Embeddability of infinite graphs

Robin Christian1 Bruce Richter2 Gelasio Salazar3

1Fachbereich Mathematik
Universität Hamburg (Germany)

2Department of Combinatorics and Optimization
University of Waterloo (Canada)

3Instituto de Física
Universidad Autónoma de San Luis Potosí (Mexico)

Graph Theory © Georgia Tech (RobinFest)
May 7, 2012
Theorem (Kuratowski, 1930)

A **finite** graph G is embeddable in the plane if and only if it does not contain a subgraph homeomorphic to the complete graph K_5 or the complete bipartite graph $K_{3,3}$.
Theorem (Kuratowski, 1930)

A **finite** graph G is embeddable in the plane if and only if it does not contain a subgraph homeomorphic to the complete graph K_5 or the complete bipartite graph $K_{3,3}$.

Theorem (Wagner, 1937)

A **finite** graph G is embeddable in the plane if and only if it contains neither $K_{3,3}$ nor K_5 as a minor.
Embeddability in the plane: Kuratowski, Wagner

Theorem (Kuratowski, 1930)

A finite graph G is embeddable in the plane if and only if it does not contain a subgraph homeomorphic to the complete graph K_5 or the complete bipartite graph $K_{3,3}$.

Theorem (Wagner, 1937)

A finite graph G is embeddable in the plane if and only if it contains neither $K_{3,3}$ nor K_5 as a minor.

Every compact surface has a “Wagner’s Theorem”:

Theorem (Robertson and Seymour, 1990)

For every compact surface there is a finite list of graphs such that a graph G is embeddable in this surface if and only if it does not contain any of these as a minor.
$g + 1$ disjoint Kuratowski graphs: natural obstacle for embedding in genus g

$K_{3,3}$ and K_5 are the Kuratowski graphs.

Torus (genus 1): can host one Kuratowski graph (and no more).

The compact surface of genus g can host the disjoint union of g Kuratowski graphs (and no more)
$g + 1$ disjoint Kuratowski graphs: natural obstacle for embedding in genus g

$K_{3,3}$ and K_5 are the Kuratowski graphs.

Torus (genus 1): can host one Kuratowski graph (and no more).

The compact surface of genus g can host the disjoint union of g Kuratowski graphs (and no more)

⇒ having many disjoint (or “sufficiently” disjoint) Kuratowski graphs makes the genus grow
$g + 1$ disjoint Kuratowski graphs: natural obstacle for embedding in genus g

$K_{3,3}$ and K_5 are the Kuratowski graphs.

Torus (genus 1): can host one Kuratowski graph (and no more).

The compact surface of genus g can host the disjoint union of g Kuratowski graphs (and no more)

\implies having many disjoint (or “sufficiently” disjoint) Kuratowski graphs makes the genus grow

Is this the reason why the genus of a graph grows?
Why does the genus of a graph grow?

Robertson and Seymour (unpublished)

There is a function $f(g)$ tending to infinity so that, if a graph G does not embed in any surface of Euler characteristic at least $2 - 2g$, then G has one of the following graphs as a minor:

1. $f(g)$ disjoint copies of either K_3, K_3, or K_5;
2. $f(g)$ copies of either K_3, K_3, or K_5 that are disjoint except for a common vertex;
3. $f(g)$ copies of either K_3, K_3, or K_5 that are disjoint except for two common vertices; or
4. K_3, $f(g)$.

If we restrict ourselves to orientable surfaces, then we have to add the $f(g)$-projective grid to the list.
Why does the genus of a graph grow?

Robertson and Seymour (unpublished)

There is a function $f(g)$ tending to infinity so that, if a graph G does not embed in any surface of Euler characteristic at least $2 - 2g$, then G has one of the following graphs as a minor:

1. $f(g)$ disjoint copies of either $K_{3,3}$ or K_5;
2. $f(g)$ copies of either $K_{3,3}$ or K_5 that are disjoint except for a common vertex;
3. $f(g)$ copies of either $K_{3,3}$ or K_5 that are disjoint except for two common vertices; or
4. $K_{3,f(g)}$
Robertson and Seymour (unpublished)

There is a function $f(g)$ tending to infinity so that, if a graph G does not embed in any surface of Euler characteristic at least $2 - 2g$, then G has one of the following graphs as a minor:

1. $f(g)$ disjoint copies of either $K_{3,3}$ or K_5;
2. $f(g)$ copies of either $K_{3,3}$ or K_5 that are disjoint except for a common vertex;
3. $f(g)$ copies of either $K_{3,3}$ or K_5 that are disjoint except for two common vertices; or
4. $K_{3,f(g)}$

If we restrict ourselves to orientable surfaces, then we have to add the $f(g)$-projective grid to the list.
Our problem

Which graphs do not embed into any surface of bounded genus?
Our problem

Which graphs do not embed into any surface of bounded genus?

Plausible answer, in view of the Robertson-Seymour result

Those that contain as a minor either:

- Infinitely many “sufficiently disjoint” $K_{3,3}$’s or K_5’s.
- $K_{3,\infty}$ (yes, abuse of notation)
Which graphs do not embed into any surface of bounded genus?
Some previous fine-tuning

Which graphs do not embed into any surface of bounded genus?

- Obviously, every finite graph embeds in some surface. So the question is interesting only for infinite graphs.
Which graphs do not embed into any surface of bounded genus?

- Obviously, every finite graph embeds in some surface. So the question is interesting only for infinite graphs.
- If an infinite graph embeds in a surface, then it has only countably many vertices of degree ≥ 3 (Wagner, 1967). Thus it consists of a countable graph, plus possibly continuumly many cycles, paths, rays, and double rays.

\implies the focus is on countably infinite graphs
Some previous fine-tunning

Which graphs do not embed into any surface of bounded genus?

- Obviously, every finite graph embeds in some surface. So the question is interesting only for infinite graphs.
- If an infinite graph embeds in a surface, then it has only countably many vertices of degree ≥ 3 (Wagner, 1967). Thus it consists of a countable graph, plus possibly continuum many cycles, paths, rays, and double rays.

\implies the focus is on countably infinite graphs

Thus, it all boils down to:

Question

Which countable graphs embed in some surface of bounded genus?
Our result: embeddability in bounded genus

Theorem (Christian, Richter, and S., 2011+)

A countable graph G embeds in some (orientable) surface of bounded genus if and only if G does not contain as a minor any of:

1. infinitely many disjoint copies of either $K_{3,3}$ or K_5;
2. infinitely many copies of either $K_{3,3}$ or K_5 that are disjoint except for a common vertex;
3. infinitely many copies of either $K_{3,3}$ or K_5 that are disjoint except for two common vertices; or
4. K_{3,\aleph_0}.

A (slightly surprising?) consequence

There is no distinction between embeddability in some orientable surface and embeddability in some surface. In other words, no graph can embed in some (non-orientable) surface and have arbitrarily large projective grids.
Our result: embeddability in bounded genus

<table>
<thead>
<tr>
<th>Theorem (Christian, Richter, and S., 2011+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A countable graph G embeds in some (orientable) surface of bounded genus if and only if G does not contain as a minor any of:</td>
</tr>
<tr>
<td>1. infinitely many disjoint copies of either $K_{3,3}$ or K_5;</td>
</tr>
<tr>
<td>2. infinitely many copies of either $K_{3,3}$ or K_5 that are disjoint except for a common vertex;</td>
</tr>
<tr>
<td>3. infinitely many copies of either $K_{3,3}$ or K_5 that are disjoint except for two common vertices; or</td>
</tr>
<tr>
<td>4. K_{3,\aleph_0}.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A (slightly surprising?) consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no distinction between embeddability in some orientable surface and embeddability in some surface. In other words, no graph can embed in some (non-orientable) surface and have arbitrarily large projective grids.</td>
</tr>
</tbody>
</table>
The interesting direction

The “only if” part is easy: a graph with infinitely many (sufficiently disjoint) copies of $K_{3,3}$ or K_5, or with K_{3,\aleph_0}, cannot be embedded in any surface of bounded genus.

The “if” part is the interesting one.
For the rest of the talk, for brevity,

“surface” means *bounded genus, orientable* surface.
For the rest of the talk, for brevity,

“surface” means *bounded genus, orientable* surface.

A graph is **good** if it can be embedded in some surface.

Otherwise it is **bad**.
A bad G has infinitely many disjoint copies of $K_{3,3}$ or K_5 or:

There is a $J \subseteq G$, and a vertex u_1 of J, such that J is bad and $J - u_1$ is good.

Let $G_0 := G$, and as long as G_i has a subgraph H_{i+1} (may choose finite, if one exists) that contracts to $K_{3,3}$ or K_5, set $G_{i+1} := G_i - V(H_{i+1})$.
A bad G has infinitely many disjoint copies of $K_{3,3}$ or K_5 or:
There is a $J \subseteq G$, and a vertex u_1 of J, such that J is bad and $J - u_1$ is good.

1. Let $G_0 := G$, and as long as G_i has a subgraph H_{i+1} (may choose finite, if one exists) that contracts to $K_{3,3}$ or K_5, set $G_{i+1} := G_i - V(H_{i+1})$.

2. If for every positive i, H_i exists, then we are done (G contains as a minor infinitely many disjoint copies of either $K_{3,3}$ or K_5). Thus we may assume that for some i, G_i has no Kuratowski minor; so G_i is planar. Note that G_i is obtained from G by the deletion of finitely many vertices v_1, v_2, \ldots, v_k.
A bad G has infinitely many disjoint copies of $K_{3,3}$ or K_5 or:

There is a $J \subseteq G$, and a vertex u_1 of J, such that J is bad and $J - u_1$ is good.

1. Let $G_0 := G$, and as long as G_i has a subgraph H_{i+1} (may choose finite, if one exists) that contracts to $K_{3,3}$ or K_5, set $G_{i+1} := G_i - V(H_{i+1})$.

2. If for every positive i, H_i exists, then we are done (G contains as a minor infinitely many disjoint copies of either $K_{3,3}$ or K_5). Thus we may assume that for some i, G_i has no Kuratowski minor; so G_i is planar. Note that G_i is obtained from G by the deletion of finitely many vertices v_1, v_2, \ldots, v_k.

3. For $j = 1, 2, \ldots, k$, consider $G^j := G - \{v_{j+1}, v_{j+2}, \ldots, v_k\}$. There is a least j so that G^j does not embed in any surface. Set $J_0 := G^j$, and $u_1 := v_j$. Thus J_0 is a subgraph of G that does not embed in any surface (J_0 is bad), yet $J_0 - u_1$ does ($J_0 - u_1$ is good).
REPEAT AND GET: Either G has one of the listed minors or \exists:

$M \subseteq G$

- M is bad
- $M - u_i$ is good for each i
- $M - A$ has no subdivision of $K_{1,3}$ with u_1, u_2, u_3 as the degree 1 vertices.
REPEAT AND GET: Either G has one of the listed minors or \exists:

$$M \subseteq G$$

- M is bad
- $M - u_i$ is good for each i
- $M - A$ has no subdivision of $K_{1,3}$ with u_1, u_2, u_3 as the degree 1 vertices.

IF THIS HAPPENS: Every component of $M - (A \cup \{u_1, u_2, u_3\})$ attaches to at most two of u_1, u_2, u_3. Let $N_{j,k}$ be the subgraph of M induced by the vertices in $A \cup \{u_j, u_k\}$ and all components of $M - (A \cup \{u_1, u_2, u_3\})$ that attach to at most u_j and u_k.

Gelasio Salazar
Embeddability of infinite graphs
Repeat and Get: Either G has one of the listed minors or \exists:

$M \subseteq G$

- M is bad
- $M - u_i$ is good for each i
- $M - A$ has no subdivision of $K_{1,3}$ with u_1, u_2, u_3 as the degree 1 vertices.

If this happens: Every component of $M - (A \cup \{u_1, u_2, u_3\})$ attaches to at most two of u_1, u_2, u_3. Let $N_{j,k}$ be the subgraph of M induced by the vertices in $A \cup \{u_j, u_k\}$ and all components of $M - (A \cup \{u_1, u_2, u_3\})$ that attach to at most u_j and u_k.

Each of $N_{1,2}$, $N_{1,3}$, and $N_{2,3}$ embeds in some surface... combine these embeddings to obtain an embedding of M (contradiction!).
Continuing in the countably infinite theme...

* A countably infinite number of men went into a pub. The first one ordered a pint. The second ordered a half-pint. The third ordered a quarter of a pint ... The barkeeper, with a face full of disgust, finally poured two pints and put them on the bar and said, “It’s good when people know their limits.”
Continuing in the countably infinite theme...

A countably infinite number of men went into a pub. The first one ordered a pint. The second ordered a half-pint. The third ordered a quarter of a pint ... The barkeeper, with a face full of disgust, finally poured two pints and put them on the bar and said, “It’s good when people know their limits.”

Thanks for your attention!