BAMS METHOD: THEORY AND SIMULATIONS

By BRANI VIDAKOVIC
Duke University, Durham
and
FABRIZIO RUGGERI
CNR-JAMI, Milano

SUMMARY. In this paper we address the problem of model-induced wavelet shrinkage. Assuming the independence model according to which the wavelet coefficients are treated individually, we discuss a level-adaptive Bayesian model in the wavelet domain that has two important properties: (i) it realistically describes empirical properties of signals and images in the wavelet domain, and (ii) it results in simple optimal shrinkage rules to be used in fast wavelet denoising. The proposed denoising paradigm BAMS (short for Bayesian Adaptive Multiresolution Smoother) is illustrated on an array of Donoho and Johnstone’s standard test functions and is compared to some standard wavelet-based smoothing methods.

1. Introduction

Wavelet based statistical shrinkage procedures proposed by Donoho, Johnstone, and their co-authors in the early 1990’s (Donoho and Johnstone (1994), Donoho et al. (1995), and references in Donoho (1997)) have proven to be an excellent data analytic tool in function/density estimation problems. The shrinkage was performed by thresholding-type rules and the optimal thresholds had been established either by an asymptotic minimax, exact risk, or penalized mean square error calculation.

Subsequent vibrant research focussed on several generalizations of the original Donoho-Johnstone paradigm; see Vidakovic (1999) for a general overview.

A variety of methods, based on Bayes estimators of the “signal part” in an observed wavelet coefficient, have shown to be capable of incorporating prior information about the unknown signal (smoothness, periodicity, and self-similarity, for instance). Many aspects regarding this Bayesian approach to wavelet shrinkage can be found in contributed chapters in the volume by Müller and Vidakovic (1999).

Key words and phrases. Wavelet regression, shrinkage, adaptivity, denoising.
In this paper we propose a shrinkage method, based on a Bayesian model in the wavelet domain, that addresses some of the shortcomings of the counterpart Bayesian methods previously proposed. We discuss these shortcomings and present our new model in Section 2. Section 2 also addresses the important issue of tuning the model hyperparameters with the goal of general usability of the proposed method. Section 3 contains the simulational study performed on the standard array of test-functions and comparisons with some other methods. The proposed BAMS (Bayesian Adaptive Multiresolution Smoother) method is implemented in MATLAB and made available to the public. All program codes, images, and simulations can be found at the web-site www.stat.duke.edu/~brani/wavelet.html. This is in the spirit of Donoho’s initiative for reproducible research; see Buckheit and Donoho (1995).

2. The Model

Next we describe the statistical model, the rationale behind it, and the resulting optimal shrinkage rules.

Suppose the observed data y represent the sum of an unknown signal s and random noise ε. Coordinate-wise,

$$y_i = s_i + \varepsilon_i, \quad i = 1, \ldots, n.$$

(1)

In the wavelet domain (after applying a linear and orthogonal wavelet transformation W to the observed data), expression (1) becomes $d_{jk} = \theta_{jk} + \varepsilon_{jk}, \quad i = 1, \ldots, n$, where $d_{jk}, \theta_{jk},$ and ε_{jk} are the j,k-th coordinates in the traditional scale/shift wavelet-enumeration of vectors Wy, Ws and $W\varepsilon$, respectively. Our assumption is that the coefficients d_{jk} can be considered independently, since the wavelet transformations are decorrelating. When modeling in practice, such assumption prove to be very reasonable. In the exposition that follows, we omit the double index jk and work with a “typical” wavelet coefficient, d.

It is now standard practice in wavelet shrinkage to specify a location model on the wavelet coefficients, elicit the prior on their locations (the signal part in wavelet coefficients), exhibit the Bayes estimator for the locations and, if the resulting Bayes rules are shrinkage estimators, apply the inverse wavelet transformation to the estimators.

In considering this model-induced shrinkage, the main concern was, of course, performance of the induced shrinkage rules, measured by the realized mean square error, while no attention was paid to the match between models and data in the wavelet domain. It is certainly desirable for selected models to well-describe our empirical observations, for the majority of signals and images. At the same time, the calculation of shrinkage rules should remain inexpensive. Our experience is that the realistic but complicated models, for which the rules are
obtained by extensive MCMC simulations, are seldom accepted by practitioners, despite their reportedly good performance.

We demonstrate that two desirable goals, *simplicity and reality*, can be achieved simultaneously. We adopt a pragmatic location model in which the wavelet coefficients d are modeled by $f(d - \theta)$ where θ is the signal part. The same model can be used for all coefficients, or, with slight modifications, to be localized with respect to scale and/or time, depending on the nature of our observations.

We discuss the model building in stages: the likelihood, the priors, the calculation of the Bayes rule and selection of the hyperparameters.

2.1 The Likelihood

We assume, as is commonly done, that the errors are normal, and thus $[d \theta, \sigma^2]$ is distributed as $\mathcal{N}(\theta, \sigma^2)$.

Many researchers have discussed their findings about the empirical distribution of the wavelet coefficients; see, for example, Buccigrossi and Simoncelli (1999), Leporini et al. (1999), Mallat (1989), Simoncelli (1999) and Ruggeri (1999). Their opinions can be summarized in the following statement:

“For most of the signals and images encountered in practice, the empirical distribution of a typical detail wavelet coefficient is notably centered about zero and peaked at it.”

Mallat (1989) used the exponential power distribution family \mathcal{EPD} 1 as a model to fit empirical distributions of wavelet coefficients. After estimating the parameters of the \mathcal{EPD} from the coefficients, quantile based thresholding rules could be established, which originally was the reason for considering the \mathcal{EPD} model.

A Bayesian model is realistic if the marginal (predictive) distribution of the observations “agrees” with the observations. In our approach, we require the marginal distribution of the wavelet coefficients to be close to the model in Mallat (1989).

Such marginal “matching” modeling is impossible if plug-in estimators of σ^2 are used. The argument is as follows:

Suppose that in the normal $\mathcal{N}(\theta, \sigma^2)$ model on $[d \theta, \sigma^2]$ one replaces σ^2 with an estimator $\hat{\sigma}^2$. Then, the marginal likelihood for the location remains normal, and the corresponding overall marginal is a location mixture of normals. It is a well-known fact that location mixtures of normals (convolutions) result in

\[f(d) = C \cdot e^{-(|d|/\alpha)^\beta}, \quad \alpha, \beta > 0. \]

The normalizing constant is $C = \frac{\beta}{\alpha \Gamma(1/\beta)}$. Since

\[E[D] = \alpha \frac{\Gamma(2/\beta)}{\Gamma(1/\beta)} \quad \text{and} \quad E[D^2] = \alpha^2 \frac{\Gamma(3/\beta)}{\Gamma(1/\beta)}, \]

the parameters α and β can be estimated from the data.

1The $\mathcal{EPD}(\alpha, \beta)$ family has density given by

\[f(d) = C \cdot e^{-(|d|/\alpha)^\beta}, \quad \alpha, \beta > 0. \]
densities which are flatter than the normal distribution itself. Since the family \mathcal{EPD} is a scale mixture of normals and the exponential mixing distribution is supported on $[0, \infty)$; it follows that the \mathcal{EPD} cannot possibly be a normal convolution because of the following result due to DasGupta (1992).

Theorem 1 Let the density f be a scale mixture of normals, given by

$$f(x) = \int \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{1}{2\sigma^2} \nu(\sigma^2)} \, d\sigma,$$

for some scale-mixing measure ν. Then f is a normal convolution (location mixture of normals) iff $\nu([0, 1]) = 0$, i.e., iff the mixing measure ν does not have support in $[0, 1]$.

In light of the previous facts, it is advisable to assume the \mathcal{EPD} marginal $f(d\theta)$ is a scale mixture of normals. We propose the double exponential distribution \mathcal{DE} (i.e., $\beta = 1$ in \mathcal{EPD}) as a realistic, Bayesian-justified, and mathematically manageable choice. Note that we will be using \mathcal{DE} to denote both the double exponential law and its density function; it will be clear from context which one is being considered.

2.2 Prior Selection.

In the previous discussion we suggested the choice of a double exponential distribution as a partially integrated likelihood (marginal likelihood on location). The double exponential can be obtained by marginalizing a normal likelihood by adopting exponential prior on its variance.
It is well-known that the exponential distribution is an entropy maximizer in the class of all distributions supported on \((0, \infty)\) with a fixed first moment. Thus our choice is a maxent prior. That is, it is the noninformative one in the above class.

Our choice of prior on the signal part is based on inspecting the empirical realizations of coefficients of pure signals (noiseless data). It is worth mentioning that the choice of a normal model for \(d\) and a double exponential on \(\theta\) was recommended by Ruggeri and Vidakovic (1999) in a different context – when looking for pairs (model/prior) ensuring the existence of an optimal thresholding rule according to the Bayesian decision theoretic paradigm.

The scale in \(\xi(\theta)\) is assumed fixed, although it could depend on level \(j\) in the decomposition, as was suggested by Clyde et al. (1998) in a different modeling setup.

In the wavelet context, Müller (1994) first suggested the priors on \(\theta\) that contain a point mass at zero; that is, the \(\epsilon\)-contamination

\[
\pi(\theta) = \epsilon \delta(0) + (1 - \epsilon) \xi(\theta).
\]

This additional point mass at zero ensures the enhanced shrinkage in the resulting Bayes rule, as shown in Vidakovic and Ruggeri (1999). The point mass at zero, \(\delta_0\), is the shrinkage inducer whereas \(\xi(\theta)\) (in our case \(\text{DE}\)) is a spread distribution that models wavelet coefficients with large energies (squared magnitudes).

Besides, adequate changes in \(\epsilon\) make it possible to adapt the shrinkage rules level-wise. In addition, when \(\epsilon\) increases, the full marginal on \(d\) will look increasingly like the “spiky” marginal likelihood. Several functions \(\epsilon(j)\) have already been proposed (Clyde et al., 1998). We will discuss our proposal in one of the next subsections.

2.3 Derivation of the Shrinkage Rule.

In this section, we give a summary of our model and the analytic form of the Bayesian shrinkage rule, postponing its computation to the Appendix.

Starting with \([d\theta, \sigma^2] \sim N(\theta, \sigma^2)\) and the prior \(\sigma^2 \sim \mathcal{E}(\mu), \mu > 0\), with density \(f(\sigma^2 | \mu) = \mu e^{-\mu \sigma^2}\), we obtain the marginal likelihood

\[
d\theta \sim \mathcal{E}(\theta, \frac{1}{\sqrt{2\mu}}), \quad \text{with density } f(d\theta) = \frac{1}{2\sqrt{2\mu}} e^{-\sqrt{2\mu} |d\theta|}.
\]

If the prior on \(\theta\) is

\[
[\theta] \sim \mathcal{E}(0, \tau),
\]

then the predictive distribution of \(d\) is

\[
[d] \sim m(d) = \frac{\tau e^{-d/\tau} - \frac{1}{\sqrt{2\mu}} e^{-\sqrt{2\mu} |d|}}{2\tau^2 - 1/\mu},
\]
and the corresponding Bayes rule with respect to the squared error loss is
\[
\delta(d) = \frac{\tau (\tau^2 - 1/(2\mu))d \epsilon + \tau^2 \left(\tau \sqrt{\mu} - \epsilon \sqrt{\mu} \right)}{(\tau^2 - 1/(2\mu))((\tau \epsilon - 1/\sqrt{2\mu})\epsilon \sqrt{\mu})}. \tag{3}
\]

Figure 2(a) depicts the rule in (3). Notice that this is a shrinkage rule, but it is close to a linear shrinkage rule, known to be under-performing in wavelet-based methods.

![Graphs](image)

Figure 2: Bayes rules: (a) No point mass, $\tau = 2$, $\mu = 1/2$. (b) $\epsilon = 0.9$, $\tau = 2$, $\mu = 1/2$.

Rules with a more desirable shape result from the ϵ-contaminated priors (2). When
\[
[\theta|x] \sim \epsilon \delta_0 + (1 - \epsilon) \mathcal{D}\mathcal{E}(0, \tau), \tag{4}
\]
the marginal is
\[
d \sim m^*(d) = \epsilon \mathcal{D}\mathcal{E}(0, \frac{1}{\sqrt{2\mu}}) + (1 - \epsilon)m(d)
\]
and the Bayes rule is:
\[
\delta^*(d) = \frac{(1 - \epsilon) m(d) \delta(d)}{(1 - \epsilon) m(d) + \epsilon \mathcal{D}\mathcal{E}(0, \frac{1}{\sqrt{2\mu}})} \tag{5}
\]

Figure 2(b) depicts the rule in (5). Notice that this rule is close to a thresholding rule: it heavily shrinks small-in-magnitude arguments while the large
ones are shrunk slightly. As presented in Figure 3(a), the Bayes rule (5) falls between comparable hard and soft thresholding rules. For comparison purposes, the exact risk of the three rules is shown in Figure 3 (b). Notice that the risk \(R(\theta, \delta) = E^\theta [\theta - \delta(d)]^2 \) for the Bayes rule is smaller than the risk for the thresholding rules for small values of argument \(\theta \).

![Figure 3: (a) Bayes rule (3) and comparable hard and soft thresholding rules.
(b) Exact risk plots for the rules from (a). Notice that the risk for the Bayes
rule generally falls between risks for the thresholding rules. For small values
of \(\theta \), the risk of the Bayes rule is smaller than the risk of the thresholding rules.]

2.4 Tuning the Model Parameters.

One of the main issues in any Bayesian analysis is the elicitation of the
hyperparameters specifying the statistical model. Often the hyperparameters
may have their own priors, leading to hierarchical models.

The described model depends on 3 hyperparameters that have to be specified.
Purely subjective elicitations of priors is difficult since, in general, users
may lack intuition and interpretation of wavelet-domain priors. Subjective priors
can be easily elicited only when the prior information concerns smoothness
or self-similarity. A variety of default solutions are available (see Yang and
Berger (1997)), but default choices do not seem to be very suitable in function
estimation, since observations can vary tremendously and some degree of
informativeness and/or data dependence should be exploited.

We propose an empirical (moment matching) parameter specification that
works well for standard test cases and emphasizes that the nature of the data
may call for different parameter values.

Data dependent specifications of the three parameters via ML-II may provide
alternative procedures.

1. \(\mu \) is the reciprocal of the mean for the prior on \(\sigma^2 \), or, equivalently, the
square root of the precision for σ^2. We first estimate σ by a robust Tukey's pseudos = $|Q_1 - Q_3|/C$, where Q_1 and Q_3 are the first and the third quartile of the finest level of details in the decomposition and $1.3 \leq C \leq 1.5$. We propose $\frac{1}{\text{pseudos}}$ as a default value for μ; according to the Law of Large Numbers, this ratio should be close to the “true” μ.

2. ϵ is the weight of the point mass at zero in the prior on θ and should depend on level j. Depending on our prior information about smoothness, ϵ should be close to 1 at the finest level of detail and close to 0 at the coarsest levels. We propose a hyperbolic decay in j

$$\epsilon(j) = 1 - \frac{1}{(j - \text{coarsest} + 1)^{\gamma}}, \quad \text{coarsest} \leq j \leq \log_2 n,$$

where coarsest is the coarsest level subjected to shrinkage. For the standard test functions, various sample sizes, and various signal-to-noise ratios, values coarsest = 3 and $\gamma = 1.5$ worked the best.

3. τ is the scale of the “spread part” in the prior (4). In the case of a double exponential prior, the variance of the signal part is $2\tau^2$. Because of the independence between the error and the signal parts, we have $\sigma^2 = 2(1 - \epsilon(j))^2\tau^2 + 1/\mu$, where σ^2 is the variance of the observations d. Taking into account that ϵ depends on j, we adopted $2(1 - \epsilon(j))^2 \approx 1$ as a midpoint of range of ϵ. Such a choice yields

$$\tau = \sqrt{\max\{(\sigma^2 - \frac{1}{\mu}), 0\}}.$$

Note when $\tau = 0$, the prior (also the posterior) put all their mass at 0, which results in $\delta(d) = 0$.

The simulations provided in the next section are performed with these default values for model hyperparameters.

3. Simulations

To assess the performance of the procedure we considered the standard test functions and compared the MSE, variance and squared bias of BAMS estimators to those listed in Chipman et al. (1997) [Table 1, page 1420; VisuShrink, SureShrink and ABWS methods]. If N is the number of simulations, the MSE of the estimator $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_n)$ is calculated as

$$\frac{1}{Nn} \sum_{j=1}^{N} \sum_{i=1}^{n} (\hat{y}_{ij} - y_i)^2,$$
where \(y_i \) are the noisy observations and \(\hat{y}_{ij} \) are corresponding estimates in \(j \)th simulational run.

VisuShrink (Donoho and Johnstone (1994)) is a procedure which, although not intended to minimize overall MSE, minimizes variance, retains asymptotic minimax optimality, and results in visually pleasing reconstructions. SureShrink (Donoho and Johnstone (1995)) is an adaptive procedure that uses different thresholding strategies levelwise depending on the energies of the coefficients in the levels. ABWS (Adaptive Bayesian Wavelet Shrinkage; Chipman et al. (1997)) is an effective, level-dependent Bayesian procedure in which the prior on the signal part is a mixture of two normals with different scales.

Four standard test functions (\texttt{blocks}, \texttt{bumps}, \texttt{doppler} and \texttt{heavisine}) are rescaled so that an added standard normal noise produces a signal-to-noise ratio (SNR) of 7. The sample size is \(n = 1024 \) and the wavelets we used are: Symmlet 8 for \texttt{doppler} and \texttt{heavisine} (8 stands of number of taps in the wavelet filter), Haar for \texttt{blocks} and Daubechies 6 for \texttt{bumps}. The MSE is split into the variance and squared bias parts for comparison purpose. \(N = 1000 \) simulations are summarized in Table 1. Since the shrinkage rule (5) is given in a closed form and it is fast to implement, the simulation of \(N = 1000 \) runs using MATLAB and WAVELET takes about a minute on an AlphaStation 500.

![Figure 4](image_url)

Figure 4: (a) Level-wise marginal distributions for the wavelet coefficients superimposed; (b) Shrinkage Bayes rules corresponding to marginals in panel (a).

We repeated the simulation with \(N = 100,000 \) and reported the results in Table 1; we found only minor differences from the numbers obtained in \(N = 1,000 \) simulations. Levelwise marginal distributions for the coefficients are superim-
posed at the panel (a) in Fig 4. Fig 4 (b) shows the shrinkage rules corresponding to marginals in Fig 4 (a). Note that the marginals support Mallat’s findings and that the shrinkage rules can be thought of as a continuous compromise between hard and soft thresholding rules.

<table>
<thead>
<tr>
<th></th>
<th>blocks</th>
<th>bumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisuShrink</td>
<td>0.6840 (0.0719 + 0.6122)</td>
<td>1.5707 (0.1163 + 1.4543)</td>
</tr>
<tr>
<td>SureShrink</td>
<td>0.2225 (0.1369 + 0.0836)</td>
<td>0.6827 (0.2660 + 0.4167)</td>
</tr>
<tr>
<td>ABWS</td>
<td>0.0995 (0.0874 + 0.0121)</td>
<td>0.3495 (0.2228 + 0.1267)</td>
</tr>
<tr>
<td>BAMS</td>
<td>0.1107 (0.0965 + 0.0142)</td>
<td>0.3404 (0.1976 + 0.1428)</td>
</tr>
<tr>
<td>BAMS (100,000 runs)</td>
<td>0.1108 (0.0992 + 0.0146)</td>
<td>0.3378 (0.1967 + 0.1411)</td>
</tr>
</tbody>
</table>

Table 1: MSE (Variance+Bias^2) for VisuShrink, SureShrink, ABWS, and BAMS on standard test functions. Test signals are rescaled so that the noise variance σ^2 equals 1.

Table 2 gives an extensive simulational study of the BAMS method only. For $N = 1000$ runs, we were interested in MSE for four different SNR’s (3, 5, 7, 10) and five sample sizes n (256, 512, 1024, 2048, 4096).

4. Conclusions

The shrinkage procedure in the BAMS method is adaptive in scale, and with minor modifications can also be made adaptive in time. This additional time-adaptivity can be introduced by taking into account local energies from some coarse level of detail. This “energy adjusting” affects ϵ - the amount of the point mass at zero; see Vidakovic and Bieza (1998) for an implementation of such time-adaptivity.

At the expense of losing the closed-form of the shrinkage rule, it is possible to build additional levels of hierarchy in the model; for example,

$$[\epsilon, \alpha, \beta] \sim Beta(\alpha, \beta)$$

where α and β are hyperparameters.
The hyperparameters could be found by an ML-II procedure; the product of predictive distributions [from a particular level] is maximized:

$$\arg\max_{d_i, \epsilon, \mu, \tau} \prod_{j, \text{level}} m^*(\epsilon, \mu, \tau | d_i).$$

The issues of identifiability of parameters and efficiency of the optimization procedure are yet to be resolved.

Appendix

In this Appendix we present the derivation of the shrinkage rule (3). Consider $d \theta \sim \mathcal{D} \mathcal{E} \left(\theta, \frac{1}{\sqrt{2\mu}} \right)$, $\theta \sim \mathcal{D} \mathcal{E}(0, \tau)$. It follows that the (prior) predictive density is

$$m(d) = \frac{\tau e^{-|d|/\tau} - \frac{1}{\sqrt{2\mu}} e^{-\sqrt{2\mu}|d|}}{2\tau^2 - 1/\mu}$$

and the Bayes rule is

$$\delta(d) = \frac{\tau (\tau^2 - 1/(2\mu)) e^{-|d|/\tau} + \tau^2 (e^{-|d|} - e^{-\sqrt{2\mu}|d|})/\mu}{(\tau^2 - 1/(2\mu)) (2\tau e^{-|d|/\tau} - 1/\sqrt{2\mu} e^{-\sqrt{2\mu}|d|})}.$$
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
FUNCTION & n & SNR=3 & SNR=5 & SNR=7 & SNR=10 \\
\hline
\textsc{blocks} & 256 & 0.3343 & 0.2835 & 0.2412 & 0.2080 \\
& 512 & 0.2101 & 0.1943 & 0.1763 & 0.1567 \\
& 1024 & 0.1583 & 0.1311 & 0.1107 & 0.0942 \\
& 2048 & 0.0921 & 0.0788 & 0.0665 & 0.0549 \\
& 4096 & 0.0560 & 0.0458 & 0.0390 & 0.0343 \\
\hline
\textsc{bumps} & 256 & 0.6419 & 0.6996 & 0.7554 & 0.8007 \\
& 512 & 0.4834 & 0.5132 & 0.5573 & 0.6003 \\
& 1024 & 0.2969 & 0.3263 & 0.3404 & 0.3508 \\
& 2048 & 0.1823 & 0.1978 & 0.2049 & 0.2144 \\
& 4096 & 0.1009 & 0.1070 & 0.1114 & 0.1176 \\
\hline
\textsc{doppler} & 256 & 0.3378 & 0.3821 & 0.3887 & 0.4114 \\
& 512 & 0.1954 & 0.2131 & 0.2264 & 0.2391 \\
& 1024 & 0.1180 & 0.1350 & 0.1482 & 0.1590 \\
& 2048 & 0.0687 & 0.0783 & 0.0868 & 0.0939 \\
& 4096 & 0.0484 & 0.0497 & 0.0487 & 0.0460 \\
\hline
\textsc{heavisine} & 256 & 0.1462 & 0.1754 & 0.1985 & 0.2245 \\
& 512 & 0.0957 & 0.1185 & 0.1374 & 0.1584 \\
& 1024 & 0.0607 & 0.0707 & 0.0815 & 0.0958 \\
& 2048 & 0.0402 & 0.0471 & 0.0531 & 0.0611 \\
& 4096 & 0.0332 & 0.0351 & 0.0363 & 0.0382 \\
\hline
\end{tabular}
\caption{MSE for BAMS: a variety of sample sizes and SNR's.}
\end{table}

Proof. Assume \(d > 0 \).

\[
m(d) = \sqrt{2 \mu / (4 \tau)} \left\{ e^{d/\sqrt{2 \mu}} \int_0^\theta e^{\theta/\sqrt{2 \mu} + \theta/\tau} d\theta + e^{d/\sqrt{2 \mu}} \int_0^d e^{\theta/\sqrt{2 \mu} - \theta/\tau} d\theta \right\} + e^{d/\sqrt{2 \mu}} \int_0^\infty e^{\theta/\sqrt{2 \mu} + \theta/\tau} d\theta + e^{d/\sqrt{2 \mu}} \int_0^d e^{\theta/\sqrt{2 \mu} - \theta/\tau} d\theta
\]

\[
= \frac{\sqrt{2 \mu / (4 \tau)}}{\sqrt{2 \mu + 1/\tau}} \left(e^{d/\sqrt{2 \mu} + 1/\tau} \right) + \frac{e^{d/\sqrt{2 \mu}}}{\sqrt{2 \mu - 1/\tau}} \left(e^{d/\sqrt{2 \mu}} - 1 \right) + \frac{e^{d/\sqrt{2 \mu}}}{\sqrt{2 \mu + 1/\tau}}
\]

The Bayes rule can be expressed as \(\delta(d) = N_c/m(d) \), where

\[
N_c = \sqrt{2 \mu / (4 \tau)} \left\{ e^{d/\sqrt{2 \mu}} \int_0^\theta e^{\theta/\sqrt{2 \mu} + \theta/\tau} d\theta + e^{d/\sqrt{2 \mu}} \int_0^d e^{\theta/\sqrt{2 \mu} - \theta/\tau} d\theta + \right\} + e^{d/\sqrt{2 \mu}} \int_0^\infty e^{\theta/\sqrt{2 \mu} + \theta/\tau} d\theta + e^{d/\sqrt{2 \mu}} \int_0^d e^{\theta/\sqrt{2 \mu} - \theta/\tau} d\theta
\]
\[
\begin{align*}
&= \frac{e^{d/\sqrt{2\mu}}}{(4\pi)^{d/2}} \left\{ \frac{-e^{d/\sqrt{2\mu}}}{(1/\tau + \sqrt{2\mu})^2} + \frac{de^{d/\tau}}{\sqrt{2\mu} - 1/\tau} + \frac{e^{d/\tau}}{(1/\tau - \sqrt{2\mu})^2} - \frac{e^{d/\tau}}{(1/\tau - \sqrt{2\mu})^2} + \frac{de^{d/\tau}}{\sqrt{2\mu} + 1/\tau} + \frac{e^{d/\tau}}{(1/\tau + \sqrt{2\mu})^2} \right\} \\
&= \frac{\tau (\tau^2 - 1/(2\mu))de^{d/\tau} + \tau^2(e^{d/\sqrt{2\mu}} - e^{d/\tau})/\mu}{\tau^2 - 1/(2\mu)},
\end{align*}
\]

so expressions for \(\delta(d) \) and \(\delta^*(d) \) follow immediately.

References

Bran Vidakovic
Institute of Statistics
and Decision Sciences
Old Chem Building
Duke University
Box 90251
Durham, NC 27708-0251, USA
e-mail: brani@stat.duke.edu

Fabrizio Ruggeri
Istituto per le Applicazioni della
Matematica e dell’Informatica
Consiglio Nazionale delle Ricerche
Via Ampère 56
I-20133 Milano, Italy
e-mail: fabrizio@iami.mi.cnr.it