Introduction

- Skin microclimate has been linked to tissue health
- Relative humidity affects friction and skin’s ability to withstand loads
- Increased tissue temperature increases metabolic demand and may affect tissue integrity
- Clinicians need to prescribe wheelchair equipment that is tailored to the needs of the individual

Objectives

- Investigate relationship between temperature and relative humidity in controlled tests
- Monitor the same parameters in everyday use and assess the impact of user functionality
- Compare measurements taken at skin and cushion surfaces to validate cushion measurements

Methods

MSR logger
- Temperature sensor, 0.1°C
- Relative humidity sensor, 2%
- Occupancy switch

Controlled Test
- Same subject, clothes & chair,
- Consistent ambient conditions
- Sensor located 2-3 cm forward of the ischial tuberosity on the skin
- Additional sensors attached to cushion surface in an analogous location
- Cushions monitored for 45 min duration, some with 60 sec pressure reliefs every 15 minutes

Everyday use testing
- Attached logger and sensors inside cushion cover
- Logged data for approximately 1 week

Data Analysis

- Bout of sitting: threshold set at 10 minutes
- Steady-state: initially defined as <1/2°C/30 min

Results

Skin and Cushion Temperatures

- Temperature: Rohe vs. 2" HR70 foam vs. Silicone foam vs. Exact cushion

Skin and Cushion RH

- Relative humidity: Rohe vs. 2" HR70 foam vs. Silicone foam vs. Exact cushion

Conclusions

- Correlation between skin and cushion measurements:
 - Temperature: \(R > 0.9 \)
 - Relative Humidity: \(R < 0.4 \)
- Cushion-mounted sensors suitable for temperature, but not relative humidity measures
- Difference in skin and cushion temperatures after 45 minutes:
 - Rohe: 0.3°C
 - 2" HR70 foam: 0°C
 - Silicone foam: -1.1°C
 - Exact cushion: 1.5°C
- Movement is a good way to dissipate heat and alter shear and normal loading; can be facilitated through education, positive reinforcement
- Controlled tests did not reach steady-state, while most real-world bouts reached steady-state after approx. 90 minutes

Future Work

- Increase sample size to increase reliability of results
- Use subject debriefing to better contextualize data
- Inform modifications to current standardized heat & humidity test method
- Compare results of human and lab tests to assess validity

Acknowledgements

- This research was conducted as part of the RERC on Wheeled Mobility, which is supported by Grant H133E080003 from the National Institute on Disability and Rehabilitation Research of the U.S. Department of Education.

For more information, please visit www.mobilityerc.gatech.edu