Induced subgraphs and subtournaments

Paul Seymour, Princeton University

joint with Maria Chudnovsky
Theorem

(Robertson, S., 1986) For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k.
Theorem

- (Robertson, S., 1986) For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k.
- (Robertson, S., Thomas 1994; Diestel, Gorbunov, Jensen, Thomassen 1999) For every simple planar graph H with n vertices, taking $k = 2^{O(n^5)}$ works.
Theorem

- (Robertson, S., 1986) For every planar graph \(H \) there exists \(k \) such that every graph with no \(H \)-minor has tree-width at most \(k \).
- (Robertson, S., Thomas 1994; Diestel, Gorbunov, Jensen, Thomassen 1999) For every simple planar graph \(H \) with \(n \) vertices, taking \(k = 2^{O(n^5)} \) works.
- (Leaf, S., 2012) For every simple planar graph \(H \) with \(n \) vertices, taking \(k = 2^{O(n \log(n))} \) works.
Theorem (Robertson, S., 1986)

For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k.
Theorem (Robertson, S., 1986)

For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k. For every non-planar graph H there is no such k.
Theorem (Robertson, S., 1986)

For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k.
For every non-planar graph H there is no such k.

Equivalently:

Theorem

A minor ideal has bounded treewidth if and only if some planar graph is not in it.
Theorem (Robertson, S., 1986)

For every planar graph H there exists k such that every graph with no H-minor has tree-width at most k.
For every non-planar graph H there is no such k.

Equivalently:

Theorem

A minor ideal has bounded treewidth if and only if some planar graph is not in it.

Equivalently:

Theorem

A minor ideal has bounded treewidth if and only if it does not include the ideal of all planar graphs.
Theorem

A minor ideal has bounded pathwidth if and only if it does not include the ideal of all forests.
Theorem

A minor ideal has bounded pathwidth if and only if it does not include the ideal of all forests.

$I(H)$ is the ideal of all graphs each component of which is a minor of H.

Theorem

If H is planar, a minor ideal has bounded f_1 if and only if it does not include $I(H)$ (f_1 is the minimum number of vertices whose deletion leaves a graph with no H minor)
Theorem

A minor ideal has bounded pathwidth if and only if it does not include the ideal of all forests.

$I(H)$ is the ideal of all graphs each component of which is a minor of H.

Theorem

If H is planar, a minor ideal has bounded f_1 if and only if it does not include $I(H)$ (f_1 is the minimum number of vertices whose deletion leaves a graph with no H minor).

Theorem

A minor ideal has bounded f_2 if and only if it does not include $I(K_5)$ or $I(K_{3,3})$ (f_2 is the minimum k such that deleting some k vertices leaves a graph of genus at most k).
Theorem

A minor ideal has

- bounded f_3 iff it does not include the ideal of all graphs that are subgraphs of a path
- bounded f_4 iff it does not include the ideal of all stars
- bounded f_5 iff it does not include the ideal of all graphs with crossing number at most one
- bounded f_6 iff it does not include the ideal of all graphs.
What about induced subgraphs?
What about induced subgraphs?

Theorem

An induced subgraph ideal has bounded clique number iff it does not include \{cliques\}.
What about induced subgraphs?

Theorem

An induced subgraph ideal has bounded clique number iff it does not include \{cliques\}.

Theorem (Ramsey’s theorem)

An induced subgraph ideal is finite iff it includes neither of \{cliques\}, \{graphs with no edges\}.
What about induced subgraphs?

Theorem

An induced subgraph ideal has bounded clique number iff it does not include \{cliques\}.

Theorem (Ramsey’s theorem)

An induced subgraph ideal is finite iff it includes neither of \{cliques\}, \{graphs with no edges\}.

Theorem

An induced subgraph ideal has bounded maximum degree iff [fill in the rest of the theorem]
What about induced subgraphs?

Theorem

An induced subgraph ideal has bounded clique number iff it does not include \{cliques\}.

Theorem (Ramsey’s theorem)

An induced subgraph ideal is finite iff it includes neither of \{cliques\}, \{graphs with no edges\}.

Theorem

An induced subgraph ideal has bounded maximum degree iff it includes neither of \{cliques\}, \{stars\}.
What about induced subgraphs?

Theorem

An induced subgraph ideal has bounded clique number iff it does not include \{cliques\}.

Theorem (Ramsey’s theorem)

An induced subgraph ideal is finite iff it includes neither of \{cliques\}, {graphs with no edges}.

Theorem

An induced subgraph ideal has bounded maximum degree iff it includes neither of \{cliques\}, {stars}.

Are there any more?
Tournaments

Possible containment relations:

- subtournament (not wqo)
- topological containment (ie subdivision) (not wqo)
- immersion (wqo)
- butterfly minor (wqo?? – open)
- strong minor (wqo - Kim).
Tournament G has cutwidth at most c if $V(G)$ can be ordered $\{v_1, \ldots, v_n\}$ such that for each i, there are at most c edges from $\{v_i+1, \ldots, v_n\}$ to $\{v_1, \ldots, v_i\}$.
Tournament G has cutwidth at most c if $V(G)$ can be ordered \{v_1, \ldots, v_n\} such that for each i, there are at most c edges from \{v_{i+1}, \ldots, v_n\} to \{v_1, \ldots, v_i\}.

Theorem

*For every tournament H there exists c such that every tournament in which H cannot be immersed has cutwidth at most c.***
Tournament G has *cutwidth* at most c if $V(G)$ can be ordered \{\(v_1, \ldots, v_n\)\} such that for each i, there are at most c edges from \{\(v_{i+1}, \ldots, v_n\)\} to \{\(v_1, \ldots, v_i\)\}.

Theorem

*For every tournament H there exists c such that every tournament in which H cannot be immersed has cutwidth at most c.***

Equivalently:

Theorem

*An immersion ideal of tournaments has bounded cutwidth iff it does not include \{tournaments\}.***
Theorem

For every tournament H of type A_0, there exists c such that every tournament G not containing H as a subtournament can be ordered such that the maximum backdegree is at most c.
Theorem
For every tournament H of type A_0, there exists c such that every tournament G not containing H as a subtournament can be ordered such that the maximum backdegree is at most c.

Equivalently:

Theorem
A subtournament ideal has bounded backdegree iff it does not include $\{\text{type } A_0\}$.
TYPES B AND B'
Theorem

A subtournament ideal has bounded cutwidth iff it does not include \{type A_0\}, \{type B\} or \{type B'\}.
Theorem (Fradkin, S.)

For every tournament H there exists c such that every tournament that does not contain H topologically has pathwidth at most c.
Theorem (Fradkin, S.)

For every tournament H there exists c such that every tournament that does not contain H topologically has pathwidth at most c.

Equivalently:

Theorem

A topological containment ideal of tournaments has bounded pathwidth iff it does not include \{tournaments\}.
Theorem (Fradkin, S.)

For every tournament H there exists c such that every tournament that does not contain H topologically has pathwidth at most c.

Equivalently:

Theorem

A topological containment ideal of tournaments has bounded pathwidth iff it does not include \{tournaments\}.

Theorem (Kim, S.)

A strong minor ideal of tournaments has bounded pathwidth iff it does not include \{tournaments\}.
TYPE A
Theorem

A subtournament ideal has bounded pathwidth iff it does not include \{type A\}, \{type B\} or \{type B’\}.
Tournaments under subtournament containment
Theorem

A subtournament ideal has bounded length backedges iff it does not include \{type C\}.
Circular interval tournaments
Circular interval tournaments

Theorem

A tournament is a circular interval tournament iff it contains neither of the tournaments above.
Theorem (Gaku Liu)

A subtournament ideal consists of blowups of circular interval tournaments by tournaments with bounded length backedges iff it does not include \{type D\}, \{type D'\}.
Theorem

A subtournament ideal consists of tournaments orderable such that each component of long backedges is a path iff it does not include \{type E\}, \{type E'\}.
Theorem

A subtournament ideal consists of boundedly fuzzy circular interval tournaments iff it does not include \{type G\}, \{type G'\}.
Problem

A subtournament ideal consists of ??? iff it does not include \{\text{type F}\}.
Induced subgraphs revisited

A finite set of graphs is heroic if there exists c such that every graph with no induced subgraph in the set has cochromatic number at most c.

Theorem

Every heroic set contains

- a disjoint union of cliques
- a complete multipartite graph
- a forest
- a graph whose complement is a forest.
Induced subgraphs revisited

A finite set of graphs is heroic if there exists \(c \) such that every graph with no induced subgraph in the set has cochromatic number at most \(c \).

Theorem

Every heroic set contains
- a disjoint union of cliques
- a complete multipartite graph
- a forest
- a graph whose complement is a forest.

Conjecture: Gyárfás’ 1975; Sumner 1981

For every clique \(K \) and forest \(F \), there is a constant \(c \) such that every graph containing neither of \(K, F \) as an induced subgraph has chromatic number at most \(c \).
G has splitness at most k if $V(G)$ can be partitioned into X, Y, where $G|X$ has no clique of size $k + 1$ and $G|Y$ has no stable set of size $k + 1$.
G has splitness at most k if $V(G)$ can be partitioned into X, Y, where $G|X$ has no clique of size $k + 1$ and $G|Y$ has no stable set of size $k + 1$.

Theorem

An induced subgraph ideal has bounded splitness iff it does not include \{disjoint unions of cliques\}, \{complete multipartite graphs\}.
G has splitness at most k if $V(G)$ can be partitioned into X, Y, where $G|X$ has no clique of size $k + 1$ and $G|Y$ has no stable set of size $k + 1$.

Theorem

An induced subgraph ideal has bounded splitness iff it does not include \{disjoint unions of cliques\}, \{complete multipartite graphs\}.

Corollary

If Gyárfás’ conjecture is true, then every set of graphs containing one of each of the four types is heroic.
Theorem

For every star H_1 and star complement H_2, there exists c such that if G contains neither of H_1, H_2 as an induced subgraph then one of G, \overline{G} has maximum degree at most c.
Theorem (Reed)

For every one-edge graph H_1 and clique H_2, there exists c such that if G contains neither of H_1, H_2 as an induced subgraph then G is “almost complete multipartite with at most c parts”.
Theorem (Reed)

For every one-edge graph H_1 and clique H_2, there exists c such that if G contains neither of H_1, H_2 as an induced subgraph then G is “almost complete multipartite with at most c parts”.

Theorem (Norine, Reed)

For every semistar H_1 and semistar complement H_2, there exists a structure theorem.