Quantum-chemical investigation of second-order nonlinear optical chromophores: Comparison of strong nitrile-based acceptor end groups and role of auxiliary donors and acceptors

A. Leclercq and E. Zojer
School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

S.-H. Jang
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120

S. Barlow
School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

V. Geskin
Service de Chimie des Matériaux Nouveaux et Centre de Recherche en Electronique et Photonique Moléculaires, Université de Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

A. K.-Y. Jen
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120

S. R. Marder and J. L. Brédas
School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

(Received 19 July 2005; accepted 22 November 2005; published online 26 January 2006)

We report a detailed quantum-chemical investigation of donor-acceptor substituted dipolar nonlinear optical chromophores incorporating the 4-(dimethylamino)phenyl donor end group and a variety of strong heterocyclic acceptor end groups, including tricyanofurans and tricyanopyrroles. In particular, we study the variation of the molecular second-order polarizability with the acceptor end group and when inserting auxiliary donors (thiophene) and acceptors (thiazole) into the π bridge. Both finite-field calculations in the context of local contributions and sum-over-states calculations were carried out in order to probe the relationship between β and the chemical structure of the various chromophores. The trends obtained with these two methods are fully consistent. The large β values (up to 700 × 10⁻³⁰ esu) as well as the observed tunability of the optical absorption maximum make the chromophores investigated here interesting candidates for use in electro-optic applications at telecommunications wavelengths. © 2006 American Institute of Physics. [DOI: 10.1063/1.2155385]

I. INTRODUCTION

The second-order nonlinear optical (NLO) properties of conjugated organic molecules have been the focus of numerous experimental and theoretical investigations due to their utility in optoelectronics and photonics for applications including high-speed optical communications, integrated optics, and optical data processing and storage.¹ Bulk second-order NLO polarizabilities require noncentrosymmetric arrays of chromophores with high molecular second-order polarizabilities β. In order to obtain high β, conjugated organic molecules are typically substituted with electron-donor and electron-acceptor end groups; the required bulk noncentrosymmetry is generally achieved using an electric-field poling of these chromophores above the glass-transition temperature (Tg) of a polymer host, and is then frozen in by cooling below Tg.² An understanding at the molecular level of the relationships between chemical structure, dipole moment, and NLO properties can provide a useful insight for the design of a new generation of chromophores.

It has been well established that the molecular second-order polarizability (or first hyperpolarizability) β depends on the strength of the donor and acceptor end groups and on the nature and length of the π bridge.³ In addition, it is important to keep in mind that for most practical applications large polarizabilities need to be accompanied by optical transparency in the wavelength range of interest. For instance, for telecommunications applications, it is important that the tail of the absorption peak does not extend significantly into the 1.30–1.55 μm range. This often requires a trade-off between chromophore optical nonlinearity and...
transparency, as for a given structure an increase in β due to an increase in acceptor end group strength is usually accompanied by a redshift of the optical-absorption maximum (λ_{max}). Ideally, new chromophores should show an increase in β along with a blueshift or at least no significant redshift of λ_{max} (Ref. 4) with regard to existing compounds, which is often difficult to achieve.

Recently, the 2-dicyanomethyl-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor end group, often referred to as “tricyanofuran” (TCF) (acceptor of chromophore 1, Fig. 1), has gained popularity as a strong acceptor end group suitable for incorporation into stable high β chromophores. However, the role of the oxygen atom in the furan ring is still unclear, and other related chemical structures may show more efficient molecular NLO properties. In the present contribution, the molecular second-order polarizability of a chromophore including a TCF acceptor end group (β_1) is compared to that of compounds including (i) the 2-dicyanomethyl-3-cyano-4,5-trimethyl-5-trifluoromethyl-2,5-dihydrofuran acceptor end group (acceptor of chromophore 2, Fig. 1), (ii) the pyrrole-based [“tricyanopyrrole” (TCP)] analogs of the TCF acceptor end group (acceptors of chromophores 3–5, Fig. 1), (iii) other previously studied strong acceptor end groups, such as 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide (acceptor of chromophore 6, Fig. 1), 1,3-bis(dicyanomethylene)indane (acceptor of chromophore 7, Fig. 1), and 1,3-diethyl-2-dicyanomethylene-4,6-dioxoexorhhydro-pyrimidine (acceptor of chromophore 8, Fig. 1),\(^7\) and (iv) two alternative heterocyclic strong acceptor end groups (acceptors of chromophores 9 and 10, Fig. 1).\(^8\)

In addition, we have tested whether the concept suggested earlier\(^9\) of inserting auxiliary donors and acceptors into the π bridge can be used to significantly enhance β and in which position these heterocycles are most effective. Therefore, in chromophores 11–14, an electron-rich ring (thiophene) or an electron-poor ring (thiazole) is inserted into the π bridge of chromophore 4, leading to four different types of structural motifs: $D-D'-\pi-A$ (11), $D-\pi-D'-A$ (12), $D-\pi-A'-A$ (13), and $D-A'-\pi-A$ (14).

II. METHODOLOGY

The geometries of the chromophores were optimized using the semiempirical Austin Model 1 (AM1) method\(^10\) as implemented in the MOPAC 3.1 package. All molecules were

FIG. 1. Chemical structures of chromophores 1–14.
assumed to be in anti configurations (as shown in Fig. 1). In
dipolar NLO chromophores, the molecular β is usually
dominated by a single diagonal tensor term along the donor-
acceptor axis. Accordingly, in this work, the x axis was de-
defined as pointing from the central carbon of the dicyano-
vinylenyl unit of the acceptor end group in chromophores 1–5
and 11–14, and its equivalent position in chromophores 6–10
towards the nitrogen of the donor end group (with this
choice, the x component of the dipole moment is positive).
The β_{xxx} components defined in this way totally dominate
the other tensor elements of β. Therefore, the discussion of
the properties and trends of the molecular second-order polariz-
ability will be limited to these β_{xxx} components.

On the basis of the AM1-optimized geometries, the elec-
tronic properties (state dipole moments, transition dipole mo-
ments, and transition energies) were evaluated from a semi-
empirical intermediate neglect of differential overlap (INDO)
Hamiltonian. The spectroscopic parametrization along with
the Mataga-Nishimoto electron repulsion scheme was used,
as implemented in the ZINDO code. The INDO calculations
were coupled to a single configuration interaction (SCI)
scheme, which is known to give a reliable description of the
properties of one-photon-allowed excited states, which are
those involved in the perturbative description of the second-
order polarizability (vide infra). The 30 highest occupied and
30 lowest unoccupied molecular orbitals were active in the
SCI procedure, which is sufficient to reach converged β
values in the compounds investigated here.

The second-order polarizabilities were calculated using the
sum-over-states (SOS) and finite-field (FF) approaches. The
perturbative SOS method uses excitation energies, tran-
sition dipole moments, and state dipole moments obtained
from the INDO/SCI calculations. In systems in which a
single electronic excited state (e) is strongly coupled to the
ground state(g), SOS results can be very efficiently analyzed
in the framework of the two-state model (comprising only
the transition energy for excitation from (g) to (e), the asso-
ciated transition dipole moment and the change in state di-
pole moment). In the chromophores investigated here, how-
ever, a large number of low-lying excited states (typically
around four) contribute significantly to the SOS expression,
preventing rapid convergence of the essential-state model.
Consequently, in the present case, the SOS calculations
mainly serve as a consistency check for the results and the
analysis will be largely based on the FF approach, on the
basis of the local contribution version, as proposed by
Chopra et al. and developed by Nakano et al. This
method has been successfully applied to conjugated organic
systems in conjunction with the INDO Hamiltonian. Its
particular advantage is that it allows one to discern the con-
tributions of the individual chemical segments of the mol-
ecules to the overall β. The FF approach relies on the fact
that, by definition, β_{xxx} is the second derivative of the x
component of the dipole moment with respect to the x
components of the applied electric fields (F) at zero field,

$$\mu_x(F) = \mu_x(0) + \alpha_{xx} F_x + \frac{1}{2!} \beta_{xxx} F_x^2 + \frac{1}{3!} \gamma_{xxxx} F_x^3 + \cdots,$$

where α, β, and γ are the molecular first-, second-, and third-
order polarizabilities, respectively. The electronic part of β
can be cast rigorously as the integral over the moments of the
second derivative of the charge density ρ. In an approximate
way, that integral can be partitioned into a sum over deriva-
tives of point charges q_i concentrated on the individual atoms
i,

$$\beta_{xxx} = \frac{\partial^2 \mu_x}{\partial F_x^2} |_{F=0}$$

$$= \int x \frac{\partial^2 \rho(r)}{\partial F_x^2} d^3 r$$

$$= \sum_i x_i \frac{\partial^2 q_i^2}{\partial F_x^2} |_{F=0} = \sum_i x_i q_i^{(2)}.$$

Here, β_{xxx} is partitioned into local (atomic) contributions or
so-called β moments $x_i q_i^{(2)}$ derived from the so-called β
charges $q_i^{(2)}$. Note that the superscript (2) represents the
second derivative with respect to the applied electric field in the
x direction (with the x subscript dropped to simplify the no-
tation). In the calculations, the derivatives were approxi-
mated by finite differences obtained from INDO Hartree-
Fock (HF) Mulliken charges, with fields of zero and ± 5.14
$\times 10^{11}$ V/m (10^{-3} atomic units) applied to the
chromophores; the series expansion for the charges was limited
to the second order in F. These atomic β charges are then
plotted in Figs. 2–4 as circles whose size corresponds to their
values (in a common scale for all the molecules plotted) and
shading to their signs (black for negative and white for posi-
tive).

Though the second-order polarizability, according to Eq.
(2), is directly related to the moments of β charges $q_i^{(2)}$, each
moment is obviously dependent on the arbitrary choice of the
axis origin, which can make plotting the moments somewhat
misleading. Here, in order to display reliably the relative
importance of the local contributions to β_{xxx}, the
origin has been consistently chosen in the middle of the mol-
ecule (leading to opposite x signs at opposite ends). In this
context, it is clear that an efficient chromophore should
rather have large terminal contributions (where the moment
arms are large), preferentially of the same sign for a given
end, and of opposite signs at the opposite ends (to avoid
cancellation of moments). As discussed below, many of the
chromophores investigated here turn out to present such
characteristics.

III. RESULTS AND DISCUSSION

The calculated transition energies, optical-absorption
maxima, long-axis components of the second-order polariz-
ability, and orientationally averaged second-order polariz-
abilities (β) are reported in Table I. For all compounds, the
trends obtained for the average β values are fully reproduced
by β_{xxx} also, the trends and values obtained for the β_{xxx} components from the β charges and moments are consistent with those obtained with the SOS method.

A. Effect of varying the acceptor end group

For chromophore 1, we calculate a β_{xxx} component of 133×10^{-30} esu. This value increases by about 25% when one CH$_3$ group in the TCF acceptor end group is replaced by a CF$_3$ group [$\beta_{xxx}(2)=174 \times 10^{-30}$ esu]. This increase in β_{xxx} between 1 and 2 can be understood in terms of the inductive electron-withdrawing effect of the CF$_3$ group relative to that of the CH$_3$ group. A much larger change in the calculated β_{xxx} (increase by a factor of 2 compared to chromophore 1) is obtained for chromophore 4 [$\beta_{xxx}(4)=255 \times 10^{-30}$ esu]. To determine which of the structural modifications of the acceptor end group [(replacement of the furan by a pyrrole or substitution of the C(CH$_3$)$_2$ group with a carbonyl functional group)] is principally responsible for this increase, a chromophore based on another acceptor end group was investigated, in which only the oxygen is replaced by an NH (chromophore 3). The calculated β_{xxx} [$\beta_{xxx}(3)=117 \times 10^{-30}$ esu] did not change significantly compared to chromophore 1. Consequently, the replacement of the dimethylcarbon group by a carbonyl functional group appears to be the principal factor responsible for the large β_{xxx} component in chromophore 4. Although it has the highest β_{xxx} value among the systems discussed so far, chromophore 4 might not be very attractive when damping and transparency are an issue (as can be deduced from the 0.4 eV redshifted linear absorption maximum of 4 compared to 1). As expected, in chromophore 5, where one carbonyl replaces the dicyanovinylene unit of chromophore 4, β_{xxx} is some 25% lower than in 4 while remaining significantly larger than in 1.

To benchmark the effectiveness of the acceptor end
Nonlinear optical chromophores

Based upon the well-established 3-(dicyanomethylene)-2,3-dihydrobenzo-thiophene-1,1-dioxide discussed above, they are compared to chromophores using the conventions of Fig. 2.

FIG. 4. Second derivatives of the atomic charges for chromophores 11–14 using the conventions of Fig. 2.

Groups discussed above, they are compared to chromophores based upon the well-established 3-(dicyanomethylene)-2,3-dihydrobenzo-thiophene-1,1-dioxide (6), 1,3-bis(dicyanomethylene)indane (7), and 1,3-diethyl-1,2-dicyanomethylene-4,6-dioxohexahydropyrimidine (8).

Finally, two alternative hypothetical acceptor designs were tested: chromophore 9, which can be regarded as the condensation product of the ketone precursor to the TCF acceptor with 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide and chromophore 10, where the acceptor end group is a hybrid of a 1,3,2-(2H)-dioxaborine with 1-(dicyanomethylene)indane. Dioxaborines are known to yield efficient acceptor end groups for NLO (Ref. 19) and electron-transport applications. For systems 9 and 10, the calculated β values and transition energies are in the same range as for the TCF- and TCP-based chromophores 3, 4, and 5; the acceptor end groups and resulting molecular masses are, however, significantly larger than in the former systems.

In order to understand the molecular origin of the trends observed for β, we now turn to a discussion of the β charges obtained from FF calculations. The β charges are plotted for chromophores 1, 2, 4, and 5 in Fig. 2. The acceptor end groups display positive local contributions (black circles), while the donor end groups display negative contributions (white circles). We first observe that only variations in the magnitude of the β charges are observed in the dimethylamino donor end group and the phenylene segments, while the patterns remain qualitatively similar in all molecules. For all chromophores, the nitrogen of the donor end group has the largest local contribution; contributions of opposite signs on the phenylenes and on the acceptor side of the molecule are also significant (we note that the local contributions on the hydrogens are not negligible). Overall, this pattern of β charges, as pointed out earlier, reflects an efficient field-induced nonlinear charge transfer: there occurs a long-range charge transfer between the donor and the acceptor, without any significant cancellation of β moments on neighboring

TABLE I. Transition energy (E\textsubscript{12}), optical-absorption maximum (λ\textsubscript{max}), averaged second-order polarizability (⟨β⟩), and long-axis component of the second-order polarizability (β\textsubscript{ex}) calculated with the SOS and FF methods for compounds 1–14.

<table>
<thead>
<tr>
<th>Chromophores</th>
<th>E\textsubscript{12} (eV)</th>
<th>λ\textsubscript{max} (nm)</th>
<th>〈β〉 (10⁻³⁰ esu)a-SOS</th>
<th>β\textsubscript{ex} (10⁻³⁰ esu)-SOS</th>
<th>β\textsubscript{ex} (10⁻³⁰ esu)-FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.04</td>
<td>408</td>
<td>122</td>
<td>131</td>
<td>133</td>
</tr>
<tr>
<td>2</td>
<td>2.93</td>
<td>423</td>
<td>166</td>
<td>176</td>
<td>174</td>
</tr>
<tr>
<td>3</td>
<td>3.08</td>
<td>403</td>
<td>107</td>
<td>116</td>
<td>117</td>
</tr>
<tr>
<td>4</td>
<td>2.62</td>
<td>473</td>
<td>265</td>
<td>275</td>
<td>255</td>
</tr>
<tr>
<td>5</td>
<td>2.76</td>
<td>449</td>
<td>206</td>
<td>216</td>
<td>176</td>
</tr>
<tr>
<td>6</td>
<td>2.93</td>
<td>423</td>
<td>141</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>3.02</td>
<td>411</td>
<td>72</td>
<td>68</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>3.31</td>
<td>375</td>
<td>56</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>2.80</td>
<td>443</td>
<td>203</td>
<td>207</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>2.86</td>
<td>434</td>
<td>160</td>
<td>165</td>
<td>142</td>
</tr>
<tr>
<td>11</td>
<td>2.29</td>
<td>541</td>
<td>506</td>
<td>496</td>
<td>506</td>
</tr>
<tr>
<td>12</td>
<td>2.26</td>
<td>549</td>
<td>475</td>
<td>490</td>
<td>514</td>
</tr>
<tr>
<td>13</td>
<td>2.12</td>
<td>585</td>
<td>731</td>
<td>730</td>
<td>670</td>
</tr>
<tr>
<td>14</td>
<td>2.24</td>
<td>554</td>
<td>598</td>
<td>586</td>
<td>562</td>
</tr>
</tbody>
</table>

\(⟨β⟩ = (β_1^2 + β_2^2 + β_3^2)^{1/2} \) with \(β_1 = β_{ex,y} + 1/3(β_{ex,x} + β_{ex,y} + β_{ex,z}) \) and \(1/3(β_{ex,x} + β_{ex,y} + β_{ex,z}) \).
atoms. An example of an inefficient, self-cancelling \(\beta \)-charge pattern has been discussed previously in terms of local contributions\(^{21}\) in the case of oligomethineimines.

To analyze the contributions to \(\beta \) in chromophores 1–5 in more detail, it is instructive to compare the \(\beta \)-charge distributions. Note that, although the molecular polarizabilities are determined not by the \(\beta \) charges themselves but by their moments, a direct comparison of the \(\beta \) charges is reasonable here since, for molecules of similar size and shape, the moment arms are practically the same. The variations in the magnitude of the \(\beta \) charges are directly induced by the acceptor end groups, as the sum of the negative and positive \(\beta \) charges over the whole molecule has to be zero. Qualitative differences are clearly seen among the acceptor end groups.

(i) In chromophore 1, the largest \(\beta \) charges are found on the carbon atoms in positions 2 and 4 of the furan ring, while the local contributions on the cyano groups are relatively small; note, however, that the cyano groups in the dicyanovinylene unit of the acceptor end group still give rise to appreciable \(\beta \) moments due to their larger distance from the center of the molecule.

(ii) In chromophore 2, the situation remains qualitatively the same with somewhat larger \(\beta \) charges on the carbon in position 4 of the furan ring, the cyano groups, and the atoms forming CF\(_3\) group.

(iii) Significantly stronger modifications are observed in chromophore 4: the increase in \(\beta \) charges on the two cyano groups is much larger (being even larger for the cyano group in position 3 of the TCP acceptor end group); the most striking changes are, however, observed at the carbonyl group, which provides a much more significant contribution to \(\beta \) than the two methyl groups in 1.

(iv) The large \(\beta \) charges on both carbonyl groups and at the carbon atoms in positions 2 and 5 of chromophore 5 partially account for the still appreciable \(\beta \)-ext obtained for this system.

Overall, the plots in Fig. 2 suggest that position 1 of the heterocycle is the most suitable for further modifications of the acceptor end group to achieve even larger \(\beta \) values.

In systems 6–8 (see Fig. 3), only small parts of the acceptor end groups are active and they are usually relatively far from the end of the molecule [in 6 and 7, the most active segments are the dicyanovinylene unit(s); in 8, the carbonyl groups]. The rest of the acceptor end group is characterized by very small or, in some cases, even opposite-sign \(\beta \) charges. The main observation in chromophore 8 is that the dicyanovinylene unit hardly makes any contribution; this can be related to the reduced conjugation induced by the strong bending of the saturated part of the ring. In chromophore 9, large local contributions are found only in the furan ring and on the dicyanovinylene unit of the acceptor end group; the rest of the acceptor is again relatively inactive.

In chromophore 10, all \(\beta \) charges are concentrated on the dioxborine unit. The rest of the acceptor part of the molecule appears to be relatively inactive; therefore, we also calculated \(\beta \)-ext for an analog of chromophore 10 carrying a simple dioxborine ring as the acceptor (chromophore 10'). It is found that \(\beta \)-ext decreases from \(142 \times 10^{-30} \) esu (chromophore 10') to \(105 \times 10^{-30} \) esu (chromophore 10'). This \(\beta \)-ext reduction results from two effects: (i) the decrease in the magnitude of the \(\beta \) charges on the atoms forming the dioxborine unit, and (ii) the loss of the \(\beta \) charges on the part of the acceptor that has been removed; the latter is the most important effect because those atoms are further from the center of the chromophore, thus leading to bigger \(\beta \) moments.

The \(\beta \) value shows a nearly threefold increase in going from chromophore 6 to 9, which is upon addition of a furan ring. The latter can be considered as part of the \(\pi \) bridge and displays alternating \(\beta \) charges. The magnitude of the \(\beta \) charges on the donor and acceptor end groups is similar in 6 and 9; however, there occurs a larger cancellation of the \(\beta \) moments within the \(\pi \) bridge of chromophore 9 because of the alternating \(\beta \) charges. Therefore, the \(\beta \) increase from chromophore 6 to 9 is simply due to an increase of the molecular length of chromophore 9.

B. Impact of auxiliary donors and acceptors

Based on previous studies,\(^{17}\) it is known that increasing the polyene segment length leads to an increase in \(\beta \)-ext but typically decreases the chromophore thermal and photochemical stabilities. Replacement with phenylenes can increase the overall stability of the chromophores but decreases \(\beta \)-ext significantly due to the resistance of strongly aromatic rings to ground-state polarization. Therefore, the replacement of polyene segments by five-membered heterocycles can offer a good compromise. Since these heterocycles can present high-lying highest occupied molecular orbitals (HOMO’s) or low-lying lowest unoccupied molecular orbitals (LUMO’s), they can act as secondary donors or acceptors, as has been suggested earlier.\(^{9}\) To analyze the potential impact of the presence of such auxiliary donors or acceptors, we have studied chromophores 11–14. We have kept the dimethylanilino donor end group and the acceptor end group is taken to be the same as in chromophore 4, which is the most efficient from the series of molecules discussed above.

From Fig. 4, we observe that chromophores 11–14 show fewer alternating \(\beta \) charges and thus less self-cancellation of \(\beta \) moments than in the previous chromophores. The two systems in which an auxiliary acceptor (thiazole) is inserted into the \(\pi \) bridge have higher second-order polarizabilities [\(\beta \)-ext(13)=\(670 \times 10^{-30} \) esu and \(\beta \)-ext(14)=\(562 \times 10^{-30} \) esu] than when an auxiliary donor (thiophene) is inserted [\(\beta \)-ext(11)=\(506 \times 10^{-30} \) esu and \(\beta \)-ext(12)=\(514 \times 10^{-30} \) esu]. Interestingly, the location of the thiophene ring has almost no effect, while \(\beta \)-ext is nearly 20\% higher when the thiophene is next to the acceptor end group than when it is closer to the donor end group. A conformational origin for these differences can be excluded because the same behavior is observed when the \(\pi \) bridge of the investigated systems is constrained to remain in a fully coplanar conformation.

From the plots in Fig. 4, two factors can be seen to be responsible for the two- to nearly threefold increase of \(\beta \) from 4 to 11–14: (i) the magnitudes of the \(\beta \) charges, in
TCF and TCP acceptor end groups were found to yield the acceptor end groups we have considered. In general, the found to give the highest second-order polarizability among the different approaches are self-consistent and can be calculated. The long-axis component of the second-order polarizability β_{xxx} has been applied. The long-axis components of the second-order polarizability (β_{xxx}) calculated with different approaches are self-consistent and can be expected to reflect the major features of the evolution of the molecular second-order NLO polarizability.

The TCP acceptor end group in chromophore 4 was found to give the highest second-order polarizability among the acceptor end groups we have considered. In general, the TCF and TCP acceptor end groups were found to yield β values superior to many strong acceptor end groups commonly used in NLO chromophores; this can be explained by the fact that in the latter groups, significant parts of the acceptor appear to be relatively inactive in terms of contributing β moments.

When an auxiliary acceptor (thiazole) is inserted into the π bridge of chromophore 4, β increases by a factor of more than 2. This is remarkable since the origin of that increase is not simply found in the increased conjugation length of that system.

In general, the FF method in its local contribution version has allowed us to provide an explanation for why the TCF-based dipolar donor-acceptor chromophores are good candidates for optoelectronics and photonics since the pattern of β charges reflects an efficient field-induced nonlinear charge transfer: it is long range and goes from the donor end to the acceptor end, nearly without cancellation of β moments on neighboring atoms.

ACKNOWLEDGMENT

This work has been supported in part by the Science and Technology Center Program of the National Science Foundation (STC-NSF) under Agreement No. DMR-0120967.

