ASSESSMENT OF THE ISO IMPACT DAMPING TEST FOR WHEELCHAIR CUSHIONS

Stephen Sprigle, PhD, PT
Bummo Chung, MS, Tobias Meyer, MS

ABSTRACT
The ISO 16840-2 impact damping test characterizes wheelchair cushion abilities to reduce impact loading on tissues and to help maintain postural stability. Impact loading can occur during activities of daily living such as rolling off a curb.

Objectives
• Improve the methodology described in the ISO standard
• Determine the repeatability of the accelerations resulting from the ISO test method
• Assess the test method’s ability to distinguish the impact damping performance of different cushions

Methods

Experimental Protocol
1. Test procedures performed after ISO 16840-2, chapter 11.2 on 5 cushions using a modified testing rig
2. Three operators tested all cushions on 3 different days
3. Each cushion was tested 6 times per day for a total of 18 tests per cushion

Modifications
Slider arms engaging the indenter to insure proper alignment

Cushion cohort

<table>
<thead>
<tr>
<th>Cushion</th>
<th>Manufacturer</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” flat HR-45 Foam #1</td>
<td>Hibco Plastics, Inc, Yadkinville, NC</td>
<td>Urethane foam with 45 IBD</td>
</tr>
<tr>
<td>1” flat HR-45 Foam #2</td>
<td>Hibco Plastics, Inc, Yadkinville, NC</td>
<td>Urethane foam with 45 IBD</td>
</tr>
<tr>
<td>Cloud</td>
<td>Otto Bock USA, Minneapolis, MN</td>
<td>Viscous fluid bladders within elastic foam base</td>
</tr>
<tr>
<td>Dream</td>
<td>Allegro Medical, Meza, AZ</td>
<td>Viscoelastic foam</td>
</tr>
<tr>
<td>Roho HP</td>
<td>The Roho Group, Belleville, IL</td>
<td>Single valve adjustable air cushion</td>
</tr>
</tbody>
</table>

Results & Discussion

- ISO defined variables
 - Mean number of rebounds >10% of peak acceleration
 - Magnitude of Rebound 1
 - Magnitude of Rebound 2
 - Ratio of Rebound 2 to Rebound 1

- Additional variables
 - Magnitude of the acceleration at initial impact (Impact 1)
 - Magnitude of the acceleration at 2nd impact (Impact 2)
 - Ratio of Impact 2 to Impact 1

ANOVA Results

- Initial Impact: differed across cushions (p<0.001)
 - Two HR45 foam cushions were not different from each other
 - All cushion types were significantly different from each other

- Rebound 2 to Rebound 1 Ratio: differed across cushions (p<0.001)
 - Two HR45 foam cushions were not different from each other
 - Roho High Profile and Cloud were not different from each other
 - All other comparisons were significantly different from each other

- Impact 2 to Impact 1 Ratio: differed across cushions (p<0.001)
 - Two HR45 foam cushions were not different from each other
 - Dream and Cloud were not different from each other
 - All other comparisons were significantly different from each other

Conclusion

- The ISO test method using a modified test apparatus was reliable and was able to distinguish performance across a small cohort of cushions.
- Suggested changes to the ISO test method include:
 1. Defining an explicit distance from an accelerometer to the axis of rotation
 2. Dictating that the test rig use a mechanism that insures a fixed distance between the accelerometer and the axis of rotation
 3. Acceleration magnitude at initial impact and the ratio of the 1st and 2nd impacts should be reported as results of this test.

Data Analysis
- A single-factor analysis of variance (ANOVA) using initial impact and the two acceleration ratios was performed to determine the test’s ability to distinguish products based upon the acceleration responses.
- A Gage Repeatability & Reproducibility (Gage R&R) analysis was performed to evaluate test procedures by assigning variability due to the measurement system, cushions and testing days

Gage R&R of Parts and Days Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Impact 1 (% Contribution of Overall Variance)</th>
<th>Rebound Ratio (% Contribution of Overall Variance)</th>
<th>Impact Ratio (% Contribution of Overall Variance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gage R&R</td>
<td>1.13</td>
<td>2.32</td>
<td>2.74</td>
</tr>
<tr>
<td>Repeatability</td>
<td>1.13</td>
<td>2.32</td>
<td>2.74</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Part-To-Part</td>
<td>98.87</td>
<td>97.68</td>
<td>97.26</td>
</tr>
<tr>
<td>Cushion</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Acknowledgement
This work was completed as part of the Mobility RERC, which is funded by the National Institute on Disability and Rehabilitation Research of the U.S. Department of Education under grant number H133E080003. The opinions contained in this poster are those of the grantee and do not necessarily reflect those of the U.S. Department of Education.