Submodular minimization in combinatorial problems

Zoya Svitkina

joint work with Lisa Fleischer
What happens to the classical, well-understood computer science problems:

- Knapsack, bin packing, scheduling, graph cuts

when a submodular function is involved?
What happens to the classical, well-understood computer science problems:

- Knapsack, bin packing, scheduling, graph cuts

when a submodular function is involved?

They become very hard to approximate
Submodular minimization with cardinality lower bound (SML)

- Given: ground set V, function f, integer W
- $f(S)$ submodular, not necessarily monotone
- Find $S \subseteq V$ with $|S| \geq W$ minimizing $f(S)$
Submodular minimization with cardinality lower bound (SML)

- Given: ground set \(V \), function \(f \), integer \(W \)
- \(f(S) \) submodular, not necessarily monotone
- Find \(S \subseteq V \) with \(|S| \geq W \) minimizing \(f(S) \)

Results:
- Algorithm: \(f(S) \leq O \left(\sqrt{\frac{n}{\log n}} \right) OPT, \quad |S| \geq \frac{1}{2} \cdot W \)
- Lower bound: \(\frac{\alpha}{\beta} = \Omega \left(\sqrt{\frac{n}{\log n}} \right) \)
Lower bound technique

- Take advantage of the oracle model to fool the algorithm
- Define a function f_1 and a distribution of functions f_2
- For any set S, $\Pr[f_1(S) \neq f_2(S)] = n^{-\omega(1)}$
Lower bound technique

Computation tree for deterministic algorithm A:

A cannot distinguish f_1 and f_2 with high probability

- use $\Pr[f_1(S) \neq f_2(S)] = n^{-\omega(1)}$
- union bound over blue path
Lower bound technique

- Find f_1 and f_2 s.t. $OPT(f_1) \geq \gamma \cdot OPT(f_2)$ for a given problem

- Algorithm A cannot distinguish f_1 and f_2, so outputs solution S with $Cost(S) \geq OPT(f_1)$

- But then $Cost(S) \geq \gamma \cdot OPT(f_2)$

- So approximation ratio of A is at least γ

- (Also applies to randomized algorithms)
Lower bound for SML

- \(f_1(S) = \min(|S|, \alpha) \)
- \(f_2(S) = \min(\beta + |S \cap \bar{R}|, |S|, \alpha) \)
- Random \(R \) with \(|R| = \alpha \),
 \(\alpha = \frac{x\sqrt{n}}{5} \), \(\beta = \frac{x^2}{5} \), \(x^2 = \omega(\ln n) \)
Lower bound for SML

- $f_1(S) = \min(|S|, \alpha)$
- $f_2(S) = \min(\beta + |S \cap \bar{R}|, |S|, \alpha)$
- Random R with $|R| = \alpha$,
 $\alpha = \frac{x\sqrt{n}}{5}, \beta = \frac{x^2}{5}, x^2 = \omega(\ln n)$
- $\Pr[f_1(S) > f_2(S)]$ maximized for $|S| = \alpha$
- W.h.p., for any S with $|S| = \alpha$, $|S \cap R| < \beta$, and $f_1(S) = f_2(S)$
Lower bound for SML

\[f_1(S) = \min(|S|, \alpha) \]

\[f_2(S) = \min(\beta + |S \cap \bar{R}|, |S|, \alpha) \]

Random \(R \) with \(|R| = \alpha \),
\[\alpha = \frac{x\sqrt{n}}{5}, \quad \beta = \frac{x^2}{5}, \quad x^2 = \omega(\ln n) \]

Hardness of SML with \(W = \alpha \) is
\[\frac{OPT(f_1)}{OPT(f_2)} = \frac{\alpha}{\beta} = \Theta\left(\sqrt{\frac{n}{\ln n}}\right) \]

Also applies to bicriteria guarantees
Algorithm for SML

Bicriteria decision procedure:

- Given: function f, bound W, guess B, probability p

- If there is S with $|S| \geq W$ and $f(S) < B$, outputs, with probability at least p, a set U with $|U| \geq \frac{W}{2}$ and $f(U) \leq 5 \sqrt{\frac{n}{\ln n}} \cdot B$
Find a set S of density $\frac{f(S)}{|S|} < \lambda$:

- Use submodular function minimization to minimize $f(S) - \lambda \cdot |S|$

- If the result is negative, the low-density set is found

- Else such set does not exist
The easy case: $W \geq n/2$

- Let $U_0 = \emptyset$ be the current solution.
- While $|U_i| < W/2$:
 - Minimize $f(T_i) - \frac{2B}{W} \cdot |T_i \setminus U_i|$
 - If negative, let $U_{i+1} = U_i \cup T_i$, else fail
The easy case: $W \geq n/2$

- Let $U_0 = \emptyset$ be the current solution.
- While $|U_i| < W/2$:
 - Minimize $f(T_i) - \frac{2B}{W} \cdot |T_i \setminus U_i|$
 - If negative, let $U_{i+1} = U_i \cup T_i$, else fail

If feasible, there is U^* such that:

- $f(U^*) < B$, $|U^*| \geq W$, $|U^* \setminus U| > W/2$
- minimized expression is negative
The easy case: \(W \geq n/2 \)

- Let \(U_0 = \emptyset \) be the current solution.
- While \(|U_i| < W/2 \):
 - Minimize \(f(T_i) - \frac{2B}{W} \cdot |T_i \setminus U_i| \)
 - If negative, let \(U_{i+1} = U_i \cup T_i \), else fail

Algorithm terminates with a set \(U \) of low density:

- \(|U| \geq W/2 \)
- \(f(U) \leq \sum_i f(T_i) < \frac{2B}{W} \sum_i |T_i \setminus U_i| \leq \frac{2B}{W} \cdot n \leq 4B \)
The hard case: $W < n/2$

- Just a low-density set can be too expensive
- “Guess” a set S with high overlap with OPT (pick each element with prob. W/n)
- Minimize $f(T) - \alpha \cdot |T \cap S|$ where
 - $\alpha = \frac{2B}{W} \sqrt{\frac{n}{\ln n}}$
Algorithm for $W < n/2$

- While $|U_i| < W/2$:
 - random $S_i \subseteq V \setminus U_i$: include each element w/prob $\frac{W}{w(V)}$
 - minimize $f(T_i) - \alpha \cdot w(T_i \cap S_i)$
 - if $f(T_i) \leq \alpha \cdot w(T_i \cap S_i)$ and $f(T_i) \leq 4B \sqrt{\frac{n}{\ln n}}$:
 $U_{i+1} = U_i \cup T_i$
 - if too many iterations, fail
Algorithm for $W < \frac{n}{2}$

Lucky case:

- $|U^* \cap S| > \frac{B}{\alpha} = \frac{W}{2}\sqrt{\frac{\ln n}{n}}$
- $|\overline{U}^* \cap S| \leq 1.5W$
- Both happen with probability $\approx n^{7/2}$
Algorithm for $W < n/2$

Then:

- **Negative minimization result:**
 \[f(T_i) - \alpha \cdot |T_i \cap S_i| \leq f(U^*) - \alpha \cdot |U^* \cap S_i| < f(U^*) - B < 0 \]

- **$f(T_i)$ is not too large:**
 \[f(T_i) \leq f(U^*) + \alpha \cdot (|T_i \cap S_i| - |U^* \cap S_i|) \leq B + \alpha \cdot |\overline{U^*} \cap S_i| \leq B + 1.5\alpha W \leq 4B \sqrt{\frac{n}{\ln n}} \]

- New set added to U by the algorithm
Bounding solution cost

• Separate the cost of the last set and other sets:

• \(f(U) = \sum_{j=0}^{i-1} f(U_j) + f(U_i) \leq \alpha \cdot \frac{W}{2} + 4B \sqrt{\frac{n}{\ln n}} = 5B \sqrt{\frac{n}{\ln n}} \)
Other problems

Submodular sparsest cut

• find set S minimizing $\frac{f(S)}{\min(|S|, |\bar{S}|)}$
Other problems

Submodular sparsest cut

• find set S minimizing \(\frac{f(S)}{\min(|S|,|\bar{S}|)} \)

Submodular load balancing (monotone f)

• find partition \(\{V_1, \ldots, V_m\} \) minimizing

\[\max_i f(V_i) \]
Other problems

Submodular sparsest cut

• find set S minimizing $\frac{f(S)}{\min(|S|,|\bar{S}|)}$

Submodular load balancing (monotone f)

• find partition $\{V_1, ..., V_m\}$ minimizing $\max_i f(V_i)$

Results:

• Algorithms: $O\left(\sqrt{\frac{n}{\log n}}\right)$

• Lower bounds: $\Omega\left(\sqrt{\frac{n}{\log n}}\right)$
Summary

• New problems involving submodular functions
 – Sparsest cut, load balancing, submodular minimization with cardinality lower bound

• Tight approximability bounds
 – Lower bounds for oracle query complexity
 – Approximation algorithms based on random sampling and submodular function minimization