Nonlinearities in the development process: A nonparametric approach

Théophile T. Azomahou
UNU-MERIT, Maastricht University

Globelics Academy 2008
Tampere, Finland
Parametric Vs. nonparametric models

Accounting for nonlinearities in parametric and nonparametric regressions

Parametric linear regression model

\[y = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon \]

- Aim: estimate the parameters \(\alpha \) and \(\beta \)s.

- Advantage: basic econometrics, easy to perform, friendly user software available (methods: least squares, maximum likelihood, IV, GMM, ...)

- Drawback: misspecification problem (DGP is assumed to be known).
Parametric Vs. nonparametric models

Accounting for nonlinearities in parametric and nonparametric regressions

Nonparametric (or semiparametric) regression

\[y = f(x) + \varepsilon \]

- **Aim**: estimate the function \(f(x) \), without assuming a particular form for \(f(x) \).
- **Advantage**: robust to misspecification, DGP unknown (methods: kernel, cubic spline, k-nn, series, local linear, etc).
- **Drawback**: possibly data consuming, lack of friendly user procedures.
Examples (cont’d)

1. The case of CO$_2$ emissions (EKC)

- Parametric estimation: inverted U-shaped relationship

- Nonparametric estimation: monotonically increasing function
Examples

2. Life expectancy and income growth

- Nonparametric: convex-concave relationship between life expectancy at birth and income per capita.
Outline of the presentation

1. Set up
2. Kernel density estimation
3. Nonparametric regression
4. Semiparametric estimation
5. Application: technology frontier
Kernel density estimation

The core of the method: The kernel density estimation

Density as distribution

- The density of a variable describes the distribution of the values that the random variable takes.
 - Fully parametric distribution assumes about the form of the density.
 - Canonical example: if $X \sim N(\mu, \sigma^2)$, then

$$
\hat{f}(x) = f(x \mid \hat{\mu}, \hat{\sigma}^2) = \frac{1}{\hat{\sigma}} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \hat{\mu}}{\hat{\sigma}} \right)^2 \right].
$$

for some estimation of $\hat{\mu}$ and $\hat{\sigma}$ (mean and variance obtained from a given sample).

- Problem: narrow distributional assumption about the density.
Kernel density estimation

Histogram as a crude density estimator

Example of distribution of sales over 1,270 firms

- Descriptive statistics:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>0.3428</td>
<td>0.08919</td>
<td>0.2361</td>
<td>0.5664</td>
</tr>
</tbody>
</table>

- Histogram:
The distribution seems to be **bimodal**, but no particular functional form seems natural.
Kernel density estimation

From histogram to kernel

Frequency

\[\hat{f}(x) = \frac{1}{n} \frac{\text{frequency in bin}_x}{\text{width of bin}_x} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} \textbf{1}(x - \frac{h}{2} < x_i < x + \frac{h}{2}) \]

where:

- \(x_k \) is the midpoint of the \(k \)th bin and \(h \) is the width of the bin. The distance to the left and right boundaries of the bins are \(h/2 \).
- \(\textbf{1}(\text{statement}) \) denotes an indicator function.
- The frequency count in each bin is the number of observations in the sample which fall in the range \(x_k \pm h/2 \). Collecting terms gives the formula.
- \(\text{bin}_x \) denotes the bin which has \(x \) as its midpoint.
Kernel density estimation

From histogram to kernel

Rearrange the event in the indicator function to produce an equivalent form: the (naive) density kernel estimator.

\[
\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} 1 \left(-\frac{1}{2} < \frac{x_i - x}{h} < \frac{1}{2} \right)
\]

\[
= \hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K \left[\frac{x_i - x}{h} \right]
\]

where:

- \(K[z] = 1[-1/2 < z < 1/2] \).

- This form of the estimator counts the number of points that are within \(\frac{1}{2} \) bin width of \(x_k \).
Kernel density estimation

i) From histogram to kernel: why is it naive?
 ▶ This estimator is neither smooth nor continuous (crudeness of $K[z]$).
 ▶ Its shape is partly determined by where the leftmost and rightmost terminals of the histogram are set.
 ▶ The shape of the histogram will be crucially dependent on the bandwidth, itself.

ii) How to overcome the crudeness of the weighting function $K[z]$?
 ▶ Rosenblatt (1956): substitute for the naive estimator some other weighting function which is continuous and integrates to one.

<table>
<thead>
<tr>
<th>Kernels</th>
<th>Formula $K[z]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epanechnikov</td>
<td>$0.75(1 - .2z^2)/2$, 2.26 if $</td>
</tr>
<tr>
<td>Normal</td>
<td>$\phi(z)$ (normal density),</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.5 if $</td>
</tr>
<tr>
<td>Logit</td>
<td>$\Lambda(z)[1 - \Lambda(z)]$ (logistic density)</td>
</tr>
<tr>
<td>Parzen</td>
<td>$4/3 - 8z^2 + 8</td>
</tr>
</tbody>
</table>
Kernel density estimation: Back to data (applications)

- Distribution of sales: Logistic kernel

- Distribution of GDP per cap: Epanechnikov kernel
Nonparametric regression

1. Regression function of a variable y on a single variable x:

$$y = m(x) + \varepsilon$$

- No assumptions about distribution, homoscedasticity, serial correlation.
- The functional form is still the same for all values of x but unknown.

2. Methods: smoothing techniques
 - The case of Nadaraya-Waston estimator

$$\hat{m}(x^* \mid x, h) = \frac{\sum_{i=1}^{n} \frac{1}{h} K \left[\frac{x_i - x^*}{h} \right] y_i}{\sum_{i=1}^{n} \frac{1}{h} K \left[\frac{x_i - x^*}{h} \right]} = \hat{f}(x),$$
Nonparametric regression

1. Easy to implement: A GAUSS procedure (only two lines!)

```gauss
proc (2) = npr(y,x);
    local reg, i, f;
    i=1;
    reg=zeros(n,1);
    f=zeros(n,1);
    do until i>n;
        f[i,1]=sumc(pdfn((x-x[i,1])/h))/(n*h);
        reg[i,1]=(sumc(pdfn((x-x[i,1])/h).*y)/(n*h))/f[i,1];
        i=i+1;
    endo;
    retp(f,reg);
endp;
```

2. Shortcomings
 ▶ Curse of dimensionality
 ▶ Slow speed of convergence
 ▶ Possibly data consuming
Semiparametric estimation: The partially linear regression

1. Consider the specification:

\[
y = f(x) + z'\beta + \varepsilon,
\]

Take a modified version of the previous:

\[
y - E(y|x) = [z - E(z|x)]\beta + [\varepsilon - E(\varepsilon|x)]
\]

2. Estimation procedure (Robinson, 1988):

- **Step 1**: Compute nonparametric estimators for \(E(y|x) \) and \(E(z|x) \) using the kernel method.
- **Step 2**: Compute an estimator for \(\beta \), \(\hat{\beta} \), by regressing \(y - E(y|x) \) on \(z - E(z|x) \). This step may be done by OLS.
- **Step 3**: Finally, obtain an estimator of \(f(x) \), \(\hat{f}(x) \), by a nonparametric regression \(E(\left(y - z'\hat{\beta}\right)|x) \).
1. Objective
 ▶ Study the growth strategy when countries are close to the technology frontier (US as reference).
 ▶ Estimation of two models: In the first model, the dependent variable is GDP growth rate per worker (as a measure of labor productivity growth), and in the second, the dependent variable is labor productivity backwardness (in logarithmic term).

2. Data
 ▶ 29 OECD countries data over the period 1960-2000.
 ▶ Sources: Penn World Table 6.1, World Development Indicators and Eurostat.
.tile3[Application: technology frontier, labor productivity and economic growth]

3. Descriptive statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>#Obs.</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor produc. growth rate</td>
<td>958</td>
<td>0.036</td>
<td>0.47</td>
<td>-0.01</td>
<td>1.02</td>
</tr>
<tr>
<td>Labor produc. backwardness</td>
<td>985</td>
<td>-0.88</td>
<td>1.2</td>
<td>-6.82</td>
<td>3.38</td>
</tr>
<tr>
<td>Primary school enrol. rate</td>
<td>603</td>
<td>0.11</td>
<td>0.01</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Secondary school enrol. rate</td>
<td>615</td>
<td>0.85</td>
<td>0.23</td>
<td>0.11</td>
<td>1.48</td>
</tr>
<tr>
<td>School enrol. rate in higher educ.</td>
<td>280</td>
<td>0.36</td>
<td>0.19</td>
<td>0.04</td>
<td>0.98</td>
</tr>
<tr>
<td>Government R&D expenditure</td>
<td>196</td>
<td>0.4</td>
<td>0.14</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>Industry R&D expenditure</td>
<td>186</td>
<td>0.5</td>
<td>0.15</td>
<td>0</td>
<td>0.91</td>
</tr>
<tr>
<td>R&D expenditure from abroad</td>
<td>182</td>
<td>0.61</td>
<td>0.52</td>
<td>0</td>
<td>3.03</td>
</tr>
</tbody>
</table>
Application: technology frontier, labor productivity and economic growth

4. Distribution of variables of interest (kernel density estimation)
Application: technology frontier, labor productivity and growth

Specification: The Generalized Additive Model (GAM) for panel data

\[Y = \alpha + \sum_{j=1}^{p} f_j(X_j) + Z'\gamma + \epsilon \]

where:

- \(Y = (y_{i1}, \cdots, y_{iT})' \) denotes the response variable
- \(X_j = (x_{i1}, \cdots, x_{iT})' \) for \(j = 1, \cdots, p \) are non linear explanatory variables, \(i = 1, \cdots, n \) and \(t = 1, \cdots, T \)
- \(Z \) is the row vector of parametric components
- \(\alpha \) denotes the regression intercept, and \(\gamma \) the vector of parameters
- The \(f_j \) are unknown univariate functions to be estimated such that
 \[\mathbb{E}[f_j(X_j)] = 0. \]
- Error: \(\epsilon = (\epsilon_{i1}, \cdots, \epsilon_{iT})' \) is such that
 \[\mathbb{E}(\epsilon | X_1, \ldots, X_p, Z) = 0 \] and
 \[\mathbb{V}(\epsilon | X_1, \ldots, X_p, Z) = \sigma^2(X_j, Z) \]
Application: technology frontier, labor productivity and economic growth

5. Estimation results (cont’d)

- Labor productivity growth and school enrollment rate in higher education

- Labor productivity backwardness and school enrollment rate in higher education
5. Estimation results

Labor productivity backwardness and the part of R&D expenditure in % of GERD funded by industries

Table: Semiparametric estimation for labor productivity backwardness

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coef.</th>
<th>Std.Err</th>
<th>df.</th>
<th>Gain<sup>(a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary school enrollment rate</td>
<td>-0.08*</td>
<td>0.04</td>
<td>2</td>
<td>0.64</td>
</tr>
<tr>
<td>Secondary school enrollment rate</td>
<td>-0.02</td>
<td>0.013</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>School enrollment rate in higher education</td>
<td>-0.02</td>
<td>0.02</td>
<td>4.99</td>
<td>20.29<sup>(b)</sup></td>
</tr>
<tr>
<td>Government R&D expenditure</td>
<td>0.03**</td>
<td>0.01</td>
<td>3.99</td>
<td>1.24</td>
</tr>
<tr>
<td>Industry R&D expenditure</td>
<td>0.02</td>
<td>0.011</td>
<td>5.99</td>
<td>20.39<sup>(b)</sup></td>
</tr>
<tr>
<td>R&D expenditure from abroad</td>
<td>-0.04</td>
<td>0.03</td>
<td>2</td>
<td>0.17</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.18</td>
<td>0.16</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Regional convergence

The dynamics of transition of regional GDP in Europe

Conditionnal density of GDP per capita

Polarization of GDP per capita