilts may be uncomfortable and unstable
 - Large tilts may not be functional
 - Participants may not pay attention to the need for pressure relieving tilts
Limitations

- Generalization of results
 - Small n (11)
 - Limited conditions (fixed air inflation cushion)
 - Homogenous population
- Analyzed superficial blood flow only
- Hyperemic responses were not studied, but may be important
- Short durations of loading
- Other contributors to pressure ulcers not studied:
 - Cell deformation
 - Shear
- Guidelines do not reflect efficacy at preventing pressure ulcers

Future Studies

- Longer sitting durations
- Measure deeper blood flow and oxygenation
- Very wheelchair cushions
- More subjects
- Tissue deformation in MRI
- Measure shear forces
- Training interventions to influence tilt behavior
- Study pressure relief behavior and pressure / blood flow response other populations
- Efficacy of pressure reliefs in preventing pressure ulcers

Acknowledgements

- Stephen Sprigle, Ph.D., PT
- Clinical Team
 - Stephen Sprigle, Ph.D., PT
 - N. Shum, MPT
 - Robert Stevens, M.P.T.
- Subject Recruitment
 - Jude Muller
- Study Brief
- Data Collection
- Data Analysis, Assumption / Analysis
- Mario Echez
- Scott Berr
- Mobile Electromagnetic
- Mobile Cerebral

- Data Entry
- Data Reporting
- Data Analysis
- Data Collection
- Data Analysis
- Data Analysis
- Data Analysis

- Daniel Smith
- Eric Whitaker
- Tobias Meyer
- Funding Sources
 - NIDRR – RERC on Wheeled Mobility
 - NSF Graduate Research Fellowship Program

This research was completed as part of the Mobility RERC, which is funded by the National Institute on Disability and Rehabilitation Research of the U.S. Department of Education under grant number H133E030035. The opinions contained in this presentation are those of the grantee and do not necessarily reflect those of the U.S. Department of Education.