A refinement of the Corradi-Hajnal Theorem

Alexandr Kostochka

University of Illinois, Urbana, USA and

Sobolev Institute of Mathematics, Novosibirsk, Russia

joint work with H. Kierstead and E. Yeager

Robin Thomas is 50, 2012
Corrádi–Hajnal Theorem

Theorem 1 [Corrádi and Hajnal, 1963]: Let \(k \geq 1, n \geq 3k \) and let \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq 2k \). Then \(H \) contains \(k \) vertex-disjoint cycles.

Corollary 2 [Corrádi and Hajnal]: Let \(n = 3k \) and let \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq 2k \). Then \(H \) contains \(k \) vertex-disjoint triangles.

Both bounds are sharp
Corrádi–Hajnal Theorem

Theorem 1 [Corrádi and Hajnal, 1963]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint cycles.

Corollary 2 [Corrádi and Hajnal]: Let $n = 3k$ and H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint triangles.
Corrádi–Hajnal Theorem

Theorem 1 [Corrádi and Hajnal, 1963]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint cycles.

Corollary 2 [Corrádi and Hajnal]: Let $n = 3k$ and H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint triangles.

Both bounds are sharp.
Examples

Figure: Graphs with mindegree 5 with no 3 disjoint cycles.
Refinements

\[\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y). \]
Refinements

$$\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y).$$

Theorem 3 [Enomoto, Wang]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\Theta(H) \geq 4k - 1$. Then H contains k vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt, Alon and Fisher]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq 2n/3$. Then H contains each 2-factor.

Theorem 5 [A.K. and Yu]: Let $n \geq 3$ and H be an n-vertex graph with $\Theta(H) \geq 4n/3 - 1$. Then H contains each 2-factor.

Theorem 6 [Fan and Kierstead]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq 2n - 1/3$. Then H contains the square of the n-vertex path.
Refinements

$$\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y).$$

Theorem 3 [Enomoto, Wang]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\Theta(H) \geq 4k - 1$. Then H contains k vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt, Alon and Fisher]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq 2n/3$. Then H contains each 2-factor.
Refinements

$\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y)$.

Theorem 3 [Enomoto, Wang]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\Theta(H) \geq 4k - 1$. Then H contains k vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt, Alon and Fisher]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq 2n/3$. Then H contains each 2-factor.

Theorem 5 [A.K. and Yu]: Let $n \geq 3$ and H be an n-vertex graph with $\Theta(H) \geq 4n/3 - 1$. Then H contains each 2-factor.
Refinements

$$\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y).$$

Theorem 3 [Enomoto, Wang]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\Theta(H) \geq 4k - 1$. Then H contains k vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt, Alon and Fisher]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq 2n/3$. Then H contains each 2-factor.

Theorem 5 [A.K. and Yu]: Let $n \geq 3$ and H be an n-vertex graph with $\Theta(H) \geq 4n/3 - 1$. Then H contains each 2-factor.

Theorem 6 [Fan and Kierstead]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq \frac{2n-1}{3}$. Then H contains the square of the n-vertex path.
Theorem 7 [Kierstead, A.K., and Yeager]: Let $k \geq 1$, $n \geq 3k + 1$ and let H be an n-vertex graph with $\delta(H) \geq 2k - 1$. Then either H contains k vertex-disjoint cycles or $\alpha(G) = n - 2k + 1$.
An **equitable coloring** of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1.
Definitions

An **equitable coloring** of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1.

APPLICATIONS:
1. Scheduling, partitioning, and load balancing problems.
2. Deviation bounds for sums of random variables with limited dependence [Alon-Füredi, Janson-Ruciński, Pemmaraju].
A graph may have an equitable k-coloring but have no equitable $(k + 1)$-colorings.
A graph may have an equitable \(k \)-coloring but have no equitable \((k + 1)\)-colorings.

Figure: An equitable 4-coloring of \(K_{7,7} \).
A graph may have an equitable k-coloring but have no equitable $(k + 1)$-colorings.

Figure: An equitable 4-coloring of $K_{7,7}$.

To decide whether a graph has an equitable k-coloring is NP-complete even for $k = 3$.
The difficult case

If G has an equitable k-coloring, then $k \geq \omega(G)$. So, if $|V(G)| = n = ks - t$, where $t < k$, let $G^+ := G + K_t$.
The difficult case

If G has an equitable k-coloring, then $k \geq \omega(G)$. So, if $|V(G)| = n = ks - t$, where $t < k$, let $G^+ := G + K_t$.

Figure: G and G^+.
The difficult case

If G has an equitable k-coloring, then $k \geq \omega(G)$.
So, if $|V(G)| = n = ks - t$, where $t < k$, let $G^+ := G + K_t$.

By construction, G has an equitable k-coloring if and only if G^+ has.
The difficult case

If G has an equitable k-coloring, then $k \geq \omega(G)$.
So, if $|V(G)| = n = ks - t$, where $t < k$, let $G^+ := G + K_t$.

By construction, G has an equitable k-coloring if and only if G^+ has.

Corollary 2′ [Corrádi and Hajnal]: Let $n = 3k$ and H be an n-vertex graph with $\Delta(H) \leq k - 1$. Then H has an equitable k-coloring.
Hajnal–Szemerédi Theorem

Theorem 8 [Hajnal and Szemerédi]: If $\Delta(G) \leq r$, then G is equitably $(r + 1)$-colorable.
Hajnal-Szemerédi Theorem

Theorem 8 [Hajnal and Szemerédi]: If $\Delta(G) \leq r$, then G is equitably $(r + 1)$-colorable.

Figure: A graph G with $\Delta(G) = 7$ and no equitable 7-coloring.
Recent developments

1. A short proof (2 pages) [H.K. and A.K.]
Recent developments

1. A short proof (2 pages) [H.K. and A.K.]

2. Theorem 9 [H.K., A.K., Mydlarz, and Szemerédi]: There is an $O(rn^2)$-algorithm for an equitable $(r + 1)$-coloring of any n-vertex G with $\Delta(G) \leq r$.

3. Theorem 10 [H.K. and A.K.]: If $d(x) + d(y) \leq 2r + 1$ for every $xy \in E(G)$, then G is equitably $(r + 1)$-colorable.

4. Question [H.K. and A.K.]: Is there a polynomial-time algorithm for an equitable $(r + 1)$-coloring of any n-vertex G with $d(x) + d(y) \leq 2r + 1$ for every $xy \in E(G)$?
Recent developments

1. A short proof (2 pages) [H.K. and A.K.]

2. Theorem 9 [H.K., A.K., Mydlarz, and Szemerédi]: There is an $O(n^2)$-algorithm for an equitable $(r + 1)$-coloring of any n-vertex G with $\Delta(G) \leq r$.

3. Theorem 10 [H.K. and A.K.]: If $d(x) + d(y) \leq 2r + 1$ for every $xy \in E(G)$, then G is equitably $(r + 1)$-colorable.
Recent developments

1. A short proof (2 pages) [H.K. and A.K.]

2. Theorem 9 [H.K., A.K., Mydlarz, and Szemerédi]: There is an $O(rn^2)$-algorithm for an equitable $(r + 1)$-coloring of any n-vertex G with $\Delta(G) \leq r$.

3. Theorem 10 [H.K. and A.K.:] If $d(x) + d(y) \leq 2r + 1$ for every $xy \in E(G)$, then G is equitably $(r + 1)$-colorable.

4. Question [H.K. and A.K.:] Is there a polynomial-time algorithm for an equitable $(r + 1)$-coloring of any n-vertex G with $d(x) + d(y) \leq 2r + 1$ for every $xy \in E(G)$?
Conjecture 1 [Chen, Lih and Wu]: Let G be a connected graph with $\Delta(G) \leq r$. Then G has no equitable r-coloring if and only if either (1) $G = K_{r+1}$, or (2) $r = 2$ and G is an odd cycle, or (3) r is odd and $G = K_{r,r}$.
Conjecture 1 [Chen, Lih and Wu]: Let G be a connected graph with $\Delta(G) \leq r$. Then G has no equitable r-coloring if and only if either (1) $G = K_{r+1}$, or (2) $r = 2$ and G is an odd cycle, or (3) r is odd and $G = K_{r,r}$.

Conjecture 1 was proved
1) For $r \leq 3$ [Chen-Lih-Wu],
2) For bipartite graphs [Lih-Wu],
3) For interval graphs [Chen-Lih-Yan],
4) For split graphs [Chen-Ko-Lih],
5) For outerplanar graphs [Yap-Zhang],
6) For planar graphs G with $\Delta(G) \geq 13$ [Yap-Zhang],
7) For planar graphs G with $\Delta(G) \geq 9$ [Nakprasit],
8) For graphs G with $avdeg(G) \leq \Delta(G)/5$ [Kostochka-Nakprasit].
For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max.\,deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.
For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max. deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.
Equitable graphs

For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max.deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.

A graph is r-equitable if it is r-colorable and every its proper r-coloring is equitable.
Equitable graphs

For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max.deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.

A graph is r-equitable if it is r-colorable and every its proper r-coloring is equitable.

Observation 1: If r is odd and G is the disjoint union of $K_{r,r}$ and an r-equitable graph, then G has no equitable r-coloring.
Equitable graphs

For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max.deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.

A graph is r-equitable if it is r-colorable and every its proper r-coloring is equitable.

Observation 1: If r is odd and G is the disjoint union of $K_{r,r}$ and an r-equitable graph, then G has no equitable r-coloring.

Observation 2: If a spanning subgraph of an r-colorable G is the disjoint union of r-equitable graphs, then G is r-equitable.
Equitable graphs

For odd $r \geq 3$, Conjecture 1 does not describe disconnected graphs with max.deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.

A graph is r-equitable if it is r-colorable and every its proper r-coloring is equitable.

Observation 1: If r is odd and G is the disjoint union of $K_{r,r}$ and an r-equitable graph, then G has no equitable r-coloring.

Observation 2: If a spanning subgraph of an r-colorable G is the disjoint union of r-equitable graphs, then G is r-equitable.

Clearly, a graph G can be r-equitable only for one r. Call G equitable if it is r-equitable for some r.
Basic equitable graphs

\begin{align*}
\mathcal{F}_1 & \quad \mathcal{F}_2 \\
\mathcal{F}_3 & \quad \mathcal{F}_4
\end{align*}
More basic equitable graphs
Decompositions

Together with K_r, the r-equitable graphs above are the r-basic graphs.
Decompositions

Together with K_r, the r-equitable graphs above are the r-basic graphs.

An r-decomposition of G is a partition on $V(G)$ into subsets V_1, \ldots, V_t such that each $G[V_i]$ is r-basic.
Decompositions

Together with K_r, the r-equitable graphs above are the r-basic graphs.

An r-decomposition of G is a partition on $V(G)$ into subsets V_1, \ldots, V_t such that each $G[V_i]$ is r-basic.

Conjecture 2 [H.K. and A.K.]: Suppose that $r \geq 3$ and G is an r-colorable graph with $\Delta(G) = r$. Then G has no equitable r-coloring if and only if r is odd and there exists $H \subseteq G$ such that $H = K_{r,r}$ and $G - H$ has an r-decomposition.
Theorem 11 [H.K. and A.K.]: Let $r \geq 3$. Let G be an r-colorable graph with $\Delta(G) = r$ and $|V(G)|$ divisible by r. Then the following are equivalent:

(A) G has an r-decomposition;
(B) G is r-equitable;
(C) G has an equitable r-coloring but does not have a nearly equitable r-coloring.

Corollary 12: For all positive integers r and $n > r$, Conjecture 1 holds for all r-colorable graphs G with $\Delta(G) \leq r$ and at most n vertices if and only if Conjecture 2 holds for all such graphs.

Corollary 13: Conjecture 2 holds for $r = 3$.
Decompositions

Theorem 11 [H.K. and A.K.]: Let \(r \geq 3 \). Let \(G \) be an \(r \)-colorable graph with \(\Delta(G) = r \) and \(|V(G)| \) divisible by \(r \). Then the following are equivalent:

(A) \(G \) has an \(r \)-decomposition;
(B) \(G \) is \(r \)-equitable;
(C) \(G \) has an equitable \(r \)-coloring but does not have a nearly equitable \(r \)-coloring.

Corollary 12: For all positive integers \(r \) and \(n > r \), Conjecture 1 holds for all \(r \)-colorable graphs \(G \) with \(\Delta(G) \leq r \) and at most \(n \) vertices if and only if Conjecture 2 holds for all such graphs.

Corollary 13: Conjecture 2 holds for \(r = 3 \).
Decompositions

Theorem 11 [H.K. and A.K.]: Let $r \geq 3$. Let G be an r-colorable graph with $\Delta(G) = r$ and $|V(G)|$ divisible by r. Then the following are equivalent:

(A) G has an r-decomposition;
(B) G is r-equitable;
(C) G has an equitable r-coloring but does not have a nearly equitable r-coloring.

Corollary 12: For all positive integers r and $n > r$, Conjecture 1 holds for all r-colorable graphs G with $\Delta(G) \leq r$ and at most n vertices if and only if Conjecture 2 holds for all such graphs.

Corollary 13: Conjecture 2 holds for $r = 3$.
Chen-Lih-Wu Conjecture

We think that Conjecture 2 is a proper form of the Chen-Lih-Wu Conjecture.
Chen-Lih-Wu Conjecture

We think that Conjecture 2 is a proper form of the Chen-Lih-Wu Conjecture.

Theorem 14 [H.K. and A.K.]: Conjecture 2 holds for $r \leq 4$.
Chen-Lih-Wu Conjecture

We think that Conjecture 2 is a proper form of the Chen-Lih-Wu Conjecture.

Theorem 14 [H.K. and A.K.]: Conjecture 2 holds for $r \leq 4$.

A refinement of Corollary 2′ above by Corrádi and Hajnal is

Theorem 15 [H.K. and A.K.]: If $n \leq 4r$, then Conjecture 2 holds for all n-vertex graphs G with $\Delta(G) = r$.
Chen-Lih-Wu Conjecture

We think that Conjecture 2 is a proper form of the Chen-Lih-Wu Conjecture.

Theorem 14 [H.K. and A.K.]: Conjecture 2 holds for $r \leq 4$.

A refinement of Corollary 2′ above by Corrádi and Hajnal is

Theorem 15 [H.K. and A.K.]: If $n \leq 4r$, then Conjecture 2 holds for all n-vertex graphs G with $\Delta(G) = r$.

Together, Theorems 7 and 15 refine Corrádi -Hajnal Theorem as follows.

Theorem 16 [H.K., A.K. and Yeager]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\delta(H) \geq 2k - 1$. Then either H contains k vertex-disjoint cycles or $\alpha(G) = n - 2k + 1$, or $n = 3k$, k is odd and G is the complement of $K_{k,k} \cup K_k$.