BROMINE AND CHLORINE CHEMISTRY IN THE ARCTIC BOUNDARY LAYER

A Dissertation
Presented to
The Academic Faculty

by

Jin Liao

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Earth and Atmospheric Sciences

Georgia Institute of Technology
December 2011
BROMINE AND CHLORINE CHEMISTRY IN THE ARCTIC BOUNDARY LAYER

Approved by:

Dr. L. Gregory Huey, Advisor
School of Earth and Atmospheric Sciences
Georgia Institute of Technology

Dr. Rodney J. Weber
School of Earth and Atmospheric Sciences
Georgia Institute of Technology

Dr. Yuhang Wang
School of Earth and Atmospheric Sciences
Georgia Institute of Technology

Dr. J. Andrew Neuman
Earth System Research Laboratory
NOAA

Dr. Paul H. Wine
School of Earth and Atmospheric Sciences and chemistry and Biochemistry
Georgia Institute of Technology

Date Approved: October 27, 2011
To my family
ACKNOWLEDGEMENTS

I am deeply indebted to my advisor, Professor Greg Huey, for his insightful guidance and continuous support throughout my Ph.D studies. None of my graduate research work would be done without him. He is not only my advisor, but also my mentor and teacher. He always made himself available to me when I had research ideas or questions to discuss, although he was always very busy. He always provided me friendly research environment, and directed me with good timing. I also really appreciate the great opportunities he provided for me to present my research results in top scientific conferences and workshops.

I would like to express my gratitude to the CIMS research group members: Dave Tanner, Bob Stickel, Saewung Kim, Steven Sjodtedt, Dexian Chen, Eric Parker, Arsineh Hecobian, Bonnie Reichardt, and Tony Cummings, for their help during my stay at Georgia Tech. Dave and Bob taught me the first hand experience of how to setup, maintain, and trouble shoot the instrument during three field campaigns. Dave was always there when I got stuck with the CIMS and need help.

I am thankful for the science team and organizers in the OASIS and GSHOX campaigns especially the NCAR folks. Many of them are also coauthors of my research papers. Their help in the field and their measurements dataset make this study possible. I am also grateful to lab collaborators Jack Dibb and Eric Scheuer. Their support facilitates the study of soluble bromide measurements characterization. I appreciate the input from Zhen Liu in Dr. Wang’s group at Georgia Tech in Flexpart footprint residence time calculation.
I would like to thank my committee members Andy Neuman, Yuhang Wang, Paul Wine and Rodney Weber for their support and comments in my thesis study.

Finally, I would like to thank my parents, my brother, and my husband for their continuous encouragement and love.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 COMPARISON OF BrO MEASUREMENTS BY CHEMICAL IONIZATION MASS SPECTROMETRY AND LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Methods</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1 Measurement site</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2 CIMS</td>
<td>17</td>
</tr>
<tr>
<td>2.2.3 LP-DOAS</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Results and Discussion</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Conclusion</td>
<td>41</td>
</tr>
<tr>
<td>3 OBSERVED AND MODELED INORGANIC BROMINE (HOBr, BrO, Br2) SPECIATION AT BARROW, AK IN SPRING 2009</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Methods</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1 Measurement overview</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2 CIMS measurements</td>
<td>48</td>
</tr>
<tr>
<td>3.2.3 Models</td>
<td>53</td>
</tr>
</tbody>
</table>
6.3.3 Comparison of BrO Satellite observations with \textit{in situ} BrO measurements 146

6.4 Summary 148

7 CONCLUSIONS 150

APPENDIX A: IGOR CODE OF A STEADY-STATE HO\textsubscript{x} BOX MODEL WITH INCLUSION OF BROMINE CHEMISTRY 153

APPENDIX B: IGOR CODE OF A TIME DEPENDENT MODEL TO SIMULATE BROMINE SPECIATION 191

APPENDIX B: IGOR CODE OF A TIME DEPENDENT MODEL TO SIMULATE CHLORINE SPECIES 197

REFERENCES 205

VITA 228
LIST OF TABLES

Table 2.1: Summary of monitored masses, ionized products, neutral reactants and integration time for CIMS measurements during OASIS campaign. 21

Table 2.2: Literature Cross Sections Included in the Presented Spectral Evaluation 31

Table 2.3: Daytime (0900 LST to 1800 LST) BrO Concentrations observed by CIMS as Function of O3 34

Table 3.1: Summary of the measurements used in this study. 47

Table 3.2: Typical concentrations of the input species for the time dependent model. 56

Table 4.1: Reactions included in the time dependent model. 77

Table 4.2: The typical concentrations of the input in the box model. 78

Table 5.1: Summary of the measurements at Summit, Greenland 2007-2008. 96

Table 5.2: Bromine reactions included in the HOx model. 104

Table 5.3: Photochemical species concentrations and parameters in the mid-day (10:00-15:00 WGST) at Summit, Greenland in 2007-2008. (Note: HOx predictions are from the base model). 108

Table 6.1: The response of MC to different levels of Br2 and HOBr sources from setup A and B. 138

Table 6.2: The ratio of detected Br− to Br2, HOBr and BrO. The errors are estimated from the uncertainties in Br2, HOBr, BrO and Br− measurements and the variance (one standard deviation) of the individual ratio measurements. 139
LIST OF FIGURES

Page

Figure 1.1: Bromine and chlorine chemical mechanisms in gaseous and aqueous phase. 4

Figure 2.1: The layout of the CIMS and LP-DOAS instruments during the OASIS campaign. 16

Figure 2.2: The instrument and inlet configuration of the CIMS system. 17

Figure 2.3: Typical raw signal of $^{81}\text{BrO}^-$ (224 amu) (black line) and $^{79}\text{Br}^{81}\text{Br}^-$ (287 amu) (black line with cross markers) from the OASIS campaign. 23

Figure 2.4: The raw ambient signal at $^{79}\text{BrO}^-$ (222 amu) versus $^{81}\text{BrO}^-$ (224 amu). 27

Figure 2.5: Time series of CIMS (red) and LP-DOAS (blue) BrO observations, O$_3$ measurements (green), and j values of Br$_2$ (gold) from 18 March to 14 April 2009. 33

Figure 2.6: The 1 min LP-DOAS observations plotted against CIMS observations with (top) all data and (middle) filtered data. (bottom) The 10 min LP-DOAS observations plotted against CIMS observations with filtered data. 36

Figure 2.7: The normalized difference (ND) of CIMS and LP-DOAS measurements versus CIMS measurements (filtered 1 min data). 38

Figure 2.8: (top) An example of a time period with CIMS observations (gray line) and elevated NO levels (black line). (bottom) The [BrO]$_\text{LP-DOAS}$/[BrO]$_\text{CIMS}$ values are binned according to NO level. 40

Figure 3.1: Raw signals (Hz) of IBr$_2^-$ (black) and IHOB$^-$ (blue) at mass 287 amu and 223 amu. 49

Figure 3.2: The raw ambient signal of HOBr at mass 223 amu (Hz) vs 225 amu (Hz). 53

Figure 3.3: A time series of measurements of BrO (red), HOBr (blue), Br$_2$ (black), O$_3$ (green) and j values of Br$_2$ (gray) averaged to 10 minutes from March 18th to April 14th 2009 during the OASIS campaign. 60

Figure 3.4: Hourly average diurnal profiles of observed BrO (red), HOBr (blue) and Br$_2$ (black). 61

Figure 3.5: The concentrations of daytime (9am – 6pm) BrO (top panel) and HOBr (bottom panel) on a 1 minute average base are binned according to different wind speeds. 63
Figure 3.6: The concentrations of daytime (9am – 6pm) BrO (top panel) and HOBr (bottom panel) on a 1 minute average base are binned according to different wind speeds.

Figure 3.7: The nighttime (6pm – 9am) concentrations of Br2 (top panel) and the daytime (9 am- 6 pm) concentrations of BrO (middle panel) and HOBr (bottom panel) on a 1 minute average base are binned according to different ozone levels.

Figure 3.8: Prediction of hourly average diurnal profiles of bromine species (BrO, HOBr, Br2, Br, BrONO2 and HBr) from a time dependent model under four limiting cases.

Figure 4.1: Correlation plot of chlorine isotopes at mass 199 amu and 197 amu in the ambient measurements.

Figure 4.2: Time series of the observations of Cl2 and O3. Inset: The correlation between average Cl2 and O3 concentrations with a correlation coefficient $R^2 = 0.71$.

Figure 4.3: Figure 4.3 Observed average diurnal profiles of Cl2 (red), Cl2 photolysis rate (dashed grey), estimated average Cl2 production rate (J_{Cl2}×Cl2) (orange), and model-predicted average diurnal profiles of HCl (blue), ClO (black), HOCl (purple), and Cl atoms (green).

Figure 4.4: (a) QuikSCAT sea ice backscatter coefficient map. (b) Average footprint residence time of two-day back trajectories in high daytime Cl2 cases (91-100 percentiles). (c) Average footprint residence time of two-day back trajectories in low daytime Cl2 cases (0-10 percentiles).

Figure 4.5: The impact of chlorine radicals compared to OH, bromine radicals, and other chemical species on methane oxidation (a), ozone loss (b), and mercury oxidation (c), on average (left) and during high Cl2 periods (Cl2 > 100 pptv) (right).

Figure 4.6: Predicted HCl plotted versus observed HCl

Figure 4.7: Time series plot and correlation plot of predicted and observed ClO.

Figure 4.8: Observed BrCl plotted versus observed Cl2 divided by J_{BrCl} when $J_{BrCl} > 1.5 \times 10^{-3}$ s$^{-1}$.

Figure 5.1: The layout of the CIMS and LP-DOAS instruments in the Summit campaign.

Figure 5.2: Time series of measurements of HO$_2$+RO$_2$, OH, J (O1D), BrO, temperature, NO, HNO$_3$, HONO, O$_3$, RGM, wind speeds and directions on a 10 min time base in spring 2007 (top panel) and summer 2008 (bottom panel) Summit campaign.
Figure 5.3: An example of elevated OH and depleted HO\textsubscript{2} + RO\textsubscript{2} at high NO conditions.

Figure 5.4: HO\textsubscript{2} + RO\textsubscript{2} and OH predictions from the base mode (BM) plotted versus the observations in 2007 and 2008.

Figure 5.5: HO\textsubscript{2} + RO\textsubscript{2} and OH predictions from the base model constrained to HONO measurements (BM_HONO) plotted versus the observations in 2007 and 2008.

Figure 5.6: HO\textsubscript{2} + RO\textsubscript{2} and OH predictions from the base model incorporating bromine chemistry constrained by BrO measurements by CIMS (BM_BrOCIMS) and LPDOAS (BM_BrOLPDOAS) plotted versus the observations in 2007 and 2008.

Figure 5.7: The average diurnal profiles of hourly OH and HO\textsubscript{2} + RO\textsubscript{2} observations (red dots and line) and predictions from the BM (black dots and line) and BM_BrOCIMS (blue dots and line), and diurnal profile of J(O1D) (gray dash line) in spring 2007 and summer 2008.

Figure 5.8: The correlation plots of observed and predicted OH and HO\textsubscript{2} + RO\textsubscript{2} from the BM at low RGM conditions (black dots) and at high RGM conditions (gray dots) in 2007 and 2008.

Figure 5.9: (a): Observations of RGM, O\textsubscript{3}, BrO by DOAS and OH, and predictions of OH from the BM and BM_BrO when enhanced RGM were observed in 2007 (16 May – 21 May 2007); Figure 5.9(b): The observations of RGM, O\textsubscript{3}, OH, wind speeds, BrO by CIMS and DOAS, and the predictions of OH from the BM and BM_BrO when enhanced RGM were observed in 2008 (11 June – 17 June 2008).

Figure 6.1: Inlet configurations and Br\textsubscript{2}, HOBr and BrO sources for soluble bromide characterization.

Figure 6.2: Top panel: The flight track of ARCTAS on 17 April 2008 color-coded with aircraft altitudes. Middle panel: Time series of observations of ozone and altitude. Bottom panel: Observations of soluble bromide, BrO, lower limit of Br\textsubscript{2}+HOBr, O\textsubscript{3} and altitude for the flight leg with the highest levels of bromine.

Figure 6.3: Example of observed BrO and soluble bromide, and predicted HOBr, HBr and soluble bromide for two marine boundary layer flight legs when the highest levels of BrO and soluble bromide were observed.
Figure 6.4: Left panel: correlation plot of predicted and observed soluble bromide in the boundary layer when BrO was above the detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv). Right panel: correlation plot of predicted HOBr and observed lower limit of HOBr + Br2 when BrO were above detection limit (> 2 pptv) under unpolluted condition (NO < 100 pptv).

Figure 6.5: Scatter plot of calculated BRO_{TROP}^{VCD} from in situ measurements along the flight track of flight on April 17 versus BRO_{TROP}^{VCD} from OMI satellite observations.
SUMMARY

Halogen chemistry plays an important role in spring time ozone and mercury depletion events (ODEs and MDEs) and may efficiently oxidize hydrocarbons such as the important greenhouse gas methane (CH₄) in the polar marine boundary layer. However, measurements of bromine and chlorine species other than bromine oxide (BrO) are still very limited. This thesis presents a detailed study of bromine and chlorine chemistry in the Arctic boundary layer based upon measurements of bromine and chlorine containing species using chemical ionization mass spectrometry (CIMS).

A series of bromine species (BrO, hypobromous acid (HOBr), and molecular bromine (Br₂)) were measured by CIMS at Barrow, AK (71°19′ N, 156° 39′ W) in spring 2009 during the Ocean-Atmospheric-Sea ice-Snowpack (OASIS) campaign. The in situ CIMS BrO measurements were in excellent agreement (R² = 0.85) with observations by long path-differential optical absorption spectroscopy (LP-DOAS). This demonstrated the ability of CIMS to selectively and accurately detect BrO. The first direct HOBr observations were achieved and found to be in agreement with the predictions from a steady-state photochemical model constrained to BrO observations except for periods of high wind speeds (> 6 m s⁻¹). Blowing snow associated with high wind speeds in the polar environment may provide surface that can convert HOBr to BrO via Br₂ production. BrO were also found to increase at high wind speeds. Ozone levels were strongly anti-correlated with nighttime Br₂. Finally, we demonstrated that average diurnal profiles of BrO, HOBr and Br₂ can be reasonably well predicted with a time-dependent model that
allows for efficient heterogeneous recycling of HOBr, hydrogen bromide (HBr), and bromine nitrate (BrONO₂) back to more reactive forms of bromine.

Unexpectedly high levels of molecular chlorine (Cl₂) (up to ~400 pptv) were also observed at Barrow, AK during OASIS. Diurnal profiles of Cl₂ were frequently observed with maximum levels in the early morning and late afternoon and no significant concentrations at night. Cl₂ levels were well correlated (R² = 0.71) with O₃. Predicted chlorine monoxide (ClO) and hypochlorous acid (HOCl) from a simple time dependent box model were 4-5 times lower than Cl₂. Back trajectories from a Lagrangian particle dispersion model (Flexpart) showed that the air masses with high levels of Cl₂ observed had more residence time in the boundary layer near Barrow supporting the hypothesis that surfaces covered by snow can be the source of active chlorine emissions and recycling. Chlorine radicals produced from photolysis of Cl₂ dominate CH₄ oxidation and play a significant role in the ODEs and MDEs. This phenomenon may be ubiquitous in polar marine regions and is in need of further study.

BrO, the hydroxyl radical (OH), the sum of peroxy radicals (HO₂ + RO₂), and other species were measured at Summit, Greenland during the Greenland Summit Halogen-HOₓ (GSHOX) Campaign in spring 2007 and summer 2008 to investigate the impact of BrO on HOₓ (OH + HO₂) cycling above the Greenland Ice Sheet. A photochemical 0-D box modeled reasonably predicted HO₂+RO₂ but under predicted OH. We found that including bromine chemistry in the model constrained by observations of BrO brought the average hourly OH and HO₂ + RO₂ predictions closer to the observations. This indicates that BrO impacted the OH levels at Summit. Although, significant discrepancies between observed and predicted OH could not be explained by
the measured BrO. Observations of enhanced RGM were found to be coincident with under prediction of OH.

Airborne measurements of BrO, active bromine (HOBr + Br₂) and soluble bromide were performed on the NASA DC-8 research aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine bromine photochemistry in the spring time. We determined the mist chamber (MC) detection efficiency to Br₂, HOBr, BrO, and HBr as soluble bromide (Br⁻) in the laboratory. The detection efficiencies combined with steady-state model calculations constrained to in situ BrO measurements by CIMS are used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008, where the highest levels BrO and Br⁻ were detected. The excellent agreement (R² = 0.76; slope = 0.98; intercept = –3.5 pptv) between modeled and observed soluble bromide, when BrO was above detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide measurements.
CHAPTER 1
INTRODUCTION

Bromine and chlorine radicals are strong atmospheric oxidants and can significantly affect the fates and lifetime of important atmospheric constituents. It is well known that chlorine radicals play a key role in stratospheric ozone (O$_3$) hole formation [e.g. Crutzen and Arnold, 1986; Anderson et al., 1991; Solomon, 1999]. Bromine and chlorine radicals can catalyze surface ozone [e.g. Barrie et al., 1988; Hausmann and Platt, 1994; Oltmans, 1981; Bottenheim et al., 2002; Simpson et al., 2007a; Tuckermann et al., 1997] and mercury [e.g. Schroeder et al., 1998; Lindberg et al., 2002; Berg et al., 2003; Donohoue et al., 2005] depletions in polar marine boundary layer. During ozone and mercury depletion events (ODEs and MDEs), relatively benign elemental mercury is oxidized to more soluble and toxic forms of mercury, which can be accumulated in the ecosystem and have potential impacts on human health [e.g. Steffen et al., 2008]. Chlorine radicals can also impact hydrocarbon (e.g. the greenhouse gas methane) oxidation in the troposphere [Jobson et al., 1994; Platt et al., 2004; Boudries and Bottenheim, 2000; Sander et al., 2006] and may therefore influence climate change and air quality.

Barrie et al [1988] first observed that filterable bromide was strongly anti-correlated with O$_3$ and proposed bromine catalyzed mechanisms to account for ozone depletion events (ODEs) in the arctic marine boundary layer. The first measurements of bromine oxide (BrO) [Hausmann and Platt, 1994] confirmed the importance of a bromine radicals in ODEs. BrO, the key species thought to determine O$_3$ loss rates, has been
measured in the Arctic (up to 30-40 pptv) [e.g. Pöhler et al., 2010], Antarctic (up to 20 pptv) [e.g. Saiz-Lopez et al., 2007] and Atlantic (up to 4 pptv) [e.g. Read et al., 2008] marine boundary layer. Airborne measurements [Ridley et al., 2003] found that ODEs can extend over several hundreds kilometers horizontally and from the surface to altitude as high as several hundreds meters to ~1 km vertically in the Arctic. High levels of soluble bromide were detected by mist chamber during low O3 flight legs [Ridley et al., 2003]. Currently, long path-differential optical absorption spectroscopy (LP-DOAS), which observes average BrO over several kilometers, is the best developed and most commonly used technique to measure BrO. Satellite sensors that examine the same spectral features as LP-DOAS can be used to map global BrO column densities [Wagner and Platt, 1998; Chance, 1998; Richter et al., 1998]. BrO observations from satellites are often used to constrain the models that are used to simulate global ozone and mercury concentrations [e.g. Zeng et al., 2003; Holmes et al., 2010]. Model simulation, based on the proposed bromine chemical mechanisms, has been developed to predict the concentrations of speciated bromine and chlorine compounds [e.g. Fan and Jacob, 1992; Evans et al., 2003].

Efforts have also been made to investigate chlorine chemistry but the understanding of chlorine chemistry is more restricted in the polar marine boundary layer. Chlorine atoms levels, indirectly derived from the oxidation of VOCs by chlorine atoms, have been estimated to be in the range of 10^3–10^4 atoms cm$^{-3}$ in the Arctic [Jobson et al., 1994; Boudries and Bottenheim, 2000]. Up to 21 pptv of chlorine monoxide (ClO), much higher than that derived from VOCs oxidation, was measured at Ny-Ålesund, Svalbard [Tuckermann et al., 1997] by a LP-DOAS with a detection limit of ~10 pptv. Models
Vogt et al., 1996; Evans et al., 2003] have been used to predict chlorine species concentrations in the polar marine boundary layer according to current reaction mechanisms [e.g. Sander et al., 2006]. Under high NOx conditions high levels of nitryl chloride (ClNO2) of up to ~1 ppbv and ~450 pptv coincident with dinitrogen pentoxide (N2O5) were detected at Houston, Texas [Osthoff et al., 2008] and Boulder, Colorado [Thornton et al., 2010] at night, respectively. This demonstrates that condensed phase chlorine (Cl\(^{-}\)) can be activated to gas phase chlorine species (i.e by uptake of N2O5). However, no measurements of chlorine radical precursors have been made in the polar marine boundary layer.

Current bromine and chlorine chemical mechanisms for the troposphere are summarized in a recent review paper [Simpson et al., 2007a] and are illustrated in Figure 1.1. Molecular bromine (Br2) photolyzes to produce bromine atoms (Br) at sun rise. Br atom reacts with O3 to form BrO. O3 is then; destroyed by reactions initiated by O3 reacting with Br followed by self-reaction of BrO and reactions of BrO with hydroperoxy radicals (HO2) and ClO. Hypobromous acid (HOBr), formed from reaction of BrO with HO2, can either photolyze to produce Br atoms and hydroxyl radicals (OH) or react on surfaces. Br atom also reacts with formaldehyde (CH2O) and hydroperoxy radials (HO2) to form HBr especially under low O3 condition. The HOx (OH and HO2) cycling is then impacted by bromine chemistry. Under high NOx conditions, BrO reacts with nitrogen dioxide (NO2) to produce bromine nitrate (BrONO2) [Sander et al., 2006]. HOBr and BrONO2 likely undergo heterogeneous reactions to regenerate Br2 [Fan and Jacob, 1992]. Br atoms can also react with gaseous elemental mercury (GEM) to form reactive gaseous
mercury efficiently [Donohoue et al., 2006], which is more soluble and can deposit to surfaces and accumulate in ecosystems.

Chlorine radical precursors (molecular chlorine (Cl$_2$) or ClNO$_2$) can efficiently photolyze to produce Cl during the day. Cl atoms efficiently react with many hydrocarbons (RH) to produce hydrogen chloride (HCl). Cl atoms can also react with O$_3$ to produce ClO. The reaction of ClO with BrO can contribute to tropospheric ODEs significantly [Friedl and Sander, 1989; Turnipseed et al., 1991; Sander et al., 2006]. Hypochlorous acid (HOCl), which is formed from the reaction of ClO and HO$_2$, can either photolyze to reproduce Cl atoms or deposit to heterogeneous surfaces and probably react with chloride to reform Cl$_2$. Recently, uptake of N$_2$O$_5$ on chloride (Cl$^-$) containing surface was found to convert Cl$^-$ to gas phase ClNO$_2$ in high NO$_x$ regions [Osthoff et al., 2008; Thornton et al., 2010]. The formation mechanisms of Cl$_2$ and bromine monochloride (BrCl) in the atmosphere are not well established [Vogt et al., 1996; Finley and Saltzman, 2008; Neuman et al., 2010; Lawler et al., 2011].

Figure 1.1 Bromine and chlorine chemical mechanisms in gaseous and aqueous phase.
Although the role of active bromine in catalyzing surface ozone and mercury depletions is established and our understanding of halogen chemistry in the troposphere has been greatly improved in recent years, many questions regarding the sources, vertical and horizontal distributions, speciation, and the impact of bromine and chlorine compounds remain. This thesis seeks to advance our understanding of halogen chemistry by addressing the following issues.

1. What is the distribution of bromine species horizontally and vertically in the troposphere? Can BrO be measured with an *in situ* method? Can this method perform airborne BrO measurements accurately? Are airborne BrO measurements consistent with the soluble bromide measurements [Ridley et al., 2003]? Are the *in situ* BrO measurements consistent with the satellite observations? Can tropospheric BrO columns be accurately retrieved from satellite observations?

2. The measurements of speciated bromine compounds other than BrO are very limited. There are a few observations of Br₂ [e.g. Foster et al., 2001; Finley and Saltzman, 2008; Neuman et al., 2010]; however, significant Br₂ observed in the daytime is likely due to conversion of HOBr on the inlet [Neuman et al., 2010]. Can we directly measure speciated bromine compounds (BrO, HOBr, Br₂, HBr, and BrONO₂) simultaneously? Can the observed levels be explained by known chemistry? What is the role of heterogeneous reactions in sustaining the bromine concentrations? What conditions favor bromine activation?
3. What are the concentrations of chlorine radicals (Cl and ClO) or chlorine radical precursors (e.g. Cl₂ and ClNO₂) in the Arctic? Are Cl concentrations consistent with those derived indirectly from hydrocarbon oxidation? Can the observed chlorine species be explained by the known mechanisms? What are the potential sources and impact?

4. No BrO measurements in non-marine Arctic regions have been reported. Are significant levels of BrO (> 1 pptv) present in non-marine Arctic regions? Can snow chemistry be a source of BrO? Does BrO impact other chemistry (e.g. HOₓ cycling)? Is there any bromine associated ozone loss or mercury oxidation present?

This thesis aims to investigate the detailed bromine and chlorine chemistry in the Arctic troposphere by using chemical ionization mass spectrometry (CIMS) to attempt to answer the above questions. A main focus of this thesis is a study of bromine and chlorine chemistry at Barrow, AK in the Arctic marine boundary layer (chapter 2, 3 and 4). Moreover, the impact of BrO levels on OH and HO₂ cycling at Summit, located in the middle of Greenland ice sheet about 400 km away from the ocean, is also investigated (chapter 5). In addition, the consistency between airborne in situ BrO and soluble bromide measurements and between the in situ and satellite BrO measurements is discussed (chapter 6).

In chapter 2 [Liao et al., 2011a], the CIMS detailed instrument configuration, inlet setup, reagent ion, background determination, and calibration methods in measuring halogen species are described. The detection limit of BrO obtained for CIMS is 2.6 pptv
(3σ) for a 4 s integration period and the estimated detection uncertainty is ±30%. The capability of CIMS to accurately and selectively measure BrO is demonstrated by the excellent agreement ($R^2 = 0.85$) of the BrO measurements by CIMS and long path differential optical absorption spectroscopy (LP-DOAS) at moderate wind speeds (> 3 m s$^{-1}$ or < 8 m s$^{-1}$) and low NO conditions (< 100 pptv). These conditions likely favor homogeneous distribution of BrO over spatial scales of up to at least 4 km.

In chapter 3 [Liao et al., 2011c], the simultaneous measurements of bromine species (HOBr, Br$_2$ and BrO) by CIMS at Barrow, AK in spring 2009 are reported. The first measurements of the important bromine species HOBr were achieved. The HOBr measurements reasonably well agreed with the predictions from a steady-state photochemical model constrained to BrO observations except for the periods of high wind speeds (> 6 m s$^{-1}$). High wind and blowing snow likely provide more surfaces for loss of HOBr. The study also provides direct evidence for high wind speed and blowing snow in activating bromine including potentially producing higher total inorganic gas phase bromine species. There is no clear relationship between BrO and O$_3$. Nighttime Br$_2$ were found to be clearly anti-correlated with O$_3$, which indicates that air masses with depleted ozone were likely transported from the regions rich in Br$_2$. Finally, the observed diurnal bromine speciation can be reasonably simulated by a time dependent box model which allowed efficient heterogeneous recycling of HOBr, HBr and BrONO$_2$ to more active forms of bromine.

In chapter 4 [Liao et al., 2011c], high levels of Cl$_2$ of up to ~400 pptv observed at Barrow, AK in spring 2009 are reported. The diurnal profiles of Cl$_2$ frequently observed had maximum concentrations in the early morning or later afternoon with no significant
concentrations at night. A time dependent model was constructed to estimate the impact of observed Cl₂ on chlorine chemistry. A Lagrangian particle dispersion model (Flexpart) was used to track the potential sources of high levels of Cl₂ and air masses with high levels of Cl₂ were found to have more residence time in the boundary layer around Barrow. High levels of Cl₂ have a large impact on methane oxidation and significantly contribute to ODEs and MDEs.

Chapter 5 [Liao et al., 2011b] investigates the impact of BrO on HOₓ cycling above Greenland Ice Sheet during the Greenland Summit Halogen-HOₓ (GSHOX) Campaign in spring 2007 and summer 2008. The BrO levels observed by CIMS were less than 2 pptv on average. The median midday values of HO₂ + RO₂ and OH concentrations observed by CIMS were 2.7×10⁸ molec cm⁻³ and 3.0×10⁶ molec cm⁻³ in spring 2007, and 4.2×10⁸ molec cm⁻³ and 4.1×10⁶ molec cm⁻³ in summer 2008. A basic photochemical 0-D box model highly constrained by observations of H₂O, O₃, CO, CH₄, NO, and J values predicted HO₂ + RO₂ (R = 0.90, slope = 0.87 in 2007; R = 0.79, slope = 0.96 in 2008) reasonably well and under predicted OH (R = 0.83, slope = 0.72 in 2007; R = 0.76, slope = 0.54 in 2008). Including bromine chemistry in the model constrained by observations of BrO improved the correlation between observed and predicted HO₂ + RO₂ and OH, and brought the average hourly OH and HO₂ + RO₂ predictions closer to the observations. These model comparisons confirmed our understanding of the dominant HOₓ sources and sinks in this environment and indicated that BrO impacted the OH levels at Summit. Although, significant discrepancies between observed and predicted OH could not be explained by the measured BrO. Finally, observations of enhanced RGM were found to be coincident with under prediction of OH.
In chapter 6 [Liao et al., 2011d], a CIMS instrument measuring speciated bromine compounds and a mist chamber measuring soluble bromide were used to characterize the measurements of soluble bromide in the laboratory. The MC detection efficiency to molecular bromine (Br$_2$), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Br$^-$) was 0.9 ± 0.1, 1.06 ± 0.30, 0.4 ± 0.1, and 0.95 ± 0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 based on photochemical model calculation constrained to \textit{in situ} BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement ($R^2 = 0.76; \text{slope} = 0.98; \text{intercept} = -3.5 \text{ pptv}$) between modeled and observed soluble bromide, when BrO was above detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide as well as our current understanding of inorganic photochemistry. Tropospheric BrO vertical column densities (BRO$_\text{TROP}^{VCD}$) derived from CIMS BrO observations compare reasonably well with BRO$_\text{TROP}^{VCD}$ from OMI on 17 April 2008.

Finally, chapter 7 summarizes the findings in the previous five chapters and points out some of the unresolved issues in bromine and chlorine chemistry in the Arctic.
CHAPTER 2

A COMPARISON OF ARCTIC BRO MEASUREMENTS BY CHEMICAL IONIZATION MASS SPECTROMETRY AND LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY

2.1 Introduction

Bromine plays an important role in tropospheric ozone depletion events (ODEs). Barrie et al. [1988] first observed that filterable bromine (f-Br) strongly anticorrelates with ozone (O₃). Hausmann and Platt [1994] reported the first measurements of BrO during ODEs in the Arctic at Alert, Canada. Frequent surface ODEs have been observed in the springtime polar marine boundary layer in a variety of locations such as Barrow, Alaska [Oltmans, 1981; Oltmans and Komhyr, 1986; Oltmans and Levy, 1994], Alert, Canada [Bottenheim et al., 1986, 2002], Ny-Ålesund, Svalbard [Lorenzen-Schmidt et al., 1998; Tuckermann et al., 1997] and Halley Bay, Antarctica [Jones et al., 2006]. A bromine radical catalyzed cycle, including Br and BrO, was proposed to destroy O₃ in the troposphere [Barrie et al., 1988; Hausmann and Platt, 1994; Fan and Jacob, 1992; McConnell et al., 1992]. The relevant mechanisms are reviewed by Simpson et al. [2007a] and summarized in the chapter 1. The self-reaction of BrO is often considered the rate limiting step for O₃ destruction as it destroys odd oxygen and regenerates active bromine [Sander et al., 2006; Fan and Jacob, 1992]. Consequently, accurate measurements of BrO
at low pptv levels are needed to quantify the active bromine concentrations and the O₃ destruction rate catalyzed by bromine chemistry.

Although evidence of bromine chemistry inducing surface O₃ depletion events is strong, the sources of bromine and the bromine activation mechanisms remain unclear [Simpson et al., 2007a]. In addition, the horizontal and vertical distribution of BrO in the troposphere is uncertain, especially where BrO levels are expected to be low even though the impact of a few pptv of BrO can be significant. Satellite data suggest that the average global daytime tropospheric BrO mixing ratio is of the order 0.5–2 pptv [Sinnhuber et al., 2005; Richter et al., 2002]. A series of DOAS data [Fitzenberger et al., 2000; Friess et al., 1999; Hendrick et al., 2007; Schofield et al., 2004] also indicate that a background level (∼1 pptv) of BrO exists in the free troposphere. Moreover, recent studies indicate that the derivation of tropospheric BrO column densities from satellite data may need to be reassessed [Salawitch et al., 2010; Theys et al., 2009]. Consequently, in situ measurements of BrO with high sensitivity and time resolution will be useful to address these issues.

Understanding the mercury cycle in the polar boundary layer and potentially other locations requires knowledge of BrO mixing ratios. Schroeder et al. [1998] observed that gaseous elemental mercury (GEM) undergoes rapid decreases in concentration during an ODE in the Arctic springtime. GEM was generally thought to be very stable (lifetime = ∼6–24 months) in the atmosphere [Schroeder and Munthe, 1998]. However, these results indicated that relatively benign GEM could be oxidized by halogen species to more reactive and soluble mercury compounds which can deposit to the surface or on aerosol [Steffen et al., 2008].
The connections between the observed GEM depletion and simultaneous O$_3$ loss in the Arctic have been studied in field campaigns in Barrow, Ny-Ålesund and other Arctic sites [e.g., Lindberg et al., 2002; Berg et al., 2003], where reactive gaseous mercury (RGM) anticorrelated with GEM during GEM depletion events. At this time the role of O$_3$ and hydroxyl radical (OH) as oxidants of mercury (Hg) is not well established as the rate constants for these species may be too small to be important [Hall, 1995; Sommar et al., 2001]. However, Br atoms have been demonstrated to effectively oxidize Hg (e.g., convert GEM into RGM) [Ariya et al., 2002; Donohoue et al., 2006]. Br atom levels are usually estimated from BrO measurements and the ratio calculated assuming photochemical steady state (Br/BrO ratio ranges from 0.07 to 1 when O$_3$ ranges from 40 ppbv to 3 ppbv) [Zeng, 2005]. Thus, accurate measurements of BrO concentrations are needed to estimate the oxidation rate of elemental mercury by bromine atoms and further understanding of the atmospheric chemistry of mercury.

As BrO is a short-lived radical species with low atmospheric abundance, accurate and reliable detection of BrO is quite challenging. The most developed and commonly used technique for ground based BrO measurement is long path-differential optical absorption spectroscopy (LP-DOAS). Column abundances of trace gases integrated along a path of several kilometers [Platt, 1994] are determined using specific narrow-band absorption structures in the ultraviolet and visible spectral regions. This technique has been used to measure BrO at: Alert, Canada [Hausmann and Platt, 1994]; Ny-Ålesund, Spitsbergen [Tuckermann et al., 1997]; Halley Station, Antarctica [Saiz- Lopez et al., 2007]; aboard the research ice-breaker in the Amundsen Gulf, Arctic Ocean [Pöhler et al., 2010], and in many other locations. LP-DOAS can provide measurements of O$_3$, IO, ClO,
NO\textsubscript{2}, OC\textsubscript{IO}, O\textsubscript{IO}, I\textsubscript{2}, and other species as well as BrO [Tuckermann et al., 1997; Saiz-Lopez et al., 2007; Stutz et al., 2002]. In recent years, cavity enhanced absorption techniques have been developed to provide DOAS measurements with much higher spatial resolution [e.g., Ball et al., 2004; Langridge et al., 2006]. A review of principles and applications of LPDOAS is given by Platt and Stutz [2008].

Satellite sensors that examine the same spectral features as LP-DOAS can be used to map the global BrO column density [Wagner and Platt, 1998; Chance, 1998; Richter et al., 1998]. However, there are challenges associated with deriving the tropospheric distribution of BrO from satellite data, especially in the vertical dimension. One difficulty in satellite measurements of BrO is that the tropospheric column must be obtained by subtracting the stratospheric column from the total column [Theys et al., 2009; Richter et al., 1998]. This can lead to significant errors where the stratospheric column is not accurately known [Salawitch et al., 2010; Theys et al., 2009].

The first in situ measurement of tropospheric BrO was by chemical conversion/resonance fluorescence (CC/RF) [Avalone et al., 2003]. This technique was originally developed for measurement of BrO in the stratosphere [Brune et al., 1989; Avalone et al., 1995]. Due to the quenching of the fluorescence signal and the absorption of the fluorescence signal by oxygen and water, the detection sensitivity of this instrument decreases as altitude decreases [Toohey et al., 1990]. The uncertainty of BrO measurements by the CC/RF technique during ARCTOC’96 in the troposphere was typically about 5 pptv [Avalone et al., 2003]. The overall accuracy of BrO measurements was estimated to be about $-30\% / +50\%$ (2s) for ARCTOC’96 and $\pm 35\%$ (2s) at Alert 2000 [Avalone et al., 2003].
In recent years, methods to measure halogens such as BrO, Br₂, Cl₂, and ClNO₂ by chemical ionization mass spectrometry (CIMS) have been developed [e.g., Finley and Saltzman, 2008; Kercher et al., 2009; Neuman et al., 2010]. The CIMS methods to measure bromine species from the NASA DC-8 and NOAA P3 during the research flights in the Arctic [Neuman et al., 2010] are very similar to those used in this work. However, the BrO levels measured during these flight campaigns were always below 10 pptv [Neuman et al., 2010], which was lower than expected from satellite data [Salawitch et al., 2010]. Therefore, comparison of the CIMS with the well established LP-DOAS method is important to validate the ability of the CIMS to measure BrO. In this work, the comparison of BrO measurements by CIMS and LP-DOAS in Barrow, Alaska during the OASIS 2009 campaign is presented. Both techniques are described, and ancillary measurements are examined to analyze the instrument comparison.

2.2 Methods

2.2.1 Measurement Site

The CIMS and LP-DOAS measurements of BrO were carried out from 3 March to 14 April 2009 at Barrow, Alaska (71°19’ N, 156° 39’ W), during the Ocean-Atmosphere-Sea-Ice-Snowpack (OASIS) campaign. A major focus of the OASIS campaign was to study halogen chemistry and its impact on the Arctic environment. The main research site included two trailers and the Barrow Arctic Research Center (BARC) which was located ~800 m from the Chukchi Sea to the northwest, ~15 km from the Beaufort Sea to the northeast and ~5 km to the northeast of Barrow. The prevailing wind direction was from the northeast (e.g., from the Arctic Ocean) during the measurement
period which minimized, but did not eliminate, the impacts of local emissions. The layout of the CIMS and LP-DOAS instruments is shown in Figure 2.1. The CIMS was installed in the northwest corner of trailer 2 with an inlet approximately 1.5 m above the snow surface. The LP-DOAS telescope was located at the northeast side of the BARC building. Two retro-reflectors (summer-camp and hangar) were installed at a distance of 3623 and 1074 m from the telescope and provided a light path of 7246 and 2148 m, respectively (black arrows in Figure 2.1). The height above the surface of both LP-DOAS light paths was ~2 m and varied little with horizontal position. The CIMS instrument was located about 200 m to the southeast of the LP-DOAS telescope. Most of the other chemical measurements were located in one of the two trailers including a 4 channel chemiluminescence instrument used to measure O₃, NO, NO₂, and NOₓ [Weinheimer et al., 1998]. The NO observations from this instrument were used as the primary indicator of local pollution.
Figure 2.1 The layout of the CIMS and LP-DOAS instruments during the OASIS campaign. The CIMS instrument and LP-DOAS telescope were located ~800 m from the Chukchi Sea to the northwest and ~5 km to the northeast of Barrow. Two retro-reflectors (summer-camp and hangar) were installed at distances of 3623 and 1074 m from the telescope and provided light paths of 7246 and 2148 m, respectively (black arrows). The CIMS instrument was about 200 m to the southeast of LP-DOAS telescope. The geometries of the CIMS instrument and LP-DOAS telescope (dashed rectangle area) are displayed in the inset. The CIMS instrument was installed in the northwest corner of Trailer 2 (black dot). The NO and O₃ instrument was installed in Trailer 1. The telescope of the LP-DOAS instrument was located in northeast side of the BARC building (black dot).
2.2.2 CIMS

2.2.2.1 Instrument

The CIMS used to detect halogen species at Barrow is very similar to that used to measure PANs and other species [Slusher et al., 2004; Kim et al., 2007; Nowak et al., 2006; Huey, 2007]. The inlet configuration is essentially identical to that used previously to measure HNO₃ and NH₃ [Huey et al., 2004; Nowak et al., 2006]. The design of the inlet is similar to that used to sample highly reactive gases such as OH [Eisele et al., 1997]. Consequently, only details relevant to the BrO measurements are described. The instrument and inlet configuration are shown in Figure 2.2.

Figure 2.2 The instrument and inlet configuration of the CIMS system.
The outer portion of the inlet was a 7.6 cm ID aluminum pipe that extended about 20 cm beyond the wall of the sampling trailer. A total flow of approximately 900 standard liters per minute (slpm, standard temperature = 273 K, standard pressure = 1.01 × 10^5 Pa) was maintained in the pipe with a blower (AMETEK Windjammer 116637–03). A portion of this flow (13.0 slpm) was sampled into a custom three way valve, constructed of perfluoroalkoxy (PFA) Teflon, which connected the center of the pipe to the CIMS sampling orifice. Most of this flow (11.6 slpm) was exhausted through a mass flow controller in series with a small diaphragm pump, with the rest (1.4 slpm) entering the CIMS flow reactor through a 0.51 mm dia. orifice. The valve was maintained at a constant temperature of 40°C and could be automatically switched between two flow paths. The first path was equivalent to a 25 cm long, 0.65 cm ID, Teflon tube. The second configuration delivered ambient air through a glass wool scrubber to the CIMS to determine background levels. Finally, the output of either a Br₂ (118 ng min⁻¹) or Cl₂ (183 ng min⁻¹) permeation tube was periodically delivered to the upstream end of the Teflon valve to monitor the CIMS sensitivity toward halogens.

The CIMS flow reactor was operated at 20 hPa with a total flow of 3.5 slpm maintained by a scroll pump. The total flow consisted of 1.4 slpm of ambient air and 2.1 slpm of ion source flow that consisted of N₂ containing approximately 5 ppmv methyl iodide. The methyl iodide was delivered to the ion source by adding 10 standard cubic centimeters per minute (sccm) of a 0.1% mixture in nitrogen to the ion source flow. A flow of 20 sccm N₂ was passed through a room temperature bubbler (∼20°C) containing deionized water and introduced directly to the flow reactor. Water vapor was added to the flow tube to increase the sensitivity to BrO and other halogens [Neuman et al., 2010].
The primary reagent ion produced by this configuration is hydrated Γ^- which was used to detect a series of halogens using reactions R2.1–R2.5. Due to collisional dissociation of the hydrated ions in the sampling process, described below, only the detected core ions are listed in the reactions. The collisional rate constants for the ion molecule reactions R2.2a and R2.3a are estimated by standard methods assuming that on average Γ^- is clustered with four water molecules [Su and Chesnavich,1982; Chesnavich et al.,1980; Johnson et al., 2010]. The rate constants for R2.1 and R2.4a are estimated relative to R2.2a from the sensitivity ratio of BrO and HOBr to Br$_2$. The reaction rate constant of R2.5a is estimated relative to R2.3a from the sensitivity ratio of ClNO$_2$ to Cl$_2$.

\[
\Gamma^- + \text{BrO} \rightarrow \text{IBrO}^- \quad (k_{2.1} = \sim 1.4 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{ s}^{-1}) \quad \text{R2.1}
\]
\[
\Gamma^- + \text{Br}_2 \rightarrow \text{IBr}_2^- \quad (k_{2.2a} = \sim 2.8 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{ s}^{-1}) \quad \text{R2.2a}
\rightarrow \text{Br}^- + \text{IBr}
\]
\[
\Gamma^- + \text{Cl}_2 \rightarrow \text{ICl}^- \quad (k_{2.3a} = \sim 3.0 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{ s}^{-1}) \quad \text{R2.3a}
\rightarrow \text{Cl}^- + \text{ICl}
\]
\[
\Gamma^- + \text{HOBr} \rightarrow \text{IHOBr}^- \quad (k_{2.4a} = \sim 1.4 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{ s}^{-1}) \quad \text{R2.4a}
\rightarrow \text{Br}^- + \text{IOH}
\rightarrow \text{IBr}^- + \text{OH}
\]
\[
\Gamma^- + \text{ClNO}_2 \rightarrow \text{IClNO}_2^- \quad (k_{2.5a} = \sim 2.0 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{ s}^{-1}) \quad \text{R2.5a}
\rightarrow \text{Cl}^- + \text{INO}_2
\]
A small portion (∼100 sccm) of the ion reactor flow was sampled through a 0.81 mm dia. orifice into a collisional dissociation chamber (CDC) maintained at 0.67 hPa with a molecular drag pump. An electric field of approximately 4 V cm$^{-1}$ is applied in the CDC to produce energetic collisions to dissociate weakly bound water clusters. Ions at the exit of the CDC are guided by an octopole and sampled into a differentially pumped quadrupole mass spectrometer. The ions are filtered and detected with an electron multiplier detector (K+M) and counted as individual pulses. The signals are reported in Hz, which represents the number of ion counts per second. Each cluster ion resides at a unique mass, and the measurement of different bromine (and chlorine) isotopes provided a critical test of the measurement technique. A typical measurement cycle (15.5 s) monitored the masses listed in Table 2.1 for the indicated integration times. As a consequence, BrO was measured with a 6% duty cycle which gives a ∼4 s integration period for the CIMS data used to derive the 1 min average used in this work. On the other hand, the LP-DOAS has a duty cycle of ∼40% for BrO. The remaining time was used for background spectra and other wavelengths. The smaller duty cycle for the CIMS is partially responsible for the larger variability in the CIMS data.
Table 2.1 Summary of monitored masses, ionized products, neutral reactants and integration time for CIMS measurements during OASIS campaign.

<table>
<thead>
<tr>
<th>Mass (amu)</th>
<th>Ion</th>
<th>Neutral</th>
<th>Integration Time (ms)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>IH2^{18}O^-</td>
<td>NA</td>
<td>1000</td>
<td>Hydrated reagent ion isotope; the signal of IH2^{18}O^- at 145 amu was saturated</td>
</tr>
<tr>
<td>79</td>
<td>^79Br^-</td>
<td>Multiple</td>
<td>1000</td>
<td>Significant channel for Br2 that is more important at lower H2O levels</td>
</tr>
<tr>
<td>222</td>
<td>I^{79}BrO^-</td>
<td>BrO</td>
<td>1000</td>
<td>Channel enhanced at higher H2O levels</td>
</tr>
<tr>
<td>224</td>
<td>I^{81}BrO^-</td>
<td>BrO</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>I^{79}Br^{81}Br^-</td>
<td>Br2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>I^{81}Br^{81}Br^-</td>
<td>Br2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>I^{79}Br^{79}Br^-</td>
<td>Br2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>I^{35}Cl^{35}Cl^-</td>
<td>Cl2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>I^{35}Cl^{37}Cl^-</td>
<td>Cl2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>IHO^{79}Br^-</td>
<td>HOBr</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>IHO^{81}Br^-</td>
<td>HOBr</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>I^{35}CINO2^-</td>
<td>CINO2</td>
<td>1000</td>
<td>Species other than CINO2 also present at 208 amu; HOBr detected as IBr at 208amu</td>
</tr>
<tr>
<td>210</td>
<td>I^{37}CINO2^-</td>
<td>CINO2</td>
<td>1000</td>
<td>Background not well determined</td>
</tr>
<tr>
<td>241</td>
<td>I^{79}Br^{35}Cl^-</td>
<td>BrCl</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>I^{81}Br^{35}Cl^-</td>
<td>BrCl</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>NO3^-</td>
<td>NO3, N2O5, CINO3</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2.2 Background Determination

Instrumental background signals were measured regularly, and subtracted from the total signals to determine BrO mixing ratios. The background signal at the mass used
for BrO detection as well as other halogen species was determined periodically (approximately every 40 min) by scrubbing ambient air with glass wool. The custom made Teflon valve was used to switch between the two flow paths. Laboratory tests [Neuman et al., 2010] have shown that many inorganic halogens (Br₂, HOBr, BrO, Cl₂, and HCl) can be efficiently removed from a gas stream via contact with glass wool. The effectiveness of halogen removal by the glass wool was confirmed every few days by adding either Cl₂ or Br₂ upstream of the scrubber. However, we found that ClNO₂ is essentially unreactive toward glass wool and a background measurement for this species could not be provided by this method. The ion reactor pressure decreased slightly (∼26.7 Pa or 1.3%) during background measurements. In order to diminish this effect, after 29 March the ion reactor was actively pressure controlled by modulating the ion source flow to maintain constant pressure. The water vapor concentration in the flow tube was not found to change significantly during these background measurements, as the signal due to Ι⁻(H₂O) was found to be essentially constant. Thus, the modulation of the ion source flow to maintain constant pressure did not alter halogen sensitivity but slightly increased the stability of the background measurement. The median absolute difference between successive background measurements was 0.89 pptv before pressure control and 0.77 pptv after pressure control. A typical example of the raw BrO signal (224 amu) with a series of background measurements is shown in Figure 2.3.
Figure 2.3 Typical raw signal of $^{79}\text{Br}^{81}\text{Br}^-$ (287 amu) (black line) and $^{81}\text{Br}^{79}\text{Br}^-$ (224 amu) (black line with cross markers) from the OASIS campaign. (top) The gray dots show the average $^{79}\text{Br}^{81}\text{Br}^-$ (287 amu) signal during an addition of the Br\textsubscript{2} standard. (bottom) The gray squares illustrate the average $^{81}\text{Br}^{79}\text{Br}^-$ (224 amu) signal during background measurements (shaded areas).

2.2.2.3 Calibration

Because a portable, constant calibration source for BrO has not been developed, Br\textsubscript{2} and Cl\textsubscript{2} permeation tubes (Kin-tek) were used as the primary calibration standards for the OASIS campaign. Br\textsubscript{2} and Cl\textsubscript{2} were detected by the association reactions (R2.2a and R2.3a). A known amount of Br\textsubscript{2} (1.47 ppbv) or Cl\textsubscript{2} (5.18 ppbv) was added to the inlet every 2 h to track the sensitivity of the observed halogen species including BrO. A typical example of the raw signal from a Br\textsubscript{2} calibration is shown in Figure 2.3.
The emission rates of the permeation tubes were measured every few days by conversion to I_2^- in aqueous solution. This was accomplished by passing the output of the permeation tube in a 10 sccm flow of nitrogen through an aqueous solution of KI (2%w/w KI, 1mM phosphate buffer, pH = 7). Br$_2$ or Cl$_2$ quantitatively oxidizes $I^-(aq)$ to form $I_3^-(aq)$ via the following net reactions [Wu et al., 1963; Kazantseva et al., 2002].

\[
\begin{align*}
\text{Br}_2 + 3I^- & \rightleftharpoons I_3^- + 2\text{Br}^- & \text{R}2.6 \\
\text{Cl}_2 + 3I^- & \rightleftharpoons I_3^- + 2\text{Cl}^- & \text{R}2.7
\end{align*}
\]

The resulting I_3^- was quantified by optical absorption at 352 nm [Finley and Saltzman, 2008]. The quantitative conversion of Br$_2$ to I_3^- was also confirmed in the laboratory by ion chromatographic measurements of Br$^-$. The average emission rate of the Br$_2$ permeation tube for the OASIS campaign was 118 ng min$^{-1}$ with a standard deviation of 5%. The average emission rate of the Cl$_2$ permeation tube for the OASIS campaign was 183 ng min$^{-1}$ with a standard deviation of 7%. The sensitivity for the detection of Cl$_2$ relative to Br$_2$ at the most abundant isotopes (mass 197 and mass 287) was determined to be 1.6 ± 0.1. The measurement of this ratio allowed the use of either permeation tube as the primary standard during OASIS. The Br$_2$ permeation tube was used as the primary standard for most of the campaign. The Cl$_2$ permeation tube was used from 28 March to 4 April 2009.

The relative rates of reactions R2.1 and R2.2a were measured before the campaign. BrO was generated from Br$_2$ by the reaction of O(3P) with Br$_2$ in excess O$_3$. O$_3$ and Br$_2$ were flowed through an oven upstream of the inlet to the CIMS. When the oven was heated to \sim350°C, BrO was produced by the following series of reactions.
\[
O_3 + M \rightarrow O_2 + O(3P) + M \quad \text{R2.8}
\]

\[
Br_2 + O(3P) \rightarrow BrO + Br \quad \text{R2.9}
\]

\[
Br + O_3 \rightarrow BrO + O_2 \quad \text{R2.10}
\]

By using a large excess of O$_3$, each Br$_2$ molecule was quantitatively converted to two BrO molecules. The sensitivity of BrO relative to Br$_2$ is measured to be 0.47 ± 25% which is very similar to that determined by Neuman et al. [2010] using a microwave discharge to make Br atoms from Br$_2$ [Orlando et al., 1991]. We have found that for a given set of conditions the relative sensitivity of the CIMS to different compounds is generally stable within 10% [Kim et al., 2007]. The uncertainty in the measurement over a range of experimental conditions is estimated to be 25%. Combining this with the estimated uncertainties in the Br$_2$ and Cl$_2$ permeation rate of 5% and 7%, and an estimated uncertainty in the Cl$_2$ to Br$_2$ sensitivity ratio of 6%, the total uncertainty of the BrO measurement is estimated to be 29% using Br$_2$ as the calibration gas and 34% using Cl$_2$ as the calibration gas.

2.2.2.4. CIMS Performance

The CIMS instrument performance is assessed by examining the detection sensitivity and the background signal levels to estimate a limit of detection for BrO. The sensitivity was determined from the response to a standard addition of Br$_2$. The typical sensitivity of the CIMS for Br$_2$ (R2.2a) during OASIS was 12 Hz per pptv. This corresponds to a typical sensitivity for BrO of 6 Hz per pptv. The median background signal at the BrO mass was 69 Hz which is equivalent to ~12 pptv of BrO. Because BrO
was monitored for 4 s out of every minute by CIMS, the standard deviation of the background measurement due to counting statistics is calculated to be 0.70 pptv for a 1 min integration period. The absolute difference between successive 1 min average background measurements was essentially normally distributed with a median of 0.86 pptv for the whole data set and with a median of 0.78 pptv after pressure control was instituted. This indicates that variance of the background due to factors other than counting statistics such as electrical noise, flow turbulence, etc., is small and that the CIMS detection limit will improve with averaging. We estimate the 3s limit of detection as 2.6 pptv for a 4 s integration period which is calculated by multiplying the variance of individual determinations of the background signal by a factor of three. As most of the background variance is due to counting statistics, the detection limit may decrease to 1 pptv for a 1 min integration period when the BrO measurement time is increased to 60% of the duty cycle.

The natural isotopic abundances of 79Br and 81Br are 50.69% and 49.31%, respectively. The total raw signal in ambient mode at I79BrO$^-$ (222 amu) is plotted against the signal at I81BrO$^-$ (224 amu) from 18 March to 14 April 2009 in Figure 2.4. The correlation is excellent, $R^2 = 0.85$, but if only random error due to counting statistics was present, the correlation would be higher for this data set (maximum $R^2 = 0.96$). This indicates that 10% of the observed variation is due to other sources such as a small interference in mass 222 (see below). An equally weighted, bivariate regression analysis gives a slope of 1.11 and an intercept of -0.84 Hz (-0.14 pptv). These results strongly indicate that a species containing one bromine atom is detected at these masses and there are no large interferences present. Observations during the campaign indicate that mass
222 did have a small interference during pollution events and for that reason mass 224 was used to derive BrO levels.

![Figure 2.4](image)

Figure 2.4 The raw ambient signal at I79BrO$^-$ (222 amu) versus I81BrO$^-$ (224 amu). The correlation coefficient is 0.85 (R^2) with a slope of 1.11 and an intercept of −0.84 Hz or −0.14 pptv.

2.2.3 LP-DOAS

2.2.3.1 Instrument

Long path-differential optical absorption spectroscopy quantifies the average concentration of trace gases along a well-defined light path using their individual absorption cross sections [e.g., Platt and Stutz, 2008]. The LP-DOAS instrument used in this study was previously deployed aboard the Amundsen RV in Spring 2008 and...
described by Pöhler et al. [2010]. See section 2.2.1 and Figure 2.1 for details about the setup of the light paths at Barrow.

The active part of the LP-DOAS instrument consisted of the following components: Radiation from a broadband light source (Xenon arc lamp, usually Osram XBO 75, Osram XBO500 between 19 and 30 March) was coupled into a single 600 mm mode-mixing quartz fiber using a fused silica lens. The exit end of the single fiber was connected to six transmitting 200 mm fibers at one arm of a Y bundle (total length 10 m). At the bottom of the Y, which was placed close to the focal point of a telescope mirror (30 cm diameter, 1.5 m focal length), these six fibers surrounded a single 200 mm receiving fiber. The pointing of the telescope could be adjusted by stepper motors. The receiving fiber, the other arm of the Y, led to an Acton 300i spectrometer equipped with a CCD camera. For stray-light reduction, a BG24A filter or a UG5 filter (both manufactured by Schott, 2 mm thickness) was placed behind the entrance slit of the spectrometer.

The light path through the atmosphere could be blocked using an aluminum diffuser plate placed at about 1 mm distance in front of the single end of the Y bundle. This “shortcut” configuration was applied after each measurement and was used to record the light source reference spectrum I_0. In addition, a “background spectrum” for each spectrum was obtained with the artificial light source blocked. This was necessary to eliminate a possible signal offset due to scattered sunlight entering the telescope. The offset, as well as the dark-current signal of the CCD electronics, was also accounted for in the evaluation procedure.
2.2.3.2. Measurement Regime

Varying spectral structures originated from fluctuations of the light source and of ambient illumination (scattered sunlight), which was an issue during the day due to high surface albedo close to the retro-reflector arrays. In order to minimize these effects, atmospheric absorption (I) spectra and reference (I_0) spectra, as well as their respective background signal, were recorded in quick succession. The light path had to be manually adjusted depending on meteorological conditions. During periods of poor visibility due to fog, clouds, mirages, or blowing snow, the short light path was chosen instead of the long light path.

2.2.3.3. Evaluation and Error Analysis

In order to obtain the concentrations of BrO by LP-DOAS at a similar time resolution as for CIMS, individual measurements (integration time 1 to 50 s depending on signal strength) were used for the spectral analysis. The dispersion of the spectrometer was calibrated using the position of mercury emission lines.

The spectral analysis was performed in the wavelength interval between 315.5 nm and 348.0 nm and included the cross sections of the trace gases listed in Table 2.2. Usually, the trace gas column densities are determined by fitting a linear combination of the narrow-band trace gas absorption structures to the measured optical density spectra $t = -\ln(I/I_0)$ using a nonlinear Levenberg-Marquardt algorithm [Kraus, 2004]. In this study, however, the standard evaluation scheme needed to be altered in order to overcome a still relatively large residual background signal. The disadvantageous influence of the high intensity of scattered sunlight on the background signal was amplified by a malfunction of the camera software, which slightly altered the exposure time between measurements.
depending on the illumination of the CCD. Thus, in addition to a set of trace-gas absorption spectra and the initial intensity \(\ln(I_0) \), three further correction spectra were used to fit the measurement spectrum \(\ln(I) \). The additional correction spectra consisted of the logarithm of the actual atmospheric background spectrum \(\ln(BG) \) as well as the squared spectra \(\ln(BG^2) \) and \(\ln(I_0^2) \), which represent the second term of the Taylor expansion of the exponential Beer-Lambert Law. This approach improves the modeling of nonlinear artifacts within the otherwise linear DOAS algorithm and was first published by Puķīte et al. [2009]. The calculated optical density as well as the absorption cross sections adapted from the literature were filtered using a binomial high-pass filter with 1000 iterations prior to the analysis. A third-order polynomial accounted for residual broadband structures. Finally, the amplitude of the residual spectrum was used as a quality criterion in order to filter unsuccessful fit results due to poor signal quality.

The spectral analysis yields the column density of each fitted absorber. The path-averaged concentration of a particular trace gas is then calculated by dividing its column density by the optical path length. To account for remaining systematic structures in the residual, the measurement error (s) of the Levenberg-Marquardt analysis error is multiplied by a factor of 1.8 according to Stutz and Platt [1996]. In accordance to the evaluation of the CIMS, the detection limit is estimated to 3\(\sigma \). This leads to an optimum nighttime detection limit of \(2 \times 10^7 \) molecules \(\text{cm}^{-3} \) (0.7 pptv) for the long light path and \(6 \times 10^7 \) molecules \(\text{cm}^{-3} \) (2 pptv) for the short light path. During the day, however, due to larger interferences with sunlight scattered into the light path, the detection limits were usually higher depending on the viewing conditions and light source used. Mean daytime
detection limits are estimated to be 5×10^7 molecules cm$^{-3}$ (2 pptv) and 1.5×10^8 molecules cm$^{-3}$ (5 pptv) for long and short light paths, respectively.

Table 2.2 Literature cross-sections included in the presented spectral evaluation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$</td>
<td>[Burrows et al., 1999]</td>
<td>241K</td>
</tr>
<tr>
<td>BrO</td>
<td>[Wilmouth et al., 1999]</td>
<td>228K</td>
</tr>
<tr>
<td>O$_4$</td>
<td>[Greenblatt et al., 1990]</td>
<td></td>
</tr>
<tr>
<td>HONO</td>
<td>[Stutz et al., 2000]</td>
<td>298K</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>[Burrows et al., 1998]</td>
<td>241K</td>
</tr>
<tr>
<td>HCHO</td>
<td>[Meller and Moortgat, 2000]</td>
<td>298K</td>
</tr>
<tr>
<td>OCIO</td>
<td>[Bogumil et al., 2003]</td>
<td>293K</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>[Bogumil et al., 2003]</td>
<td>243K</td>
</tr>
</tbody>
</table>

2.2.3.4. Systematic Errors

It is important to consider systematic errors, in particular when comparing two different instruments measuring the same parameter. While the DOAS retrieval is a self-calibrating procedure, the largest contributions to systematic error come from the absolute calibration of cross sections reported in the literature. During the measurements of laboratory cross sections it is crucial to determine the exact concentration of the target trace gas [Wilmouth et al., 1999; Fleischmann et al., 2004]. The differential cross sections of BrO differ significantly within the literature. Therefore a systematic error of 10% for the retrieved BrO concentration is a realistic assumption [Dorf, 2005].

2.3 Results and Discussion

The CIMS and the LP-DOAS instruments were operated independently to detect BrO from early March to mid-April during the OASIS campaign. BrO measurements
from both instruments and O₃ observations from a chemiluminescence instrument from the National Center for Atmospheric Research (NCAR) are shown in the time series plot in Figure 2.5. All data are averaged to a 1 min time basis from 18 March to 14 April 2009. The gaps in the CIMS data are either due to power outages or instrument malfunction. Due to the low BrO duty cycle for the CIMS, the background variance mostly due to counting statistics is 2.6 pptv for the 1 min data average. This largely statistical variance can explain many of the cases when the BrO observed by CIMS is more variable than the LP-DOAS. Both instruments show clear diurnal profiles of BrO with maxima in the daytime and no evidence for significant nighttime levels. The highest BrO concentrations measured by the CIMS and the LP-DOAS are 41 and 42 pptv, respectively. These levels are comparable to the maximum BrO detected in the Amundsen Gulf (41 pptv) by Pöhler et al. [2010]; in Ny-Ålesund, Spitsbergen (~30 pptv) by Tuckermann et al. [1997]; in Alert, Canada (~30 pptv) by Höninger and Platt [2002] and in Halley station, Antarctica (~20 pptv) by Saiz-Lopez et al. [2007].
Figure 2.5 Time series of CIMS (red) and LP-DOAS (blue) BrO observations, O₃ measurements (green), and j values of Br₂ (gold) from 18 March to 14 April 2009.

Similar diurnal BrO profiles were also detected by LP-DOAS in coastal Antarctica [Saiz-Lopez et al., 2007], at the Dead Sea [Hebestreit et al., 1999] and in the Amundsen Gulf [Pöhler et al., 2010]. The OASIS data are consistent with BrO behaving as a short-lived photochemically produced species. It is interesting to note that some model studies have predicted comparable diurnal profiles of BrO with maxima of ~30 pptv by assuming an initial bromide concentration of ~50 pptv [Fan and Jacob, 1992; Evans et al., 2003]. These studies predict the highest BrO concentrations near sunrise and sunset with a local minimum at near noon. This behavior is apparent in the diurnal profiles observed by Pöhler et al. [2010] in the Amundsen straits. However, the
BrO measurements at Barrow did not show the same diurnal pattern. Consequently, this data set will provide an interesting opportunity to further test models of halogen chemistry.

BrO levels do not have a simple relationship with O₃. Midday (0900 LST to 1800 LST) BrO concentrations are listed in Table 2.3 as a function of O₃. The lowest average BrO mixing ratios were observed at low O₃ which is consistent with decreasing the formation rate of BrO via reaction R2.10. The highest BrO levels were observed between 5 and 30 ppbv of O₃ and were associated with the “edges” of ozone depletion events (e.g., 25, 30, and 31 March 2009) or regions of partial ozone depletion (10–13 April 2009). Lower BrO concentrations at high O₃ levels (>30 ppbv) were also observed, consistent with little halogen chemistry having impacted the air mass. Mixing can also influence the relationship between BrO and O₃; during midday there is some increased turbulent mixing that may increase O₃ by mixing down from aloft, and dilution of the surface-mediated bromine chemistry that may result in lower BrO concentrations.

Table 2.3 Daytime (9 am – 6 pm) BrO concentrations observed by CIMS as a function of O₃.

<table>
<thead>
<tr>
<th>O₃ (ppbv)</th>
<th>BrO_mean (pptv)</th>
<th>BrO_median (pptv)</th>
<th>BrO_std (pptv)</th>
<th>Data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>4.3</td>
<td>2.3</td>
<td>6.3</td>
<td>3128</td>
</tr>
<tr>
<td>5 – 10</td>
<td>7.4</td>
<td>4.2</td>
<td>8.1</td>
<td>956</td>
</tr>
<tr>
<td>10 – 15</td>
<td>13.6</td>
<td>13.1</td>
<td>9.4</td>
<td>871</td>
</tr>
<tr>
<td>15 – 20</td>
<td>9.7</td>
<td>8.5</td>
<td>6.9</td>
<td>1035</td>
</tr>
<tr>
<td>20 – 25</td>
<td>9.5</td>
<td>9.3</td>
<td>6.4</td>
<td>1163</td>
</tr>
<tr>
<td>25 – 30</td>
<td>8.4</td>
<td>8.4</td>
<td>5.4</td>
<td>1262</td>
</tr>
<tr>
<td>30 – 35</td>
<td>4.3</td>
<td>3.1</td>
<td>4.0</td>
<td>361</td>
</tr>
<tr>
<td>35 – 40</td>
<td>4.9</td>
<td>5.2</td>
<td>2.3</td>
<td>106</td>
</tr>
</tbody>
</table>
The unfiltered BrO data from the CIMS and LPDOAS are well correlated ($R^2 = 0.74$) (Figure 2.6, top). A weighted, bivariate regression analysis was performed on the data, where the weighting of CIMS and DOAS data was based on the estimated errors described above. The regression analysis yielded a slope of 1.10 and an intercept of -0.15 pptv with a linear correlation coefficient (R^2) of 0.74. The median ratio of LP-DOAS data to CIMS data (when $[\text{BrO}] > 10$ pptv) is 1.09 with a standard deviation of 0.34. BrO measured by the LP-DOAS was larger than CIMS observations by approximately 10% with no significant offset. With over 15000 data points and dissimilar spatial scales and duty cycles, such a strong correlation indicates that the atmosphere is reasonably homogeneous over the spatial scale of the experiment (~ 4 km) and constant on the measurement time scales (1 min) and that both instruments accurately determine BrO mixing ratios.
Figure 2.6 The 1 min LP-DOAS observations plotted against CIMS observations with (top) all data and (middle) filtered data. (bottom) The 10 min LP-DOAS observations plotted against CIMS observations with filtered data. The filtered data exclude points when NO is larger than 100 pptv and wind speeds are less than 3 m s$^{-1}$ or more than 8 m s$^{-1}$. The correlation coefficients (R^2) for the 1 min unfiltered and filtered data are 0.74 and 0.85, respectively. A bivariate fit of all 1 min data gives a slope of 1.10 and an intercept of −0.15 pptv. A bivariate fit of 1 min filtered data gives a slope of 1.04 and an intercept of −0.11 pptv. The correlation coefficient (R^2) for the 10 min filtered data is 0.88. A bivariate regression analysis of the 10 min data yields a slope of 1.01 and an intercept of −0.27 pptv.
The correlation of the BrO measurements is even better, $R^2 = 0.85$ (number of points $N = 5347$) (Figure 2.6, middle), if the data are filtered to exclude points when NO is larger than 100 pptv and wind speeds are less than 3 m s$^{-1}$ or more than 8 m s$^{-1}$. Note that, due to the lack of NO data after 12 April 2009, the BrO data are not filtered to exclude points at high NO mixing ratio after 12 April 2009. We did not find a clear relationship between the CIMS and LPDOAS agreement and other variables such as solar radiation or humidity. Using a bivariate regression analysis as above, the slope of the correlation is 1.04 with an intercept of -0.11 pptv. The median ratio of the LP-DOAS to the CIMS data (when $[\text{BrO}] > 10$ pptv) is 1.08 with a standard deviation of 0.29. This analysis probably provides the best comparison of the instruments and indicates that both instruments are measuring BrO within their stated uncertainties.

The correlation of BrO measurements is further improved ($R^2 = 0.88$) when the measurements are averaged to a 10 min time base and filtered to exclude points when NO is larger than 100 pptv and wind speeds are less than 3 m s$^{-1}$ or more than 8 m s$^{-1}$ (Figure 2.6, bottom). This is consistent with some of the variability in the CIMS data being due to counting statistics. The same bivariate regression analysis is applied weighted by the estimated errors. The slope of the correlation is 1.01 with an intercept of -0.27 pptv. The median ratio of the LP-DOAS to the CIMS data (when $[\text{BrO}] > 10$ pptv) is 1.08 with a standard deviation of 0.27 for the 10 min data.

To illustrate the difference between the two measurements as a function of mixing ratio, the normalized difference (ND) of the CIMS and LP-DOAS data is plotted versus
the CIMS observations in Figure 2.7 (filtered 1 min data). The normalized difference is defined by the following equation.

$$ND = \frac{([BrO]_{\text{CIMS}} - [BrO]_{\text{LP-DOAS}})}{([BrO]_{\text{CIMS}} \times [BrO]_{\text{LP-DOAS}})^{0.5}}.$$

The average ND for each interval and the standard deviation are shown as black dots and bars, respectively. There is no evident bias above 5 pptv of BrO. Below this level the plot becomes scattered as expected given the detection limits of both instruments.

Figure 2.7 The normalized difference (ND) of CIMS and LP-DOAS measurements versus CIMS measurements (filtered 1 min data). ND is defined as: $ND = \frac{([BrO]_{\text{CIMS}} - [BrO]_{\text{LP-DOAS}})}{([BrO]_{\text{CIMS}} \times [BrO]_{\text{LP-DOAS}})^{0.5}}$. Individual ND values are shown as gray dots. The average ND for each interval and the standard deviation are shown as black dots and error bars. The horizontal axis has units of pptv.
The decreased correlation between the CIMS and LP-DOAS data at high NO levels likely results from an inhomogeneous spatial distribution of BrO, caused at least in part by the spatial inhomogeneity of NO. Local variations of BrO due to high NO (such as due to generator plumes, etc.) can affect the in situ CIMS measurement more than the LP-DOAS which averages over a few kilometers. This effect is illustrated in Figure 2.8 (top), where the CIMS observations are much more variable than the LP-DOAS.

The rapid decreases in the CIMS observations correspond to elevated NO which impacts BrO levels through the reaction of BrO and NO. In addition, other species such as NO2 that are likely to be present with the NO can also impact BrO. For example at 1006 LST in Figure 2.8, the NO level is approximately 430 pptv which corresponds to a lifetime of BrO due to reaction with NO of 3 s. The typical lifetime of BrO in this environment under clean conditions is of the order of a minute in the daytime, primarily due to photolysis. Conversely, the LP-DOAS BrO observations were much less variable during the same time period (Figure 2.8). Most of the high-NO episodes occurred when the wind speed was lower than 2 m s\(^{-1}\) from the west. This suggests that the high NO might be from local sources such as power generators. These results indicate that the local pollution plumes could impact BrO levels on spatial scales smaller than the DOAS path length.
Figure 2.8 (top) An example of a time period with CIMS observations (gray line) and elevated NO levels (black line). The LP-DOAS observations are less variable (black line with cross markers). (bottom) The $\frac{[\text{BrO}]_{\text{LP-DOAS}}}{[\text{BrO}]_{\text{CIMS}}}$ values are binned according to NO level. The average $\frac{[\text{BrO}]_{\text{LP-DOAS}}}{[\text{BrO}]_{\text{CIMS}}}$ ratio in each bin is shown as the height of the shaded boxes. The standard deviation is shown as the error bar and the number of points in each bin is plotted on the right-hand axis as an open circle.

The effect of high NO on BrO ratios observed by the CIMS and LP-DOAS is further illustrated in Figure 2.8 (bottom). The LP-DOAS to CIMS ratios (when $[\text{BrO}] > 1$ pptv) are binned according to NO mixing ratios. The average value of $[\text{BrO}]_{\text{LP-}}$
The average [BrO]_{LP-DOAS}/[BrO]_{CIMS} ratios increase from 1.3 to almost 5 as NO mixing ratios increase from <100 pptv to 2 ppbv. This is consistent with localized pollution plumes decreasing the BrO levels observed by the CIMS. However, most (85%) of the BrO data were observed when NO < 100 pptv, with a median LP-DOAS to CIMS ratio of 1.12.

Low wind speeds (<3 m s\(^{-1}\)) and high wind speeds (>8 m s\(^{-1}\)) also contributed to the discrepancy between the CIMS and LP-DOAS measurements. These results are consistent with low wind speeds decreasing the homogeneity of the vertical and horizontal spatial distribution of BrO and high wind speeds inducing blowing snow and lower visibility. Moreover, potential bromine heterogeneous reactions on blowing snow surface may also impact the spatial distribution of BrO [Sjostedt et al., 2007; Jones et al., 2009].

2.4 Conclusion

The observations of BrO by CIMS and LP-DOAS during the OASIS campaign were highly correlated and agreed within their uncertainties (R\(^2\) = 0.74, N > 15,000, slope = 1.10, intercept = -0.15 pptv). The agreement between CIMS and LP-DOAS measurements is best (R\(^2\) = 0.85, N = 5347, slope = 1.04 and intercept = -0.11 pptv) at low NO concentrations and moderate wind speeds (>3 m s\(^{-1}\) and <8 m s\(^{-1}\)). These conditions favor a more homogeneous spatial distribution of BrO which allows the best comparison between the in situ CIMS and the spatially averaged LP-DOAS. The excellent agreement between the CIMS and LP-DOAS measurements demonstrates the capability of both instruments to accurately measure BrO and is extremely important to
link future findings by CIMS to previous observations of bromine species using the DOAS technique. The comparison of BrO measured by in situ and long-path instruments indicates that BrO is often distributed homogeneously on spatial scales of up to at least ~4 km, although local NOx emissions can cause large variability in BrO over small spatial scales. We believe that concerted applications of long-path observations and in situ methods such as CIMS will provide a more complete picture of halogen chemistry.
CHAPTER 3

OBSERVED AND MODELED INORGANIC BROMINE (HOBr, BRO, AND BR2) SPECIATION AT BARROW, AK IN SPRING 2009

3.1 Introduction

Surface ozone depletion events (ODEs), where ozone drops from 30-40 ppbv to below 10 ppbv, have been frequently observed in spring in polar regions [e.g. Oltmans, 1981; Bottenheim et al., 2009; Jones et al., 2010]. The importance of bromine chemistry in catalyzing ozone depletion has been established by field observations of filterable bromide and bromine oxide (BrO) during ODEs [e.g. Barrie et al., 1988; Hausmann and Platt, 1994].

BrO is a key species that impacts ozone loss rates during ODEs. Ozone is destroyed by the rapid recycling between Br atoms reacting with O_3 (R3.1) and the reaction of BrO and HO_2 (R3.2) or self-reaction of BrO (R3.3a and R3.3b). These reactions effectively convert O_3 to O_2:

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \quad \text{R3.1} \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 \quad \text{R3.2} \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad \text{R3.3a} \\
& \rightarrow \text{Br}_2 + \text{O}_2 \quad \text{R3.3b} \\
\text{BrO} + \text{hv} & \rightarrow \text{Br} + \text{O} \quad \text{R3.4} \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 \quad \text{R3.5}
\end{align*}
\]
BrO has been detected in numerous ground-based campaigns at levels of up to 30–40 pptv [e.g., Tuckermann et al., 1997; Pöhler et al., 2010] in the Arctic marine boundary layer (MBL) and up to 20 pptv in the Antarctic MBL [e.g., Saiz-Lopez et al., 2007], primarily by differential optical absorption spectroscopy (DOAS). Airborne observations of up to ~7 pptv [Liao et al., 2011b; Neuman et al., 2010] in the Arctic MBL by chemical ionization mass spectrometry (CIMS) have been reported. In chapter 3, a comparison of CIMS and long path DOAS (LP DOAS) demonstrated that both instruments could sensitively and accurately measure BrO [Liao et al., 2011a]. Diurnal patterns of BrO with maxima in the daytime have been observed [e.g., Liao et al., 2011a; Saiz-Lopez et al., 2007], which confirmed that BrO is a photochemically generated species with a short lifetime [e.g., Evans et al., 2003; Fan and Jacob, 1992]. BrO is the dominant bromine radical when O\(_3\) is not severely depleted (O\(_3\) > 1 ppbv), and observations of this species are crucial for understanding the chemical processing that leads to ODEs [e.g., Yang et al., 2010].

Br and BrO are rapidly converted into the non-radical bromine reservoirs hypobromous acid (HOBr), bromine nitrate (BrONO\(_2\)) and hydrogen bromide (HBr) via reactions R3.2, R3.8, R3.11 and R3.12. HOBr is a short-lived reservoir (photolysis lifetime ~10 minutes) of active bromine (R3.2), as it can both photolyze to reform Br atoms (R3.6) and react on surfaces with Br\(^-\) to generate reactive gas phase bromine (e.g., Br\(_2\)) (R3.7) [Fan and Jacob, 1992]. BrONO\(_2\) is also a short-lived active bromine reservoir as it photolyzes to form active bromine (photolysis lifetime = ~20 minutes) and undergoes heterogeneous reactions that eventually form molecular bromine (Br\(_2\)) (R3.10 and R3.7) [Fan and Jacob, 1992]. HBr is mainly lost by uptake on surfaces and can react...
with HOBr in the condensed phase to generate Br₂ (R3.7). Small amounts of HBr can be converted back to Br atoms via R3.13.

\[
\text{HOBr + hv} \rightarrow \text{Br + OH} \quad \text{(R3.6)}
\]

\[
\text{HOBr + Br}^- + H^+ \rightarrow \text{Br}_2 + \text{H}_2\text{O} \quad \text{(R3.7)}
\]

\[
\text{BrO} + \text{NO}_2 \rightarrow \text{BrONO}_2 \quad \text{(R3.8)}
\]

\[
\text{BrONO}_2 + \text{hv} \rightarrow \text{BrO} + \text{NO}_2 \quad \text{(R3.9a)}
\]

\[
\text{BrONO}_2 + \text{H}_2\text{O (s/aq)} \rightarrow \text{HOBr (aq)} + \text{HNO}_3 \quad \text{(R3.10)}
\]

\[
\text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2 \quad \text{(R3.11)}
\]

\[
\text{Br} + \text{CH}_2\text{O} \rightarrow \text{HBr} + \text{HCO} \quad \text{(R3.12)}
\]

\[
\text{HBr} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{Br} \quad \text{(R3.13)}
\]

The recycling efficiencies of non-radical bromine to radical bromine through heterogeneous reactions largely determine the active bromine concentrations and ozone depletion intensity. However, the efficiencies of the heterogeneous processes are not well known. Observations of the concentrations and diurnal behaviors of HOBr, BrONO₂ and HBr allow the examination of current bromine mechanisms. Impey et al. [1999] reported HOBr up to ~260 pptv inferred from the measurements of total photolyzable bromine (Br₂ and HOBr) in the springtime Arctic boundary layer. However, to our knowledge there are no in situ measurements of HOBr, BrONO₂ or HBr.

Br₂ is photolyzed rapidly by sun light to form Br atoms (R3.14) (lifetime = ~30 seconds) which can initiate the bromine catalyzed ozone depletion cycles. Br₂ is likely a precursor of bromine radicals at sunrise and a reservoir of reactive gas phase bromine at night [e.g. Fan and Jacob, 1992].
\[
\text{Br}_2 + \text{hv} \rightarrow 2\text{Br}
\]

Accurately measuring \(\text{Br}_2\) is challenging because HOBr easily converts to \(\text{Br}_2\) on inlet surfaces [Neuman et al., 2010]. \(\text{Br}_2\) concentrations of up to 27 pptv in the daytime and up to 15 pptv at night were measured in the Arctic boundary layer by Foster et al. [2001]. \(\text{Br}_2\) levels of up to 4 pptv in the daytime and up to 9 pptv at night were observed in Pacific MBL by Finley and Saltzman [2008]. The sum of \(\text{Br}_2\) and HOBr was measured as high as 20 pptv in the daytime by Neuman et al. [2010] onboard the NOAA P-3 over the Arctic Ocean in spring 2008. However, all these measurements of high levels of \(\text{Br}_2\) in the daytime are likely susceptible to interference from conversion of HOBr on inlet surfaces [Neuman et al., 2010]. Efficient conversion of HOBr to \(\text{Br}_2\) on the walls of sampling inlets demands a sampling system with limited wall interaction and the consideration of the potential role of HOBr as an interference to achieve accurate measurement of \(\text{Br}_2\).

An intensive field study took place at Barrow, Alaska in spring 2009 during the Ocean – Atmosphere – Sea Ice – Snowpack (OASIS) campaign (http://www.oasishome.net/barrow2009.php) to investigate air-surface interactions in the Arctic and their evolution in future climates. This provided a unique opportunity to further study halogen chemistry in the Arctic. In this chapter, the first simultaneous measurements of \(\text{BrO}\), HOBr and \(\text{Br}_2\) are reported. Molecular chlorine (\(\text{Cl}_2\)) and bromine monochloride (\(\text{BrCl}\)) were also observed during the same campaign and are reported in Liao et al. [2011e]. HOBr observations are compared to a photochemical model and the diurnal speciation of inorganic bromine species is investigated by comparison with a time dependent box model.
3.2 Methods

3.2.1 Measurement overview

BrO, HOBr, and Br$_2$ were measured by a CIMS in March and April 2009 at Barrow, AK. Measurements of other trace gases (NO, NO$_2$, NO$_y$, O$_3$, CO and CH$_2$O) and actinic flux were also obtained at the same site. The measurement of aerosol size distributions was carried out at a site ~700 m northwest. The observations of wind speed and wind direction were made 28 m south-east of the chemical measurements. The layout of the instruments is provided in chapter 2 and Liao et al. [2011a]. The measurements used in this study are summarized in Table 3.1.

<table>
<thead>
<tr>
<th>Species and parameters</th>
<th>Instrument</th>
<th>Uncertainty</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrO</td>
<td>CIMS</td>
<td>±34%</td>
<td>Liao et al. [2011a]</td>
</tr>
<tr>
<td>HOBr</td>
<td>CIMS</td>
<td>+44%/-30%</td>
<td>this paper</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>CIMS</td>
<td>+7%/-26%</td>
<td>this paper</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>CIMS</td>
<td>±30%</td>
<td>Edwards et al. [2003]</td>
</tr>
<tr>
<td>O$_3$</td>
<td>chemiluminescence</td>
<td>±5%</td>
<td>Weinheimer et al.</td>
</tr>
<tr>
<td>NO/NO$_2$/NO$_y$</td>
<td>chemiluminescence</td>
<td>±10-15%</td>
<td>Weinheimer et al.</td>
</tr>
<tr>
<td>CO</td>
<td>CO instrument</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>CH$_2$O</td>
<td>Tunable Diode Laser</td>
<td>±15%</td>
<td>Fried et al. [2003]</td>
</tr>
<tr>
<td>Aerosol Number den.</td>
<td>Scanning Mobility Particle Sizer</td>
<td>±10%</td>
<td>Woo et al. [2001]</td>
</tr>
<tr>
<td>Aerosol total Surface areas</td>
<td>Scanning Mobility Particle Sizer</td>
<td>±15%</td>
<td>Woo et al. [2001]</td>
</tr>
<tr>
<td>j values</td>
<td>CAFS</td>
<td>~±12%</td>
<td>Shetter and Muller[1999]</td>
</tr>
<tr>
<td>Wind speeds</td>
<td>Sonic</td>
<td>±6%</td>
<td></td>
</tr>
</tbody>
</table>

The measurement frequency is higher than every 10 minutes for all the species and parameters listed in table 3.1.
3.2.2 CIMS measurements

The details of the CIMS instrument and inlet configuration to measure halogen species are described in detail by Liao et al. [2011a]. The sampling inlet was equivalent to a 25 cm long, 0.65 cm ID, Teflon tube. The short Teflon inlet minimized (but did not completely eliminate) the conversion of HOBr to Br₂ on the walls of tubing. Hydrated I⁻ was used to selectively ionize the halogen species including BrO, HOBr, and Br₂.

\[
\begin{align*}
\text{BrO} + \Gamma & \rightarrow \text{IBrO}^- \quad \text{R3.15} \\
\text{HOBr} + \Gamma & \rightarrow \text{IHOBr}^- \quad \text{R3.16} \\
\text{Br}_2 + \Gamma & \rightarrow \text{IBr}_2^- \quad \text{R3.17}
\end{align*}
\]

The mass resolution of the CIMS was better than 1 amu, which allowed HOBr (at 223 and 225 amu) to be distinguished from BrO (at 222 and 224 amu).

3.2.2.1 Measurements of background signals

Instrument background signals were measured and subtracted from the total signals to determine the contributions from halogen species in the ambient atmosphere. The instrumental background levels for the halogen measurements were determined periodically (every 20 minutes) by scrubbing ambient air with glass wool [Liao et al., 2011a]. Lab experiments showed that glass wool effectively removes many halogen species (e.g. BrO, HOBr and Br₂) from a gas stream [Neuman et al., 2010]. An example of typical raw signals of Br₂ (287amu) and HOBr (223 amu) with a series of background measurements are shown in Figure 3.1. The background for the Br₂ measurement was unstable for a few days in the later period of the campaign. These measurements with reduced accuracy were removed from the dataset. The unstable background may be
because Br₂ was not only scrubbed by the glass wool but was also produced from conversion of HOBr in the scrubber. Flowing N₂ through the glass wool scrubber continuously when the instrument is not measuring background signals may improve the stability of Br₂ background signals. The raw signal obtained for BrO (224 amu) has been previously shown in chapter 2 and Liao et al. [2011a].

![Figure 3.1 Raw signals (Hz) of IBr²⁻ (black) and IHOB⁻ (blue) at mass 287 amu and 223 amu. Open squares with a cross in the middle represent the average calibration signal when 1.47 ppbv of Br₂ was added. Note the time scales of the x axes are different. Red squares denote the average background signals (shaded areas) when sampled air went through glass wool scrubber.]

3.2.2.2 Calibration

Br₂ and Cl₂ permeation tubes (Kin-tek) were used as the primary calibration standards for the OASIS campaign. Known amounts of the standard gases were
periodically added to the CIMS inlet. The details of the calibration procedures and the verification of the output rates of the permeation tubes are provided in chapter 2 and Liao et al. [2011a]. An example of the raw signals for the Br2 standard addition is displayed in the top panel of Figure 3.1. The typical sensitivity of Br2 during OASIS was 12 ± 4 Hz per pptv. The concentrations of other halogens were determined from the sensitivity of these specific halogens relative to that of Br2 or Cl2. The sensitivity of BrO relative to Br2 was determined to be 0.47 ± 25% [Liao et al., 2011a]. The sensitivity of HOBr relative to Br2 was determined to be 0.5 ± 25% [Liao et al., 2011b]. The typical sensitivity for BrO and HOBr was about 6 Hz/pptv.

3.2.2.3 Limits of Detection

Measurement precision and background stability affected the limit of detection for each compound. The absolute difference between successive one minute average background measurements of HOBr was essentially normally distributed with a median of 1.3 pptv. The detection limit (3σ) of HOBr is then estimated to be 3.9 pptv for 1 minute data. This variance is very close to that due to the counting statistics of the background level which was 121 Hz (~20 pptv). For this reason, we expect the detection limit due to counting statistics to decrease as approximately the square root of the averaging time. However, as it is difficult to determine the non statistical component of the background variance we estimate the detection limit (3σ) of HOBr to be 2.0 pptv for 10 minute data. Similarly, the detection limit (3σ) for Br2 is estimated to be ~2.0 pptv for 10 minute data before April 8 2009 and ~4.0 pptv for 10 minute data after April 8 2009.
The estimated detection limit for BrO is 1.1 pptv (3σ) for 10 minute data according to chapter 2 and Liao et al. [2011a].

3.2.2.4 Accuracy

The accuracy of the Br₂ measurements, when operating well above detection limits, is estimated to be 7% due to the uncertainty in the permeation rate of the calibration source [Liao et al., 2011a]. However, daytime levels of observed Br₂ higher than 1 pptv were almost certainly due to the conversion of HOBr on the wall of the sampling inlet. We estimate that on average less than 20% of HOBr was converted to Br₂ on the 25 cm long Teflon inlet. Combining the uncertainties in the sensitivity ratio of HOBr to Br₂ (25%), the output of permeation tubes (7%) and the interferences of the conversion of HOBr to Br₂ on the sampling inlet (20%), the uncertainties in HOBr measurements are estimated to be −30% /+44%. The accuracy of the BrO measurements is estimated to be 30% [Liao et al. 2011a]. The concentrations of Br₂ and HOBr that have not been corrected for conversion of HOBr to Br₂ are shown in Figure 3.3. The concentrations of Br₂ and HOBr corrected for conversion of HOBr to Br₂ assuming 20% conversion in the inlet are shown in Figure 3.4. The daytime Br₂ measurements during April 9 – April 13 2009 were assumed to be zero in Figure 3.4.

3.2.2.5 Isotope Comparison

Bromine has two naturally occurring isotopes of almost equal abundance which enables the detection of a bromine species at two (or more) different masses by the CIMS. In many cases this provides a valuable test of the quality of the bromine measurements.
The raw ambient signals for mass 223 amu (IHO79Br$^-$) are plotted against the signals at mass 225 amu (IHO81Br$^-$) in Figure 3.2. The correlation is very good ($R^2 = 0.85$) except for a few polluted periods (gray crosses) when NO$_x$ levels were higher than 10 ppbv. An equally weighted bivariate regression applied to the filtered data yielded a slope of 1.05 and an intercept of 1.68 Hz (0.28 pptv). This is a strong indication that HOBr is being detected at these masses. However, there is a small unknown interference at mass 225 during polluted periods. For this reason, mass 223 was used to derive the HOBr concentrations. The signal of Br$_2$ at mass 287 (I79Br81Br$^-$) was correlated well with that at mass 285 (I79Br79Br$^-$) ($R^2 = 0.84$) or 289 (I81Br81Br$^-$) ($R^2 = 0.91$) as well. The most abundant isotope at mass 287 did not have significant interferences and was used to derive the concentrations of Br$_2$. The correlation between mass 222 (I79BrO$^-$) and 224 (I81BrO$^-$) amu was illustrated by Liao et al. [2011a].
Figure 3.2 The raw ambient signal of HOBr at mass 223 amu (Hz) vs 225 amu (Hz). The correlation coefficient is 0.85 (R^2) with a slope of 1.05 and an intercept of 1.68 Hz or 0.28 pptv when small periods of interference in mass 225 amu (gray) are excluded. Due to the small periods of interferences in mass 225 amu, mass 223 amu was used to obtain the concentrations of HOBr.

3.2.3 Models

The observations are compared to two models. A steady state photochemical model run with and without HOBr loss on aerosol surfaces is used to analyze the HOBr observations. A time-dependent model operated with four different halogen recycling mechanisms and compared to the average temporal evolution of the observed halogen species.

3.2.3.1 Steady-state calculation of HOBr

HOBr concentrations were predicted using the steady-state assumption as its lifetime due to photolysis is relatively short (~10 minutes in the daytime). The predictions
considered two cases: a. no heterogeneous loss of HOBr on surfaces; b. inclusion of loss of HOBr on aerosol surfaces.

\[[\text{HOBr}]_{\text{pred, noaeroloss}} = \frac{k_a [\text{HO}_2][\text{BrO}]}{J_{\text{HOBr}}} \quad \text{eqn. 3.1} \]

\[[\text{HOBr}]_{\text{pred}} = \frac{k_a [\text{HO}_2][\text{BrO}]}{J_{\text{HOBr}} + k_a} \quad \text{eqn. 3.2} \]

\(k_a \) is the loss rate of HOBr on aerosol surfaces, assuming that the heterogeneous loss rate of HOBr is limited by the diffusion rate of gas phase HOBr to aerosol surfaces [Seinfeld and Pandis, 1998]. \(k_a \) is calculated as: \(k_a = 4\pi R_p D_g f \).

Where

\(R_p \): Particle radius;

\(D_g \): Diffusivity of gas species in the air;

\(f \): Transition regime formula \(\frac{0.75x(1+Kn)}{Kn^2+Kn+0.283Kn^0.75x} \quad \text{[Fuchs and Sutugin, 1971]} \);

\(x \): Mass accommodation coefficient; \(Kn = \frac{\lambda}{D_p} \); \(\lambda = 3D_g/c \); \(c = \frac{8kT}{\pi m} \).

\(D_g \) is assumed to be 0.1 cm² s⁻¹.

The mass accommodation coefficient of HOBr on aerosol particles in the calculation of \(k_a \) is estimated to be 0.6 [Wachsmuth et al., 2002]. The rate coefficient for R3.2, \(k_2 \), is taken from a kinetics database [Sander et al., 2006]. The photolysis rate, \(J_{\text{HOBr}} \), was derived from actinic flux measurements. BrO levels were obtained from CIMS observations. HO₂ concentrations were predicted from a 0-D steady-state HOₓ model [Sjostedt et al., 2007] constrained to the measurements of CH₂O, H₂O, O₃, CH₄, CO, NO and \(j \) values. HO₂ was also predicted from a modified HOₓ model (HOₓ_halogen) by
adding bromine and chlorine chemistry (R3.2, R3.6, heterogeneous loss of HOBr, R3.11, R3.12, R3.18 and R3.19) to test the impact of halogens on HO₂ levels.

\[
\text{Cl} + \text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{HCl} + \text{HO}_2 + \text{CO} \quad \text{R3.18}
\]

\[
\text{Cl} + \text{CH}_4 + \text{O}_2 \rightarrow \text{HCl} + \text{CH}_3\text{O}_2 \quad \text{R3.19}
\]

As the CIMS BrO measurements used in the calculation are in agreement with BrO measurements by LP-DOAS [Liao et al., 2011a], the uncertainty of the HOBr calculation are likely dominated by the uncertainty in HO₂ concentrations. However, we found the agreement with observed HOBr was similar whether observed HO₂ or predicted HO₂ from either the base or halogen model was used to derive HOBr predictions. It is interesting to note that the predicted HO₂ levels from the halogen model would have been 35% lower than the basic HOₓ model if only bromine chemistry were added. However, the inclusion of chlorine chemistry significantly elevates HO₂ levels via oxidation of methane. The correlation coefficients and slopes between the measured and predicted HOBr using measured HO₂ and predicted HO₂ from the basic HOₓ model or from the HOₓ_halogen model are provided in section 3.3.1.2. As the predicted HO₂ from the basic model has a better time coverage, it was used to predict the HOBr shown in Figure 3.5.

3.2.3.2 Time dependent box model

A time dependent box model is used to simulate the average diurnal speciation of bromine during the OASIS campaign. The model incorporates gas phase and heterogeneous phase reactions R3.1–R3.14 and loss of gas phase non-radical bromine (HOBr, HBr and BrONO₂) on aerosols. The diurnal evolution of the boundary layer height or the bromine recycling on blowing snow surfaces is not included in the model.
The model is run with 4 cases to investigate the chemical processes that sustain the observed bromine species.

Bromine species including Br\textsubscript{2}, BrO, HOBr, BrONO\textsubscript{2}, HBr and Br are predicted in the model. The inputs are 10 minutes average diurnal data (e.g. j values, NO, etc.). The typical concentrations of the diurnal data used as model inputs are given in Table 3.2. Because high levels of NO and NO\textsubscript{2} detected at Barrow were likely due to local pollution, NO and NO\textsubscript{2} concentrations larger than 20 pptv are excluded. The average NO and NO\textsubscript{2} concentrations are ~5 pptv and 7 pptv. The initial concentration of Br\textsubscript{2} is specified to be 15 pptv, based on the average Br\textsubscript{2} concentrations observed at night. The initial concentrations of aqueous phase Br- in case C is assumed to be equal to 2 pptv in the gas phase or 0.04 M in aqueous phase. The initial concentrations of other bromine species are assumed to be zero. The gas phase reaction rate constants, photolysis rates, and HOBr mass accommodation coefficients are from the same sources as in section 3.2.3.1. The mass accommodation coefficient of HBr on aerosol particles is estimated to be 0.3 from the data measured for HOBr relative to HBr in Fluckiger and Rossi [2003]. The mass accommodation coefficient of BrONO\textsubscript{2} is estimated to be 0.8 [Sander et al., 2006; Deiber et al., 2004; Hanson et al., 1996].

Table 3.2. Typical concentrations of the input species for the time dependent model.

<table>
<thead>
<tr>
<th>Input species</th>
<th>Concentration</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>O\textsubscript{3}</td>
<td>12 ppbv</td>
<td>Observations</td>
</tr>
<tr>
<td>CH\textsubscript{2}O</td>
<td>293 pptv</td>
<td>Observations</td>
</tr>
<tr>
<td>NO</td>
<td>5 pptv</td>
<td>Estimated from the observations (exclude NO > 20 pptv)</td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>7 pptv</td>
<td>Estimated from the observations (exclude NO\textsubscript{2} > 20 pptv)</td>
</tr>
<tr>
<td>HO\textsubscript{2}/OH</td>
<td>(5.6 \times 10^7) molec.cm-3 /(6.1 \times 10^5) molec.cm-3 (daytime)</td>
<td>HO\textsubscript{x} model [Sjostedt et al., 2007]</td>
</tr>
<tr>
<td>Aerosol surfaces</td>
<td>56 (\mu\text{m}^2) cm-3</td>
<td>Observations</td>
</tr>
</tbody>
</table>
In case A only gas phase bromine reactions are considered. The average daytime lifetimes of HOBr, BrONO$_2$ and HBr are 11 minutes, 19 minutes, and 39 hours, respectively.

In cases B-D the loss of HOBr, BrONO$_2$ and HBr to the condensed phase is included. The diffusive loss of these species to aerosol surfaces is taken into account in each of the cases. The loss of these species to the snowpack is not considered. The production of Br$_2$ and HOBr (R3.7 and R3.10) from the condensed phase is included.

In case B the loss of HOBr, BrONO$_2$, and HBr from the gas phase is only limited by diffusion to the aerosol (lifetime due to heterogeneous loss: ~10 minutes, ~10 minutes, and ~20 minutes). The average total lifetime of HOBr, BrONO$_2$, and HBr is ~7 minutes, ~7 minutes and ~20 minutes, respectively. The production rate of Br$_2$ is assumed to be equal to the sum of the heterogeneous loss rates of HOBr and BrONO$_2$. This case is used to simulate the maximum heterogeneous regeneration rate of Br$_2$ with no limitation on Br$^-$.

In case C the heterogeneous loss rate of HOBr is assumed to also be limited by the rate of its reaction with Br$^-$ in the condensed phase. The heterogeneous loss rate of HBr is assumed to be equal to the production rate of Br$^-$. The production rates for Br$_2$ and Br$^-$ are given by the following equations:

\[
\frac{d[Br_2]}{dt} = \left(\text{or} \frac{d[HOBr]}{dt} \right) = \frac{k_{3.7}[H^+][HOBr][g]_{H}[Br^-]}{M}
\]

eqn. 3.3

\[
\frac{d[Br^-]}{dt} = k_{HBr}[HBr]
\]

eqn. 3.4

where $k_{3.7}$ is the reaction rate constant (M2s$^{-1}$) of R3.7; H is the Henry’s law equilibrium at 250K as 3×10^4 M/atm [Waschewsky and Abbatt, 1999]; M is the concentration
(molec.cm\(^{-3}\)) of air at 1 atm; pH = 3 – 6; \(k_{HBr}\) is the diffusion rate of HBr to aerosols. The lifetime of HBr and BrONO\(_2\) is the same as case B. However, the lifetime of HOBr is 7 minutes on average in the daytime and increases to \(~20\) hours after sunset. This simulates the case of active bromine production being limited by Br\(^{-}\) supplied from HBr.

In case D, as the concentrations of Br\(^{-}\) available for reaction R3.7 are not well known, the following assumptions are made. The heterogeneous loss of HOBr and BrONO\(_2\) are efficiently (100%) recycled back to produce Br\(_2\) when Br\(^{-}\) supplied from the heterogeneous loss of HBr is abundant. When the heterogeneous loss of HOBr and BrONO\(_2\) are higher than the Br\(^{-}\) supplied from the heterogeneous loss of HBr, the production rate of Br\(_2\) is assumed to be equal to the heterogeneous loss rate of HBr plus 50% of the difference between the sum of the heterogeneous loss rate of HOBr and BrONO\(_2\) and HBr.

\[
\text{Heterogeneous Br}_2 \text{ production rate} = \begin{cases}
(k_{HBr}[HBr]) + 0.5(k_{HOBr}[HOBr] + k_{BrONO2}[BrONO_2] - k_{HBr}[HBr]), & (k_{HBr}[HBr] + k_{BrONO2}[BrONO_2] > k_{HBr}[HBr]) \\
(k_{HOBr}[HBr]) + k_{BrONO2}[BrONO_2], & (k_{HBr}[HBr] + k_{BrONO2}[BrONO_2] < k_{HBr}[HBr])
\end{cases}
\]

eqn. 3.5

This case assumes that HOBr and BrONO\(_2\) still react to form Br\(_2\) to the gaseous phase with 50% efficiency when Br\(^{-}\) from HBr is depleted.

3.3 Results and discussion

3.3.1 BrO, HOBr, and Br\(_2\) measurements by CIMS

10 minute averages of the BrO, HOBr, Br\(_2\), and O\(_3\) observations from March 18 to April 14, 2009 during the OASIS campaign are shown in a time series plot in Figure 3.3. The gaps in BrO and HOBr measurements are due to the malfunction of the instrument.
and power outages. The extra gaps in the Br$_2$ measurements are due to unstable Br$_2$
background measurements leading to observations that are below detection limits.

3.3.1.1 BrO measurements

The hourly average diurnal profile of BrO from March 18th to April 14th is shown
in Figure 3.4. BrO concentrations increase at sunrise and decrease at sunset as expected.
The daytime (9 am – 6 pm) BrO concentrations on days with significant BrO (maximum
BrO \geq 10 pptv) observed and low NO (< 100 pptv) have an average value of 11.9 pptv
and ranged up to 37 pptv. The BrO concentrations observed by CIMS were correlated
well with that measured by a nearly co-located LP DOAS during the OASIS campaign
[Liao et al., 2011a]. No simple relationship between BrO and ozone was observed (Figure
3.7 middle panel).
Figure 3.3 A time series of measurements of BrO (red), HOBr (blue), Br$_2$ (black), O$_3$ (green) and j values of Br$_2$ (gray) averaged to 10 minutes from March 18th to April 14th 2009 during the OASIS campaign.
3.3.1.2 HOBr measurements and predictions

The hourly average diurnal profile of HOBr from March 18th to April 14th is also shown in Figure 3.4. Approximately 9.8 pptv of HOBr were observed in the daytime (9 am – 6 pm) on average during the campaign. Up to ~26 pptv of HOBr were detected for the 10 minute average data (Figure 3.3). HOBr has similar diurnal patterns to BrO with maximum in the daytime and no evidence of significant nighttime concentrations. This is consistent with the production of HOBr by the reaction of photochemically short lived species BrO and HO\textsubscript{2} (R3.2), and the rapid loss of HOBr from the gas phase. The concentrations of HOBr increased slightly later than BrO at sunrise and decreased slightly earlier than BrO at sunset. This is consistent with the mechanism that HOBr is
formed by reaction BrO and HO₂, which increased later than BrO at sunrise and
decreased earlier than BrO at sunset.

The steady-state box model predictions of HOBr in case (a) and case (b) (see
3.2.3.1) plotted against the HOBr measurements are shown in Figures 3.5(a) and 3.5(b),
respectively. HOBr data taken under polluted conditions (NO > 100 pptv) are excluded
from the comparison. HOBr predictions are well correlated (R² = 0.70 in case a; R² =
0.63 in case b) with HOBr measurements at low wind speeds (< 6 m s⁻¹) with a slope of
2.42 for case (a) and 1.38 for case (b) from equally weighted bivariate linear regressions
through zero. The average ratio of HOBr_{pred} to HOBr_{obs} (when [HOBr]_{obs} > 2 pptv) is 2.02
with a standard deviation of 1.26 for case (a) at wind speeds < 6 m s⁻¹. The average ratio
of HOBr_{pred} to HOBr_{obs} (when [HOBr]_{obs} > 2 pptv) is 0.91 with a standard deviation of
0.76 for case (b) at wind speeds < 6 m s⁻¹. The predicted HOBr (in case b) using HO₂
prediction from the HOₓ_halogen model has a correlation coefficient of 0.63 at wind
speeds < 6 m s⁻¹ (R² = 0.40 for all data) with HOBr measurements and a slope of 0.98
(wind speeds < 6 m s⁻¹, slope = 1.29 for all data). The average ratio of HOBr_{pred} to
HOBr_{obs} (when [HOBr]_{obs} > 2 pptv) is 0.82 with a standard deviation of 0.63 for case (b)
at wind speeds < 6 m s⁻¹. Similarly, the predicted HOBr (in case b) using HO₂
measurements has a correlation coefficient of 0.57 at wind speeds < 6 m s⁻¹ (R² = 0.44 for
all data) with HOBr measurements and a slope of 1.67 (wind speeds < 6 m s⁻¹, slope =
2.07 for all data). The average ratio of HOBr_{pred} to HOBr_{obs} (when [HOBr]_{obs} > 2 pptv) is
1.49 with a standard deviation of 1.18 for case (b) at wind speeds < 6 m s⁻¹ using HO₂
measurements.
Figure 3.5 The concentrations of daytime (9am – 6pm) BrO (top panel) and HOBr (bottom panel) on a 1 minute average base are binned according to different wind speeds. One standard deviation (± 1σ) is denoted as the error bar. Each wind speed bin contained at least 400 1-minute measurements except the wind speed bin between 11–12 m s\(^{-1}\) with 80 1-minute measurements.

Clearly, all three methods for predicting HOBr have a similar correlation with observations. The magnitude of the individual HOBr predictions shows larger differences. Both the base and halogen models give results 10% less than observations while those derived from HO\(_2\) observations are approximately 50% higher. However, all three methods support the same conclusions. All of the methods over predict HOBr and are less well correlated to observations at high wind speeds. Because the HOBr predictions were highly constrained by BrO measurements, the over prediction of HOBr at high wind speeds are probably due to enhanced deposition of HOBr on blowing snow surfaces. It is likely that blowing snow at high wind speeds provided more surface area for HOBr loss which regenerates active bromine and eventually BrO. The correlation between HOBr predictions and measurements also indicates that HOBr can be predicted in the Arctic at
low wind speeds by relatively simple models that include the heterogeneous loss of
HOBr on aerosol surfaces. However, it should be noted that the inclusion of chlorine in
the halogen model significantly improves the magnitude of the HOBr predictions.

It is also worth noting that the role of organic peroxy radicals upon HOBr
production is not well defined. For example, methyl peroxy (CH₃O₂) and other radicals
are thought to react with BrO to produce HOBr [Aranda et al., 1997; Enami et al., 2007].
Including reaction R3.20 in the photochemical model increases predicted HOBr levels
5–10%.

\[
\text{CH}_3\text{O}_2 + \text{BrO} \rightarrow \text{HOBr} + \text{CH}_2\text{O}_2 \quad \text{R3.20}
\]

Organic peroxy radicals other than CH₃O₂ may also react with BrO and plays a role in
HOBr production. Lab experiments are needed to quantify the reaction rate constants of
other organic peroxy radicals with BrO in order to better estimate the contribution of
these reactions to HOBr budget. If the production of HOBr from organic peroxy radicals
other than CH₃O₂ with BrO is significant, other loss mechanisms of HOBr would be
needed to reconcile predictions with observations.

The impact of wind speeds on bromine recycling is further illustrated in Figure
3.6. The concentrations of BrO and HOBr in the daytime (9 am– 6 pm) are binned
according to wind speed. The average values of BrO and HOBr in each bin are shown as
the heights of the bins. The average BrO concentrations increases at higher wind speeds
especially above 6 m s⁻¹; however, HOBr levels remained relatively constant as a
function of wind speed. This is consistent with blowing snow at high wind speeds
increasing the efficiency for regenerating active bromine (e.g. BrO) by providing more
surfaces for heterogeneous loss of HOBr. Higher production rates of HOBr due to
enhanced BrO present at higher wind speeds seemed to be balanced by higher loss rates of HOBr on the blowing snow and resulted in a relatively constant HOBr concentration as a function of wind speed. It should also be noted that the sum of BrO and HOBr was also enhanced at higher wind speeds. These results provide direct evidence for the important role of high wind and blowing snow in activating bromine including potentially producing higher total inorganic gas phase bromine species. Jones et al. [2009] also found that enhanced BrO from satellite observations coincide with high wind speeds. Active bromine and BrO levels measured over the Arctic Ocean were highest when wind speeds were the greatest [Neuman et al., 2010]. Begoin et al. [2010] suggested that the activation of BrO was linked to a cyclone with very high surface wind speeds probably associated with blowing snow and that the transported aerosols and snow can also provide surfaces for BrO recycling within the BrO plume. The model of Yang et al. [2010] also showed that a bromine source from blowing snow is needed to explain the bromine “explosion” events. Moreover, Dibb et al. [2010] observed higher soluble bromide concentrations in the firn air than ambient air at Summit, Greenland, which indicates that snow pack may be a source of bromine.
Figure 3.6 The concentrations of daytime (9am – 6pm) BrO (top panel) and HOBBr (bottom panel) on a 1 minute average base are binned according to different wind speeds. One standard deviation (± 1σ) is denoted as the error bar. Each wind speed bin contained at least 400 1-minute measurements except the wind speed bin between 11–12 m s⁻¹ with 80 1-minute measurements.

3.3.1.3 Br₂ measurements

Diurnal variations of Br₂ were observed with maxima concentrations at night (Figure 3.3). On average about 15 pptv of Br₂ was observed at night (Figure 3.4). Observed Br₂ concentrations decreased rapidly as the sun rose. This is consistent with Br₂ accumulation at night followed by photolysis to produce bromine atoms at sunrise. Small but detectable levels of daytime Br₂ detected (see Figure 3.3) were due to the conversion of HOBBr on the Teflon inlet wall [Neuman et al., 2010] and the uncertainty in
background signal measurements. The \(\text{Br}_2 \) measurements at night were without interference from HOBr as this species was not observed in the dark.

Nighttime \(\text{Br}_2 \) concentrations were clearly anti-correlated with \(\text{O}_3 \). The concentrations of nighttime \(\text{Br}_2 \) binned as a function of \(\text{O}_3 \) mixing ratios are shown in Figure 7. These observations are consistent with the transport of active bromine at night as \(\text{Br}_2 \) in ozone depleted air masses. The data also suggest that the magnitude of active bromine in the air mass is proportional to the loss of ozone.

![Figure 3.7](image)

Figure 3.7 The nighttime (6pm – 9am) concentrations of \(\text{Br}_2 \) (top panel) and the daytime (9 am- 6 pm) concentrations of \(\text{BrO} \) (middle panel) and HOBr (bottom panel) on a 1 minute average base are binned according to different ozone levels. The error bar represents ± 1 standard deviation of \(\text{Br}_2 \) measurements at the binned ozone range. One standard deviation (± 1\(\sigma \)) is denoted as error bar and the number of measurements in each bin ranges from 100 to over 2500.
3.3.2 Predicted diurnal bromine speciation

A time dependent model is used to simulate the observed diurnal patterns of bromine species at Barrow shown in Figure 3.4. The time dependent model was run using four different bromine recycling mechanisms (see 3.2.3.2) and the results are shown in Figure 3.8.

In case A, which does not consider heterogeneous recycling, most of the gas phase bromine species are rapidly converted to HBr because HOBr and BrONO$_2$ are efficiently converted back to bromine radicals by photolysis. Predicted BrO and HOBr concentrations only have a morning peak and decrease to ~1 pptv around noon. These results are obviously inconsistent with observations. As expected, loss of bromine species to heterogeneous phase and recycling of heterogeneous bromine to gas phase bromine are needed to reproduce the observed gas phase bromine levels.

In case B, which simulates the maximum heterogeneous recycling rates, the model over predicted the bromine species by about a factor of 10 in the afternoon. This indicates that the production of Br$_2$ from a 100% conversion of heterogeneous loss of HOBr and BrONO$_2$ is too high and the availability of Br$^-$ may limit Br$_2$ production.

In case C, which assumes the heterogeneous loss rate of HOBr and production rate of Br$_2$ from HOBr are limited by the diffusion of gas phase HOBr to heterogeneous surfaces and the reaction rate of R3.7, the predicted HOBr diurnal profiles with high concentrations after sunset are inconsistent with the observations. These model results were found to be consistent over a wide range of pH. This suggests that the heterogeneous loss rate of HOBr estimated by the aqueous phase reaction rate of R3.7 is
too slow or the production rate of HOBr from hydrolysis of BrONO₂ is too high. The estimated heterogeneous loss rate of HOBr in case C highly depends on the concentrations of Br⁻, which are dramatically depleted near sunset under the assumption that the heterogeneous loss of HBr is the dominant production of Br⁻ [Simpson et al., 2007a]. Two slightly modified versions of case C were also investigated by assuming that (1) HOBr(aq) from hydrolysis of BrONO₂ is rapidly converted to Br₂ by reacting with Br⁻ instead of emitting gas phase HOBr or (2) the Br₂ production rate from BrONO₂ is 50% of the diffusion rate of BrONO₂ to heterogeneous surfaces. The first modification showed similar results to figure 8(c) while the second modification predicted the profile of HOBr similar to case D. This indicates that low concentrations of predicted Br⁻ in the late afternoon lead to the over prediction of HOBr in the model.

In case D, the model best reproduces the average diurnal patterns of gas phase HOBr, BrO and Br₂. The initial gas phase bromine (15 pptv) needs to be recycled very efficiently (~ 39 times in 24 hours) from heterogeneous phase to gas phase Br₂ to maintain the gas phase bromine concentrations. All of the gas phase bromine species HOBr, HBr, and BrONO₂ must be recycled to sustain the observed bromine concentrations. However, only aerosol surface area is used for bromine recycling in our study. Due to the uncertainty in mass accommodation coefficient measurements, this study cannot exclude the role of snowpack surfaces in bromine recycling. The sources of Br⁻ other than heterogeneous loss of HBr may come from either the snowpack or aerosol surfaces.
Figure 3.8 Prediction of hourly average diurnal profiles of bromine species (BrO, HOBr, Br₂, Br, BrONO₂ and HBr) from a time dependent model under four limiting cases. In (A) only gas phase reactions are considered. In (B), (C) and (D) loss of HOBr, BrONO₂ and HBr to the condensed phase and reproduction of Br₂ from condensed phase are also included. In (B) the maximum heterogeneous production rate of Br₂ from HOBr and BrONO₂ is assumed. In (C) the heterogeneous production rate of Br₂ from HOBr and BrONO₂ are assumed to be limited by the availability of Br⁻ supplied from HBr. In (D) HOBr and BrONO₂ still react to form Br₂ to the gaseous phase with 50% efficiency when Br⁻ from HBr is depleted.

The predicted Br₂ in case D, with an initial mixing ratio of 15 pptv at night, decreases to below 1 pptv at sunrise and builds back up to near original levels after sunset. The predicted average daytime (9 am – 6 pm) BrO and HOBr mixing ratios were 9.3 pptv and 7.7 pptv, which are comparable to the observations. The predicted HOBr concentrations also increased slightly later than BrO at sunrise and decreased slightly
earlier than BrO at sunset, similar to the observations. The model did not consider the dilution of chemical species due to evolution of boundary layer height, which may contribute to the differences between observed and predicted diurnal patterns.

No observations of HBr and BrONO$_2$ were available to compare to the model predictions. The ratio of predicted HBr to BrO and HOBr were within the range of previous predictions [Evans et al., 2003] in the Arctic, and the diurnal pattern of predicted HBr was similar to that predicted in Fan and Jacob [1992]. The predicted diurnal pattern of BrONO$_2$ had an early morning and a late afternoon peak with a local minimum at noon, which is likely due to the sharp peak in the BrONO$_2$ photolysis rate (~0.0015 s$^{-1}$) around noon. When NO$_x$ is abundant, its coupling with halogen chemistry is important to fully study the bromine catalyzed ozone depletions in the MBL. With average NO$_2$ concentrations of 7 pptv used in the model, the early morning and late afternoon peaks of BrONO$_2$ were then predicted to be \sim7 pptv and noon time BrONO$_2$ was predicted to be 4 pptv. This indicates that the impact of NO$_x$ on bromine can be significant in the early morning and late afternoon in the MBL when significant NO$_2$ is present. This is consistent with observation of halogens along with NO and NO$_2$ in Antarctica [Bloss et al., 2010].

3.4 Conclusions

The simultaneous measurements of BrO, HOBr, and Br$_2$ at Barrow, AK by CIMS reveals gas phase bromine speciation in the Arctic MBL. The first direct observations of HOBr were achieved and were found to agree well ($R^2 = 0.63$; slope =1.38) at low wind speeds (≤ 6 m s$^{-1}$) with a simple photochemical model constrained to BrO observations. The concentrations of BrO were enhanced relative to HOBr at higher wind speeds. This
indicated that the high wind speeds, likely inducing blowing snow, favored bromine activation and provided more surfaces for HOBr heterogeneous loss. Nighttime levels of Br₂ were anti-correlated with O₃ at Barrow, which indicates that O₃ depleted air masses at Barrow were likely transported from regions rich in Br₂. The average diurnal patterns of observed HOBr, BrO and Br₂ can be explained by a time dependent model with efficient recycling of HBr, HOBr, and BrONO₂. Finally, sources of Br⁻ other than HBr heterogeneous loss are needed to account for the bromine concentrations based on current bromine chemical mechanisms. Further observations of inorganic bromine species (e.g. HBr and BrONO₂) are needed to confirm the bromine catalyzed ozone depletion mechanisms.
CHAPTER 4
HIGH LEVELS OF MOLECULAR CHLORINE IN THE ARCTIC:
IMPLICATION FOR METHANE OXIDATION AND OZONE DEPLETION

4.1 Introduction

Chlorine chemistry can significantly affect the fates of many tropospheric compounds and have a potential impact on climate change and human health. Chlorine atoms efficiently oxidize hydrocarbons including the important greenhouse gas methane (CH₄) [Platt et al., 2004]. Chlorine atoms may also intensify polar spring time surface ozone and mercury depletion events (ODEs and MDEs) [Tuckermann et al., 1997; Donohoue et al., 2005], where mercury is oxidized to more toxic forms and accumulated in the ecosystem. The reaction rate coefficient of Cl atoms with methane (CH₄) is ~20 times faster than for hydroxyl radicals (OH) at 250K [Sander et al., 2006]. Therefore, even relatively low concentrations of Cl atoms (10⁴ – 10⁵ atom cm⁻³) can significantly decrease the lifetime of CH₄ and have a potential impact on global energy balance. Cl can also oxidize gaseous elemental mercury to more soluble and toxic forms of mercury [Donohoue et al., 2005], but the rate coefficient for this reaction is not well defined. Cl atoms are also efficiently converted to chlorine oxide (ClO) in the atmosphere which can react with bromine oxide (BrO) to enhance ozone loss rates [Sander et al., 2006].
Direct measurements of Cl and ClO are difficult at lower altitudes and are limited [e.g. Tuckermann et al., 1997]. Consequently, significant effort has been made to detect chlorine radical precursors. Recently, high levels of nitryl chloride (ClNO$_2$), which rapidly photolyses to form Cl atoms, have been observed coincident with N$_2$O$_5$ [Osthoff et al., 2008; Thornton et al., 2010] at night, demonstrating a mechanism to activate chloride (Cl$^-$) in high NO$_x$ regions. High levels of Cl$_2$ (up to 35 pptv at night) and HOCl (up to 173 pptv during the day) have been observed in the Atlantic marine boundary layer and cannot be explained by known chlorine chemical mechanisms [Lawler et al., 2011]. There are a few other observations of Cl$_2$ of up to ~30 pptv in the daytime and up to ~150 pptv at night in polluted coastal areas [Spicer et al., 1998; Finley and Saltzman, 2006; Finley and Saltzman, 2008; Lawler et al., 2009]. However, no observations of Cl$_2$ have been made in polar marine boundary layer.

BrCl is a potential chlorine radical precursor [Vogt et al., 1996]. Significant levels of bromine monochloride (BrCl) were detected during ozone depletion events (ODEs) in the Arctic polar sunrise [Foster et al., 2001]. However, BrCl was below detection limits of 0.5 pptv and 2 pptv when clearly elevated Br$_2$ was observed in recent campaigns in Pacific marine boundary and Arctic marine boundary [Finley and Saltzman, 2008; Neuman et al., 2010]. Lab experiments [Fickert et al., 1999; Adams et al., 2002] found that BrCl can be a significant product of uptake of HOBr on frozen salt surface when [Br$^-$]/[Cl$^-$] ratio on the sea salt surfaces are smaller than \sim2.5 \times 10$^{-4}$, which is much smaller than in sea water (0.0014). Moreover, lab experiment [Huff and Abbatt, 2000] found that BrCl besides Br$_2$ can be produced following uptake of Cl$_2$ or HOCl on chloride/bromide ice surfaces. More direct measurements of BrCl are helpful for investigating the
formation of BrCl and its importance as a halogen radical precursor in the Arctic environment.

Here we report high levels of molecular chlorine (Cl\(_2\)) and much less BrCl observed at Barrow, Alaska (71°19′ N, 156° 39′ W) in spring 2009 during the Ocean-Atmospheric-Sea Ice-Snowpack (OASIS) campaign. The in situ measurements of chlorine species were carried out by chemical ionization mass spectrometry (CIMS) [Liao et al., 2011a].

4.2 Methods

4.2.1 CIMS measurements

A chemical ionization mass spectrometer was used to measure speciated halogen compounds including Cl\(_2\), HCl, BrCl, BrO, HOBr, and Br\(_2\) at Barrow, AK in spring 2009 during the OASIS campaign. The details of measurement site and the CIMS instrument are described in Liao et al. [2011a]. The measurements of BrO, HOBr, and Br\(_2\) are reported in Liao et al. [2011b]. The main reagent ion used after 18 March was hydrated I\(^-\), and reagent ion SF\(_6\)\(^-\), which allowed measurements of HCl, was used before 18 March. The CIMS was also set to detect BrCl from 19 March – 30 March, 2009.

Cl\(_2\) was detected at mass 197 and 199 amu with I\(^-\) and at mass 70 and 72 amu with SF\(_6\)\(^-\). HCl was monitored only at mass 164 amu because Br\(_2\) can be detected as Cl\(_2\) with SF\(_6\)\(^-\) at mass 162 amu. The ionized product and monitored masses of halogen species with I\(^-\) are provided in Table 2.1 in chapter 2. The reactions of chlorine species with SF\(_6\)\(^-\) and I\(^-\) are shown below.
\[
\text{Cl}_2 + \text{SF}_6^- \rightarrow \text{Cl}_2^- + \text{SF}_6 \quad \text{R4.1}
\]

\[
\text{Cl}_2 + I^- \rightarrow \text{ICl}_2^- \quad \text{R4.2}
\]

\[
\text{HCl} + \text{SF}_6^- \rightarrow \text{SF}_5\text{Cl}^- + \text{HF} \quad \text{R4.3}
\]

\[
\text{BrCl} + I^- \rightarrow \text{IBrCl}^- \quad \text{R4.4}
\]

The signals at mass 197 were plotted versus 199 amu (Figure 4.1). The excellent correlation ($R^2 = 0.99$) between the signals at mass 197 and 199 amu and a slope of 0.65 indicates that chemical compound containing two chlorine atoms was detected at these masses. The concentrations of the detected species were determined by subtracting the background signals from the ambient signal and dividing the resulting net signals by sensitivity. The background of Cl$_2$ and HCl was well determined by frequently scrubbing by glass wool. The background of BrCl was less stable and the BrCl concentrations were often below the detection limits. Cl$_2$ and Br$_2$ permeation tubes were used to determine the sensitivity of Cl$_2$ and other halogen species.

Figure 4.1 Correlation plot of chlorine isotopes at mass 199 amu and 197 amu of the ambient measurements. Black line represents the ideal regression of chlorine isotopes in
nature. Red line shows the equally weighted bivariate linear regression of the observed ambient chlorine isotopes at mass 199 amu and 197 amu.

4.2.2 Time dependent box model

A time dependent box model was employed to study the impact of observed Cl\textsubscript{2} on chlorine chemistry. Chlorine species (Cl, ClO, HOCl, and HCl) are simulated in the model. The model includes chemical reactions 1–21 (see Table 4.1) and is constrained to Cl\textsubscript{2} measurements. The model is also highly constrained to the measurements of O\textsubscript{3}, nitrogen oxide (NO), nitric dioxide (NO\textsubscript{2}), formaldehyde (CH\textsubscript{2}O), hydrocarbons (RH), hydroxyl radical (OH) and hydroperoxy radicals (HO\textsubscript{2}) every 10 minutes. The input data are average diurnal measurements. The typical concentrations of the input are shown in Table 4.2. Because high levels of NO and NO\textsubscript{2} were due to local pollution and the background NO and NO\textsubscript{2} concentrations were near the detection limits, NO concentrations are assumed to be 5 pptv in the daytime and 0 at night and NO\textsubscript{2} concentrations are assumed to be 2 pptv [Liao et al., 2011c].

<table>
<thead>
<tr>
<th>Gas phase reactions</th>
<th>Reaction rates (molec cm-3s-1)</th>
<th>Reaction rates (250K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cl + O\textsubscript{3} \rightarrow ClO + O\textsubscript{2}</td>
<td>2.3\times10-11\exp(-200/T)</td>
<td>1.03\times10-11</td>
</tr>
<tr>
<td>2. Cl + CH\textsubscript{4} \rightarrow HCl + CH\textsubscript{3}</td>
<td>7.3\times10-12\exp(-1280/T)</td>
<td>4.36\times10-14</td>
</tr>
<tr>
<td>3. Cl + CH\textsubscript{2}O \rightarrow HCl + CHO</td>
<td>8.1\times10-11\exp(-30/T)</td>
<td>7.18\times10-11</td>
</tr>
<tr>
<td>4. Cl + C\textsubscript{2}H\textsubscript{6} \rightarrow HCl + C\textsubscript{2}H\textsubscript{5}</td>
<td>7.2\times10-11\exp(-70/T)</td>
<td>5.44\times10-11</td>
</tr>
<tr>
<td>5. Cl + C\textsubscript{3}H\textsubscript{8} \rightarrow HCl + C\textsubscript{2}H\textsubscript{5}CH\textsubscript{3}</td>
<td>6.54\times10-11</td>
<td>5.64\times10-11</td>
</tr>
<tr>
<td>6. Cl + H\textsubscript{2}O \rightarrow HCl + H\textsubscript{2}O\textsubscript{2}</td>
<td>7.85\times10-11\exp(-80/T)</td>
<td>5.70\times10-11</td>
</tr>
<tr>
<td>7. Cl + CH\textsubscript{3}CHO \rightarrow HCl + CH\textsubscript{3}CO</td>
<td>8.0\times10-11</td>
<td>8.0\times10-11</td>
</tr>
<tr>
<td>8. Cl + CH\textsubscript{3}OH \rightarrow HCl + CH\textsubscript{2}OH</td>
<td>5.5\times10-11</td>
<td>5.5\times10-11</td>
</tr>
<tr>
<td>9. Cl + CH\textsubscript{3}C(O)CH\textsubscript{3} \rightarrow HCl + CH\textsubscript{3}C(O)CH\textsubscript{3}</td>
<td>1.5\times10-11\exp(-590/T)</td>
<td>1.4\times10-12</td>
</tr>
<tr>
<td>10. Cl + HO\textsubscript{2} \rightarrow HCl + O\textsubscript{2}</td>
<td>1.8\times10-11\exp(170/T)</td>
<td>3.55\times10-11</td>
</tr>
</tbody>
</table>
11. \(\text{ClO} + \text{HO}_2 \rightarrow \text{HOCl} + \text{O}_2 \) \(2.7 \times 10^{-12} \exp(220/T) \) \(6.51 \times 10^{-12} \)

12. \(\text{ClO} + \text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2 \)
 \(\rightarrow \text{ClOO} + \text{Cl} \) \(3.0 \times 10^{-11} \exp(-2450/T) \) \(1.66 \times 10^{-15} \)
 \(\rightarrow \text{OCIO} + \text{Cl} \) \(3.5 \times 10^{-13} \exp(-1370/T) \) \(1.46 \times 10^{-15} \)
 \(\rightarrow \text{Cl}_2 \text{O}_2 \) \(k_o = 1.6 \times 10^{-32} \times (T/300)^{4.5} \) \(5.27 \times 10^{-15} \)
 \(k_\infty = 2.0 \times 10^{-12} \times (T/300)^{2.4} \)

13. \(\text{ClO} + \text{NO} \rightarrow \text{Cl} + \text{NO}_2 \) \(6.4 \times 10^{-12} \exp(220/T) \) \(1.54 \times 10^{-11} \)

14. \(\text{ClO} + \text{NO}_2 \rightarrow \text{ClONO}_2 \)
 \(k_o = 1.8 \times 10^{-31} \times (T/300)^{3.4} \) \(4.29 \times 10^{-12} \)
 \(k_\infty = 1.5 \times 10^{-11} \times (T/300)^{1.9} \)

15. \(\text{Cl}_2 + \text{OH} \rightarrow \text{HOCI} + \text{Cl} \)
 \(\rightarrow \text{Br} + \text{ClOO} \) \(2.3 \times 10^{-12} \exp(260/T) \) \(6.51 \times 10^{-12} \)
 \(\rightarrow \text{BrCl} + \text{O}_2 \) \(4.1 \times 10^{-13} \exp(290/T) \) \(1.31 \times 10^{-12} \)

16. \(\text{ClO} + \text{NO}_2 \rightarrow \text{ClO}_2 + \text{Cl} \)
 \(\rightarrow \text{ClO} + \text{NO}_2 \) \(9.5 \times 10^{-13} \exp(550/T) \) \(8.57 \times 10^{-12} \)
 \(\rightarrow \text{Cl}_2 + \text{H}_2 \text{O} \) \(3.0 \times 10^{-12} \exp(-500/T) \) \(4.06 \times 10^{-13} \)

17. \(\text{ClO} + \text{HO}_2 \rightarrow \text{Cl} + \text{H}_2 \text{O} \) \(2.6 \times 10^{-12} \exp(-350/T) \) \(6.41 \times 10^{-15} \)

Photolysis reactions

19. \(\text{Cl} + \text{hv} \rightarrow \text{Cl}_2 \) \(2.2 \times 10^{-3} \)

20. \(\text{ClO} + \text{hv} \rightarrow \text{Cl} + \text{O} \) \(3.8 \times 10^{-5} \)

21. \(\text{HOCl} + \text{hv} \rightarrow \text{Cl} + \text{OH} \) \(2.6 \times 10^{-4} \)

22. \(\text{ClONO}_2 + \text{hv} \rightarrow \text{Cl} + \text{NO}_3 \)
 \(\rightarrow \text{ClO} + \text{NO}_2 \) \(3.1 \times 10^{-5} \)
 \(\rightarrow \text{ClO} + \text{NO}_2 \) \(4.0 \times 10^{-6} \)
 \(\rightarrow \text{BrCl} + \text{hv} \rightarrow \text{Br} + \text{Cl} \) \(0.012 \)

Heterogeneous reactions

23. \(\text{HOCl} + \text{Cl} + \text{H}^+ \rightarrow \text{Cl}_2 + \text{H}_2 \text{O} \) \(15.3 \text{ min} \)

*Midday 11:00 – 16:00 average

Table 4.2 The typical input concentrations in the box model.

<table>
<thead>
<tr>
<th>Input species</th>
<th>Concentration</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O}_3)</td>
<td>17 ppbv</td>
<td>Chemiluminescence observations</td>
</tr>
<tr>
<td>(\text{CH}_2\text{O})</td>
<td>270 pptv</td>
<td>Tunable Diode Laser Spectroscopy observations</td>
</tr>
<tr>
<td>(\text{NO})</td>
<td>5 pptv</td>
<td>Chemiluminescence observations (exclude polluted periods when NO > 20 pptv)</td>
</tr>
<tr>
<td>(\text{NO}_2)</td>
<td>7 pptv</td>
<td>Chemiluminescence observations (exclude polluted periods when NO > 20 pptv)</td>
</tr>
<tr>
<td>(\text{HO}_2/\text{OH})</td>
<td>(2.0 \times 10^8) molec.cm(^{-3})/1.7(\times 10^6) molec.cm(^{-3}) (daytime)</td>
<td>CIMS observations</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>1.83 ppm</td>
<td>Global average</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_6)</td>
<td>2.1 ppbv</td>
<td>canister observations</td>
</tr>
<tr>
<td>(\text{C}_3\text{H}_8)</td>
<td>811 pptv</td>
<td>canister observations</td>
</tr>
<tr>
<td>(\text{n-C}4\text{H}{10})</td>
<td>486 pptv</td>
<td>canister observations</td>
</tr>
<tr>
<td>(\text{CH}_3\text{CHO})</td>
<td>90 pptv</td>
<td>TOGA VOC analyzer</td>
</tr>
<tr>
<td>(\text{CH}_2\text{OH})</td>
<td>667 pptv</td>
<td>TOGA VOC analyzer</td>
</tr>
<tr>
<td>(\text{CH}_3\text{C(O)CH}_3)</td>
<td>1.1 ppbv</td>
<td>TOGA VOC analyzer</td>
</tr>
<tr>
<td>Aerosol surfaces</td>
<td>56 um(^2) cm(^{-3})</td>
<td>SMPS observations</td>
</tr>
</tbody>
</table>

Daytime = 09:00-18:00
Loss rates of HOCl, HCl, and Cl\textsubscript{2} to heterogeneous surfaces \((k_{\text{HOCl}}, k_{\text{HCl}}, k_{\text{Cl2}}) \) are assumed to be the diffusion rates of the gas phase species to heterogeneous surfaces. The calculation method is described in Chapter 3. The heterogeneous surfaces likely include aerosol surface and snow surface. Because the surface area of snow is not well determined, aerosol surface is used and the heterogeneous loss rates may be underestimated. The mass accommodation coefficients of HOCl, HCl, and Cl\textsubscript{2} are 0.3 [Pratte and Rossi, 2006], 0.18 [Fluckiger and Rossi, 2003; Robinson et al., 1998], and 0.02 [Hu et al., 1995], respectively. The gas phase reaction rate constants are obtained from NASA Jet Propulsion Laboratory compilation [Sander et al., 2006] and IUPAC compilation [Atkinson et al., 2004]. The photolysis rates are derived from the Actinic flux measurements in the campaign.

4.2.3 HCl predictions

HCl is simulated with constraints from Cl\textsubscript{2} and other measurements. Cl atoms are calculated via Eqn. 4.2 with steady-state assumption. The concentrations of Cl\textsubscript{2}, ClO, NO, O\textsubscript{3}, OH, HO\textsubscript{2}, RH, and aldehyde (RCHO) are from the measurements in the campaign. The ClO radicals were measured by the flowing chemical reaction method [Stephens et al., 2011].

\[
[\text{Cl}]_{\text{pred}} = \frac{I_{\text{Cl2}}[\text{Cl2}]+ I_{\text{ClO}}[\text{ClO}]+k_1[\text{ClO}]^2+k_2[\text{ClO}][\text{NO}]+k_3[\text{ClO}][\text{OH}]+k_4[\text{Cl2}][\text{OH}]}{\Sigma k[RH]+\Sigma k'[RCHO]+k_5[\text{O}_3]+k_6[\text{HO}_2]} \quad \text{Eqn 4.2}
\]

\[
[H\text{Cl}]_{\text{pred}} = \frac{\Sigma k[RH]+\Sigma k'[RCHO]}{k_{\text{HCl}}}[\text{Cl}]_{\text{pred}} \quad \text{Eqn 4.3}
\]

HCl is also assumed to be in steady-state, with an average lifetime of 0.4 hour due to loss on aerosol surfaces. \(k_{\text{HCl}} \) is the diffusion rate of HCl to aerosol surfaces. The
accommodation coefficient of HCl is assumed to be 0.18 [Fluckiger and Rossi, 2003]. The reaction rate constants are also from Jet Propulsion Laboratory compilation [Sander et al., 2006].

4.2.4 ClO measurements and predictions

Sum of chlorine radicals (ClO_x = ClO + Cl) were measured by flowing chemical reaction method, which quantitatively converts reactive chlorine radicals to a stable halogenated acetone product using a reactive alkene as halogen atom trap [Stephens et al., 2011] in the same campaign. Because Cl concentrations (10^5 atoms cm^{-3}) are much lower than ClO (pptv), the observed ClO_x concentrations are assumed to be the concentrations of ClO. ClO concentrations can be calculated by eqn. 4.4 constrained to Cl\textsubscript{2} and other measurements.

\[
\begin{align*}
k_1[Cl][O_3] &= \\
k_{12}[ClO]^2 + J_{ClO}[ClO] + k_{11}[ClO][HO_2] + k_{24}[BrO][ClO] + k_{13}[ClO][NO] + k_{25}[ClO][NO_2]
\end{align*}
\]

Eqn 4.4

4.2.5 Back trajectories footprint residence time

A FLEXPART Lagrangian particle dispersion model [Stohl et al., 2005] driven by windfields from the Weather Research and Forecasting (WRF) model [Fast and Easter, 2006] is used to simulate 2-day backward transport history of the air masses arriving at the measurement site (71° 17' 26" N, 156° 47' 19" W Barrow, Alaska). The WRF (V3.3) model was constrained by Climate Forecast System Reanalysis (CFSR) products from National Centers for Environmental Prediction (NCEP) (http://cfs.ncep.noaa.gov/cfsr/)
and the output windfield from the WRF (V3.3) model has a resolution of 36 km × 36 km in the horizontal and 46 layers from the surface to 10hpa in the vertical. The FLEXPART model shares the same horizontal and vertical resolution as WRF, and was run in the backward mode to calculate retroplumes every hour [Cooper et al., 2005, 2010; Stohl et al., 2003]. Each retroplume consisting of 5000 particles released from a 4 km × 4 km × 400 m volume box located at the measurement location. For each retroplume, a 3-D field of 24-hour integrated residence time in unit of second was output every day from FLEXPART and was further integrated over a 2-day period in each of the model grid. In order to identify the source regions of the Cl₂, a 2-D horizontal field of vertically integrated residence time from the surface to 400m, called footprint residence time (FRT) [Cooper et al., 2005; Stohl et al., 2003], for each retroplume is calculated. Non-zero FRT at a certain grid (location) indicates the overpassing of the air masses within the lowest 400 m in the vertical during the past 2 days [Cooper et al., 2005, 2010; Stohl et al., 2003].

QuikSCAT sea ice backscatter coefficient is used as a proxy of sea ice age [Kwok, 2004; Simpson et al., 2007b] (Figure 4.4a). QuikSCAT sea ice backscatter coefficient data were downloaded from http://www.ifremer.fr/. The data have a spatial resolution of 12.5 km × 12.5 km and temporal resolution of 1 day, and range from 0 to 250. Higher backscatter coefficient represents more multi-year sea ice fraction of the sea ice.

4.3 Results and discussion

4.3.1 Cl₂ measurements and predictions
High levels of Cl$_2$ were observed with maximum mixing ratios of ~400 pptv (Figure 4.2). The observed Cl$_2$ has maximum concentrations in the early morning or late afternoon, with no significant concentrations at night. Both the diurnal pattern and magnitude of the observed Cl$_2$ were surprising as Cl$_2$ rapidly photolyzes during the day [e.g. Vogt et al., 1996]. For this reason the Cl$_2$ observations were scrutinized for potential problems. Excellent isotope ratios of the detected masses (mass 197 and 199 amu) (see section 4.2.1) confirmed that the detected species contained two chlorine atoms. Measurements of hypobromous acid (HOBr), which is readily converted to Br$_2$ on the inlet surfaces [Neuman et al., 2010], by the same instrument during the campaign [Liao et al., 2011] demonstrated that the inlet of the CIMS was compatible with efficiently sampling reactive gases. Significant interferences in Cl$_2$ measurements due to conversion of HOCl on inlet are also unlikely as predicted levels of HOCl and ClO are much lower than the observed Cl$_2$ (Figure 4.3). The modeled HCl and ClO levels constrained by observed Cl$_2$ and other measurements were consistent with the detected HCl and ClO concentrations (see section 4.3.2). The calibration of the CIMS was also confirmed by comparison of BrO observations by the CIMS and long path differential optical absorption spectrometer (LPDOAS) during the Barrow campaign.
The sources and formation mechanisms of the observed Cl₂ are not determined, but O₃ and sunlight are likely required. The concentrations of Cl₂ are well correlated with O₃ (Figure 4.2). The average diurnal profile of Cl₂ accounted for the days when average daytime Cl₂ was higher than 10 pptv is shown in Figure 4.3 (red). The corresponding noontime production rate of the Cl₂ is estimated to be 2.0×10^6 molec cm$^{-3}$ s$^{-1}$ on average (orange), and had a diurnal profile similar to the photolysis rate of Cl₂ (Figure 4.3). This corresponds to a large Cl₂ flux of 8×10^8 molec cm$^{-2}$ s$^{-1}$ to the atmosphere around noon assuming a noontime boundary layer height of 400 m, which was estimated from the vertical temperature profiles from ozonesonde measurements. The average Cl₂ diurnal profile had a local minimum at noon, similar to nitrogen oxide (NO) from snow emission.
at Summit, Greenland [Thomas et al., 2011]. This indicates that maximum boundary layer height around noon may contribute to Cl₂ noontime local minimum, similar to what it does to NO at Summit, Greenland based on 1D model prediction [Thomas et al., 2011]. The Lab experiments and model simulations [e.g. Oum et al., 1998; Knipping et al., 2000] indicated that Cl₂ can be formed from photolysis of ozone and aqueous sea-salt particles. However, the UV radiation flux, ozone concentrations, and sea-salt particles surface areas in these experiments and simulations are much higher than in the Arctic environment [Oum et al., 1998; Knipping et al., 2000].

Average diurnal profiles of Cl, ClO, HOCl and HCl are simulated based on the known chlorine chemistry with constrained to Cl₂ observations (Figure 4.3). The modeled Cl, ClO, HOCl and HCl reached maximum concentrations near local noon. On average about 2.5×10^5 atom cm$^{-3}$ Cl atoms were predicted at local noon. The dominant chlorine species in the daytime is HCl. The concentrations of HOCl are similar to ClO but much less (4–5 times less) than Cl₂. This is consistent with the fact that Cl atoms not only react with O₃ but also efficiently react with methane and other VOCs, and that most Cl atoms are partitioned to HCl instead of ClO or HOCl. The ratios of predicted ClO to HOCl are similar to that of BrO to HOBr from either observations or predictions [Liao et al., 2011c].
Figure 4.3 Observed average diurnal profiles of Cl$_2$ (red), Cl$_2$ photolysis rate (dashed grey), estimated average Cl$_2$ production rate (J_{ClCl}) (orange), and model-predicted average diurnal profiles of HCl (blue), ClO (black), HOCl (purple), and Cl atoms (green).

The average total gas phase chlorine is estimated to be 250 pptv from the observed Cl$_2$ and predicted HCl, HOCl, ClO, and Cl atoms. Assuming that the gas phase chlorine species were well mixed in the boundary layer of 400 m, 250 pptv total gas phase chlorine corresponds to 5×10^{-6} mol/m2 chlorine. Surface snow chlorine (Cl$^-$) was measured to be 185 μM on average during the campaign. This corresponds to 1.85×10^{-2} mol/m2 Cl$^-$ the top 10 cm snow surface can provide. As no aerosol chemical mass loading was measured during the campaign, the particle phase Cl$^-$ is estimated to be 40 ng/m3 based on several years’ Arctic aerosol measurements in March and April [Sturges and Barrie, 1987]. This estimated aerosol Cl$^-$ loading equals to 4.5×10^{-7} mol/m2 Cl$^-$ aerosols can provide within 400 m boundary layer. This comparison indicates that
particle phase Cl^- is unlikely large enough to sustain the total gas phase chlorine and surface snow is likely to be the main source of the observed Cl_2.

Back trajectories from a Lagrangain particle dispersion model (Flexpart) [Stohl et al., 2005] driven by windfields from the Weather Research and Forecasting (WRF) are used to investigate the source of high levels of Cl_2. Detailed modeling information is provided in section 4.2.4. QuikSCAT sea ice backscatter coefficient is used as a proxy of sea ice age [Kwok, 2004; Simpson et al., 2007b] (Figure 4.4a). Footprint residence time of 2-day back trajectories for high daytime Cl_2 levels (91-100 percentiles) and low daytime Cl_2 levels (0-10 percentiles) are shown in Figure 4.4b and 4.4c, respectively. The air masses arriving at Barrow with high levels of Cl_2 observed had higher residence time (red) within the lowest 400 m near the surface around Barrow and to the northeast of Barrow, where the closest multiple year sea ice was present (Figure 4.4a). The air masses arriving at Barrow with low levels of Cl_2 observed likely spent more time above the boundary layer around Barrow and had more residence time further away to the north and northwest of Barrow in the boundary layer. This supports the idea that Cl_2 is likely produced or recycled on the snow surface. The lack of Cl_2 at night also indicates that Cl_2 likely reacts with the snow surface after deposition. The lag in the Cl_2 diurnal profile after sunset supports that Cl_2 has an extra loss like deposition besides photolysis.
Figure 4.4 (a). QuikSCAT sea ice backscatter coefficient map. The sea ice consisting more multi-year fraction has higher sea ice backscatter coefficient (blue). (b). Average footprint residence time of two-day back trajectories for the days with high daytime Cl$_2$ cases (90-99 percentiles). Each day has 12 back trajectories. The number of back trajectories in the high Cl$_2$ cases is n=24. (c). Average footprint residence time of two-day back trajectories for the days with low daytime Cl$_2$ cases (0-10 percentiles). Each day has 12 back trajectories. The number of back trajectories in the low Cl$_2$ cases is n=24.

High levels of the chlorine atoms produced from photolysis of Cl$_2$ play a significant role in methane oxidation, O$_3$ loss, and mercury oxidation in Barrow (Figure 4.5). On average the oxidation rates of CH$_4$ by Cl atoms (60%) are higher than that by OH radicals (40%). Cl atom is the dominant oxidant (82%) of CH$_4$ during high Cl$_2$ periods (> 100 pptv). If high levels of Cl$_2$ are ubiquitous in the Arctic, they can play an important role in the CH$_4$ budget. On average ClO plays a smaller role (21%) than BrO (73%) in catalyzing ozone depletion in the Arctic. However, ClO can contribute to 41% of O$_3$ loss during high Cl$_2$ periods. Cl atoms have a smaller impact on mercury oxidation when the lowest published reaction rate constant of Hg0 and Cl is used [Donohoue et al., 2005]. However, Cl atoms can still account for 13% of mercury oxidation during high Cl$_2$ periods. The estimated impact of Cl on mercury oxidation will be enhanced if larger reaction rate coefficients are used [Stephens et al., 2011].
Figure 4.5 The impact of chlorine radicals compared to OH, bromine radicals, and other chemical species on methane oxidation (a), ozone loss (b), and mercury oxidation (c), on average (left) and during high Cl\textsubscript{2} periods (Cl\textsubscript{2} > 100 pptv) (right). The measurements of bromine species are provided in Liao et al. [2011c].

4.3.2 HCl measurements and predictions

The predicted HCl from steady-state calculation (section 4.2.3) reasonably agreed ($R^2 = 0.69$) with the observed HCl (Figure 4.6). The diffusion rate of HCl to aerosol surfaces is assumed to be the loss rate of HCl to heterogeneous surfaces. In the remote marine boundary layer, significant HCl is not produced from acid displacement because the acidity is insufficient to titrate all sea salt alkalinity [Erickson et al., 1999]. These indicate that the observed Cl\textsubscript{2} levels were generally consistent with the measured HCl concentrations.
4.3.3 ClO measurements and predictions

Up to ~10 pptv ClO was observed. ClO concentrations can be calculated by eqn. 4.4 constrained to Cl₂ and other measurements shown in section 4.2.4. The time series plot and the correlation plot between modeled and observed ClO when (Cl₂ > 1pptv) are shown in Fig. 4.7. The calculated ClO had a similar magnitude to the observed ClO although the ClO measurements are scattered.
4.3.4 BrCl measurements

Much lower BrCl concentrations compared to Cl₂ were observed with concentrations above detection limit in the early morning or late afternoon. The BrCl concentrations have no clear correlation with other bromine species (BrO, HOBr, and Br₂). On the other hand, BrCl was detected only when Cl₂ was observed. The BrCl measurements are plotted against Cl₂ measurements divided by \(J_{\text{BrCl}} \) when \(J_{\text{BrCl}} > 1.5 \times 10^{-3} \) s\(^{-1} \) (Figure 4.8). BrCl measurements were well correlated with Cl₂/\(J_{\text{BrCl}} \) (\(R^2 = 0.70 \)) when BrCl was detected. The formation of BrCl from gas phase reaction of ClO with BrO was excluded due to the low reaction rate to synthesize BrCl. This indicates that BrCl is likely a product from heterogeneous reaction of chlorine compounds (e.g. Cl₂, HOCl, or HCl) and photolysis of BrCl is the dominant loss rate of BrCl in the daytime at Barrow. This implication is supported by the finding from Huff and Abbat [2000] that BrCl is formed from uptake of Cl₂ or HOCl on bromide-ice film. Bromide in aqueous phase then can be activated through the formation of BrCl.
4.4 Conclusions

This study discovered unexpectedly high levels of Cl$_2$ at Barrow, AK. The average diurnal pattern of high levels of Cl$_2$ can be reasonably predicted by a time dependent model with inclusion of a Cl$_2$ source as a function of sun light. Back trajectories analysis indicates that surface covered by snow or sea ice especially multiple year sea ice is the source of Cl$_2$. The observed Cl$_2$ concentrations were generally consistent with the measured HCl levels. Much less BrCl was also detected and likely produced from heterogeneous reactions of chlorine compounds. More direct measurements of speciated chlorine especially Cl$_2$ and HOCl are needed to investigate if high levels of chlorine species are widespread in the Arctic. Lab experiments are also needed to explore the Cl$_2$ formation mechanisms and help evaluate the trend of the high levels of active chlorine species in the Arctic.
CHAPTER 5

OBSERVATIONS OF HYDROXYL AND PEROXYL RADICALS
AND THE IMPACT OF BRO AT SUMMIT, GREENLAND IN 2007
AND 2008

5.1 Introduction

Summit, Greenland (72°34’ N, 38°29’ W, alt = 3.3 km) is located in the middle of the Greenland Ice Sheet and has been the site of a series of scientific studies beginning with ice coring in the 1980s [e.g. Hammer et al., 1980; Mayewski and Bender, 1995]. In more recent years, the interaction between photochemically active species in the snowpack and the overlying atmosphere has been studied in detail at Summit and other polar stations [e.g. Dibb and Jaffrezo, 1997; Grannas et al., 2007; Jones et al., 2008; Davis et al., 2001; Huey et al., 2004]. Elevated levels of species emitted from surface snow such as nitric oxide (NO), formaldehyde (CH₂O), and hydrogen peroxide (H₂O₂) have been observed over sunlit snow in a series of campaigns [Dibb et al., 2002 and 2004; Honrath et al., 1999 and 2002; Hutterli et al., 1999, 2001 and 2004; Davis et al., 2001; Slusher et al., 2002; Helmig et al., 2008]. Snowpack emissions of radical precursors (nitrous acid (HONO), H₂O₂, and CH₂O) and NOx (NO + NO₂) have the potential to significantly enhance HOx (hydroxyl (OH) + hydroperoxyl (HO₂) radicals) photochemistry in these locations [e.g. Yang et al., 2002; Chen et al., 2001].
The OH and peroxy radicals (HO$_2$+RO$_2$) have been measured in a few polar locations and the concentrations vary based on the radical sources as well as environmental conditions. The daytime mean value of OH observed at Palmer station (64°46′ S, 64°3.0′ W) in Antarctica was 3 × 105 molec.cm$^{-3}$ in austral summer [Jefferson et al., 1998]. The low OH levels were found to be consistent with the high solar zenith angle, extensive cloud coverage, no snow coverage, and low NO$_x$ levels (typically near detection limits of 2 – 4 pptv) [Jefferson et al., 1998]. OH concentrations observed at South Pole were unexpectedly high, with an average value of 2.0 (±0.9)×106 molecule cm$^{-3}$ in November and December from three field campaigns ISCAT 98, ISCAT 00 and ANTCI 03 [Mauldin et al., 2001, 2004 and 2010; Grannas et al., 2007]. The high OH levels at South Pole were due to low boundary layer height and snowpack emissions that gave high levels of NO$_x$ and to a lesser extent formaldehyde [Davis et al., 2001; Hutterli et al., 2004]. A photochemical model constrained to CH$_3$O and H$_2$O$_2$ measurements predicted OH levels with a median modeled to observed (M/O) ratio of 1.27 [Chen et al., 2004]. However, the M/O ratio for OH was found to vary with NO levels at South Pole (Chen et al., 2001 and 2004). The model over predicted OH significantly at low NO (NO < 50 pptv; M/O > 1.5) and high NO (NO > 150 pptv; M/O = 1.5) levels but agreed better at moderate levels of NO [Chen et al., 2004]. Sjostedt et al. (2007) measured OH (mean 6.3 × 106 molec.cm$^{-3}$) and HO$_2$+RO$_2$ (mean 2.8 × 108 molec.cm$^{-3}$) levels at Summit, Greenland during summer 2003. The observed HO$_2$+RO$_2$ levels agreed well with the model predictions, although the measured OH levels were elevated compared to the predictions [Sjostedt et al., 2007; Chen et al., 2007]. Sjostedt et al. [2007] suggested that halogen may be present at Summit, perturbing the HO\times cycling and enhancing OH levels.
In contrast, a later study at Halley Bay, Antarctica (75° 35’ S, 26° 19’ W) found average OH levels of 3.9×10^5 molec cm$^{-3}$ in February with typical maximum (local noontime) levels of 7.9×10^5 molec cm$^{-3}$ [Bloss et al., 2007; Bloss et al., 2010]. The OH levels at Halley Bay were slightly higher than measured at Palmer station in the same season of the year but significantly lower than observed at South Pole. The low levels of OH were surprising as mean diurnal NO levels of up to ~14 pptv and significant iodine monoxide (IO) and bromine oxide (BrO) levels of up to ~7 pptv and ~ 9 pptv were observed. A photochemical box model including halogen reactions significantly over predicted observed levels of OH and HO$_2$, although the model well predicted the mean levels and diurnal patterns of NO$_x$ (NO and NO$_2$) [Bloss et al. 2007 and 2010]. The mean daily maximum M/O ratio of OH was 3.8 and of HO$_2$ was 2.8. The mean observed HO$_2$ to OH ratio of 46 was in good agreement with the mean predicted value of 44 from the model considering bromine and iodine chemistry, and no elevated OH was observed.

Prior to the GSHOX campaign, there was only indirect evidence that BrO may exist at Summit, Greenland. Although the overall reservoir of bromine at Summit is much less than in the coastal Arctic where ozone depletion events (ODEs) are typically observed, vertical profiles of ozone obtained from balloon borne sensors have demonstrated that ozone in the boundary layer is consistently depleted relative to the air above [Helmig et al., 2002]. However, the reaction of NO (~20 pptv) and RO$_2$ (~108 molec.cm$^{-3}$) in the boundary layer at Summit should give a local ozone production of ~2 ppbv/day [Sjostedt et al, 2007]. This type of ozone production is evident in the NO$_x$ (NO+NO$_2$) rich South Pole boundary layer [Crawford et al, 2001] where boundary layer ozone is elevated relative to the air above [Helmig et al., 2002]. In addition, mercury
oxidation in snow has been observed at Summit, Greenland [Fain et al., 2008, Brooks et al., 2011]. As \(\text{Br} + \text{Hg}^0 \) (GEM) \(\rightarrow \) \(\text{Hg}^{2+} \) (RGM) is the only well established reaction that can initiate such rapid conversion of gaseous element mercury (GEM) to reactive gaseous mercury (RGM) [Ariya et al., 2002; Donohoue et al., 2006], depleted GEM and elevated RGM may be a signature of active bromine chemistry as RGM is a relatively short lived species [Steffen et al., 2008].

High levels (up to 30–40 pptv) of BrO are typically found in the polar marine boundary layer near large sources of halides during ODEs [Tuckermann et al., 1997; Hausmann and Platt, 1994; Saiz-lopez et al., 2007; Liao et al, 2011a]. However, significant levels of BrO have been observed in a variety of other marine locations. For example, BrO was observed in the tropical marine boundary layer within the Cape Verde archipelago by Read et al. (2008) with an average daytime level of 2.5 pptv. Up to \(\sim 7 \) pptv of BrO was observed in the mid-latitude marine boundary layer at Roscoff, France \((48.7^\circ \text{N}, 4.0^\circ \text{W}) \) [Mahajan et al., 2009] and at the Mace Head Atmospheric Research Station, Ireland \((53.33^\circ \text{N}, 9.90^\circ \text{W}) \) [Saiz-lopez et al., 2006].

To investigate the hypothesis that BrO is present at Summit and that it impacts HOx photochemistry, a suite of instruments were used to measure OH, HO\(_2\)+RO\(_2\), BrO and other species at Summit, Greenland in spring 2007 and summer 2008. The observations of OH and HO\(_2\)+RO\(_2\), and their comparison to photochemical models are presented in this chapter. The BrO observations and the associated snowpack chemistry are discussed by Stutz et al. [2011] and Thomas et al. [2011], respectively.

5.2 Methods
A comprehensive collection of instruments were used at Summit, Greenland during May – June 2007 and June – July 2008 to measure trace gases and radicals, aerosols, actinic flux, and meteorological parameters. Table 5.1 provides a summary of the measurements during the campaign. The details of measurement techniques not specifically summarized are presented in the references in Table 5.1. Most of the measurements were located in a satellite camp ~1 km to the south of the main station.

The layout of the experiment is shown in Figure 5.1.

Table 5.1 Summary of the measurements at Summit, Greenland 2007-2008.

<table>
<thead>
<tr>
<th>Species and parameters</th>
<th>Instrument</th>
<th>Uncertainty</th>
<th>Institution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$</td>
<td>UV absorption ozone analyzer</td>
<td><±5%</td>
<td>Ga. Tech</td>
<td>Ryerson et al. (2000)</td>
</tr>
<tr>
<td>NO</td>
<td>Chemiluminescent gas analyzer</td>
<td>±10%</td>
<td>Ga. Tech</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Canister/GC</td>
<td><±5%</td>
<td>UCI</td>
<td>Swanson et al. (2002)</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Canister/GC</td>
<td><±5%</td>
<td>UCI</td>
<td>Swanson et al. (2002)</td>
</tr>
<tr>
<td>NMHC</td>
<td>Canister/GC</td>
<td><±5%</td>
<td>UCI</td>
<td>Swanson et al. (2002)</td>
</tr>
<tr>
<td>OH</td>
<td>CIMS</td>
<td>±30%</td>
<td>Ga. Tech</td>
<td>Sjostedt et al. (2007)</td>
</tr>
<tr>
<td>HO$_2$ + RO$_2$</td>
<td>CIMS</td>
<td>±35%</td>
<td>Ga. Tech</td>
<td>Sjostedt et al. (2007)</td>
</tr>
<tr>
<td>BrO</td>
<td>CIMS</td>
<td>±30%-36%</td>
<td>Ga. Tech</td>
<td>Liao et al. (2011a)</td>
</tr>
<tr>
<td>BrO</td>
<td>DOAS</td>
<td>±10%</td>
<td>UCLA</td>
<td>Stutz et al. (2011)</td>
</tr>
<tr>
<td>SMPS$_N$</td>
<td>SMPS/CPC</td>
<td>±10%</td>
<td>UNH</td>
<td>Ziemba et al. (2010)</td>
</tr>
<tr>
<td>SMPS$_S$</td>
<td>SMPS/CPC</td>
<td>±10%</td>
<td>UNH</td>
<td>Ziemba et al. (2010)</td>
</tr>
<tr>
<td>GEM</td>
<td>Tekran</td>
<td>±2%</td>
<td>NOAA</td>
<td>Brooks et al. (2011)</td>
</tr>
<tr>
<td>RGM</td>
<td>Tekran</td>
<td>±5%</td>
<td>NOAA</td>
<td>Brooks et al. (2011)</td>
</tr>
<tr>
<td>FPM</td>
<td>Tekran</td>
<td>±5%</td>
<td>NOAA</td>
<td>Brooks et al. (2011)</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>Mist Chamber</td>
<td>±15%-20%</td>
<td>UNH</td>
<td>Dibb et al. (1998)</td>
</tr>
<tr>
<td>Soluble Bromine</td>
<td>Mist Chamber</td>
<td>±15%-20%</td>
<td>UNH</td>
<td>Dibb et al. (1998)</td>
</tr>
<tr>
<td>HONO</td>
<td>Mist Chamber</td>
<td>±15%-20%</td>
<td>UNH</td>
<td>Dibb et al. (1998)</td>
</tr>
<tr>
<td>Actinic Flux</td>
<td>SAFS</td>
<td>±10%</td>
<td>U. Houston</td>
<td>Shetter and Muller (1999)</td>
</tr>
<tr>
<td>Temperature</td>
<td>F-Thermocouples</td>
<td>±0.5°C</td>
<td>U. Houston</td>
<td>Haman et al. (2011)</td>
</tr>
<tr>
<td>WS/WD</td>
<td>AWS/Digital compass</td>
<td></td>
<td>U. Houston</td>
<td>Haman et al. (2011)</td>
</tr>
</tbody>
</table>
Figure 5.1 The layout of the CIMS and LP-DOAS instruments in the Summit campaign.
5.2.1 HOx measurements by CIMS

The chemical ionization mass spectrometry (CIMS) instrument to measure HOx (OH and sum of HO2 + RO2) is nearly identical to that used to measure HOx in 2003 [Sjostedt et al., 2007; Sjostedt, 2006]. The basic methods are based on the work of Tanner et al. [1997]. The CIMS was calibrated for OH and HO2. Because many of the simple RO2 species (e.g. CH3O2) are efficiently converted to HO2 by this method [Edwards et al., 2003], we assumed that the sensitivities for RO2 were the same as for HO2. The CIMS was located in the satellite camp (Figure 5.1) and the inlet was about 1.5 m above the snow surface. The dominant uncertainty in the OH and HO2+RO2 measurements is the accuracy of the calibration source [Sjostedt et al., 2007]. The combined uncertainties are estimated to be ~30% for OH measurements and ~35% for HO2+RO2 measurements. The calibration standards for both OH and HO2 measurements are produced from the photolysis of ambient water vapor, consequently, the uncertainty in the ratio of observed OH to HO2+RO2 is smaller than the absolute uncertainties.

5.2.2 BrO measurements by CIMS

The CIMS used to measure BrO levels at Summit is essentially identical to the low pressure CIMS systems used to measure halogens on the NASA DC-8 and NOAA P3 aircrafts during the ARCTAS and ARCPAC campaigns [Neuman et al., 2010], and at Barrow, Alaska during the OASIS 2009 campaign [Liao et al., 2011a]. The details of the instrument and air sampling inlet are described in [Liao et al., 2011a] and in chapter 2 and only significant differences are described here.

SF6 was used as a reagent ion to ionize BrO and other species such as SO2.
\[
\begin{align*}
\text{SO}_2 + \text{SF}_6^- & \rightarrow \text{F}_2\text{SO}_2^- + \text{SF}_4 & \text{R5.1} \\
\text{BrO} + \text{SF}_6^- & \rightarrow \text{BrO}^- + \text{SF}_6 & \text{R5.2} \\
\text{Br}_2 + \text{SF}_6^- & \rightarrow \text{Br}^- + \text{SF}_6 & \text{R5.3}
\end{align*}
\]

The charge transfer reaction of SF\(_6^-\) with BrO R5.2 was observed for the first time as part of this work. The rate constant for this reaction was determined relative to that of SF\(_6^-\) with Br\(_2\) R5.3 [Streit, 1982]. BrO was synthesized from the reaction of O (\(^3\)P) with Br\(_2\) in excess ozone as described in Liao et al. [2011a]. The ratio of the rate constant for R5.3 to R5.2 was determined to be 1.0 ± 25% in the laboratory. The rate constant for R5.2 derived from this work is \((5 \pm 2) \times 10^{-10} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}\).

SO\(_2\) was used as our primary calibration gas for determining the sensitivity of the CIMS system in the field [Kim et al., 2007; Slusher et al., 2001] and as a proxy to track the sensitivity of BrO. The ratio of the sensitivity of BrO to that of SO\(_2\) was determined in the laboratory after the campaign as a function of dew point (dewpt). The average sensitivity of SO\(_2\) was ~4 Hz/pptv in 2007 and ~60 Hz/pptv in 2008 summit campaign. The sensitivity ratio of SO\(_2\) to BrO was determined as Eqn. 5.1

\[
\frac{\text{SO}_2}{\text{BrO}} = \begin{cases}
0.76-0.096 \times \text{dewpt}-0.00154 \times \text{dewpt}^2 & \text{ (dewpt} > -35^\circ\text{C)} } \\
2.2 & \text{ (dewpt} < -35^\circ\text{C)}
\end{cases}
\]

eqn. 5.1

The background signal level of BrO during the 2007 Summit campaign was determined by periodically scrubbing the sampled air with an active carbon filter, similar to that used before for removal of SO\(_2\), HO\(_2\)NO\(_2\), and HNO\(_3\). In 2008 the background was determined by using glass wool because it was found to effectively remove halogen species [Neuman et al., 2010].
The detection limits of BrO measurements are estimated to be ~1.8 pptv in 2007 and ~0.7 pptv in 2008. Considering the uncertainty in SO2 standard concentration (~10%), the uncertainties in the sensitivity ratios between BrO and Br2 (~25%) and between Br2 and SO2 (~5%), the total uncertainty in BrO measurements is estimated to be ~36%. The concentrations of BrO at Summit in spring 2007 and summer 2008 were often near the detection limits of both instruments (detection limit of LP DOAS = 0.5–2 pptv; detection limit of CIMS = ~1–2 pptv). Moreover, the measurements of BrO at Summit were the earliest applications of CIMS to measure ambient BrO. SF6 was used as the reagent ion to detect BrO at that time. After these campaigns the more selective reagent ion, I−, was found to sensitively detect BrO [Neuman et al., 2010]. In addition, the capability of CIMS, using I−, to accurately and sensitively measure BrO was demonstrated in Liao et al. [2011a]. Moving forward, CIMS observations of BrO with I− are preferred to SF6 as the latter ion is more prone to interferences as it is more reactive [Huey et al., 1995]. Consequently, conclusions drawn from the CIMS BrO observations in this study must be considered in the context of potential interferences, although the specific candidates for the interference are not known at this time.

5.2.3 BrO measurements by DOAS

The primary BrO measurement during the Summit campaign was a long path differential absorption spectrometer (LP DOAS). The techniques of the LP DOAS instrument were based on the work of Stutz and Platt [1997]. The LP DOAS measured BrO over a path of either 2 km or 5 km (2007) /4 km (2008). The optical paths were 1.5–3 m above the snow. The LP DOAS telescope was located at the edge of the clean air
boundary in the south of the station and two reflectors were located 2 km and 5 km (2007)/4 km (2008) to the South of the light source (Figure 5.1). The details of BrO measurement by LP DOAS are provided by Stutz et al. [2011].

5.2.4 Mercury measurements

Tekran models 2537a/1130/1135 [Brooks et al., 2008] were used to measure gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), also known as gaseous oxidized mercury (GOM), and fine particle mercury (FPM) via cold vapor atomic fluorescence. The details of the mercury measurements are described in the work of Brooks et al. [2011].

5.2.5 Actinic Flux measurements

Actinic Flux were measured by a Scanning Actinic Flux Spectrometer (SAFS) [Shetter and Muller, 1999] by University of Houston. The photolysis rate coefficients (J values) of atmospheric compounds were calculated based on the sum of downwelling and upwelling Actinic Flux.

5.2.6 Photochemical Models

A 0-Dimensional steady-state $\text{HO}_x – \text{NO}_x – \text{CH}_4$ model is used to evaluate the HO_x chemistry at Summit. The model is identical to that described in Sjostedt et al. [2007] and is denoted as the base model (BM). The BM involves 46 chemical reactions which include 8 photolysis reactions and is constrained by the measurements of photolysis rate coefficients (J values) and the following gases: $\text{H}_2\text{O, O}_3, \text{CO, CH}_4,$ and
NO. The model only considered CH$_4$ chemistry because previous studies by Chen et al. [2007] and Sjostedt et al [2007] found that including nonmethane hydrocarbons (NMHC) decreased OH number densities and increased HO$_2$+RO$_2$ number densities less than 10% and that most of the RO$_2$ is CH$_3$O$_2$ at Summit, Greenland. Typical levels of the dominant NMHC species ethane, propane, and butane are 1.0 ppbv, 0.07 ppbv, and 0.04 ppbv, respectively. The NMHC measured in 2007 and 2008 were generally consistent with the measurements in 2003. The average ethane, propane and butane levels were 1.1 ppbv, 0.14 ppbv, 0.03 ppbv, respectively in spring 2007 and 0.9 ppbv, 0.07 ppbv, 0.02 ppbv respectively in summer 2008. Because Summit Greenland is in the middle of Greenland Ice Sheet far away from biogenic and anthropogenic volatile organic carbons (VOCs) sources, we do not expect high levels of oxygenated VOCs reacting with OH at Summit, Greenland. Measurements of larger oxygenated VOCs at Summit, Greenland are needed to validate our assumption. The input data used to constrain the model were averaged to a 10 minute basis. A spin-up time of 1000 s was used for model calculations of relatively long-lived species (e.g. H$_2$O$_2$ and HCHO). The model predictions are compared to OH and HO$_2$+RO$_2$ measurements (assuming RO$_2$ is primarily CH$_3$O$_2$). The rate constants are taken from the JPL compilation (Sander et al., 2006), and the J values are derived from the measured actinic flux [Shetter and Muller, 1999]. Similar to the work of Sjostedt et al. [2007], the model can be run either constrained or unconstrained to HONO measurements. This allows evaluation of the impact of HONO on HO$_x$ levels and the radical budget. The model constrained to HONO observations is referred as BM_HONO.
To examine the impact of BrO on HO\textsubscript{x} levels, bromine reactions (see Table 5.2) were added to the BM. The model incorporating the bromine chemistry is referred as BM\textsubscript{BrO}. Reaction 6 (in Table 5.2) acts as a source of HO\textsubscript{x}. HOBr serves as a temporary reservoir of HO\textsubscript{x} and heterogeneous loss of HOBr is effectively a loss of HO\textsubscript{x}. HOBr levels were assumed to be in steady-state and controlled by reactions 2, 8 and 9 (in Table 5.2). This assumption was valid because the photolysis lifetime of HOBr is relatively short (~5 minutes) at Summit Greenland in the daytime. The assumption was also found to reasonably predict the observed HOBr in Liao et al. [2011c]. The box model is constrained by BrO measurements from CIMS and LP DOAS to illustrate the effect of two BrO datasets on HO\textsubscript{x} levels. The mass accommodation coefficient of HOBr is assumed to be 0.6 [Wachsmuth et al., 2002]. This allowed predictions of OH and HO\textsubscript{2}+RO\textsubscript{2} when BrO measurements were available. The model did not include the heterogeneous sinks of BrONO\textsubscript{2} because the model is constrained to BrO measurements and BrONO\textsubscript{2} does not directly impact the budget of OH and HO\textsubscript{2}+RO\textsubscript{2}. The impact of BrONO\textsubscript{2} on daytime NO\textsubscript{2} levels is also small due to the low BrO concentrations. Daytime NO\textsubscript{2} levels increased ~5\% in 2007 and ~2\% in 2008 when the model considered bromine reaction 4 and 5 in the table 5.2. As the photochemical lifetime (= ~2 minute) of HO\textsubscript{2} is much shorter than the lifetime due to heterogeneous loss (= ~150 minute) with a uptake coefficient of 0.1 [Mao et al., 2010], the model did not consider the heterogeneous loss of HO\textsubscript{2}.

One significant difference from the work of Sjostedt et al. [2007] is that observations of CH\textsubscript{2}O and H\textsubscript{2}O\textsubscript{2} were not available. For this reason, the BM was used to predict CH\textsubscript{2}O and H\textsubscript{2}O\textsubscript{2} levels. In order to test the ability of the model to calculate these
species, predictions of CH$_2$O and H$_2$O$_2$ using data from the 2004 Summit campaign were compared to observations. Both CH$_2$O and H$_2$O$_2$ predictions are in reasonable agreement with the measurements (CH$_2$O: R=0.68, mean M/O = 1.3; H$_2$O$_2$: R=0.72, mean M/O = 2.4), which suggests that the steady state model is viable for estimation of CH$_2$O and H$_2$O$_2$ within about a factor of two. The impact of this relatively high uncertainty in mixing ratios of CH$_2$O and H$_2$O$_2$ on predictions of HO$_x$ and its partitioning are discussed in section 5.4.2.

Table 5.2 Bromine reactions included in the HO$_x$ model.

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Reactions</th>
<th>Reaction rate coefficient k (cm3 molec$^{-1}$ s$^{-1}$ or s$^{-1}$)</th>
<th>k (T = 250 K) (cm3 molec$^{-1}$ s$^{-1}$ or s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br + O$_3$ → BrO + O$_2$</td>
<td>1.7×10$^{-11}$exp(-800/T)</td>
<td>6.9×10$^{-11}$</td>
</tr>
<tr>
<td>2</td>
<td>BrO + HO$_2$ → HOBr + O$_2$</td>
<td>4.5×10$^{-12}$exp(460/T)</td>
<td>2.8×10$^{-11}$</td>
</tr>
<tr>
<td>3a</td>
<td>BrO + BrO → 2Br + O$_2$</td>
<td>2.4×10$^{-12}$exp(40/T)</td>
<td>2.8×10$^{-12}$</td>
</tr>
<tr>
<td>3b</td>
<td>→ Br$_2$ + O$_2$</td>
<td>2.8×10$^{-12}$exp(860/T)</td>
<td>8.7×10$^{-13}$</td>
</tr>
<tr>
<td>4</td>
<td>BrO + NO → Br + NO$_2$</td>
<td>8.8×10$^{-12}$exp(260/T)</td>
<td>2.5×10$^{-11}$</td>
</tr>
<tr>
<td>5</td>
<td>BrO + NO$_2$ + M → BrONO$_2$ + M</td>
<td>k_0=5.2×10$^{-31}$exp(T/300)$^{3.2}$</td>
<td>5.3×10$^{-12}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k_∞=6.9×10$^{-12}$exp(T/300)$^{2.9}$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Br + CH$_2$O → HBr + HCO</td>
<td>1.7×10$^{-11}$exp(-800/T)</td>
<td>6.9×10$^{-13}$</td>
</tr>
<tr>
<td>7</td>
<td>HOBr + hv → Br + O</td>
<td>0.06–0.08 (at noon)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HBrO + hv → Br + OH</td>
<td>3×10$^{-3}$–4×10$^{-3}$ (at noon)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Uptake of HOBr on heterogeneous surface</td>
<td>~1×10$^{-4}$</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Results

5.3.1 OH and (HO$_2$+RO$_2$) observations

The time series of observations of OH, HO$_2$+RO$_2$, J(O1D), BrO, NO, HNO$_3$, HONO, O$_3$, RGM, temperature, wind speeds and wind directions on a 10 minutes time base in spring 2007 and summer 2008 are shown in Figure 5.2. The observations of OH and HO$_2$+RO$_2$ were filtered to exclude the periods when NO >50 pptv. High NO mixing
ratios at Summit are almost always due to pollution plumes from the station power generator. High NO dramatically brought down the HO$_2$+RO$_2$ concentrations and raised the OH concentrations (Figure 5.3). Similar phenomena were observed by previous works as well [e.g. Sjostedt et al., 2007; Bloss et al., 2007]. The HO$_x$ instrument was shut down to save reagent gases at night (22:00 – 06:00 Western Greenland Standard Time (WGST)) when the OH concentrations decreased to near detection limit (10^5 molec.cm$^{-3}$). The gaps in the data other than night time and high NO periods are due to instrument maintenance or malfunction.
Figure 5.2 Time series of measurements of HO$_2$+RO$_2$, OH, J (O1D), BrO, temperature, NO, HNO$_3$, HONO, O$_3$, RGM, wind speeds and directions on a 10 min time base in spring 2007 (top panel) and summer 2008 (bottom panel) Summit campaign.
Figure 5.3 An example of elevated OH and depleted HO$_2$ + RO$_2$ at high NO conditions. The spikes in NO and the responses in OH and HO$_2$ + RO$_2$ are due to the measurement cite being impacted by the plume of the generator.

Diurnal profiles of OH and HO$_2$+RO$_2$ largely followed the patterns of J(O1D) with a maximum at local noon, consistent with the behaviors of short-lived photochemically active species. Although 24 hours of daylight are present in summer time at Summit, J(O1D) decreased by approximately a factor of 100 from noon to midnight. The maxima mid-day levels of OH and HO$_2$+RO$_2$ increased as temperature, J(O1D) and O$_3$ increased, which were consistent with the previous finding that O1D reacting with H$_2$O and snow emissions of H$_2$O$_2$ were the dominant HO$_x$ sources at Summit [Chen et al., 2007] (Mid-day is defined as 10:00 – 15:00 WGST). Overall, the maximum mid-day OH and HO$_2$+RO$_2$ concentrations increased during the measurement
period in spring 2007 as the summer solstice was approached. There was no significant trend in the maximum mid-day OH and HO$_2$+RO$_2$ concentrations during summer 2008 (12 June 2008 – 08 July 2008) as the measurement period was centered about the solstice. The average mid-day OH and HO$_2$+RO$_2$ concentrations were higher in summer 2008 than that in spring 2007, likely a result of the higher radiative flux ($J_{O_3,2007}/J_{O_3,2008} = 1 : 1.4$) and dew points in summer time. The midday median ratio of HO$_2$+RO$_2$ to OH was 107 : 1 in spring 2007 and 102 : 1 in summer 2008 and the midday mean ratio of HO$_2$+RO$_2$ to OH was 109 : 1 with a standard deviation of 23 in spring 2007 and 108 : 1 with a standard deviation of 37 in summer 2008. The HO$_2$+RO$_2$ to OH ratios are comparable to other measurements performed in the lower troposphere in mid latitudes [Ren et al., 2008]. The mid-day median and mean values of OH and HO$_2$+RO$_2$ observations, as well as $J(O^1D)$, $J(NO_2)$, NO, HNO$_3$, HONO, O$_3$, BrO, RGM and temperature in spring 2007 and summer 2008 are summarized in Table 5.3.

Table 5.3 Photochemical species concentrations and parameters in the mid-day (10:00-15:00 WGST) at Summit, Greenland in 2007-2008. (Note: HO$_x$ predictions are from the base model).

<table>
<thead>
<tr>
<th>Species</th>
<th>Year 2007</th>
<th>Year 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>(13 May – 13 June)</td>
<td>(10 June – 08 July)</td>
</tr>
<tr>
<td>OH (10^6 molec.cm$^{-3}$)</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>HO$_2$+RO$_2$ (10^8 molec.cm$^{-3}$)</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>OH pred (10^6 molec.cm$^{-3}$)</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>HO$_2$+RO$_2$ pred (10^8 molec.cm$^{-3}$)</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>NO (pptv)</td>
<td>12.8</td>
<td>17.2</td>
</tr>
<tr>
<td>O$_3$ (ppbv)</td>
<td>54.6</td>
<td>55.3</td>
</tr>
<tr>
<td>BrO$_{PROAS}$ (pptv)</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>BrO$_{CIMS}$ (pptv)</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>RGM(pg/m3)</td>
<td>41.8</td>
<td>64.8</td>
</tr>
<tr>
<td>HNO$_3$ (pptv)</td>
<td>12.9</td>
<td>15.9</td>
</tr>
<tr>
<td>HONO (pptv)</td>
<td>6.5</td>
<td>7.3</td>
</tr>
<tr>
<td>J(O1D) (10^{-5} s$^{-1}$)</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>JNO$_2$ (s$^{-1}$)</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Temperature(°C)</td>
<td>-19.5</td>
<td>-18.2</td>
</tr>
</tbody>
</table>
5.3.2 NO, HNO$_3$ and HONO observations

Diurnal profiles of NO and HONO were also observed at Summit. The average mid-day concentrations of NO and HONO were ~12 pptv and ~6 pptv, respectively. HONO levels were obtained from measurements of soluble nitrite (NO$_2^-$) from the mist chamber [Dibb et al., 2002]. However, it should be noted that the derived HONO levels must be considered an upper limit to gas phase HONO as other species might also produce nitrite in solution. Following the simple NO$_x$ and HONO lifetime arguments in Chen et al. [2004]; NO levels of 12 ppt and HONO levels of 6 ppt would seem to indicate that the soluble nitrite measurement includes species other than HONO. Due to the increase of the boundary layer height through the day, the diurnal profiles of NO had a local minimum at noon [Thomas et al., 2011]. Elevated HNO$_3$ was observed by mist chamber during the days when photochemically enhanced NO was observed. Higher NO, HNO$_3$ and HONO concentrations were observed in spring 2007 than in summer 2008.

5.3.3 RGM and GEM observations

Up to ~250 pg.m$^{-3}$ RGM were observed in the spring 2007 campaign. Clear diurnal profiles of RGM were observed when RGM was greater than 100 pg.m$^{-3}$. Because bromine atoms are one of the few established species that efficiently converts GEM into RGM [Ariya et al., 2002; Donohoue et al., 2006], elevated RGM peaks indicated that significant levels of BrO may be present. Higher RGM levels were observed in spring 2007 than in summer 2008, which suggests that the concentrations of BrO at Summit might be higher in spring 2007 than in summer 2008. High RGM appeared to coincide
with photochemically enhanced NO and HNO₃ in most cases. This is consistent with
snow photochemistry activating bromine chemistry as described in Thomas et al. [2011].

5.3.4 BrO observations

BrO mixing ratios detected by the LP DOAS ranged from below detection limit to
5.5 pptv with an average value of 1.6 pptv in 2007 at Summit. BrO was also measured by
CIMS in the later period of the 2007 campaign with a mean value of 1.7 pptv, ranging
from below detection limit to 6.4 pptv. Lower BrO mixing ratios were observed by both
LP DOAS ([BrO]mean = 0.9 pptv for all data available) and CIMS ([BrO]mean = 1.5 pptv
for all data available) in summer 2008. BrO mixing ratios in 2008 generally ranged from
below detection limit to 4 pptv and 5 pptv detected by LP DOAS and CIMS respectively.
To be noted, the BrO concentrations at Summit were often near detection limits of both
instruments. Diurnal patterns of BrO were observed in spring 2007 and the early part (10
June to 13 June) of summer 2008 by the CIMS with maximum concentrations in the
daytime, which is consistent with BrO as a photochemically active product. No
significant diurnal patterns of BrO were observed by the CIMS in the later period of
summer 2008 as the daytime BrO levels were near the detection limit.

5.4 Discussion

5.4.1 Model Comparison

5.4.1.1 Base Model (BM)

The predicted OH and HO₂+RO₂ from the BM are plotted against the
observations in Figure 5.4. Note that, the discrepancy between HOₓ observations and
predictions increased at high wind speeds (WS > 8 m s\(^{-1}\)) and were excluded from the comparisons. On average 26% of the HO\(_x\) data were excluded and the correlation coefficients were improved (R increase 0.03 on average for BM_model) when HO\(_x\) data were filtered at high wind speed conditions. Higher wind speed conditions did not clearly correspond to low photolysis rate or lower NO\(_x\) levels. The correlation coefficient (R) between photolysis rate and wind speeds were < 0.1 in 2007 and 2008. The correlation coefficient (R) between predicted NO\(_2\) and wind speeds were \(-0.35\) in 2007 and \(-0.29\) in 2008. There is no clear systematic bias introduced when the HO\(_x\) data were filtered at high wind speeds but this filter excluded the most scattered points. It is possible that the uncertainty in the CIMS calibration increases at high wind speeds (> 8 m s\(^{-1}\)) due to turbulent flow in the inlet as suggested in Sjostedt et al. (2007). Overall, the observed and predicted OH and HO\(_2\)+RO\(_2\) from the BM were well correlated (HO\(_2\)+RO\(_2\): R = 0.90, OH: R = 0.83 in 2007; HO\(_2\)+RO\(_2\): R = 0.79, OH: R = 0.76 in 2008). The BM well predicted the magnitude of HO\(_2\) + RO\(_2\) and under predicted OH, especially in summer 2008 (HO\(_2\)+RO\(_2\): slope = 0.87, OH: slope = 0.72 in 2007; HO\(_2\)+RO\(_2\): slope = 0.96, OH: slope = 0.54 in 2008). The slopes were given by equally weighted bivariate regressions. The agreement between the predicted and observed HO\(_2\)+RO\(_2\) (which is dominated by HO\(_2\)) indicates that we have a good understanding of the major sources and sinks of HO\(_2\) which dominates the HO\(_x\) family. However, our understanding of the OH sources and sinks is clearly lacking especially during periods of elevated RGM (see section 5.4.4). The model predicted an average midday HO\(_2\)+RO\(_2\) to OH ratio of 121 : 1 in 2007 and 125 : 1 in 2008, consistent with the values predicted by Chen et al. [2007] using input data from the summit 2003 campaign. The observed average midday HO\(_2\)+RO\(_2\) to OH
ratios were 109 : 1 in 2007 and 108 : 1 in 2008. The predicted and observed HO$_2$+RO$_2$ to OH ratios indicate that a mechanism rolling HO$_2$ back to OH may be missing, with halogen chemistry a likely prospect.

Figure 5.4 HO$_2$+RO$_2$ and OH predictions from the base mode (BM) plotted versus the observations in 2007 and 2008. The data are average on a 10 min time base. The correlation coefficient (R) and the slope and intercept from an equally weighted bivariate regression (red line) for each panel are also denoted in the figure. The units of OH and HO$_2$+RO$_2$ concentrations are molec cm$^{-3}$.

5.4.1.2 Base Model constrained to HONO measurements (BM_HONO)

The correlation coefficients and slopes between predictions from the BM_HONO and observations are shown in Figure 5.5 (HO$_2$+RO$_2$: R = 0.84, slope = 0.90 in 2007 and R = 0.79, slope = 1.09 in 2008; OH: R = 0.78, slope = 0.92 in 2007 and R = 0.78, slope =
0.72 in 2008). The slopes were given by equally weighted bivariate regressions. The correlation coefficient (R) between predicted and observed HO\textsubscript{x} did not improve when the model included HONO source. In 2007, the average modeled to observed (M/O) ratios of HO\textsubscript{2+RO\textsubscript{2}} and OH were 0.87 and 0.84 from the BM, and were 1.18 and 1.25 from the BM_HONO. In 2008, the average M/O ratios of HO\textsubscript{2+RO\textsubscript{2}} and OH were 1.06 and 0.87 from the BM, and were 1.22 and 1.05 from the BM_HONO. The predictions of both OH and HO\textsubscript{2+RO\textsubscript{2}} from the BM_HONO were higher than that from the BM as this adds in a HO\textsubscript{x} source. However, the ratio of HO\textsubscript{2+RO\textsubscript{2}} to OH changed by less than 10% on average. As the HO\textsubscript{x} predictions from the BM had more data points, the correlation between predicted and observed HO\textsubscript{x} did not improve when HONO was included in the model, and the observed HONO is likely to have interferences [Stutz et al., 2010; Sjostedt et al., 2007], the BM is preferred for comparison to HO\textsubscript{x} observations in this work.
Figure 5.5 HO$_2$+RO$_2$ and OH predictions from the base model constrained to HONO measurements (BM_HONO) plotted versus the observations in 2007 and 2008. The data are average on a 10 min time base. The correlation coefficient (R) and the slope and intercept from an equally weighted bivariate regression (red line) for each panel are also denoted in the figure. The units of OH and HO$_2$+RO$_2$ concentrations are molec cm$^{-3}$.

5.4.1.3 Model incorporating halogen chemistry (BM_BrO)

To investigate the impact of BrO on HO$_x$, predicted OH and HO$_2$+RO$_2$ from the BM_BrO unconstrained by HONO measurements and constrained by BrO measurements from the CIMS (BM_BrOCIMS) and LP DOAS (BM_BrOLPDOAS) in 2007 and 2008 are also plotted against the observations (Figure 5.6). Overall, the correlation coefficients between the observed and predicted OH and HO$_2$+RO$_2$ were slightly improved (increased 0.03 except HO$_2$+RO$_2$ in 2007) by incorporation of bromine chemistry with the BrO constrained to the CIMS observations. When the model included bromine chemistry and
was constrained to CIMS BrO, the intercept increased from 1.12×10^5 molec cm$^{-3}$ to 1.65×10^5 molec cm$^{-3}$ and the slope increased from 0.72 to 0.78 in 2007 and the intercept increased from 8.64×10^5 molec cm$^{-3}$ to 9.23×10^5 molec cm$^{-3}$ and the slope increased from 0.54 to 0.56 in 2008 for OH. When the model included bromine chemistry and was constrained to LP DOAS BrO, the intercepts increased from 1.12×10^5 molec cm$^{-3}$ to 3.20×10^5 molec cm$^{-3}$ and the slope remained the same in 2007 and the intercept increased from 8.46×10^5 molec cm$^{-3}$ to 1.15×10^6 molec cm$^{-3}$ and the slope slightly decreased from 0.54 to 0.50 in 2008 for OH. To give a general idea of the difference between predicted OH and HO$_2$+RO$_2$ from the BM and BM_BrO, the average ratios of OH and HO$_2$+RO$_2$ from both models as well as the slopes and intercepts from linear equally weighted bivariate regression are also provided. Predicted OH increased 12% ($[\text{OH}]_{\text{pred_BrO, CIMS}}/[\text{OH}]_{\text{pred}}$)avg in 2007 and 10% in 2008, and predicted HO$_2$+RO$_2$ decreased 10% in 2007 and 8% in 2008 on average when the BM_BrO was constrained to CIMS BrO. Predicted OH increased 10% in 2007 and 4% in 2008, and predicted HO$_2$+RO$_2$ decreased 8% in 2007 and 3% in 2008 on average when the BM_BrO was constrained to LP DOAS BrO. These results indicate that BrO impacted the concentrations of OH and HO$_2$+RO$_2$ at Summit, although all of the enhancement in observed OH relative to model predictions cannot be explained by the influence of BrO.
Figure 5.6 HO$_2$+RO$_2$ and OH predictions from the base model incorporating bromine chemistry constrained by BrO measurements by CIMS (BM_{BrO}^{CIMS}) and LPDOAS (BM_{BrO}^{LPDOAS}) plotted versus the observations in 2007 and 2008. The data are averaged on a 10 min time base. The correlation coefficient (R) and the slope and intercept from an equally weighted bivariate regression (red line) for each panel are also denoted in the figure. The units of OH and HO$_2$+RO$_2$ concentrations are molec cm$^{-3}$.

116
5.4.2 Impact of H$_2$O$_2$ and CH$_2$O

Because CH$_2$O and H$_2$O$_2$ were not observed, they had to be predicted with the photochemical model which may lead to under estimation of them as they are emitted to the atmosphere from the snowpack [Hutterli et al., 1999 and 2001]. Under estimation of CH$_2$O and H$_2$O$_2$ results in under prediction of OH and HO$_2$+RO$_2$, but does not significantly impact the ratios of OH/ HO$_2$+RO$_2$. For example, a 30% increase in the model production rate of H$_2$O$_2$ or CH$_2$O would increase HO$_x$ levels by ~5% and ~10% but would impact the ratio of OH to RO$_2$ by less than 2%. According to the study of HO$_x$ at Summit in 2003 by Chen et al. [2007], H$_2$O$_2$ is the largest snow emitted HO$_x$ sources at Summit, contributing to 37% of the net HO$_x$ sources compared to only 3% from CH$_2$O. As snow emissions of H$_2$O$_2$ increase with temperature [Chen et al., 2007], the warmer temperature in summer 2008 may have contributed to the lower correlation between predicted and observed HO$_x$ in that year. For this reason, temperature dependent snow emissions of H$_2$O$_2$, based on net snow-air exchange rate shown as the following equation, were added to the BM.

\[
d[H_2O_2]/dt = A \times \exp (B/Temperature_{snow}) - C \times [H_2O_2] \text{ (molec.cm}^{-3}.s^{-1} \text{ or ppbv. hr}^{-1})
\]

A, B and C are adjustable constants. Temperature is assumed to be ambient temperature instead of snow temperature. [H$_2$O$_2$] represents ambient H$_2$O$_2$ concentration [Chen et al., 2007]. No significant improvement of the correlation was found between predicted and observed HO$_x$. However, as observations of H$_2$O$_2$ and CH$_2$O were not carried out in 2007 or 2008, enhanced snow photochemistry producing these and potentially other radical precursors in 2008 cannot be ruled out.
5.4.3 Average Comparison

Figure 5.7 shows the average diurnal profiles of hourly OH and HO$_2$+RO$_2$ concentrations from observations and predictions from the BM and the BM_BrO constrained to CIMS measurements in 2007 and 2008. The error bars of the observations are the overall uncertainties including the measurement uncertainties and ambient fluctuations. The error bars of the predictions are the propagated uncertainties from the model inputs uncertainties and variations. The BM simulated the concentrations of OH and HO$_2$+RO$_2$ within the combined uncertainties, except for the OH concentrations in the late afternoons in summer 2008. This confirms that the BM captures the dominant HO$_x$ sources and sinks. The BM also under predicts the OH concentrations in both 2007 and 2008. The midday median modeled to observed (M/O) ratio of OH was 0.88 and 0.87 in 2007 and 2008, and the midday median M/O ratio of HO$_2$+RO$_2$ was 0.97 and 1.08 in 2007 and 2008. A low M/O ratio of OH was also reported in Sjostedt et al. [2007]. The average hourly HO$_2$+RO$_2$ and OH predictions from the BM_BrO constrained to CIMS BrO measurements in 2007 slightly over estimated their concentrations due to the absence of CIMS BrO measurements in the early period of the 2007 campaign and the increase in HO$_x$ levels in the late period of the 2007 campaign relative to the early period. The OH concentrations predicted from BM_BrO were higher compared to the results from the BM, and the average hourly predicted HO$_2$+RO$_2$ concentrations slightly decreased when BM incorporated bromine chemistry in 2008. The model including bromine chemistry brought the predictions both of OH and HO$_2$+RO$_2$ closer to the observations in 2008. The impact of bromine chemistry on HO$_2$+RO$_2$ concentrations was smaller than on OH concentrations. The box model consistently under predicts the OH
concentrations in the later afternoons, which indicates that box model underestimates the sources of OH as the radiation flux and boundary layer height decrease or there may be a change in the sinks or cycling. A similar behavior was observed by Sjostedt et al. [2007]. Snow emitted compounds with higher concentrations or steeper vertical gradients in the later afternoon not included in the photochemical box model may contribute to the under predictions of OH and impact the photochemistry at Summit in the later afternoon.

Figure 5.7 The average diurnal profiles of hourly OH and \(\text{HO}_2+\text{RO}_2 \) observations (red dots and line) and predictions from the BM (black dots and line), and diurnal profile of \(J(\text{O}_1\text{D}) \) (gray dash line) in spring 2007 and summer 2008. The error bars (red) of the observations are the overall uncertainties including the measurement uncertainties and ambient fluctuations. The error bars (gray and blue) of the predictions are the propagated uncertainties from the model input uncertainties and variations.

5.4.4 Enhanced OH and RGM

Due to the limitations of BrO measurements discussed earlier, observations of RGM were also investigated as a proxy for bromine and potentially other chemistry. The
correlations between the BM predictions and observations of HO\textsubscript{x} were examined for enhanced RGM levels (gray dots in Figure 5.8) and low RGM levels (black dots in Figure 5.8). RGM levels were considered to be enhanced when they were above average levels for each of the field seasons and season means were 45 and 11 pg m-3 in 2007 and 2008, respectively.

When high RGM periods were excluded, the slope between the predicted and observed OH significantly increased: the slope of OH increased from 0.72 to 0.97 in 2007 and increased from 0.54 to 0.85 in 2008. The correlation between the predicted and observed OH and HO\textsubscript{2}+RO\textsubscript{2} in 2007 also slightly improved: the correlation coefficient increased from 0.83 to 0.90 for OH and increased from 0.90 to 0.93 for HO\textsubscript{2}+RO\textsubscript{2}. For the 2008 data the correlation was essentially unchanged when high RGM periods were excluded. These results indicate that OH levels are enhanced above predictions when RGM is enhanced. This is consistent with other chemistry (e.g. other halogens) coincident with the Br chemistry that leads to elevated RGM impacting the production of OH from HO\textsubscript{2} and RO\textsubscript{2}.
Figure 5.8 The correlation plots of observed and predicted OH and HO$_2$+RO$_2$ from the BM at low RGM conditions (black dots) and at high RGM conditions (gray dots) in 2007 and 2008. “All” represents the total data including low RGM and high RGM conditions. Equally weighted bivariate regressions are applied to all the data (blue line) and the data at low RGM conditions (red line), respectively. The relevant correlation coefficients, slopes, and intercepts are provided in the figure.

5.4.5 Case study with high RGM

The concentrations of OH, O$_3$, RGM, and BrO during two periods (16 May – 21 May 2007; 12 June – 17 June 2008) are shown in Figure 5.9. The BM clearly underpredicted OH during 16 May – 18 May 2007 (Figure 5.9 (a)). Clear diurnal profiles of RGM were present during the same period, with a maximum concentration of near 250 pg.m$^{-3}$. The RGM peaks indicate that certain levels of Br and BrO may be present during
these periods. Small O$_3$ concentration drops also occurred with the RGM peaks, possibly a result of bromine catalyzed O$_3$ depletion. Up to 5 pptv of BrO were observed by LP DOAS and no CIMS BrO measurements were available during this time. OH predictions from BM_BrO constrained by LP DOAS BrO measurements cannot account for the enhanced OH observed.

Figure 5.9(b) shows the early period of 2008 campaign including three days (12 June – 14 June 2008) with obvious under prediction of OH. The RGM peaks during this period were the highest values in 2008 campaign with a maximum of ~80 pg.m$^{-3}$. During this period, up to 4–5 pptv of BrO were observed by CIMS, and up to ~3 pptv of BrO were observed by LP DOAS. The BrO levels were near the detection limits of the LP DOAS and CIMS instruments. The gaps of BrO and HO$_x$ measurements during 12 June – 14 June 2008 were due to the extremely high wind speeds (> 12 m.s$^{-1}$). The OH predictions from BM_BrO constrained by CIMS BrO measurements are also shown in Figure 5.9(b). These levels of BrO were not large enough to explain the under prediction of OH. The BrO concentrations during 12 June – 14 June 2008 only contribute ~10% to the OH production rate.
Figure 5.9(a): Observations of RGM, O$_3$, BrO by DOAS and OH, and predictions of OH from the BM and BM_BrO when enhanced RGM were observed in 2007 (16 May – 21 May 2007); Figure 5.9(b): The observations of RGM, O$_3$, OH, wind speeds, BrO by CIMS and DOAS, and the predictions of OH from the BM and BM_BrO when enhanced RGM were observed in 2008 (11 June – 17 June 2008).

5.5 Conclusions

The median midday values of HO$_2$+RO$_2$ and OH concentrations observed by CIMS were 2.7 × 108 molec.cm$^{-3}$ and 3.0 × 106 molec.cm$^{-3}$ in spring 2007, and 4.2 × 108
molec.cm$^{-3}$ and 4.1×10^6 molec.cm$^{-3}$ in summer 2008 at Summit. The BM was reasonably accurate for HO$_2$+RO$_2$ ($R = 0.90$, slope = 0.87 in 2007; $R = 0.79$, slope = 0.96 in 2008) but under predicted OH ($R = 0.83$, slope = 0.72 in 2007; $R = 0.76$, slope = 0.54 in 2008). This confirmed our understanding of the dominant HO$_x$ sources and sinks in this environment and that there may be mechanisms perturbing HO$_x$ cycling and enhancing OH above the snow pack. Inclusion of HONO source in the model did not impact the correlation between predictions and observations of HO$_x$ significantly and did not improve the ratio of OH to HO$_2$+RO$_2$. BrO levels detected by CIMS and LP DOAS generally ranged from below detection limits to ~6 pptv and ~5 pptv, respectively. The correlation between observed and predicted HO$_2$+RO$_2$ and OH from the BM$_{BrO \text{CIMS}}$ slightly improved relative to the BM. The model incorporating bromine chemistry brought the average hourly OH and HO$_2$+RO$_2$ predictions closer to the observations in 2008. This indicates that BrO at Summit impacted the HO$_x$ levels, although most of the discrepancies between observations and models cannot be explained by the influence of detected BrO. High levels of RGM were found to be coincident with the significant under predictions of OH, and exclusion of high RGM periods significantly increased the agreement between predicted and observed OH. This is consistent with bromine chemistry and potentially other chemistry leading to elevated RGM and impacting the production OH from HO$_2$ and RO$_2$. Enhanced snow photochemistry producing H$_2$O$_2$, CH$_2$O and potentially other radical precursors at higher temperature may have contributed to the larger discrepancy between predicted and observed HO$_x$ in summer 2008.
CHAPTER 6
CHARACTERIZATION OF SOLUBLE BROMIDE
MEASUREMENTS AND A CASE STUDY OF BRO OBSERVATIONS
DURING ARCTAS

6.1 Introduction

Tropospheric ozone depletion events (ODEs) have frequently been observed in or near the marine boundary layer in the Arctic [e.g. Oltmans, 1981; Bottenheim et al., 2009] and the Antarctic [e.g. Jones et al., 2009] during spring time. The ODEs can extend over horizontal scales of hundreds of kilometers [Ridley et al., 2003] and vertically from the surface to altitudes as high as several hundred meters to ~1 km [Bottenheim et al., 2002; Ridley et al., 2003]. In ODEs ozone mixing ratios drop from typical 30–40 ppbv to as low as 1 ppbv [e.g. Bottenheim et al., 2009 and 2002; Anlauf et al., 1994]. During ODEs, bromine compounds can oxidize gaseous elemental mercury (GEM) to more active and soluble mercury compounds [e.g. Lindberg et al., 2002], which can deposit to the surface and become involved in biogeochemical cycles. The oxidation of certain volatile organic compounds (VOCs) can also be enhanced during ODEs [e.g. Jobson et al., 1994].

Field measurements [e.g. Barrie et al., 1988; Hausmann and Platt, 1994] and modeling results [e.g. Fan and Jacob, 1992; McConnell et al., 1992] have demonstrated that bromine chemistry plays a large role in ODEs. The mechanisms of bromine
catalyzed ozone destruction are reviewed by Simpson et al. [2007a] and the key reactions are listed below.

\[
\begin{align*}
\text{Br}_2 + h\nu & \rightarrow 2\text{Br} & \text{R6.1} \\
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 & \text{R6.2} \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 & \text{R6.3} \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 & \text{R6.4} \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 & \text{R6.5} \\
\text{BrO} + h\nu & \rightarrow \text{Br} + \text{O} & \text{R6.6} \\
\text{HOBr} + h\nu & \rightarrow \text{Br} + \text{OH} & \text{R6.7} \\
\text{Br} + \text{CH}_2\text{O} & \rightarrow \text{HBr} + \text{HCO} & \text{R6.8} \\
\text{Br} + \text{HO}_2 & \rightarrow \text{HBr} + \text{O}_2 & \text{R6.9} \\
\text{HOBr (aq)} + \text{Br}^{-} + \text{H}^{+} & \rightarrow \text{Br}_2\text{(aq)} + \text{H}_2\text{O} & \text{R6.10} \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONO}_2 + \text{M} & \text{R6.11} \\
\text{BrONO}_2 + \text{H}_2\text{O} & \rightarrow \text{HOBr (aq)} + \text{HNO}_3\text{(aq)} & \text{R6.12}
\end{align*}
\]

\(\text{Br}_2\) photolyses and produces \(\text{Br}\) atoms at sunrise (R6.1). Ozone is destroyed by a catalytic cycle initiated by the reaction of \(\text{Br}\) with \(\text{O}_3\), followed by the self-reaction of \(\text{BrO}\) that regenerates \(\text{Br}\) atoms and destroys odd oxygen (R6.2 and R6.3). The efficiency of the cycle is suppressed by the conversion of bromine radicals to \(\text{HBr}\), which is soluble and therefore can deposit to aerosols or the surface [Evans et al., 2003]. \(\text{HOBr}\), which is produced by the reaction of \(\text{BrO}\) and \(\text{HO}_2\) (R6.4) as well as \(\text{BrONO}_2\) hydrolysis (R6.12), can photolyze to produce \(\text{Br}\) atoms (R6.7) or react with \(\text{Br}^{-}\) on surfaces to regenerate \(\text{Br}_2\) (R6.10) and sustain active bromine chemistry [Fan and Jacob, 1992]. The most abundant daytime gas-phase bromine species in the above mechanism, when ozone is above 1 ppbv
in a typical Arctic environment (NO$_2$ < 5 pptv), are BrO, HOBr and HBr [e.g. Evans et al., 2003; Liao et al., 2011c]. The most abundant night time species for these conditions is likely to be Br$_2$ [Liao et al., 2011c].

Models incorporating bromine chemistry have been developed to simulate global ozone and mercury concentrations [e.g. Zeng et al., 2003; Holmes et al., 2010]. However, the sources of active bromine in the atmosphere are not well quantified [e.g. Simpson et al., 2007a and references therein]. Consequently, the bromine source is often parameterized in models or obtained from satellite observations of BrO [e.g. Fan and Jacob, 1992; Zeng et al., 2003]. However, there are challenges deriving the tropospheric column BrO from satellite observations, which are obtained by subtracting the stratospheric contribution from a retrieval of total column BrO. Basic efforts at inferring tropospheric column BrO have assumed the stratospheric contribution is zonally symmetric. However, Theys et al. [2009] showed that the stratospheric burden of total bromine exhibits strong zonal asymmetries at high latitudes, particularly during boreal spring. In addition, Salawitch et al. [2010] demonstrated the sensitivity of tropospheric column BrO inferred from satellites to zonal asymmetries in the satellite burden. Another issue is the impact of clouds on the calculation of air mass factors (AMFs) and the retrieval processes for the altitudes below the clouds [Kühl et al., 2008; Theys et al., 2011; Choi et al., 2011]. The validation of tropospheric column BrO inferred from satellite retrievals using in situ measurements of BrO is an important research task, which we also address below.

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) [Jacob et al., 2010] mission and the Aerosol, Radiation, and Cloud
Processes affecting Arctic Climate (ARCPAC) study [Brock et al., 2011] in spring 2008 provided an excellent opportunity to validate satellite BrO observations with *in situ* measurements of bromine species. ARCTAS and ARCPAC both featured research flights in the Arctic using aircraft with large suites of instruments [Jacob et al., 2010; Brock et al., 2011]. Both the NASA DC-8 and NOAA WP-3D were equipped with chemical ionization mass spectrometers (CIMS) capable of measuring BrO and Br₂+HOBr [Neuman et al., 2010]. The NASA DC-8 was also equipped with a mist chamber (MC) measuring soluble bromide. The MC soluble bromide measurement is the sum of all gas phase species that dissolve in aqueous solution to form Br⁻ [Ridley et al., 2003; Dibb et al., 2010]. This measurement has been used in several polar locations and has proved to be an excellent tracer for active bromine chemistry [Ridley et al., 2003]. Results from ARCTAS and ARCPAC indicated that tropospheric BrO levels were often much smaller than those derived from satellite data, particularly for an assumption of a zonally symmetric stratospheric burden. Salawitch et al. [2010] showed that low *in situ* BrO concentrations and background, non depleted levels of O₃ were often observed in the footprint of satellite BrO “hotspots”, especially over Hudson Bay. They suggested this apparent discrepancy could be resolved if very short lived bromocarbons contribute large amounts of inorganic bromine to the lowermost stratosphere, leading to substantial BrO mixing ratios that could give elevated column BrO in regions of a low altitude (high pressure) tropopause. Neuman et al. [2010] analyzed a series of flights from ARCPAC and ARCTAS and showed that active bromine (Br₂ + HOBr) (up to ~16 pptv) was often detected in the marine boundary layer but found relatively low levels of BrO (up to ~4 pptv). The focus of this work is to investigate the ARCTAS DC-8 flight on 17 April 2008.
when the highest BrO and soluble bromide levels were observed by CIMS and MC, respectively. The response of the MC to the most abundant bromine (Br₂, BrO, HOBr, and HBr) species is quantified to allow a thorough comparison of CIMS and MC data. Column abundances are derived from the in situ data and compared to satellite observations.

6.2 Methods

6.2.1 Mist chamber (MC) characterization

The response of the MC to the abundant bromine species (Br₂, BrO, HOBr, and HBr) was determined in a series of laboratory tests. A known amount of each species was quantitatively delivered to the MC inlet and the resulting concentration of bromide was measured. In this manner the MC response factor per atom of bromine was measured. A CIMS was used to quantify the Br₂, HOBr and BrO distribution delivered to the MC. This was critical as HOBr and BrO could not be delivered to the MC in a pure form.

6.2.1.1 Chemical ionization mass spectrometer (CIMS)

The CIMS is very similar to that used to measure BrO, PANs, HO₂NO₂, and SO₂ [Liao et al., 2011a; Slusher et al., 2004; Kim et al., 2007; Huey, 2007]. The methods used to measure and calibrate the CIMS to BrO and Br₂ are described in Liao et al. [2011a]. Hydrated I⁻ was utilized as a reagent ion to detect the bromine species and the corresponding reactions of the core ions are listed below:

\[\text{Br}_2 + \Gamma \rightarrow \Gamma \text{Br}_2^- \quad \text{R6.13} \]

\[\text{BrO} + \Gamma \rightarrow \Gamma \text{BrO}^- \quad \text{R6.14} \]
$\Gamma^{-} + \text{HOBr} \rightarrow \text{IHOBr}^{-}$

Γ^{-} was chosen as a reagent ion because it can selectively and accurately detect HOBr, BrO, and Br$_2$ [Liao et al., 2011a, c; Neuman et al., 2010]. SF$_6^{-}$ was not used as a reagent ion in this study as it is not capable of selectively detecting HOBr [Huey et al., 1995]. The accuracy of the Br$_2$, BrO and HOBr measurements in the laboratory were estimated to be 7%, 32%, and 32%, respectively.

6.2.1.2 Mist chamber (MC)

The mist chamber, similar to that used to measure HNO$_3$ and other soluble species [e.g. Dibb et al., 1998], can detect soluble bromide (Br$^{-}$) in gas phase and fine particles in the sampling flow. The gaseous species were concentrated into a small volume of ultrapure water and the stripping solutions were analyzed by ion chromatography as Br$^{-}$ in the solution [Dibb et al., 1994]. The Br$^{-}$ concentration in the sampling gases was determined from the concentration of Br$^{-}$ in the solution, the solution volume and the gas flow rate to the MC. The measurement uncertainty for soluble bromide was $\pm 15\%$. The uncertainty represents a combination of accuracy and precision at the one sigma level.

6.2.1.3 Experiment setup

The CIMS and MC were operated simultaneously in the same laboratory. Bromine compounds were delivered to both instruments through perfluoroalkoxy (PFA) Teflon tubing. In the initial experiments, setup A (Figure 6.1), a flow of N$_2$ at 3 standard liters per minute (slpm) containing bromine compounds was delivered to the inlets of the CIMS and the MC alternately with the same Teflon tubing. In later experiments, setup B,
a 3 slpm flow containing bromine compounds was symmetrically divided with a PFA tee between the CIMS and MC. The length of the Teflon tubing from the HOBr source to the MC was ~1.2 m longer than to the CIMS in setup B. As a consequence, any possible interactions of gas with the sampling line were the same in setup A for both instruments and were larger for the MC in setup B. Upon exiting the sample line, the gas flowed directly into the CIMS ion-molecule reaction tube (flow tube), where very little wall interaction and conversion of bromine species (e.g. HOBr to Br₂) occur [Neuman et al., 2010]. The potential interactions with other surfaces in the MC (e.g. the wetted glass walls of the mist chamber) may cause interconversion of bromine species. As setup B better represented the conversion of bromine compounds (e.g. HOBr) on the sampling inlet of the MC on the DC-8, the detection efficiencies of HOBr and Br₂ from setup B are used to predict soluble bromide concentrations.
6.2.1.4 \(\text{Br}_2, \text{BrO}, \text{HOBr} \) and \(\text{HBr} \) preparation

Pure gas phase \(\text{Br}_2 \) was obtained from a permeation tube (Kin-tek Trace SourceTM disposable permeation tube for bromine). 20 standard cubic centimeters per minute (sccm) of \(\text{N}_2 \) continuously flowed over the \(\text{Br}_2 \) permeation tube, which was held at a constant temperature \((40^\circ \text{C}) \). The \(\text{Br}_2 \) permeation tube output was measured by
converting I^- to I_3^- in aqueous solution [Liao et al., 2011a] and was found to be 86 ± 6 ng/min (\textasciitilde 4 ppbv in 3 slpm N$_2$ flow).

BrO was generated by the reaction of Br$_2$ with O (3P) in excess O$_3$ [Liao et al., 2011a]. O$_3$ was produced by flowing 30 sccm of O$_2$ through a quartz tube illuminated by a UV lamp. The O$_3$/Br$_2$ mixture was diluted in \textasciitilde 1.5 slpm N$_2$ and flowed through an oven. When the oven was heated to \textasciitilde 350 °C, BrO was produced by the following series of reactions.

$$\text{O}_3 + \text{M} \rightarrow \text{O}_2 + \text{O} (^3\text{P}) + \text{M} \quad \text{R6.16}$$

$$\text{Br}_2 + \text{O} (^3\text{P}) \rightarrow \text{BrO} + \text{Br} \quad \text{R6.17}$$

$$\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \quad \text{R6.18}$$

The CIMS sensitivity ratio of BrO to Br$_2$ was estimated to be 0.47 \pm 25%, based on the amount of BrO synthesized and the amount of Br$_2$ decomposed [Liao et al., 2011a].

Gas phase HOBr was prepared by adding 5–7 drops of liquid Br$_2$ to AgNO$_3$ aqueous solution (2.2g AgNO$_3$ in 100mL de-ionized H$_2$O) in a glass trap that was kept at 0°C in the dark [Jin et al., 2007]. The AgNO$_3$ is used to precipitate out Br$^-$ as AgBr. This drives the equilibrium towards HOBr and reduces the degassing of HBr from the solution.

$$\text{Br}_2 + \text{H}_2\text{O} \leftrightarrow \text{HOBr} + \text{H}^+ + \text{Br}^- \quad \text{R6.19}$$

$$\text{Ag}^+ + \text{Br}^- \rightarrow \text{AgBr} \downarrow \quad \text{R6.20}$$

Gas phase HOBr and Br$_2$ were removed from the trap in a flow of N$_2$ (5-50 sccm). The resulting gas phase mixture of HOBr and Br$_2$ was diluted into a N$_2$ flow of \textasciitilde 3 slpm and used as a source of HOBr. In general, the ratio of HOBr to Br$_2$ in the source flow was
3–4 depending on \(\text{N}_2 \) flow rates. The amount of HOBr in the flow was determined by conversion of the HOBr to \(\text{Br}_2 \) via reactions on humidified NaBr crystals.

\[
\text{HOBr} + \text{NaBr} \rightarrow \text{Br}_2 + \text{Na}^+ + \text{OH}^- \quad \text{(R6.21)}
\]

Assuming a 1:1 yield for this reaction, the relative CIMS sensitivity of HOBr to \(\text{Br}_2 \) was determined to be 0.5 ± 25%.

HBr was obtained from a commercial source tube (Kin-tek Trace SourceTM 57Series Hydrogen bromide), which is a small stainless steel cylinder (15 cm l. × 4.5 cm OD) with a Teflon membrane that allows permeation of the HBr. The source was kept at a constant temperature of 30°C and 20 sccm of \(\text{N}_2 \) was continuously passed over the source. The output of the HBr from the source was determined to be 23 ng min\(^{-1}\) by passing the flow through aqueous solution followed by ion chromatographic measurements.

6.2.2 BrO and soluble bromide measurements from the DC-8

The CIMS instrument aboard the NASA DC-8 aircraft that measured halogens was mechanically nearly identical to the one in the laboratory experiments here but used different ion chemistry. The CIMS utilized \(\text{SF}_6^- \) as a reagent to detect halogen and other species (e.g. BrO, \(\text{SO}_2 \)) as negative product ions (e.g. \(\text{BrO}^- \), \(\text{F}_2 \text{SO}^- \)). The configuration and performance of the CIMS instrument are described in Neuman et al. [2010]. The CIMS and the MC sampling inlets on the DC-8 were ~1 m and heated to 40°C. The detection limits of BrO from the DC-8 ranged from 2–5 pptv for a 30s sampling period and the measurement uncertainty was ± 40%. The DC-8 MC measurements were performed using an instrument described in detail by Scheuer et al. [2003, 2010]. The
soluble bromide detection limit was 1 pptv for a 1.5 min sampling period in the boundary layer and increased with flight altitude to ~6 pptv at 12 km. The soluble bromide measurement uncertainty was ± (15% + 0.5 pptv).

6.2.3 HBr, HOBr and soluble bromide prediction during ARCTAS

A simple photochemical model was used to predict HBr and HOBr levels from CIMS measurements of BrO. The mechanism used in the model includes reactions R6.2 – R6.9 as well as the heterogeneous loss of HBr and HOBr. HBr and HOBr were assumed to be in steady state due to their relatively short lifetimes of ~1 hour and ~8 minutes, respectively. The lifetime of HBr is mainly determined by heterogeneous loss on aerosol surfaces [Fan and Jacob et al., 1992; Liao et al., 2011b]. Because NO₂ concentrations (< 5 pptv) were near or below detection limits when significant BrO was detected (BrO > 3 pptv), BrONO₂ formation was neglected. The photochemical model was constrained by observations of BrO, CH₂O, NO, O₃, HO₂, J values, temperature, pressure, aerosol surface area and aerosol number density on DC-8. CH₂O was measured by a difference frequency generation absorption spectrometer [Weibring et al., 2006]. NO and O₃ were measured from a 4-channel chemiluminescence instrument [Weinheimer et al., 1998]. J values were obtained from NCAR actinic flux spectroradiometers [Shetter and Muller, 1999]. Aerosol surface area and number density were measured by an ultra-high sensitivity aerosol spectrometer (UHSAS) [Cai et al., 2008]. Constrained HBr and HOBr calculations combined with the measured response factors of the MC to these species allowed soluble bromide to be predicted from CIMS observations of BrO.
6.2.4 Satellite-derived tropospheric BrO vertical column density

The tropospheric BrO vertical column density (VCD) is derived using the residual method [Theys et al., 2011; Choi et al., 2011]. The analysis uses: the slant column density (SCD) of BrO as provided in the publicly released Ozone Monitoring Instrument (OMI) BrO v3.0 data product [Kurosu and Chance, 2011]; air mass factors (ratio of slant to vertical columns) found using a radiative transfer model [Choi et al., 2011]; as well as stratospheric column BrO obtained from a model simulation for boreal spring 2008 [Salawitch et al., 2010]. A detailed explanation and discussion of the sensitivity of satellite-derived tropospheric column BrO is given in Choi et al. (2011). Here we provide a brief overview.

OMI is a nadir-viewing ultraviolet and visible (UV/Vis) sensor on the NASA Aura satellite, which is in a sun-synchronous polar orbit with a local overpass time near 13:30. BrO SCD is retrieved by direct fitting of backscattered UV radiances to absorption cross-sections of BrO (the target gas), NO₂, HCHO, SO₂ and inelastic rotational-Raman scattering (also known as the Ring effect) using a non-linear least-squares approach [Chance, 1998] with a spectral fitting window between 319 and 347.5 nm.

An estimate of stratospheric BrO VCD is calculated from a model simulation [Salawitch et al., 2010]. Distributions of all species other than bromine bearing compounds originate from a run of the Whole Atmosphere Community Climate Model (WACCM) [Garcia et al., 2007] conducted using analyzed winds for April 2008. Vertical distributions of Brₚ (the sum of inorganic bromine species) are specified, using the relation between Brₚ and CFC-12, as well as profiles of CFC-12 from the NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System Data
Assimilation System Version 5 (GEOS-5) [Rienecker et al., 2007]. The contribution of very short lived (VSL) bromocarbons is represented by adding 7 pptv to the baseline Br$_y$ versus CFC-12 relation, which represents gas injection of bromine from very short lived sources. The baseline Br$_y$ relation represents source of gas injection of the organic bromocarbons that cross the tropopause: CH$_3$Br, halons, and CH$_2$Br$_2$. Mixing ratios of BrO at the time of satellite overpass are determined using a photochemical steady state model constrained by radical precursors (e.g., O$_3$, H$_2$O, CH$_4$, Cl$_y$, NO$_y$, Br$_y$, etc) from WACCM [Choi et al., 2011]. The stratospheric BrO VCD is obtained by integrating the BrO mixing ratio from the tropopause (WMO definition of thermal tropopause) to 0.01 hPa.

AMFs, a ratio of SCD to VCD by definition, are used to convert SCD to VCD (VCD = SCD / AMF). The stratospheric AMF is provided as an OMI total column product. The tropospheric AMF is calculated using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model [Spurr et al., 2001], which considers the effects of the tropospheric BrO profile, surface albedo, and viewing geometry [Choi et al., 2011].

The tropospheric BrO VCD is calculated from a tropospheric residual column obtained by subtracting the stratospheric SCD (product of stratospheric VCD and stratospheric AMF) from the total SCD. The tropospheric BrO VCD is then obtained by dividing the residual tropospheric slant column by the tropospheric AMF. Further details are given in Choi et al. [2011]. Our approach is similar to that of Theys et al. [2011], except our
stratospheric VCD is larger than that used by Theys et al. [2011] and we use an independent radiative transfer model.

6.3 Results and Discussion

6.3.1 Response of the MC to Br\textsubscript{2}, HOBr, BrO and HBr

BrO, HOBr, HBr are likely the most abundant daytime bromine species when O\textsubscript{3} is not completely depleted in the typical Arctic environment (NO < 5 pptv) [Evans et al., 2003]. Br\textsubscript{2} is the likely dominant nighttime bromine species under this condition. As a result, the detection efficiencies of BrO, HOBr, HBr and Br\textsubscript{2} by the MC were characterized and reported in this study.

| Table 6.1 The response of MC to different levels of Br\textsubscript{2} and HOBr sources from setup A and B. |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | Soluble bromide Br2 (ppbv) | Br\textsubscript{2} source (ppbv) | HOBr source (ppbv) | Ratio = Br2 / (Br\textsubscript{2}×2+HOBr) |
| Setup A | | | | |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 25 sccm) | 5.6 | 1.7 | 9.8 | 0.42 |
| Br\textsubscript{2} permeation tube | 2.5 | 3.3 | 0.0 | 0.38 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 25 sccm) | 5.1 | 2.2 | 7.9 | 0.42 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 10 sccm) | 1.8 | 0.9 | 3.3 | 0.36 |
| Br\textsubscript{2} permeation tube | 2.7 | 3.3 | 0.0 | 0.41 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 10 sccm) | 1.9 | 0.8 | 2.8 | 0.44 |
| Setup B | | | | |
| Br\textsubscript{2} permeation tube | 3.4 | 3.8 | 0.0 | 0.45 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 30 sccm) | 10.5 | 2.4 | 8.8 | 0.47 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 30 sccm) | 12.4 | 2.7 | 9.1 | 0.53 |
| HOBr + Br\textsubscript{2} mixture (N\textsubscript{2} flow = 20 sccm) | 9.6 | 1.7 | 6.4 | 0.59 |

138
Table 6.2 The ratio of detected Br\(^-\) to Br\(_2\), HOBr and BrO. The errors are estimated from the uncertainties in Br\(_2\), HOBr, BrO and Br\(^-\) measurements and the variance (one standard deviation) of the individual ratio measurements.

<table>
<thead>
<tr>
<th>Setup</th>
<th>Br(^-)/(Br(_2)×2)</th>
<th>Br(^-)/HOBr</th>
<th>Br(^-)/BrO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.40 ± 0.10</td>
<td>0.41 ± 0.15</td>
<td>---------</td>
</tr>
<tr>
<td>B</td>
<td>0.45 ± 0.10</td>
<td>1.06 ± 0.30</td>
<td>0.4 ± 0.1</td>
</tr>
</tbody>
</table>

6.3.1.1 Br\(_2\)

The MC responded to the presence of Br\(_2\) in the gas phase as Br\(^-\) (Table 6.1). The ratio of detected Br\(^-\) to Br\(_2\) was found to be 0.40 ± 0.10 per Br atom for setup A and 0.45 ± 0.10 per Br atom for setup B (Table 6.2). The error bars are estimated from a combination of the estimated potential systematic error in Br\(_2\) and Br\(^-\) measurements and variance of the individual Br\(^-\) to Br\(_2\) ratio measurements. To confirm the nearly complete dissolution of Br\(_2\), the Br\(_2\) permeation tube output was passed through a trap containing deionized water. The output of the trap was monitored by the CIMS and effectively all Br\(_2\) was found to be scrubbed by the solution, consistent with efficient detection of Br\(_2\) by the MC. Br\(_2\) is hydrolyzed to form Br\(^-\) and HOBr in aqueous solution, with a hydrolysis rate constant, \(k_{6.19}\), of 110 s\(^{-1}\) (at 20°C) [Eigen and Kustin, 1962]. This suggests that each Br\(_2\) molecule produces one bromide ion which is detected with near 100% efficiency by the MC. The HOBr produced in aqueous solution in the MC does not appear to convert to bromide on the time scale of the measurement (5 minutes). Thus an efficiency of ~0.5 (on a per molecule basis) for detecting the bromine atoms in Br\(_2\) as bromide is consistent with its known solution chemistry.

6.3.1.2 HOBr
The MC was found to consistently respond to the presence of HOBr as bromide (Table 6.1). This is likely due to conversion of HOBr on the sampling surfaces to Br₂, which is detected by the MC as Br⁻. The ratio of HOBr to Br⁻ detected is 0.41 ± 0.15 for setup A and is 1.06 ± 0.30 for setup B (Table 6.2). The error bars are calculated from a combination of the estimated potential systematic error in HOBr and Br⁻ measurements and the variance of the individual Br⁻ to HOBr ratio measurements. The results for Br₂ indicate that HOBr in aqueous solution in the MC is not detected as bromide. However, Neuman et al. [2010] have demonstrated that gas phase HOBr is readily converted to Br₂ on even nominally clean surfaces. The greater detection efficiency for HOBr in the MC for the longer inlet setup B is also consistent with conversion of HOBr to Br₂, with some of the bromine coming from the inlet surface. The resulting Br₂ will hydrolyze and be detected in the MC as described above. Consequently, HOBr will be detected efficiently as bromide by the MC via conversion on the inlet and other surfaces to Br₂.

\[
\text{HOBr} \rightarrow \text{Br}_2 \xrightarrow{16.19} \text{Br}^-
\]

6.3.1.3 BrO

BrO was also detected as soluble bromide by the MC. The ratio of BrO to Br⁻ was found to be 0.4 ± 0.1 (Table 6.2). As this result was somewhat surprising, it was confirmed by repeatedly turning on and off the BrO from the Br₂/O₃ source by modulating the ozone levels. In addition, tests with the CIMS confirmed that BrO in a gas stream is removed by deionized water. At this time the mechanism for the conversion of ~40% of BrO to Br⁻(aq) is not determined.
6.3.1.4 HBr

The sensitivity ratio of HBr to Br₂ measured by CIMS using reagent ion I⁻ was less than 1 : 100, which implies that the CIMS instrument using reagent ion I⁻ has a very low sensitivity for detecting HBr. The CIMS then was not used to quantify HBr and the HBr permeation tube output was determined to be 23 ng/min by ion chromatography. The MC detected HBr with 0.95 ± 0.1 efficiency. This is consistent with detection of effectively 100% of HBr as soluble bromide by the MC.

6.3.1.5 Implications for soluble bromide measurements

The results above indicate that the MC measurements of soluble bromide during ARCTAS (and other missions such as Tropospheric Ozone Production around the Spring Equinox (TOPSE)) [Ridley et al., 2003] are due to a multitude of compounds. As conversion of HOBr to Br₂ on the walls of the MC or sampling line was very likely, soluble bromide ([Br⁻]) can be estimated by the following equation.

\[[\text{Br}^-] = 0.9 \times [\text{Br}_2] + 1.06 \times [\text{HOBr}] + 0.4 \times [\text{BrO}] + 0.95 \times [\text{HBr}] \]

Eqn 6.1

This indicates that a MC can be used to examine the areas of active bromine chemistry where BrO and HOBr are enhanced.

6.3.2 Case study of BrO and soluble bromide measurements

On research flight 17 April 2008 of ARCTAS the highest bromine levels for the mission were observed. During this flight the NASA DC-8 frequently sampled ozone depleted air masses, with significant levels of bromine in the Arctic boundary layer. The aircraft track for this flight from Fairbanks, AK to the North Pole is displayed in the top
panel of Figure 6.2. The flight track is color coded by altitude. The aircraft sampled the boundary layer air five times during this flight. O₃ depletions were clearly observed when the boundary layer was sampled (middle panel of Figure 6.2). Further description of this flight is given by Choi et al. [2011].

The observations of BrO, Br₂+HOBr, soluble bromide, O₃, and altitude on one flight leg in the boundary layer, where maximum bromine was detected, are shown in the bottom panel of Figure 6.2. The corresponding region on the map is denoted with the red circle in the top panel of Figure 6.2. Ozone depletion and elevated bromine (soluble bromide, Br₂+HOBr and BrO) were clearly measured when the aircraft flew down to the boundary layer (altitude < 200 m). The maximum soluble bromide detected during this flight was ~31 pptv, when ozone was depleted to ~10 ppbv, and up to ~7 pptv BrO and HOBr + Br₂ were detected. Due to the conversion of HOBr on the Teflon inlet [Neuman et al., 2010], the CIMS Br₂ signal represents the lower limit to the sum Br₂ + HOBr. As the mixing ratio of rapidly photolyzed Br₂ in the daytime is likely to be very low (<= ~1 pptv) [Fan and Jacob, 1992, Liao et al., 2011b], the Br₂ signal is highly likely to correspond to HOBr.
Figure 6.2 Top panel: The flight track of ARCTAS on 17 April 2008 color-coded with aircraft altitudes. The black star denotes the beginning of the flight and the dashed arrows represent the direction of the flight. The red circle shows the location on the flight track that corresponds to the bottom panel. Middle panel: Time series of observations of ozone and altitude. Bottom panel: Observations of soluble bromide, BrO, lower limit of Br$_2$+HOBr, O$_3$ and altitude for the flight leg with the highest levels of bromine.
To assess whether the concentrations of BrO reported by the CIMS instrument are consistent with the soluble bromide observations from the MC, we first calculated the abundances of HBr and HOBr using a photochemical model (described in section 6.2.3) constrained by the measurements of BrO and other species. Soluble bromide was then calculated based on the measured detection efficiency for BrO, HOBr, and HBr. An example of observed BrO and soluble bromide and modeled HOBr, HBr and soluble bromide on two flight legs, both with BrO above detection limit (> 2 pptv), is shown in Figure 6.3. The correlation plot of modeled and observed soluble bromide during 17 April 2008 flight when BrO was above detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv) is shown in the left panel of Figure 6.4. Considering the measurement uncertainties in BrO (~40%), soluble bromide, J values, reaction rates, mass accommodation coefficients, and aerosol surface areas, the agreement ($R^2 = 0.76$; slope = 0.98; intercept = −3.5 pptv) between measured and modeled soluble bromide indicates that reported soluble bromide concentrations by the MC are consistent with the BrO measurements from the CIMS instrument as well as our current understanding of inorganic bromine photochemistry. It is also interesting to note that the modeled HOBr was well correlated with the measured HOBr + Br$_2$ ($R^2 = 0.86$, slope = 1.42, intercept = 1.71 pptv) (figure 6.4 right panel), consistent with the assumption of efficient conversion of HOBr on the inlet walls.
Figure 6.3 Example of observed BrO and soluble bromide, and predicted HOBr, HBr and soluble bromide for two marine boundary layer flight legs when the highest levels of BrO and soluble bromide were observed.

Figure 6.4 Left panel: correlation plot of predicted and observed soluble bromide in the boundary layer when BrO was above the detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv). The correlation coefficient for this plot is 0.76. An equally weighted bivariate regression yields a slope of 0.98 and an intercept of −3.5 pptv. Right panel: correlation plot of predicted HOBr and observed lower limit of HOBr + Br2 when BrO were above detection limit (> 2 pptv) under unpolluted condition (NO < 100 pptv). The correlation coefficient (R^2) for this plot is 0.86. An equally weighted bivariate regression yields a slope of 1.42 and an intercept of 1.71 pptv.
6.3.3 Comparison of BrO Satellite observations with in situ BrO measurements

The region of the Arctic sampled by the DC-8 17 April 2008 provides ideal conditions for comparison of satellite and aircraft determinations of tropospheric BrO. The sky was clear, the surface was bright, and the viewing geometry was amenable for high sensitivity to tropospheric BrO by satellite sensors [Choi et al., 2011]. Here, the comparisons are made in terms of tropospheric BrO vertical column density (\(\text{BrO}_{\text{TROP VCD}}\)). The OMI retrieval team reports total vertical column density of BrO. These data are post-processed using a radiative transfer model and an estimate of the stratospheric burden to yield \(\text{BrO}_{\text{TROP VCD}}\) [Theys et al., 2011; Choi et al., 2011].

Estimated \(\text{BrO}_{\text{TROP VCD}}\) from DC-8 in situ measurements of BrO on the 17 April 2008 flight are compared to \(\text{BrO}_{\text{TROP VCD}}\) retrieved from OMI pixels closest in space and time to the DC-8 flight track [Choi et al., 2011] in Figure 6.5. \(\text{BrO}_{\text{TROP VCD}}\) from airborne in situ BrO was calculated by integrating the profile of BrO from the surface to 7.5 km altitude. The lowest altitude sampled by the aircraft during individual profiles ranged from 100 to 500 m. When finding \(\text{BrO}_{\text{TROP VCD}}\), we assumed the BrO mixing ratio between the surface and the lowest sampled altitude was the median of values between 500 m and the lowest sampled altitude. The median DC-8 profile of BrO, for all of ARCTAS, was used for altitudes between the highest sampled by the DC-8 for a particular profile and 7.5 km. Since BrO was below the detection limit of CIMS above 7.5 km altitude, we assumed BrO was zero between 7.5 km and the tropopause. The error bars in Figure 6.5 represent
the uncertainties in satellite BrO\textsubscript{TROP}VCD (horizontal) and in situ BrO\textsubscript{TROP}VCD (vertical), respectively. These uncertainties are described in detail by Choi et al. [2011].

An orthogonal least square regression was used to analyze the agreement between satellite and in situ BrO\textsubscript{TROP}VCD. Reduced chi-square is calculated by the minimum of the sum of the squared orthogonal distance between the measurements and the 1:1 Line.

$$\chi^2 = \frac{1}{n-2} \sum_i \left(\frac{(X_i - x_i)^2}{\sigma^2_{x_i}} + \frac{(Y_i - y_i)^2}{\sigma^2_{y_i}} \right)$$

A value for reduced chi-square of 0.88 means the determinations of BrO\textsubscript{TROP}VCD from in situ sampling and satellite retrieval agree, to within the measurement uncertainty. The satellite retrievals of tropospheric BrO using updated methods [Choi et al., 2011] captures the levels of BrO found by our CIMS instrument. This result, combined with the consistency between CIMS BrO and MC soluble bromide, represents an important advance in our quantitative understanding of tropospheric bromine chemistry.
6.4 Summary

Characterization of the MC response to gas phase bromine species enables better use of soluble bromide data from previous and future field missions focusing on polar halogen chemistry. In this study, the response of the MC to Br$_2$, HOBr, BrO and HBr as soluble bromide (Br$^-$) was measured. The MC was found to detect bromine in the following compounds Br$_2$, HOBr, BrO, and HBr as soluble bromide with an efficiency per molecule of 0.9 ± 0.1, 1.06 ± 0.30, 0.4 ± 0.1, and 0.95 ± 0.1, respectively. These
measured response factors (except that of Br₂) were used to model soluble bromide from CIMS measurements of BrO obtained on the 17 April 2008 flight of ARCTAS. The agreement (\(R^2 = 0.76\); slope = 0.98; intercept = −3.5 pptv) between measured and observed soluble bromide, when BrO was above the detection limit (> 2 pptv) under unpolluted conditions (NO < 100 pptv), indicates in situ BrO measurements by CIMS were consistent with the observed soluble bromide. BrO column densities calculated from CIMS measurements were also consistent with the tropospheric BrO columns derived from OMI satellite data, using a stratospheric burden that includes a significant contribution from VSL bromocarbons.
CHAPTER 7
CONCLUSIONS

In this thesis the detailed bromine and chlorine chemistry in the Arctic is investigated by chemical ionization mass spectrometry. This work advances our understanding of the concentrations of speciated bromine and chlorine compounds and their impact, and the conditions likely favoring bromine and chlorine activation in the Arctic boundary layer. It also demonstrates the advantages of the application of CIMS, with low detection limits, fast time response and the capability to measure a series of compounds simultaneously, to investigate bromine and chlorine chemistry.

The excellent agreement ($R^2 = 0.85$) of BrO measurements between CIMS and long path-differential optical absorption spectroscopy (LP-DOAS) demonstrates the capability of chemical ionization mass spectrometry (CIMS) to accurately and sensitively measure BrO, an important bromine radical critical to estimate the bromine induced ozone loss rate. The first measurements of speciated HOBr were also achieved by CIMS in this work. The HOBr measurements can be reasonably well predicted by a photochemical model except at high wind speeds. High wind speeds associated with blowing snow are found to enhance active bromine concentrations likely by providing more surface area for heterogeneous recycling. Comparison of the observed BrO, HOBr and Br$_2$ diurnal speciation to a time dependent model simulation provided insight into the bromine recycling efficiency.

This thesis reports unexpected high levels of molecular chlorine (Cl$_2$) of up to
~400 pptv at Barrow, AK. Surfaces covered by snow and sea ice (especially multiple year sea ice) are probably the ultimate source of the Cl$_2$. High levels Cl$_2$ have a large impact on methane oxidation and also significantly contribute to ODEs and MDEs.

Moreover, this thesis investigates the impact of BrO on HO$_x$ cycling above the Greenland ice sheet. Inclusion of bromine chemistry in the HO$_x$ box model brought the average OH and HO$_2$ + RO$_2$ predictions closer to the observations; however, the discrepancy between predicted and observed OH cannot be explained by the observed BrO levels. It is also interesting to find that the model under predicted OH when high levels of RGM were observed.

Finally, the thesis examines the detection efficiency of the mist chamber method to Br$_2$, HOBr, BrO and HBr as soluble bromide. The measured detection efficiencies were used to calculate the concentrations of soluble bromide during the ARCTAS campaign based on the CIMS BrO measurements and known bromine photochemistry. The good agreement between observed and calculated soluble bromide indicated that the BrO measurements were consistent with the soluble bromide measurements. This contributes to better use of soluble bromide measurements from both previous and future campaigns.

The discovery of unexpectedly high levels of Cl$_2$ at Barrow, AK in spring 2009 in the thesis encourages more measurements of chlorine species (e.g. Cl$_2$, HOCl, and ClO) in the Arctic to investigate if high levels of Cl$_2$ are ubiquitous in Arctic regions. Lab studies relevant to the Arctic environment are also urged to explore the source and formation mechanisms of Cl$_2$. Although the diurnal BrO, HOBr and Br$_2$ speciation according to the known bromine chemical mechanisms is confirmed by the in situ
measurements in the thesis, measurements of BrONO$_2$ and HBr are also needed to fully examine the bromine speciation especially in marine boundary layer.
APPENDIX A

IGOR CODE OF A STEADY-STATE HOₓ BOX MODEL WITH INCLUSION OF BROMINE CHEMISTRY

Macro PredictOH()
KillWaves/A/Z

//Concentrations
//Determinedewpt1()
DetermineKelvin()
DetermineDDPerNitric()
DetermineH2Ovapor()
DetermineNumDen()
DetermineNumDenH2O()
DetermineNumDenN2()
DetermineNumDenO2()
DetermineNumDenO3()
DetermineNumDenNO()

NumDenCH4()
NumDenCO()
NumDenBrO()
//rates
RateConstantkk1()
RateConstantkk2()
RateConstantkk3()
RateConstantkk4()
RateConstantkk5()
RateConstantkk6()
RateConstantkk7()
RateConstantkk8()
RateConstantkk9()
RateConstantkk10()
RateConstantkk11()
RateConstantkk12()
RateConstantkk13()
RateConstantkk14()
RateConstantkk15()
RateConstantkk16()
RateConstantkk17()
RateConstantkk18()
RateConstantkk19()
RateConstantkk20()
RateConstantkk21()
RateConstantkk22()
RateConstantkk23()
RateConstantkk24()
RateConstantkk25()
RateConstantkk26()
RateConstantkk27()
RateConstantkk28()
RateConstantkk29()
RateConstantkk30()
RateConstantkk31()
RateConstantkk32()
RateConstantkk33()
RateConstantkk34()

DetermineFractionO_H2O()

PredictHOx()

endMacro
// Determine Temp in Kelvin
Function DetermineKelvin()
 wave temp1
 Duplicate/o temp1 temp
 temp += 273.15
end

// Determine Dry Deposition Rate for (Per)Nitric
Function DetermineDDPerNitric()
 wave temp1
 Duplicate/o temp1 DDPN
 DDPN = 9.26e-5
end

// Determine the amount of water vapor as a function of Dew Point
Function DetermineH2Ovapor()
 wave Dewpt1
duplicate/o Dewpt1 vap
 if (Dewpt1 >= 0)
 vap = 6.11*10^(7.567*Dewpt1/(239.7+Dewpt1))
 else
 vap = 6.11*10^(9.716*Dewpt1/(271.5+Dewpt1))
end
endif

end

//Determine Number Density as a function of Pressure

Function DetermineNumDen()
 wave temp, pressure
 Duplicate/o temp1 M
 M = ((Pressure/1013)*6.02e23)/(0.08206*Temp*1000)
end

//Determine Number Density of H2O

Function DetermineNumDenH2O()
 wave vap, M, Pressure
 duplicate/o vap H2Oc
 H2Oc = (vap/Pressure)*M
end

//Determine Number Density of Nitrogen

Function DetermineNumDenN2()
 wave M
 duplicate/o M N2c
 N2c = 0.78*M
// Determine Number Density of Oxygen

Function DetermineNumDenO2()
 wave M
 duplicate/o M O2c
 O2c = 0.21*M
end

// Determine Number Density of Ozone

Function DetermineNumDenO3()
 wave O3, M
 duplicate/o O3 O3c
 O3c = (O3*1e-9)*M
end

// Determine Number Density of NO

Function DetermineNumDenNO()
 wave NO, M
 duplicate/o NO NOc
 NOc = (NO*1e-12)*M
end
//Determine Number Density of Methane

Function NumDenCH4()
 wave CH4, M
 duplicate/o CH4 CH4c
 CH4c = (CH4*1e-6)*M
end

//Determine Number Density of CO

Function NumDenCO()
 wave CO, M
 duplicate/o CO COc
 COc = (CO*1e-9)*M
end

Function NumDenBrO()
 wave BrO, M
 duplicate/o BrO BrOc
 BrOc = (BrO*1e-12)*M
end

//Determine rate constant O(D) + O2

Function RateConstantkk1()
wave temp
duplicate/o temp kk1

kk1 = 3.3e-11*exp(55/Temp)

end

//Determine rate constant O(D) + N2
Function RateConstantkk2()

wave temp
duplicate/o temp kk2

kk2 = 2.15e-11*exp(110/Temp)

end

//Determine rate constant O(D) + H2O
Function RateConstantkk3()

wave Temp
duplicate/o temp kk3

kk3 = 1.63e-10*exp(60/Temp)

end

//Determine rate constant OH + CO
Function RateConstantkk4()

wave temp, M
Duplicate/o temp kHOCOhigh kHOCOlow kHCO2high kHCO2low kk4
\[\text{kHOCO}_{\text{low}} = 5.9 \times 10^{-33} \left(\frac{\text{temp}}{300} \right)^{-1.4} \]
\[\text{kHOCO}_{\text{high}} = 1.1 \times 10^{-12} \left(\frac{\text{temp}}{300} \right)^{1.3} \]
\[\text{kHCO2}_{\text{low}} = 1.5 \times 10^{-13} \left(\frac{\text{temp}}{300} \right)^{0.6} \]
\[\text{kHCO2}_{\text{high}} = 2.1 \times 10^9 \left(\frac{\text{temp}}{300} \right)^{6.1} \]

\[\text{kk4} = \frac{\text{kHOCO}_{\text{low}} \times \text{M}}{1 + \text{kHOCO}_{\text{low}} \times \text{M}/\text{kHOCO}_{\text{high}}} \times 0.6^{(1 + (\log(\text{kHOCO}_{\text{low}} \times \text{M}))/\text{kHOCO}_{\text{high}}))^2}^{-1} + \frac{\text{kHCO2}_{\text{low}}}{1 + \text{kHCO2}_{\text{low}}/(\text{kHCO2}_{\text{high}} \times \text{M})} \times 0.6^{(1 + (\log(\text{kHCO2}_{\text{low}})/(\text{kHCO2}_{\text{high}} \times \text{M})))^2}^{-1} \]

// Determine rate constant \(\text{OH} + \text{CH}_4 \)

Function RateConstantkk5()

\[\text{wave temp} \]
\[\text{duplicate/o temp kk5} \]
\[\text{kk5} = 2.45 \times 10^{-12} \times \exp(-1775/\text{Temp}) \]

end

// Determine rate constant \(\text{CH}_3\text{O}_2 + \text{NO} \)

Function RateConstantkk6()

\[\text{wave temp} \]
\[\text{duplicate/o temp kk6} \]
\[kk6 = 2.8 \times 10^{-12} \exp\left(\frac{300}{\text{Temp}}\right) \]

end

// Determine rate constant CH3O2 + HO2
Function RateConstantkk7()
 wave temp
 duplicate/o temp kk7
 kk7 = 4.1 \times 10^{-13} \exp\left(\frac{750}{\text{Temp}}\right)
end

// Determine rate constant HO2 + NO
Function RateConstantkk8()
 wave temp
duplicate/o temp kk8
 kk8 = 3.5 \times 10^{-12} \exp\left(\frac{250}{\text{Temp}}\right)
end

// Determine rate constant OH + HO2
Function RateConstantkk9()
 wave temp
duplicate/o temp kk9
kk9 = 4.8e-11*exp(250/Temp)
end

// Determine rate constant HO2 + HO2
Function RateConstantkk10()
 wave temp, M,H2Oc
 duplicate/o temp kk10 fw
 fw = (1+1.4e-21*H2Oc*exp(2200/Temp))
 kk10 = ((3.5e-13*exp(430/Temp))+(1.7e-33*M*exp(1000/Temp)))*fw
end

// Determine rate constant NO + O3
Function RateConstantkk11()
 wave temp
 duplicate/o temp kk11
 kk11 = 3.0e-12*exp(-1500/Temp)
end

// Determine rate constant OH + NO
Function RateConstantkk12()
 wave temp, M
 Duplicate/o temp khonohigh khonolow kk12
 khonolow = 7.0e-31*(temp/300)^-2.6
\[\text{khonohigh} = 3.6 \times 10^{-11} \times (\text{temp}/300)^{-0.1} \]

\[\text{kk12} = (\text{khonolow} \times \text{M}/(1+\text{khonolow} \times \text{M}/\text{khonohigh})) \times 0.6^\left((-1+\log(\text{khonolow} \times \text{M}/\text{khonohigh}))^2\right)^{-1} \]

end

// Determine rate constant HO2 + O3
Function RateConstantkk13()
 wave temp
 duplicate/o temp kk13
 \[\text{kk13} = 1.0 \times 10^{-14} \times \exp(-490/\text{Temp}) \]
end

// Determine rate constant OH + O3
Function RateConstantkk14()
 wave temp
 duplicate/o temp kk14
 \[\text{kk14} = 1.7 \times 10^{-12} \times \exp(-940/\text{Temp}) \]
end

// Determine rate constant OH + HONO
Function RateConstantkk15()
 wave temp
duplicate/o temp kk15

kk15 = 1.8e-11*exp(-390/Temp)

end

//Determine rate constant OH + NO2

Function RateConstantkk16()

wave temp, M

Duplicate/o temp khno3high khno3low kk16

khno3low = 9.1e-32*(temp/300)^-3.9
khno3high = 4.2e-11*(temp/300)^-0.5

kk16 =

(khno3low*M/(1+khno3low*M/khno3high))*0.6^((1+(log(khno3low*M/khno3high))^2)^-1)

end

//Determine rate constant OH +HNO3

Function RateConstantkk17()

wave temp, M

Duplicate/o temp1 kNO30 kNO32 kNO33 kk17

kNO30 = 2.4e-14*exp(460/temp)
kNO32 = 2.7e-17*exp(2199/temp)
kNO33 = 6.5e-34*exp(1335/temp)

kk17 = kNO30+(kNO33*M/(1+(kNO33*M/kNO32)))

end

//Determine rate constant OH + OH

Function RateConstantkkt18()

wave temp, M

Duplicate/o temp kh2o2high kh2o2low kk18

kh2o2low = 6.9e-31*(temp/300)^-1.0

kh2o2high = 2.6e-11*(temp/300)^-0

kk18 = ((kh2o2low*M/(1+kh2o2low*M/kh2o2high))*0.6^((1+(log(kh2o2low*M/kh2o2high))^2)^-1))+1.8e-12*exp(-0/temp)

end

//Determine rate constant OH + H2O2

Function RateConstantkk19()

wave temp

duplicate/o temp kk19

kk19 = 1.8e-12*exp(0/Temp)

end

//Determine rate constant OH + CH2O
Function RateConstantkk20()

 wave temp
 duplicate/o temp kk20
 kk20 = 5.5e-12*exp(125/Temp)
end

//Determine Rate constant HO2 + NO2
Function RateConstantkk21()

 wave temp, M
 Duplicate/o temp khno4high khno4low kk21
 khno4low = 2.0e-31*(temp/300)^-3.4
 khno4high = 2.9e-12*(temp/300)^-1.1
 kk21 =
 (khno4low*M/(1+khno4low*M/khno4high))*0.6^((1+(log(khno4low*M/khno4high))^2)^-1)
end

//Thermal Decomposition of HNO4
Function RateConstantkk22()

 wave temp, kk21
 Duplicate/o temp kHNO4eq kk22
 kHNO4eq = temp*1.363e-22*exp((24/(1.987e-3*temp))-20.634)
 kk22 = kk21/KHNO4eq
//Determine rate constant OH + HNO4
Function RateConstantkk23()
 wave temp
 duplicate/o temp kk23
 kk23 = 1.3e-12*exp(380/Temp)
end

//Determine rate constant CH3O2 + CH3O2 => CH3OH+CH2O+O2
Function RateConstantkk24()
 wave temp
 duplicate/o temp fr1 kk24
 fr1 = 26.2*exp(-1100/Temp)
 kk24 = 9.5e-14*exp(390/Temp)/(1+fr1)
end

//Determine rate constant CH3O2 + CH3O2 => 2CH2O+2HO2+O2
Function RateConstantkk25()
 wave temp, kk24
 duplicate/o temp kk25 fr1
 fr1 = 26.2*exp(-1100/Temp)
 kk25 = fr1*kk24
//Determine rate constant OH+CH3OOH => CH3O2+H2O
Function RateConstantkk26()
 wave temp
 duplicate/o temp kk26
 kk26 = 0.7 * 3.8e-12 * exp(200/Temp)
end

//Determine rate constant OH+CH3OOH => CH2O+OH+H2O
Function RateConstantkk27()
 wave temp
 duplicate/o temp kk27
 kk27 = 0.3 * 3.8e-12 * exp(200/Temp)
end

//Determine Rate constant CH3O2+ NO2
Function RateConstantkk28()
 wave temp, M
 Duplicate/o temp kch3no4high kch3no4low kk28
 kch3no4low = 1.0e-30*(temp/300)^-4.8
 kch3no4high = 7.2e-12*(temp/300)^-2.1
 kk28 =
(kch3no4low*M/(1+kch3no4low*M/kch3no4high))*0.6^((1+(log(kch3no4low*M/kch3no4high)))^2)^-1)

end

//Thermal Decomposition of CH3OONO2
Function RateConstantkk29()
 wave temp, kk28
 Duplicate/o temp kCH3NO4eq kk29
 kCH3NO4eq = 9.5e-29*exp(11234/Temp)
 kk29 = kk28/KCH3NO4eq
end

//Determine rate constant OH+CH3OH
Function RateConstantkk30()
 wave temp
 duplicate/o temp kk30
 kk30 = 2.9e-12*exp(-345/Temp)
end

//Determine rate constant HO2+BrO
Function RateConstantkk31()
 wave temp
 duplicate/o temp kk31
 kk31 = 4.5e-12*exp(460/Temp)
end

//Determine rate constant BrO+BrO

Function RateConstantkk32()

 wave temp
 duplicate/o temp kk32
 kk32 = 1.5e-12 * exp(230/Temp)
end

//Determine rate constant BrO+NO

Function RateConstantkk33()

 wave temp
 duplicate/o temp kk33
 kk33 = 8.8e-12 * exp(260/Temp)
end

//Determine rate constant Br+O3

Function RateConstantkk34()

 wave temp
 duplicate/o temp kk34
 kk34 = 1.7e-11 * exp(-800/Temp)
end

// Fraction of O(D) reacting with H2O

Function DetermineFractionO_H2O()

 wave vap, kk1, kk2, kk3, H2Oc, N2c, O2c
duplicate/o vap Fract
Fract = \(\frac{kk3*H2Oc}{kk1*O2c+kk2*N2c+kk3*H2Oc} \)

end

Function Determinedepositionvelocity()

wave ws
duplicate/o ws Dvelocity tRGM
Dvelocity=nan

variable i,u, z1,z
i=0
z=1e-3

do
 if (ws[i]>1e-5)
 do
 u=0.4*ws[i]/(ln(10/z))
 z1=z
 z=0.016*u^2/9.8
 //print z
 while ((z1-z)/z>0.0001)
 Dvelocity[i]=0.4*u/(ln(10/z))
 else
 Dvelocity[i]=nan
 endif
 endif
endo
i+=1

while (i<numpnts(ws))
tRGM=(200/Dvelocity)/3600

end

Function PredictHOx()
 wave
 DDPN,kk1,kk2,kk3,kk4,kk5,kk6,kk7,kk8,kk9,kk10,kk11,kk12,kk13,kk14,kk15,kk16,kk17,kk18,kk19,kk20,kk21,kk22,kk23,kk24,kk25,kk26,kk27,kk28,kk29,kk30,kk31, kk32, kk33,kk34,Frac,NOc,O3c,CH4c,COc, J_O3 ,J_NO2 , J_HNO2, J_H2O2, J_CH2O, J_HNO3,J_HO2NO2_HO2_NO2, J_HO2NO2_OH_NO3,J_CH3OOH,M, JCH2O_H_HCO,JCH2O_H2_CO, J_HOBr, J_BrO, BrOc, OH, HO2, CH2o_meas, H2O2_meas
 wave temp1
 variable i,j
 i = 0

Make/N=1000/D/O/R OHsource OHsink HO2source HO2sink NO2source
NO2sink OHint HO2int CH3O2int NO2int HNO4int CH3OOHint CH3OONO2int
CH3OHint HONOint HNO3int H2O2int CH2Oint OHsource_BrO HO2sink_BrO
HOBrint OHint_BrO HO2int_BrO Brint OHsink_CH2O HO2source_CH2O
OHint_CH2O HO2int_CH2O OHint_H2O2 HO2int_H2O2 OHsource_H2O2
OHSink_H2O2 HO2source_H2O2

OHint=Nan
HO2int=Nan
CH3O2int=Nan
NO2int=Nan
HNO4int=Nan
CH3OONO2int=Nan
CH3OHint=Nan
HONOint=Nan
HNO3int=Nan
H2O2int=Nan
CH2Oint=Nan
HOBrint=Nan

duplicate/o kk1 OHpred O2pred CH3O2pred NO2pred HNO4pred
CH3OOHpred CH3OONO2pred CH3OHpred HONOpred HNO3pred H2O2pred
CH2Opred HOBrpred Brpred

duplicate/o kk1 Total_Source_OH jO3_Source NO_source_OH jHONO_Source
O3_source_OH jH2O2_source jHNO3_source J_CH3OOH_source
CH3OOH_source_OH jHOBr_source
duplicate/o kk1 Total_loss_OH CO_loss_OH CH4_loss_OH HO2_loss_OH
O3_loss_OH H2O2_loss_OH CH2O_loss_OH NO_loss_OH HONO_loss_OH
NO2_loss_OH HNO3_loss_OH OH_loss_OH HNO4_loss_OH CH3OOH_loss_OH
CH3OH_loss_OH
duplicate/o kk1 Total_Source_HO2 CO_source_HO2 JCH2O_source
CH3O2_Source_HO2 O3_source_HO2 CH2O_source_HO2 H2O2_source_HO2
HNO4_source_HO2 JHNO4_source CH3O2_sq_source CH3OH_source_HO2
duplicate/o kk1 Total_loss_HO2 CH3O2_loss_HO2 NO_loss_HO2
OH_loss_HO2 HO2_loss_HO2 O3_loss_HO2 NO2_loss_HO2 BrO_loss_HO2
duplicate/o kk1 Total_source_CH3O2 CH4_source_CH3O2
CH3OOH_source_CH3O2 CH3OONO2_source_CH3O2 Total_loss_CH3O2
NO_loss_CH3O2 HO2_loss_CH3O2 CH3O2_loss_CH3O2 NO2_loss_CH3O2
duplicate/o kk1 Total_source_NO2 CH3O2_source_NO2 HO2_source_NO2
O3_source_NO2 HONO_source_NO2 JHNO3_source_NO2 HNO3_source_NO2
HNO4_source_NO2 JHNO4_source_NO2 OH_source_NO2 CH3OONO2_source_NO2
duplicate/o kk1 Total_loss_NO2 JNO2_loss OH_loss_NO2
CH3OONO2_loss_NO2 NO_O3_prod
duplicate/o kk1 Total_source_CH3OOH Snow_source_CH3OOH
OH_loss_CH3OOH J_CH3OOH_loss Total_loss_CH3OOH
duplicate/o kk1 Total_source_CH3OONO2 Total_loss_CH3OONO2
Total_source_CH3OH Total_loss_CH3OH
duplicate/o kk1 Total_source_HONO Total_loss_HONO JHONO_loss
OH_loss_HONO
duplicate/o kk1 Total_Source_HOx HONO_source_HOx H2O2_source_HOx
HNO3_source_HOx CH2O_source_HOx HNO4_source_HOx
duplicate/o kk1 Total_loss_HOx HO2_OH_loss_HOx HO2_HO2_loss_HOx
OH_OH_loss_HOx CH4_loss_HOx CH3O2_source_HOx CH3O2_loss_HOx
CH3OOH_source_HOx CH3OOH_loss_HOx Total_CH4_loss_HOx HNO4_loss_HOx
Net_Source_Sink_HOx HNO3_loss_HOx
duplicate/o kk1 Rad_Rad_loss_HOx H2O2_loss_HOx HONO_loss_HOx
duplicate/o kk1 Total_Source_HNO4 HNO4_loss_NO2 Total_loss_HNO4
Decomp_HNO4 JHNO4_loss Dry_Dep_HNO4 OH_loss_HNO4 O3_diff
duplicate/o kk1 Total_Source_HNO3 OH_NO2_Source Total_loss_HNO3
JHNO3_loss OH_loss_HNO3
duplicate/o kk1 Total_Source_H2O2 HO2_HO2_Source OH_OH_source
Total_loss_H2O2 OH_loss_H2O2 jH2O2_loss
duplicate/o kk1 Total_Source_CH2O CH3O2_NO_Source CH3O2_1_Source
CH3O2_2_Source OH_CH3OH_Source OH_CH3OOH_Source jCH3OOH_Source
duplicate/o kk1 Total_loss_CH2O NO_loss_CH2O OH_loss_CH2O jCH2O_loss

do
\[j=0 \]

\[\text{do} \]

\[\text{OHInt}[0] = 1e6 \]
\[\text{HO2Int}[0] = 1e8 \]
\[\text{CH3O2Int}[0] = 1e7 \]
\[\text{NO2Int}[0] = 1e8 \]
\[\text{HNO4Int}[0] = 1e8 \]
\[\text{CH3OOHInt}[0] = 1e9 \]
\[\text{CH3OOONO2Int}[0] = 1e6 \]
\[\text{CH3OHInt}[0] = 1e7 \]
\[\text{HONOInt}[0] = 1e6 \]
\[\text{HNO3Int}[0] = 1e8 \]
\[\text{H2O2Int}[0] = 1e9 \]
\[\text{CH2OInt}[0] = 1e8 \]
\[\text{HOBrint}[0] = 1e8 \]
\[\text{BrInt}[0] = 1e8 \]

\[\text{OHsink}[j] = (kk4[i]*OCc[i]+kk5[i]*CH4c[i]+kk9[i]*HO2Int[j]+kk12[i]*NOc[i]+kk14[i]*O3c[i]+kk1 \]
\[5[i]*HONO_{int[j]}+kk16[i]*NO2_{int[j]}+kk17[i]*HNO3_{int[j]}+2*kk18[i]*OH_{int[j]}+kk19[i]*H2O_{int[j]}+kk20[i]*CH2O_{int[j]}+kk23[i]*HNO4_{int[j]}+kk26[i]*CH3OOH_{int[j]}+kk30[i]*CH3OH_{int[j]}\]

\[OH_{int[j+1]}=OH_{source_{BrO[j]}}/OH_{sink[j]}\]

\[HO2_{source[j]} = (kk4[i]*OH_{int[j]}*COc[i]+kk6[i]*CH3O2_{int[j]}*NOc[i]+kk14[i]*OH_{int[j]}*O3c[i]+2*JCH2O_{H_{CO}[i]}*CH2O_{int[j]}+kk19[i]*H2O_{int[j]}*OH_{int[j]}+kk20[i]*CH2O_{int[j]}*OH_{int[j]}+kk22[i]*HNO4_{int[j]}+J_HO2NO2_HO2_NO2[i]*HNO4_{int[j]}+2*kk25[i]*CH3O2_{int[j]}*CH3O2_{int[j]}+J_CH3OOH[i]*CH3OOH_{int[j]}+kk30[i]*CH3OH_{int[j]}*OH_{int[j]}\]

\[HO2_{sink[j]}=(kk7[i]*CH3O2_{int[j]}+kk8[i]*NOc[i]+kk9[i]*OH_{int[j]}+2*kk10[i]*H\]
\[O2_{int[j]}+kk13[i]*O3c[i]+kk21[i]*NO2_{int[j]}+kk31[i]*BrOc[i])\]

\[HO2_{int[j+1]}=HO2_{source[j]}/HO2_{sink_{BrO[j]}}\]

\[CH3O2_{int[j+1]} = (kk5[i]*OH_{int[j]}*CH4c[i]+kk26[i]*CH3OOH_{int[j]}*OH_{int[j]}+kk29[i]*CH3OONO2_{int[j]})/(kk6[i]*NOc[i]+kk7[i]*HO2_{int[j]}+2*kk24[i]*CH3O2_{int[j]}+2*kk25[i]*CH3O2_{int[j]}+kk28[i]*NO2_{int[j]}\]

\[CH3OONO2_{int[j+1]} = (kk28[i]*CH3O2_{int[j]}*NO2_{int[j]})/(kk29[i])\]

\[CH3OOH_{int[j+1]} = (kk7[i]*CH3O2_{int[j]}*HO2_{int[j]})/(kk26[i]*OH_{int[j]}+kk27[i]*OH_{int[j]}+J_CH3OOH[i])\]

\[CH3OH_{int[j+1]} = (kk24[i]*CH3O2_{int[j]}*CH3O2_{int[j]})/(kk30[i]*OH_{int[j]})\]
\[
\text{NO2source}[j] = \\
(kk6[i] \cdot \text{CH3O2int}[j] \cdot \text{NOc}[i] + kk8[i] \cdot \text{HO2int}[j] \cdot \text{NOc}[i] + kk11[i] \cdot \text{NOc}[i] \cdot \text{O3c}[i] + kk15[i] \cdot \text{OHint}[j] \cdot \text{HONOint}[j] + J_{\text{HNO3}}[i] \cdot \text{HNO3int}[j] + kk22[i] \cdot \text{HNO4int}[j] + kk23[i] \cdot \text{HNO4int}[j] \cdot \text{OHint}[j] + J_{\text{HO2NO2_HO2_NO2}}[i] \cdot \text{HNO4int}[j] + kk29[i] \cdot \text{CH3OONO2int}[j])
\]

\[
\text{NO2sink}[j] = \\
(J_{\text{NO2}}[i] + kk16[i] \cdot \text{OHint}[j] + kk21[i] \cdot \text{HO2int}[j] + kk28[i] \cdot \text{CH3O2int}[j])
\]

\[
\text{NO2int}[j+1] = \frac{\text{NO2source}[j]}{\text{NO2sink}[j]}
\]

\[
\text{HNO4int}[j+1] = \\
(kk21[i] \cdot \text{HO2int}[j] \cdot \text{NO2int}[j]) / (kk22[i] + J_{\text{HO2NO2_HO2_NO2}}[i] + J_{\text{HO2NO2_OH_NO3+DDPN}}[i] + kk23[i] \cdot \text{OHint}[j])
\]

\[
\text{HONOint}[j+1] = \\
(kk12[i] \cdot \text{OHint}[j] \cdot \text{NOc}[i]) / (J_{\text{HNO2}}[i] + kk15[i] \cdot \text{OHint}[j])
\]

\[
\text{HNO3int}[j+1] = (kk16[i] \cdot \text{OHint}[j] \cdot \text{NO2int}[j]) / (kk17[i] \cdot \text{OHint}[j] + J_{\text{HNO3}}[i])
\]

\[
\text{H2O2int}[j+1] = (kk10[i] \cdot \text{HO2int}[j] \cdot \text{HO2int}[j] + kk18[i] \cdot \text{OHint}[j] \cdot \text{OHint}[j]) / (kk19[i] \cdot \text{OHint}[j] + J_{\text{H2O2}}[i])
\]

\[
\text{CH2Oint}[j+1] = (kk6[i] \cdot \text{CH3O2int}[j] \cdot \text{NOc}[i] + kk24[i] \cdot \text{CH3O2int}[j] \cdot \text{CH3O2int}[j] + 2 \cdot kk25[i] \cdot \text{CH3O2int}[j] \cdot \text{CH3O2int}[j] + kk27[i] \cdot \text{OHint}[j] \cdot \text{CH3OOHint}[j] + kk30[i] \cdot \text{OHint}[j] \cdot \text{CH3OHint}[j] + J_{\text{CH3OOH}}[i] \cdot \text{CH3OOHint}[j]) / (kk20[i] \cdot \text{OHint}[j] + J_{\text{CH2O}}[i])
\]

\[
\text{HOBrint}[j+1] = kk31[i] \cdot \text{HO2int}[j] \cdot \text{BrOc}[i] / (J_{\text{HOBr}}[i] + 2.9 \cdot 10^{-4})
\]
Brint[i+1]=(2*kk32[i]*BrOc[i]*BrOc[i]+kk31[i]*BrOc[i]*HO2int[j]+kk33[i]*N
Oc[i]*BrOc[i]+J_BrO[i]*BrOc[i])/(kk34[i]*O3c[i])

j+=1

while (j<=numpnts(OHint)-1) // as long as expression is true

 OHpred[i]=OHint[j]
 HO2pred[i]=HO2int[j]+CH3O2int[j]
 CH3O2pred[i]=CH3O2int[j]
 NO2pred[i]=NO2int[j]
 HNO4pred[i]=HNO4int[j]
 CH3OOHpred[i] = CH3OOHint[j]
 CH3OONO2pred[i] = CH3OONO2int[j]
 CH3OHpred[i] = CH3OHint[j]
 HONOpred[i] = HONOint[j]
 HNO3pred[i]=HNO3int[j]
 H2O2pred[i]=H2O2int[j]
 CH2Opred[i]=CH2Oint[j]
 HOBrpred[i]=HOBrint[j]
 Brpred[i]=Brint[j]

 //OH source

 JO3_source[i] = 2*J_O3[i]*O3c[i]*Fract[i]
\[
\text{NO_source_OH}[i] = kk8[i] \times \text{HO2pred}[i] \times \text{NOc}[i]
\]
\[
j\text{HONO_source}[i] = J_\text{HNO2}[i] \times \text{HONOpred}[i]
\]
\[
j\text{H2O2_source}[i] = 2 \times J_\text{H2O2}[i] \times \text{H2O2pred}[i]
\]
\[
j\text{HNO3_source}[i] = J_\text{HNO3}[i] \times \text{HNO3pred}[i]
\]
\[
\text{O3_source_OH}[i] = kk13[i] \times \text{O3c}[i] \times \text{HO2pred}[i]
\]
\[
\text{J_CH3OOH_source}[i] = J_\text{CH3OOH}[i] \times \text{CH3OOHpred}[i]
\]
\[
j\text{HOBr_source}[i] = J_\text{HOBr}[i] \times \text{HOBrpred}[i]
\]

\[
\text{Total_Source_OH}[i] = J\text{O3_source}[i] + \text{NO_source_OH}[i] + j\text{HONO_source}[i] + j\text{H2O2_source}[i] + j\text{HNO3_source}[i] + \text{O3_source_OH}[i] + J_\text{CH3OOH_source}[i] + j\text{HOBr_source}[i]
\]

//OH sink

\[
\text{CO_loss_OH}[i] = kk4[i] \times \text{COc}[i] \times \text{OHpred}[i]
\]
\[
\text{CH4_loss_OH}[i] = kk5[i] \times \text{CH4c}[i] \times \text{OHpred}[i]
\]
\[
\text{HO2_loss_OH}[i] = kk9[i] \times \text{HO2pred}[i] \times \text{OHpred}[i]
\]
\[
\text{NO_loss_OH}[i] = kk12[i] \times \text{NOc}[i] \times \text{OHpred}[i]
\]
\[
\text{O3_loss_OH}[i] = kk14[i] \times \text{O3c}[i] \times \text{OHpred}[i]
\]
\[
\text{HONO_loss_OH}[i] = kk15[i] \times \text{HONOpred}[i] \times \text{OHpred}[i]
\]
\[
\text{NO2_loss_OH}[i] = kk16[i] \times \text{NO2pred}[i] \times \text{OHpred}[i]
\]
\[
\text{HNO3_loss_OH}[i] = kk17[i] \times \text{HNO3pred}[i] \times \text{OHpred}[i]
\]
\[
\text{OH_loss_OH}[i] = 2 \times kk18[i] \times \text{OHpred}[i] \times \text{OHpred}[i]
\]
\[
\text{H2O2_loss_OH}[i] = kk19[i] \times \text{H2O2pred}[i] \times \text{OHpred}[i]
\]
\[
\text{CH2O_loss_OH}[i] = kk20[i] \times \text{CH2Opred}[i] \times \text{OHpred}[i]
\]
HNO4_loss_OH[i] = kk23[i]*HNO4pred[i]*OHpred[i]
CH3OOH_loss_OH[i] = kk26[i]*CH3OOHpred[i]*OHpred[i]
CH3OH_loss_OH[i] = kk30[i]*CH3OHpred[i]*OHpred[i]

//HO2 source
CO_source_HO2[i] = kk4[i]*OHpred[i]*COc[i]
CH3O2_Source_HO2[i] = kk6[i]*CH3O2pred[i]*NOc[i]
O3_source_HO2[i] = kk14[i]*OHpred[i]*O3c[i]
JCH2O_source[i] = 2*JCH2O_H_HCO[i]*CH2Opred[i]
CH2O_source_HO2[i] = kk20[i]*CH2Opred[i]*OHpred[i]
H2O2_source_HO2[i] = kk19[i]*H2O2pred[i]*OHpred[i]
HNO4_source_HO2[i] = kk22[i]*HNO4pred[i]
JHNO4_source[i] =
(J_HO2NO2_HO2_NO2[i]*J_HO2NO2_OH_NO3[i])*HNO4pred[i]
CH3O2_sq_source[i]= 2*kk25[i]*CH3O2pred[i]*CH3O2pred[i]
J_CH3OOH_source[i] = J_CH3OOH[i]*CH3OOHpred[i]
CH3OH_source_HO2[i] = kk30[i]*CH3OHpred[i]*OHpred[i]
Total_Source_HO2[i] =

//HO2 sink

CH3O2_loss_HO2[i] = kk7[i]*CH3O2pred[i]*HO2pred[i]
NO_loss_HO2[i] = kk8[i]*NOc[i]*HO2pred[i]
OH_loss_HO2[i] = kk9[i]*OHpred[i]*HO2pred[i]
HO2_loss_HO2[i] = 2*kk10[i]*HO2pred[i]*HO2pred[i]
O3_loss_HO2[i] = kk13[i]*O3c[i]*HO2pred[i]
NO2_loss_HO2[i] = kk21[i]*NO2pred[i]*HO2pred[i]
BrO_loss_HO2[i] = kk31[i]*BrOc[i]*HO2pred[i]

//CH3O2 source

CH4_source_CH3O2[i] = kk5[i]*OHpred[i]*CH4c[i]
CH3OOH_source_CH3O2[i] = kk26[i]*CH3OOHpred[i]*OHpred[i]
CH3OONO2_source_CH3O2[i] = kk29[i]*CH3OONO2pred[i]

Total_source_CH3O2[i] = CH4_source_CH3O2[i]+CH3OOH_source_CH3O2[i]+CH3OONO2_source_CH3O2[i]

//CH3O2 sink
NO_loss_CH3O2[i] = kk6[i]*NOc[i]*CH3O2pred[i]
HO2_loss_CH3O2[i] = kk7[i]*HO2pred[i]*CH3O2pred[i]
CH3O2_loss_CH3O2[i] = 2*kk24[i]*CH3O2pred[i]*CH3O2pred[i] + 2*kk25[i]*CH3O2pred[i]*CH3O2pred[i]
NO2_loss_CH3O2[i] = kk28[i]*CH3O2pred[i]*NO2pred[i]

Total_loss_CH3O2[i] = NO_loss_CH3O2[i] + HO2_loss_CH3O2[i] + CH3O2_loss_CH3O2[i] + NO2_loss_CH3O2[i]

//NO2 source
CH3O2_source_NO2[i] = kk6[i]*CH3O2pred[i]*NOc[i]
HO2_source_NO2[i] = kk8[i]*HO2pred[i]*NOc[i]
O3_source_NO2[i] = kk11[i]*NOc[i]*O3c[i]
HONO_source_NO2[i] = kk15[i]*OHpred[i]*HONOpred[i]
JHNO3_source_NO2[i] = J_HNO3[i]*HNO3pred[i]
HNO3_source_NO2[i] = kk17[i]*OHpred[i]*HNO3pred[i]
HNO4_source_NO2[i] = kk22[i]*HNO4pred[i]
JHNO4_source_NO2[i] = (J_HO2NO2_HO2_NO2[i]*J_HO2NO2_OH_NO3[i])*HNO4pred[i]
OH_source_NO2[i] = kk23[i]*HNO4pred[i]*OHpred[i]
CH3OOONO2_source_NO2[i] = kk29[i]*CH3OOONO2pred[i]

Total_source_NO2[i] = CH3O2_source_NO2[i] + HO2_source_NO2[i] + O3_source
NO2[i]+HONO{source_NO2[i]}+JHNO3_{source_NO2[i]}+HNO3_{source_NO2[i]}+HNO4_{source_NO2[i]}+JHNO4_{source_NO2[i]}+OH_{source_NO2[i]}+CH3OONO2_{source_NO2[i]}

//NO2 sink

JNO2_loss[i]=J_NO2[i]*NO2pred[i]

OH_loss_NO2[i]=kk16[i]*OHpred[i]*NO2pred[i]

HNO4_loss_NO2[i] = kk21[i]*HO2pred[i]*NO2pred[i]

CH3OONO2_loss_NO2[i] = kk28[i]*CH3O2pred[i]*NO2pred[i]

Total_loss_NO2[i]=JNO2_loss[i]+OH_loss_NO2[i]+HNO4_loss_NO2[i]+CH3OONO2_loss_NO2[i]

//HNO4 source & sink

Total_Source_HNO4[i] = kk21[i]*HO2pred[i]*NO2pred[i]

Decomp_HNO4[i] = kk22[i]*HNO4pred[i]

JHNO4_loss[i] =

(J_HO2NO2_HO2_NO2[i]*J_HO2NO2_OH_NO3[i])*HNO4pred[i]

Dry_Dep_HNO4[i] = DDPN[i]*HNO4pred[i]

OH_loss_HNO4[i] = kk23[i]*HNO4pred[i]*OHpred[i]

Total_loss_HNO4[i] =

Decomp_HNO4[i]+JHNO4_loss[i]+Dry_Dep_HNO4[i]+OH_loss_HNO4[i]

//HONO source & sink
Total_Source_HONO[i] = kk12[i]*OHpred[i]*NOc[i]

Total_loss_HONO[i] =
J_HNO2[i]*HONOpred[i]+kk15[i]*OHpred[i]*HONOpred[i]

JHONO_loss[i] = J_HNO2[i]*HONOpred[i]

OH_loss_HONO[i] = kk15[i]*OHpred[i]*HONOpred[i]

//CH3OOH source & sink
Total_source_CH3OOH[i] = kk7[i]*CH3O2pred[i]*HO2pred[i]

OH_loss_CH3OOH[i] =
kk26[i]*CH3OOHpred[i]*OHpred[i]+kk27[i]*CH3OOHpred[i]*OHpred[i]

J_CH3OOH_loss[i] = J_CH3OOH[i]*CH3OOHpred[i]

Total_loss_CH3OOH[i] = OH_loss_CH3OOH[i]+J_CH3OOH_loss[i]

//CH3OONO2 source & sink
Total_source_CH3OONO2[i] = kk28[i]*CH3O2pred[i]*NO2pred[i]

Total_loss_CH3OONO2[i] = kk29[i]*CH3OONO2pred[i]

//CH3OH source & sink
Total_source_CH3OH[i] = kk24*CH3O2pred[i]*CH3O2pred[i]

Total_loss_CH3OH[i] = kk30[i]*CH3OHpred[i]*OHpred[i]

//HOx Production
H2O2_source_HOx[i] = jH2O2_source[i]
\[CH_2O\text{_source_HOx}[i] = JCH_2O\text{_source}[i] \]

\[HNO_3\text{_source_HOx}[i] = jHNO_3\text{_source}[i] \]

\[\text{Total_Source_HOx}[i] = JO_3\text{_source}[i] + H_2O_2\text{_source_HOx}[i] + CH_2O\text{_source_HOx}[i] + HNO_3\text{_source_HOx}[i] \]

//HOx Loss
\[HO_2\text{-OH_loss_HOx}[i] = 2*kk9[i]*HO_2\text{_pred}[i]*OH\text{_pred}[i] \]
\[HO_2\text{-HO_2_loss_HOx}[i] = 2*kk10[i]*HO_2\text{_pred}[i]*HO_2\text{_pred}[i] \]
\[OH\text{-OH_loss_HOx}[i] = 2*kk18[i]*OH\text{_pred}[i]*OH\text{_pred}[i] \]
\[\text{Rad_Rad_loss_HOx}[i] = HO_2\text{-OH_loss_HOx}[i] \]
\[H_2O_2\text{-loss_HOx}[i] = HO_2\text{-HO_2_loss_HOx}[i] + OH\text{-OH_loss_HOx}[i] \]

//Methane
\[CH_4\text{-loss_HOx}[i] = kk5[i]*CH_4\text{_c}[i]*OH\text{_pred}[i] \]
\[CH_3O_2\text{_source_HOx}[i] = kk6*CH_3O_2\text{_pred}[i]*NO\text{_c}[i]+2*kk25[i]*CH_3O_2\text{_pred}[i]*CH_3O_2\text{_pred}[i] \]
\[CH_3O_2\text{-loss_HOx}[i] = kk7[i]*HO_2\text{_pred}[i]*CH_3O_2\text{_pred}[i] \]
\[CH_3OOH\text{_source_HOx}[i] = 2*J\text{_CH_3OOH}[i]*CH_3OOH\text{_pred}[i] \]
\[CH_3OOH\text{-loss_HOx}[i] = kk26[i]*CH_3OOH\text{_pred}[i]*OH\text{_pred}[i] \]

\[\text{Total_CH_4\text{-loss_HOx}[i] = CH_4\text{-loss_HOx}[i] - CH_3O_2\text{_source_HOx}[i] - CH_3O_2\text{-loss_HOx}[i] - CH_3OOH\text{_source_HOx}[i] - CH_3OOH\text{-loss_HOx}[i] - HNO_3\text{-loss_HOx}[i]} \]

\[HNO_3\text{-loss_HOx}[i] = \]

187
kk16[i]*OHpred[i]*NO2pred[i]+kk17[i]*OHpred[i]*HNO3pred[i]

\[\text{HNO}_4\text{ loss}_{\text{HOx}[i]} = kk21[i]*\text{HO2pred}[i]*\text{NO2pred}[i]- \]
(kk22[i]*HNO4pred[i]+)

(J_HO2NO2_HO2_NO2[i]*J_HO2NO2_OH_NO3[i])*HNO4pred[i])+(J_HO2NO2_HO2_NO2[i]*J_HO2NO2_OH_NO3[i])*HNO4pred[i]+DDPN[i]*HNO4pred[i]

\[\text{HONO loss}_{\text{HOx}[i]} = \]
kk15[i]*HONOpred[i]*OHpred[i]+kk12[i]*OHpred[i]*NOc[i]-jHONO_source[i]

\[\text{Total loss}_{\text{HOx}[i]} = \]
Rad_Rad_loss_{HOx}[i]+H2O2_loss_{HOx}[i]+HNO4_loss_{HOx}[i]+Total_CH4_loss_{HOx}[i]+HNO3_loss_{HOx}[i]+HONO_loss_{HOx}[i]

\[\text{Net Source Sink}_{\text{HOx}[i]} = \text{Total Source}_{\text{HOx}[i]}-\text{Total loss}_{\text{HOx}[i]} \]

\[\text{O3 diff}[i] = ((J_NO2[i]*NO2pred[i])/(J_O3[i]*Fract[i]+kk11[i]*NOc[i]+kk13[i]*HO2pred[i]+kk14[i]*OHpred[i])*(1e9/M[i]))-(O3c[i]*1e9/M[i])\]

\[// \text{HNO}_3 \text{ Source}&\text{Sink} \]

\[\text{OH}_\text{NO2 Source}[i]=kk16[i]*\text{OHpred}[i]*\text{NO2pred}[i] \]

\[\text{Total Source}_{\text{HNO3}[i]}=\text{OH}_\text{NO2 Source} \]

\[\text{JHNO3 loss}[i]=\text{J}_\text{HNO3}[i]*\text{HNO3pred}[i] \]

\[\text{OH loss}_{\text{HNO3}[i]}=kk17[i]*\text{OHpred}[i]*\text{HNO3pred}[i] \]
Total_loss_HNO3[i]=JHNO3_loss+OH_loss_HNO3

//H2O2 Source&Sink
HO2_HO2_Source[i]=kk10[i]*HO2pred[i]*HO2pred[i]
OH_OH_Source[i]=kk18[i]*OHpred[i]*OHpred[i]
Total_Source_H2O2[i]=HO2_HO2_Source[i]+OH_OH_Source[i]
OH_loss_H2O2[i]=kk19[i]*OHpred[i]*H2O2pred[i]
jH2O2_loss[i]=J_H2O2[i]*H2O2pred[i]
Total_loss_H2O2[i]=OH_loss_H2O2[i]+jH2O2_loss[i]

// CH2O Source&Sink
CH3O2_NO_Source[i]=kk6[i]*CH3O2pred[i]*NOc[i]
CH3O2_1_Source[i]=kk24[i]*CH3O2pred[i]*CH3O2pred[i]
CH3O2_2_Source[i]=2*kk25[i]*CH3O2pred[i]*CH3O2pred[i]
OH_CH3OOH_Source[i]=kk27[i]*OHpred[i]*CH3OHpred[i]
OH_CH3OH_Source[i]=kk30*OHpred[i]*CH3OHpred[i]
jCH3OOH_Source[i]=J_CH3OOH[i]*CH3OOHpred[i]
Total_Source_CH2O[i] = CH3O2_NO_Source+ CH3O2_1_Source +CH3O2_2_Source +
OH_CH3OOH_Source+OH_CH3OH_Source[i]+jCH3OOH_Source[i]
OH_loss_CH2O[i]=kk20[i]*OHpred[i]*CH2Opred[i]
jCH2O_loss[i]=J_CH2O[i]*CH2Opred[i]
Total_loss_CH2O[i]=OH_loss_CH2O+ jCH2O_loss

i+=1

// execute the loop

body

while (i<=numpts(kk2)-1) // as long as expression is true

end
APPENDIX B

IGOR CODE OF A TIME DEPENDENT MODEL TO SIMULATE BROMINE SPECIATION

Function reaction_rates()

//**********************Reaction_rates**********************
wave temp, pressure
duplicate/o temp M temp1 KK1 KK2 KK3 KK4 KK5 KK6 KK7 KK8 KK9 KK10 KK6low KK6high
KK10low KK10high

temp1=273.15+temp
M=((Pressure/1013)*6.02e23)/(0.08206*Temp1*1000)

// ************Br+O3-->BrO+O2
kk1=1.7e-11*exp(-800/Temp1)

// ************BrO+BrO-->2Br+O2
kk2=1.60*exp(-190/temp1) *1.5e-12 *exp(230/Temp1)

// ************BrO+BrO-->Br2+O2
kk3=(1-1.60*exp(-190/temp1))*1.5e-12 *exp(230/Temp1)

// ************BrO+HO2-->HOBr+O2
kk4=4.5e-12*exp(460/Temp1)

// ************BrO+NO---->Br+NO2
kk5=8.8e-12*exp(260/Temp1)

// ************BrO+NO2-->BrONO2
kk6low=5.2e-31*(temp1/300)^-3.2
kk6high=6.9e-12*(temp1/300)^-2.9
kk6=(kk6low*M/(1+kk6low*M/kk6high))*0.6^((1+(log(kk6low*M/kk6high))^2)^-1)

191
//**************Br+HCHO ---> HBr+CHO
kk7=1.7*1e-11*exp(-800/temp1)

//**************Br+HO2 ---> HBr+O2
kk8=4.8e-12*exp(-310/temp1)

// ***********OH+HBr ---> H2O+Br
kk9=5.5e-12*exp(200/temp1)

//**************Br+NO2 ---> BrNO2
kk10low=4.2e-31*(temp1/300)^-2.4
kk10high=2.7e-11*(temp1/300)^-0
kk10=(kk10low*M/(1+kk10low*M/kk10high))*0.6^((1+(log(kk10low*M/kk10high))^2)^-1)

//********************Loss of HOBr, HBr and BrONO2 on aerosols**************
wave Aerosol_S, Aerosol_N, Aerosol_V
duplicate/o temp radius velocity_HOBr velocity_HBr velocity_BrONO2 Kn_HOBr
Kn_HBr kn_BrONO2 F_HOBr F_HBr F_BrONO2 k_HOBr k_HBr k_BrONO2
mass_HOBr mass_HBr mass_BrONO2 stk_HOBr stk_HBr stk_BrONO2 Dg
mass_HOBr=97
mass_HBr=81
mass_BrONO2=142
mass_Br2=160
Dg=0.1
stk_HOBr=0.6
stk_HBr=0.3
stk_BrONO2=0.8 //0.2//0.063-0.80[Hanson](from JPL)
stk_Br2=0.01
radius=(aerosol_S/aerosol_N/4/3.14)^0.5*1e-4
velocity_HOBr=(8*8.314*temp1*1000/4.13/mass_HOBr)^0.5*100
velocity_HBr=(8*8.314*temp1*1000/4.13/mass_HBr)^0.5*100
velocity_BrONO2=(8*8.314*temp1*1000/4.13/mass_BrONO2)^0.5*100
velocity_Br2=(8*8.314*temp1*1000/4.13/mass_Br2)^0.5*100
kn_HOBr=3*Dg/velocity_HOBr/radius
kn_HBr=3*Dg/velocity_HBr/radius
kn_BrONO2=3*Dg/velocity_BrONO2/radius
kn_Br2=3*Dg/velocity_Br2/radius

F_HOBr=0.75*stk_HOBr*(1+kn_HOBr)/(kn_HOBr^2+kn_HOBr+0.283*kn_HOBr*stk_HOBr+0.75*stk_HOBr)
F_HBr=0.75*stk_HBr*(1+kn_HBr)/(kn_HBr^2+kn_HBr+0.283*kn_HBr*stk_HBr+0.75*stk_HBr)
F_BrONO2=0.75*stk_BrONO2*(1+kn_BrONO2)/(kn_BrONO2^2+kn_BrONO2+0.283*kn_BrONO2*stk_BrONO2+0.75*stk_BrONO2)
F_Br2=0.75*stk_Br2*(1+kn_Br2)/(kn_Br2^2+kn_Br2+0.283*kn_Br2*stk_Br2+0.75*stk_Br2)

k_HOBr =4*3.14*radius*aerosol_N*Dg*F_HOBr
k_HBr =4*3.14*radius*aerosol_N*Dg*F_HBr
k_BrONO2 =4*3.14*radius*aerosol_N*Dg*F_BrONO2
k_Br2 =4*3.14*radius*aerosol_N*Dg*F_Br2

//k_HOBr=1e-3
//k_HBr=5e-4
//k_BrONO2=1e-4
end
//***
Function bromine_speciation()

variable deltat, c
deltat=0.1
c=86400/deltat

wave J_Br2, J_BrO, J_HOBr, J_BrONO2_Br_NO3, J_BrONO2_BrO_NO2, k_HOBr, k_HBr, k_BrONO2, kk1, kk2, kk3, kk4, kk5, kk6, kk7, kk8, kk9, O3c, NOc, NO2c, HO2pred, OHpred, CH2Oc

make/O/N=(c)/D Br2pred Brpred HOBrpred HBrpred BrOpred time_series BrONO2pred min_pro_HOBr min_pro_BrONO2 pro_HBr min_pro_HBr left_pro //2000000

Br2pred= Nan
Brpred= Nan
HOBrpred= Nan
HBrpred= Nan
BrOpred= Nan
BrClpred= Nan
time_series=Nan
time_series[0]=0
Brpred[0]=0
BrOpred[0]=0
HOBrpred[0]=0
HBrpred[0]=0
BrONO2pred[0]=0
\[Br_{2,\text{pred}}[0] = 15 \times 3 \times 10^7 \]

\[i = 0 \]

\[j = 0 \]

execute do

\[\text{min_pro_HOBr}_i = k_{\text{HOBr}} \times \text{HOBr}_{\text{pred}}[i] \]

\[\text{min_pro_BrONO}_2[i] = K_{\text{BrONO}_2} \times \text{BrONO}_{2,\text{pred}}[i] \]

\[\text{pro_HBr}_i = K_{\text{HBr}} \times \text{HBr}_{\text{pred}}[i] \]

\[\text{min_pro_HBr}_i = \begin{cases} \text{pro_HBr}_i & \text{if } \text{pro_HBr}_i < \text{min_pro_BrONO}_2[i] + \text{min_pro_HOBr}_i \\ \text{min_pro_BrONO}_2[i] + \text{min_pro_HOBr}_i - \text{pro_HBr}_i & \text{otherwise} \end{cases} \]

\[\text{left_pro}_i = \begin{cases} \text{min_pro_HOBr}_i + \text{min_pro_BrONO}_2[i] - \text{pro_HBr}_i & \text{if } \text{pro_HBr}_i < \text{min_pro_BrONO}_2[i] + \text{min_pro_HOBr}_i \\ 0 & \text{otherwise} \end{cases} \]

\[Br_{2,\text{pred}}[i+1] = Br_{2,\text{pred}}[i] + (-J_{\text{Br}_2}[j] \times Br_{2,\text{pred}}[i] \times \text{deltat} + k_{3}[j] \times \text{BrOpred}[i] \times \text{HBr}_{\text{pred}}[i] \times \text{deltat} + 0.5 \times \text{left_pro}[i] \times \text{deltat} + \text{min_pro_HBr}_i \times \text{deltat}) \]

\[Br_{\text{pred}}[i+1] = Br_{\text{pred}}[i] + (2 \times J_{\text{Br}_2}[j] \times Br_{2,\text{pred}}[i] \times \text{deltat} - k_{1}[j] \times Br_{\text{pred}}[i] \times O_3c[j] \times \text{deltat} + J_{\text{BrO}[j]} \times Br_{\text{pred}}[i] \times \text{deltat} + J_{\text{HOBr}[j]} \times \text{HOBrpred}[i] \times \text{deltat} + 2 \times k_{2}[j] \times Br_{\text{pred}}[i] \times \text{deltat} - k_{7}[j] \times CH_2Oc[j] \times Br_{\text{pred}}[i] \times \text{deltat} - k_{8}[j] \times HO2pred[j] \times Br_{\text{pred}}[i] \times \text{deltat} + k_{5}[j] \times NOc[j] \times \text{deltat} + k_{6}[j] \times NO_2c[j] \times \text{deltat} + \text{BrONO}_2pred[i] \times J_{\text{BrONO}_2_Br_O_NO}_2[j] \times \text{deltat}) \]

\[Br_{\text{Opred}}[i+1] = Br_{\text{Opred}}[i] + (k_{1}[j] \times Br_{\text{pred}}[i] \times O_3c[j] \times \text{deltat} - J_{\text{BrO}[j]} \times Br_{\text{Opred}}[i] \times \text{deltat} - 2 \times k_{2}[j] \times Br_{\text{Opred}}[i] \times \text{deltat} - k_{4}[j] \times Br_{\text{Opred}}[i] \times \text{HO2pred}[j] \times \text{deltat} - k_{5}[j] \times Br_{\text{Opred}}[i] \times NOc[j] \times \text{deltat} - k_{6}[j] \times Br_{\text{Opred}}[i] \times NO_2c[j] \times \text{deltat} + \text{BrONO}_2pred[i] \times J_{\text{BrONO}_2_Br_O_NO}_2[j] \times \text{deltat}) \]

\[\text{HOBrpred}[i+1] = \text{HOBrpred}[i] + (k_{4}[j] \times Br_{\text{Opred}}[i] \times \text{HO2pred}[j] \times \text{deltat} - J_{\text{HOBr}[j]} \times \text{HOBrpred}[i] \times \text{deltat} - \text{min_pro_HOBr}_i \times \text{deltat}) \]

\]
\[\text{HBrpred}[i+1] = \text{HBrpred}[i] + (kk7[j] \times \text{CH2Oc}[j] \times \text{Brpred}[i] \times \text{deltat} + kk8[j] \times \text{HO2pred}[j] \times \text{Brpred}[i] \times \text{deltat} - \text{pro}_\text{HBr}[i] \times \text{deltat}) \]

\[\text{BrONO2pred}[i+1] = \text{BrONO2pred}[i] + (kk6[j] \times \text{BrOpred}[i] \times \text{NO2c}[j] \times \text{deltat} - \text{BrONO2pred}[i] \times J_{\text{BrONO2}_{\text{Br NO3}}}[j] \times \text{deltat} - \text{BrONO2pred}[i] \times J_{\text{BrONO2}_{\text{BrO NO2}}}[j] \times \text{deltat} - \text{min}_\text{pro}_\text{BrONO2}[i] \times \text{deltat}) \]

\[\text{time_series}[i+1] = (i+1) \times \text{deltat} \]

\[i += 1 \]

\[j = \text{floor}(i \times \text{deltat}/600) //1871 //+1876 \]

while (i < c - 1)

end
APPENDIX C

IGOR CODE OF A TIME DEPENDENT MODEL TO SIMULATE

CHLORINE SPECIES

#pragma rtGlobals=1 // Use modern global access method.
#include <AxisSlider>

Function reaction_rate ()

wave temp, pressure_NOAA
duplicate/o temp M temp_int pressure_int kk1 kk2 kk3 kk4 kk5 kk6 kk7 kk8 kk9 kk10
kk11 kk12 kk13 kk14 kk15 kk16 kk17 kk18 kk19 kk20 kk21 kk22 kk23 kk24 kk13low
kk13high kk14low kk14high kk20low kk20high kk21low kk21high kk25 kk26 kk27
interpolatewave(temp_int,temp)
interpolatewave(pressure_int, pressure_NOAA)
//temp_int=-25
//pressure_int=1013
M=((Pressure_int/1013)*6.02e23)/(0.08206*Temp_int*1000)
//Cl+O3-->ClO + O2
kk1=2.3e-11*exp(-200/temp_int)
//ClO+ HO2--> HOCl + O2
kk2=2.7e-12*exp(220/temp_int)
//ClO+NO-->Cl +NO2
kk3=6.4e-12*exp(290/temp_int)
//Cl + CH4--> HCl + CH3
kk4=7.3e-12*exp(-1280/temp_int)
//Cl + H2CO --> HCl + HCO
kk5 = 8.1e-11 * exp(-30/temp_int)

//HO2 + Cl --> HCl + O2
kk6 = 1.8e-11 * exp(170/temp_int)

//HO2 + Cl --> OH + ClO
kk7 = 4.1e-11 * exp(-450/temp_int)

//OH + Cl2 --> HOCl + Cl
kk8 = 1.4e-12 * exp(-900/temp_int)

//OH + HOCl ---> H2O + ClO
kk9 = 3.0e-12 * exp(-500/temp_int)

//ClO + ClO --> Cl2 + O2
kk10 = 1.0e-12 * exp(-1590/temp_int)

//ClO + ClO --> ClOO + Cl
kk11 = 3.0e-11 * exp(-2450/temp_int)

//ClO + ClO --> OCIO + Cl
kk12 = 3.5e-13 * exp(-1370/temp_int)

//ClO + ClO --> Cl2O2
kk13low = 1.6e-32 * (temp_int/300)^(-4.5)
kk13high = 2.0e-12 * (temp_int/300)^(-2.4)
kk13 = (kk13low*M/(1+kk13low*M/kk13high))*0.6^((1+(log(kk13low*M/kk13high))^2)^-1)

//ClO + NO2 --> ClONO2
kk14low = 1.8e-31 * (temp_int/300)^(-3.4)
kk14high = 1.5e-11 * (temp_int/300)^(-1.9)
kk14 = (kk14low*M/(1+kk14low*M/kk14high))*0.6^((1+(log(kk14low*M/kk14high))^2)^-1)

//BrO + ClO --> Br + OCIO
kk15=9.5e-13*exp(550/temp_int)
//BrO+ClO--> Br + C1OO
kk16=2.3e-12*exp(260/temp_int)
//BrO+ClO-->BrCl + O2
kk17=4.1e-13*exp(290/temp_int)
//Cl +C2H6-->HCl + C2H5 (ethane)
kk18=7.2e-11*exp(-70/temp_int)
//Cl + C3H8-->HCl + C3H7 (propane)
kk19= 6.54e-11*exp(0/temp_int)+7.85e-11*exp(-80/temp_int)
//Cl+C2H2 (ethyne)--->CIC2H2
kk20low=5.2e-30*(temp_int/300)^(-2.4)
kk20high=2.2e-10*(temp_int/300)^(-0.7)
kk20=(kk20low*M/(1+kk20low*M/kk20high))*0.6^((1+(log(kk20low*M/kk20high))^2)^-1)
//Cl +C2H4 --> CIC2H4
kk21low=1.6e-29*(temp_int/300)^(-3.3)
kk21high=3.1e-10*(temp_int/300)^(-1.0)
kk21=(kk21low*M/(1+kk21low*M/kk21high))*0.6^((1+(log(kk21low*M/kk21high))^2)^-1)
//Cl + n C4H10(n-butane)---> C4H9 +HCl ///IUPAC
kk22=0.44*exp(-120/temp_int)*2.05e-10+0.59*exp(55/temp_int)*2.05e-10
//Cl + C3H6--> IUPAC
kk23=2.7e-10
//OH+ HCl-->H2O+ Cl
kk24=2.6e-12*exp(-350/temp_int)
//Cl + CH3CHO-->HCl+CH3CO
//--->HCl+ CH2CHO-
kk25=8.0e-11 // IUPAC
//Cl + CH3OH (Methanol)->HCl +CH2OH
kk26=5.5e-11
//Cl+CH3C(O)CH3 (acetone)->HCl + CH3C(O)CH2 // from IUPAC correct
kk27=1.5e-11*exp(-590/temp)
end

Function loss_on_aerosol()
wave Aerosol_S, Aerosol_N, Aerosol_V,temp_int
duplicate/o temp radius velocity_HOCl Kn_HOCl F_HOCl k_HOCl mass_HOCl Dg
stk_HOCl k_HOCl_ori
duplicate/o temp mass_HCl stk_HCl velocity_HCl Kn_HCl F_HCl k_HCl k_HCl_ori
duplicate/o temp mass_Cl2 stk_Cl2 velocity_Cl2 Kn_Cl2 F_Cl2 k_Cl2 k_Cl2_ori
mass_HCl=36.5
mass_HOCl=52.5
mass_Cl2=70.9
Dg=0.1
stk_HOCl=0.3 // 0.3 // Pratte, PCCP, 2006
stk_HCl=0.18 // Fluckiger 2003// 0.8 Robinson 1998
stk_Cl2=0.02//0.02// Hu et al JPC 1995
radius=(aerosol_S/aerosol_N/4/3.14)^0.5*1e-4
velocity_HOCl=(8*8.314*temp_int*1000/4.13/mass_HOCl)^0.5*100
velocity_HCl=(8*8.314*temp_int*1000/4.13/mass_HCl)^0.5*100
velocity_Cl2=(8*8.314*temp_int*1000/4.13/mass_Cl2)^0.5*100
k_HOCl=3*Dg/velocity_HOCl/radius
kn_HCl=3*Dg/velocity_HCl/radius
kn_Cl2=3*Dg/velocity_Cl2/radius
F_HOCl=0.75*stk_HOCl*(1+kn_HOCl)/(kn_HOCl^2+kn_HOCl+0.283*kn_HOCl*stk_HOCl+0.75*stk_HOCl)
F_HCl=0.75*stk_HCl*(1+kn_HCl)/(kn_HCl^2+kn_HCl+0.283*kn_HCl*stk_HCl+0.75*stk_HCl)
F_Cl2=0.75*stk_Cl2*(1+kn_Cl2)/(kn_Cl2^2+kn_Cl2+0.283*kn_Cl2*stk_Cl2+0.75*stk_Cl2)
/F_N2O5=0.03 // uptake coefficient [George JPC, 1994]
k_HOCl=4*3.14*radius*aerosol_N*Dg*F_HOCl
k_HCl=4*3.14*radius*aerosol_N*Dg*F_HCl
k_Cl2=4*3.14*radius*aerosol_N*Dg*F_Cl2
end

function model_chlorine()
wave Cl2c, O3c, HO2c, OHc, NOc, NO2c, CH2Oc, BrOc, ethanec, ethene, propanec, propene, n_butanec, ethynec, M_avg, temp_avg, pressure_avg, CH4c, BrClc, J_BrCl_avg, k_Cl2_avg, CH3CHOc, methanolec, acetonec, temp_avg, boundaryH2, Cl2_prod_time_mean
wave kk1, kk2, kk3, kk4, kk5, kk6, kk7, kk8, kk9, kk10, kk11, kk12, kk13, kk14, kk15, kk16, kk17, kk18, kk19, kk20, kk21, kk22, kk23, kk24, kk25, kk26, kk27, k_HCl_avg, k_HOCl_avg, J_Cl2_avg, J_HOCl_avg, J_ClO_avg, J_O3_avg, J_NO2_avg, J_Br2_avg, J_ClONO2_Cl_avg, J_ClONO2_ClO_avg
variable deltat, c, i, j, k, alpha
deltat=0.01//0.01
c=86400/deltat
//alpha=100//100/2.5e-9 //1e-12*2e3 //7.5e-4/20/3e7//1.5e-12
//duplicate/o temp_avg boundaryH
//boundaryH=(temp_avg-247)*50
//duplicate/o Cl2c P_Cl2
//P_Cl2=Cl2c*(J_Cl2_avg)

make/o/n=(c)/D ClOpred HOClpred Clpred HClpred time_series Clpred_source
Clpred_loss ClOpred_source ClOpred_loss Cl2pred total_Clpred Cl_ionpred
Cl2_extrasource BrClpred ClONO2pred
ClOpred[0]=0
HOClpred[0]=0
Clpred[0]=0
HClpred[0]=0
Cl2pred[0]=3*3e7
Cl_ionpred[0]=200*3e7
BrClpred[0]=0
ClONO2pred[0]=0

i=0
j=0
do
//Cl2_extrasource[i]=0.5*J_O3_avg[j]*O3c[j]*Cl_ionpred[i]*alpha
//Cl2pred[i+1]=Cl2pred[i]+(J_O3_avg[j]*O3c[j]*alpha/boundaryH2[j]+k_HOCl_avg[j]*HOClpred[i]+kk10[j]*ClOpred[i]^2-Cl2pred[i]*J_Cl2_avg[j]-kk8[j]*OHc[j]*Cl2pred[i]-k_Cl2_avg[j]*Cl2pred[i])*deltat
//Cl2pred[i+1]=Cl2pred[i]+(P_Cl2[j]-J_Cl2_avg[j]-k_Cl2_avg[j]*Cl2pred[i])*deltat

\[[j]*OHc[j]*HClpred[i]+ClONO2pred[i]*J_{ClONO2_CL}_avg[j]+J_{BrCl_avg[j]}*BrClpred[i]*deltat //

\]

\[\text{Clpred_loss[i]} = (\text{kk1[j]}*O3c[j]+\text{kk4[j]}*CH4c[j]+\text{kk5[j]}*CH2Oc[j]+\text{kk18[j]}*ethane[j]+\text{kk19[j]}*propanec[j]+\text{kk22[j]}*n_butanec[j]+\text{kk6[j]}*HO2c[j]+\text{kk7[j]}*HO2c[j]+\text{kk25[j]}*CH3CHOc[j]+\text{kk26[j]}*2.0e10+\text{kk27[j]}*3.3e10)*\text{Clpred[i]}*deltat //
\]

\[+\text{kk20[j]}*ethy nec[j]+\text{kk21[j]}*ethenec[j]+\text{kk23[j]}*propenec[j]
\]

\[+\text{kk26[j]}*\text{Methanolc[j]}+\text{kk27[j]}*\text{Acetonc[j]}
\]

\[\text{Clpred[i+1]} = \text{Clpred[i]}+(\text{Clpred_source[i]}-\text{Clpred_loss[i]})
\]

\[\text{ClOpred_source[i]} = (\text{kk1[j]}*O3c[j]*\text{Clpred[i]}+\text{kk7[j]}*HO2c[j]*\text{Clpred[i]}+\text{kk9[j]}*OHc[j]*\text{HOClpred[i]}+\text{ClONO2pred[i]}*J_{ClONO2_ClO}_avg[j])*deltat //
\]

\[\text{ClOpred_loss[i]} = (\text{J_{ClO}_avg[j]}*\text{ClOpred[i]}+\text{kk2[j]}*HO2c[j]*\text{ClOpred[i]}+\text{kk3[j]}*\text{ClOpred[i]}*\text{NOc[j]}+2*\text{kk10[j]}*\text{ClOpred[i]}^2+2*\text{kk11[j]}*\text{ClOpred[i]}+\text{kk12[j]}*\text{ClOpred[i]}_avg[j]+\text{kk14[j]}*\text{ClOpred[i]}*\text{NO2c[j]}+\text{kk13[j]}*\text{ClOpred[i]}^2+\text{kk15[j]}*\text{BrOc[j]}*\text{ClOpred[i]}+\text{kk16[j]}*\text{BrOc[j]}*\text{ClOpred[i]}+\text{kk17[j]}*\text{BrOc[j]}*\text{ClOpred[i]})*deltat //
\]

\[\text{ClOpred[i+1]} = \text{ClOpred[i]}+(\text{ClOpred_source[i]}-\text{ClOpred_loss[i]})
\]

\[\text{HOClpred[i+1]} = \text{HOClpred[i]}+((\text{kk2[j]}*HO2c[j]*\text{ClOpred[i]}+\text{kk8[j]}*OHc[j]*\text{Cl2c[j]})*deltat-
\]

\[(\text{kk9[j]}*OHc[j]*\text{HOClpred[i]}+\text{J_{HOCl_avg[j]}*HOClpred[i]}+\text{k_HOCl_avg[j]}*\text{HOClpred[i]})*deltat)
\]

\[\text{HClpred[i+1]} = \text{HClpred[i]}+(\text{kk4[j]}*\text{CH4c[j]}*\text{Clpred[i]}+\text{kk5[j]}*\text{CH2Oc[j]}*\text{Clpred[i]}+\text{kk6[j]}*\text{HO2c[j]}*\text{Clpred[i]}+\text{kk18[j]}*\text{ethane[j]}*\text{Clpred[i]}+\text{kk19[j]}*\text{propanec[j]}*\text{Clpred[i]}+\text{kk22[j]}*\text{n_butanec[j]}*\text{Clpred[i]}+\text{kk25[j]}*\text{CH3CHOc[j]}*\text{Clpred[i]}+\text{kk26[j]}*2.0e10*\text{Cl}]
\]

203
pred[i]+kk27[j]*3.3e10*Clpred[i])*deltat-

(kk24[j]*OHc[j]*HClpred[i]+k_HCl_avg[j]*HClpred[i])*deltat)

//Cl_ionpred[i+1]=Cl_ionpred[i]+(k_HCl_avg[j]*HClpred[i]-
J_O3_avg[j]*O3c[j]*Cl_ionpred[i]*alpha+k_CI2_avg[j]*Cl2pred[i]-
k_HOCl_avg[j]*HOClpred[i])*deltat

ClONO2pred[i+1]=ClONO2pred[i]+(kk14[j]*ClOpred[i]*NO2c[j]-
ClONO2pred[i]*J_ClONO2_ClO_avg[j]-
ClONO2pred[i]*J_ClONO2_ClO_avg[j])*deltat //-

ClONO2pred[i]*J_ClONO2_ClO_avg[j]

BrClpred[i+1]=BrClpred[i]+(kk17[j]*BrOc[j]*ClOpred[i]-
J_BrCl_avg[j]*BrClpred[i])*deltat

time_series[i+1]=(i+1)*deltat

i+=1

j=floor(i*deltat/600)

while (i<c-1)

end
REFERENCES

Boudries, H., and Bottenheim, J.W., 2000: Cl and Br atom concentrations during a surface boundary layer ozone depletion event in the Canadian high Arctic. Geophysical Research Letters, 27, 517-520.

Cai, Y., Montague, D.C., Mooiweer-Bryan, W., and Deshler, T., 2008: Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles
between 55 and 800 nm: Laboratory and field studies. Journal of Aerosol Science, 39, 759-769.

Crutzen, P.J., and Arnold, F., 1986: Nitric-acid cloud formation in the cold Antarctic

Dibb, J.E., Ziembka, L.D., Luxford, J., and Beckman, P., 2010: Bromide and other ions in the snow, firn air, and atmospheric boundary layer at Summit during GSHOX. Atmospheric Chemistry and Physics, 10, 9931-9942.

Holmes, C.D., Jacob, D.J., Corbitt, E.S., Mao, J., Yang, X., Talbot, R., and Slemr, F., 2010: Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10, 12037-12057.

Honrath, R.E., Peterson, M.C., Guo, S., Dibb, J.E., Shepson, P.B., and Campbell, B., 1999: Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophysical Research Letters, 26, 695-698.

Jin, R., and Chu, L.T., 2007: Uptake of NH\textsubscript{3} and NH\textsubscript{3}+HOBr reaction on ice surfaces at 190 k. Journal of Physical Chemistry A, 111, 7833-7840.

Johnson, R. D., 2010: NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Data Number 101, release 15a, National Institute of Standards and Technology, Gaithersburg, MD.

Kazantseva, N.N., Ernepesova, A., Khodjamamedov, A., Geldyev, O.A., and Krumgalz,

Kraus, S., 2004: DOASIS: DOAS Intelligent System, Software, copyright 2004 Stefan Kraus, Institute of Environmental Physics, University of Heidelberg, Heidelberg, In cooperation with Hoffmann Messtechnik GmbH.

Pratte, P., and Rossi, M.J., 2006: The heterogeneous kinetics of HOBr and HOCl on acidified sea salt and model aerosol at 40-90% relative humidity and ambient temperature. Physical Chemistry Chemical Physics, 8, 3988-4001.

220

Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J.,

and Physical Meteorology, 49, 533-555.

VITA

Jin Liao was born in Shantou, China on July 28, 1983 to Shizao Liao and Daina Chen. She went to Guangzhou, China to attend Sun Yat-Sen University in September 2002 and received a B. S. in Environmental Science in 2006. She then moved to Atlanta, GA, USA in August 2006 to pursue graduate studies and join Prof. Greg Huey’s group at Georgia Tech. In 2011, Jin was invited to participate in the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS). She defended her PhD in Atmospheric Chemistry in October 2011.