
CUTTING PLANES IN MIXED INTEGER PROGRAMMING:
THEORY AND ALGORITHMS

A Thesis
Presented to

The Academic Faculty

by

Steve Tyber

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
May 2013

CUTTING PLANES IN MIXED INTEGER PROGRAMMING:
THEORY AND ALGORITHMS

Approved by:

Dr. Shabbir Ahmed, Co-Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Santosh Vempala
School of Computer Science
Georgia Institute of Technology

Dr. George Nemhauser, Co-Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Zonghao Gu
Chief Technical Officer
Gurobi Optimization

Dr. Santanu Dey
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Date Approved: 30 January 2013

In loving memory of Kristen.

iii

ACKNOWLEDGEMENTS

First and foremost, I owe a debt of gratitude to my advisors Shabbir Ahmed and George

Nemhauser. When I was my toughest critic, they stuck with me. It has truly been a

privilege to work with them these past few years. I must also extend a special thanks to

Pinar Keskinocak, Gary Parker, and Brani Vidakovic for encouraging me to pursue a PhD.

This has been a truly rewarding experience that I might have otherwise missed were it not

for their marked enthusiasm.

My time at Georgia Tech would not be the same without my fellow PhD students: Doug

Altner, Gustavo Angulo, Arash Asadi, Rodolfo Carvajal, Daniel Dadush, Akshay Gupte,

Qie He, Chris Healey, Fatma Kılınç-Karzan, Diego Morán Ramiréz, Dimitri Papageorgiou,

Pete Petersen, Feng Qiu, Sangho Shim, Dan Steffy, Kael Stilp, Juan Pablo Vielma, Xing

Wang, and Linji Yang. Thank you for all the years of friendship and for all the knowledge

and wisdom you have imparted to me.

Thanks to Jerry Carney and Frank Grange for the years of practical insight that have

kept me grounded in reality.

I would also like to thank the many excellent professors I’ve had the pleasure to learn

from both in and out of the classroom, and I would especially like to thank my committee

for their time and dedication.

Last and certainly not least, thanks to my family who have been a constant source of

support. They have been with me through the good times and the bad, and I know I

couldn’t have made it to this point without them.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

1.1 Mixed Integer Programming . 1

1.2 The Geometry of Polyhedra and Cutting Planes 3

1.3 Cutting Planes in the Solution of Mixed Integer Programs 6

1.4 Thesis Outline . 9

II GOMORY’S GROUP PROBLEM REVISITED 11

2.1 Algebraic Prerequisites . 12

2.2 Master Group Polyhedra . 15

2.3 Master Knapsack Polyhedra and the Mixed Integer Cut 21

2.4 Extreme Points and Adjacency under Group Mappings 28

2.4.1 Automorphic Mappings . 29

2.4.2 Homomorphic Lifting . 30

2.5 Closing Remarks . 35

III TECHNIQUES FOR SUPERADDITIVE LIFTING 37

3.1 Lifting and Superadditivity . 39

3.2 A New Family of Lifted Flow Cover Inequalities 49

3.2.1 Computing an Alternate Lifting Function 52

3.2.2 A Special Case . 58

3.2.3 Obtaining a Superadditive Approximation 64

3.3 Approximating High-Dimensional Lifting Functions 69

3.4 Closing Remarks . 73

v

IV SUPERADDITIVE APPROXIMATIONS OF LIFTING FUNCTIONS 75

4.1 Structure of the Lifting Function . 75

4.2 Efficiently Testable Conditions . 77

4.2.1 Testing Validity . 79

4.2.2 Testing Superadditivity . 79

4.2.3 Testing Non-Dominance . 83

4.3 A Modified Superadditive Approximation 89

4.3.1 Properties of α . 90

4.3.2 Nested Application of α . 94

4.4 Computing α . 96

4.4.1 Two-slope Functions . 96

4.4.2 Constructing α in Polynomial Time 99

4.5 Constructing Non-dominated Approximations 102

4.5.1 The Discrete Case . 103

4.5.2 Strengthening Piecewise Linear Functions 105

4.5.3 Finite Convergence to a Non-Dominated Approximation 112

4.5.4 On the Running Time . 121

4.6 Closing Remarks . 123

V APPLICATIONS OF LIFTING IN HIGH DIMENSION 124

5.1 Knapsack Intersections . 125

5.2 Knapsack-Constrained Flow Covers . 138

5.3 Stable Set . 146

5.3.1 The Stable Set Polytope and Lifting 146

5.3.2 Obtaining Deep Cuts . 152

5.3.3 Lifted Versus Non-Lifted Inequalities 155

5.4 Closing Remarks . 158

VI FUTURE WORK . 160

REFERENCES . 164

vi

LIST OF TABLES

1 Lifted flow cover example . 54

2 Approximate lifted flow cover example . 68

3 A non-dominated approximation with negatives 84

4 Failure of ∆(u) to capture non-dominance 85

5 Superadditive approximation ϕ̂i of Φ̂i . 130

6 Non-dominated approximation γi . 131

7 Φ̂0 and its approximation ϕ̂0 . 136

8 Approximation of ĝ for knapsack intersections 136

9 Evaluation of ĝ(z, 0) for cardinality-constrained flow-cover 141

10 Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 2 . . 142

11 Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 3 . . 142

12 Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 4 . . 142

13 Performance of (non-)lifted odd-hole inequalities 157

vii

LIST OF FIGURES

1 Valid inequalities and facets . 4

2 The integer hull . 6

3 The branch-and-bound tree . 8

4 The group relaxation . 15

5 The mixed integer cut coefficients . 21

6 Mapped group coefficients . 21

7 Single node flow set . 50

8 Flow cover lifting function . 51

9 A restricted lifting function . 59

10 A new flow cover lifting function . 61

11 Example of a superadditive approximation 69

12 Test points for superadditivity . 81

13 Testing non-dominance . 89

14 Computing α . 101

15 Strengthened Approximation . 106

16 ℓ03 bounds . 107

17 ℓ04 bounds . 107

18 ℓ̃05 bounds . 109

19 Cardinality-constrained for a knapsack lifting function 131

20 Cardinality-constrained flow lifting function 143

21 Relaxation and reformulation of G . 147

22 An approximation for odd-hole inequalities 151

23 Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 1/8 . . . 158

24 Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 1/4 . . . 158

25 Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 3/8 . . . 159

viii

SUMMARY

Recent developments in mixed integer programming have highlighted the need for multi-

row cuts. To this day, the performance of such cuts has typically fallen short of the single-row

Gomory mixed integer cut. This disparity between the theoretical need and the practical

shortcomings of multi-row cuts motivates the study of both the mixed integer cut and multi-

row cuts. In this thesis, we build on the theoretical foundations of the mixed integer cut

and develop techniques to derive multi-row cuts.

The first chapter introduces the mixed integer programming problem. In this chapter,

we review the terminology and cover some basic results that find application throughout

this thesis. Furthermore, we describe the practical solution of mixed integer programs, and

in particular, we discuss the role of cutting planes and our contributions to this theory.

In Chapter 2, we investigate the Gomory mixed integer cut from the perspective of

group polyhedra. In this setting, the mixed integer cut appears as a facet of the master

cyclic group polyhedron. Our chief contribution is a characterization of the adjacent facets

and the extreme points of the mixed integer cut. This provides insight into the families

of cuts that may work well in conjunction with the mixed integer cut. We further provide

extensions of these results under mappings between group polyhedra.

For the remainder of this thesis we explore a framework for deriving multi-row cuts. For

this purpose, we favor the method of superadditive lifting. This technique is largely driven

by our ability to construct superadditive under-approximations of a special value function

known as the lifting function. We devote our effort to precisely this task.

Chapter 3 reviews the theory behind superadditive lifting and returns to the classical

problem of lifted flow cover inequalities. For this specific example, the lifting function

we wish to approximate is quite complicated. We overcome this difficulty by adopting an

indirect method for proving the validity of a superadditive approximation. Finally, we adapt

ix

the idea to high-dimensional lifting problems, where evaluating the exact lifting function

often poses an immense challenge. Thus we open entirely unexplored problems to the

powerful technique of lifting.

Next, in Chapter 4, we consider the computational aspects of constructing strong su-

peradditive approximations. Our primary contribution is a finite algorithm that constructs

non-dominated superadditive approximations. This can be used to build superadditive

approximations on-the-fly to strengthen cuts derived during computation. Alternately, it

can be used offline to guide the search for strong superadditive approximations through

numerical examples.

We follow up in Chapter 5 by applying the ideas of Chapters 3 and 4 to high-dimensional

lifting problems. By working out explicit examples, we are able to identify non-dominated

superadditive approximations for high-dimensional lifting functions. These approximations

strengthen existing families of cuts obtained from single-row relaxations. Lastly, we show

via the stable set problem how the derivation of the lifting function and its superadditive

approximation can be entirely embedded in the computation of cuts.

Finally, we conclude by identifying future avenues of research that arise as natural

extensions of the work in this thesis.

x

CHAPTER I

INTRODUCTION

This thesis primarily concerns methods that can be applied to mixed integer program-

ming. In this chapter, we give a brief overview of mixed integer programming, including

both applications and techniques used in the practical solution of these challenging prob-

lems.

Our discussion is by no means exhaustive, but provides a sufficient background for the

reader less familiar with mixed integer programming. The reader more familiar with mixed

integer programming and cutting plane theory may wish to skip ahead to the final section

where we describe our contributions and outline the remainder of the thesis.

1.1 Mixed Integer Programming

The mixed integer programming problem is defined by

zMIP = max cx+ hy

s.t. Ax+Gy ≤ b

(x, y) ∈ Rp
+ × Zq+.

(1)

The vectors x and y are typically referred to as the decision vectors. The data (A,G, b)

define a collection of constraints that the decision vectors must satisfy. Throughout we shall

assume that A ∈ Qm×p, G ∈ Qm×q, and b ∈ Qm. The vectors c ∈ Qp, and h ∈ Qq define

the objective function cx+ hy that we wish to maximize. We say a point (x, y) ∈ Rp
+ ×Zq+

is feasible if it satisfies Ax+Gy ≤ b. If no such point exists, we say that (1) is infeasible.

Despite its fairly simple structure, mixed integer linear programming enjoys a wide

variety of applications because of its ability to capture problem structure. Some of the

classical examples and now a staple of any text include the diet problem [71], the cutting

stock problem [31, 32], the traveling salesman problem [1, 24], the matching problem [27],

the network flow problem [29,30], and the lot-sizing problem [66,74]. Of course, this barely

1

scratches the surface, and there are many more problems that fit into the framework of

mixed integer programming.

There are a number of variants of (1) commonly encountered. When q = 0, this problem

is the well-known linear programming problem; when p = 0, this problem is the integer

programming or pure integer programming problem; and when y ∈ {0, 1}q, this problem is

the mixed binary integer programming problem.

Despite their apparent similarities, these problems differ vastly with respect to their

complexity. Consider for a moment the linear programming problem:

zP = max
{
cx : Ax ≤ b, x ∈ Rp

+

}
(2)

Both infeasibility and optimality can be efficiently certified as demonstrated in the next two

theorems.

Theorem 1.1.1 (Farkas’ lemma). There exists some x ≥ 0 such that Ax ≤ b if and only if

yb ≥ 0 for all y ≥ 0 such that yA ≥ 0.

Theorem 1.1.2 (LP duality). The linear program

zD = min
{
yb : yA ≥ c, y ∈ Rm+

}
(3)

satisfies zD = zP whenever both systems are feasible.

The linear programs (2) and (3) are known respectively as the primal and the dual. To

certify the infeasibility of a linear program, one simply needs to produce some y ≥ 0 such

that yA ≥ 0 and yb < 0. Similarly to certify optimality, one simply needs to produce a dual

feasible solution y attaining the same objective value.

Notably, linear programming is amenable to a number of solution techniques. The first

of these techniques, and still widely used today, is the simplex method [23]. This algorithm

has become a cornerstone of linear programming theory and is a standard topic in most

texts [13,59,69]. Since then, polynomial time algorithms such as the ellipsoid method [47,48]

and interior point methods [45] have been developed for the linear programming problem.

In contrast, the dual of (1) resides in the space of superadditive functions, and is far

less accessible than the linear programming dual. It is still unknown whether there exists

2

any certificate of polynomial size for declaring the optimality of a feasible solution of a

mixed integer program. In fact, binary integer programming is among Karp’s famous 21

NP-Complete problems [46], which suggests that the mixed integer programming problem

in general may be quite different from linear programming.

Nevertheless, there are approaches to establishing feasibility and optimality that leverage

the theory of cutting planes in conjunction with other techniques. We describe the geometry

of polyhedra and cutting planes in the next section and then give a high level overview of

their role in solving mixed integer programs.

1.2 The Geometry of Polyhedra and Cutting Planes

To develop the idea of cutting planes, it will be useful to explore the geometry of

polyhedra. A polyhedron is a set

P = {x ∈ Rn : aix ≤ bi, i = 1, . . . r}

for some finite r. A more geometric perspective is to regard P as the intersection of the r

half-spaces defined by the inequalities aix ≤ bi.

The set P resides in some affine subspace (i.e. a translation of a linear subspace). The

dimension of P is the minimum dimension of an affine subspace containing P . Equivalently,

if P contains at most d+ 1 affinely independent points, then P has dimension d. If d = n,

then P is said to be full-dimensional. By applying an appropriate affine transformation, we

may assume without loss of generality that P is full-dimensional; thus, we take P to have

dimension n.

Next, we briefly discuss valid inequalities. An inequality πx ≤ π0 is said to be valid

for P if it is satisfied by all x ∈ P . From a geometric perspective, this implies that P

is contained in the closed half-space defined by πx ≤ π0. In this regard, one may either

consider inequalities from an algebraic perspective or a geometric perspective as the context

requires.

Some inequalities may be redundant in the sense that their exclusion does not change

P . The remaining inequalities in a minimal description of P are called facet-defining, and

are unique up to scaling. Given a facet-defining inequality aix ≤ bi, the corresponding facet

3

is the set

F = P ∩ {x ∈ Rn : aix = bi} .

A graphical representation of the distinction between valid inequalities and facet-defining

inequalities is given in Figure 1.

We sometimes use the term “facet” rather loosely to refer either to F or the underlying

inequality aix ≤ bi. Given our assumptions, F is itself a polyhedron of dimension n − 1.

Closely related are faces, which are obtained as the intersection of multiple facets, and of

particular importance are minimal faces (with respect to non-emptiness). For our purposes,

minimal faces typically have dimension 0 and are referred to as extreme points.

P

F

µx ≤ µ0 πx ≤ π0

Figure 1: A valid inequality µx ≤ µ0 and a facet-defining inequality πx ≤ π0 for an
unbounded polyhedron P

Two important classes of polyhedra are polytopes and polyhedral cones. A polytope Q

is defined as the convex hull of finitely many points: i.e.

Q = conv
{
x1, . . . , xs

}
=

x ∈ Rn :

x =

s∑
j=1

λjx
j

s∑
j=1

λj = 1

0 ≤ λj ≤ 1, j = 1, . . . , s

.

Analogously, a polyhedral cone, C is defined as the conic hull of finitely many points. Thus

C = cone
{
y1, . . . , yt

}
=

y ∈ Rn :

y =

t∑
j=1

µjy
j

yj ≥ 0, j = 1, . . . , s

 .

If yj is not in the conic hull of the remaining points, then yj is called an extreme ray. As

it turns out, every polyhedron can be described precisely in terms of polytopes and cones.

4

Theorem 1.2.1 (Decomposition for polyhedra). A set P ⊆ Rn is a polyhedron if and only

if P = Q+ C for some polytope Q and some polyhedral cone C.

Despite this nice geometric intuition, it is often more convenient to approach the fa-

cial structure of a polyhedron from an algebraic perspective. From this vantage, a valid

inequality aix ≤ bi is facet-defining if and only if there exist n affinely independent points

x1, . . . , xn ∈ P satisfying aix = bi. Furthermore, two facets aix ≤ bi and ajx ≤ bj are adja-

cent if and only if they share n − 1 affinely independent points. Extreme points therefore

can be described as the solution of a system of equations

xB = {x : aix = bi, i ∈ B} ,

where the inequalities aix ≤ bi define mutually adjacent facets. Thus adjacency is a useful

property for identifying the extreme points of a polyhedron.

We now return to (1), and introduce the idea of cutting planes. The set

X =
{
(x, y) ∈ Rp

+ × Zq+ : Ax+Gy ≤ b
}

is referred to as the feasible region. By the assumption that all data are rational, the integer

hull, PI = conv(X), is itself a polyhedron. Conveniently,

zMIP = max {cx+ hy : (x, y) ∈ PI} .

Despite its simplicity, this result is a key component in the cutting plane paradigm. By

optimizing over PI, we have at our disposal all the machinery of linear programming.

Unfortunately, the set PI is defined fairly abstractly, and is often not explicitly known.

To this end, let PLP =
{
(x, y) ∈ Rp

+ ×Rq
+ : Ax+Gy ≤ b

}
. The maximization problem,

zLP = max {cx+ hy : (x, y) ∈ PLP} , (4)

is known as the linear programming relaxation of (1).

Clearly PI ⊆ PLP, and typically this containment is strict. Thus, it is often the case

that zMIP < zLP. Therefore, consider an extreme point solution (x∗, y∗) of (4). Either

y∗ ∈ Zq+, in which case zMIP = zLP, or y
∗ /∈ Zq+, in which case (x∗, y∗) /∈ PI. In the latter

5

case, there exists an inequality πx + µy ≤ π0 that is valid for X (and hence PI) such that

πx∗ + µy∗ > π0. Such an inequality is called a cutting plane or a cut. As seen in Figure 2,

cuts need not define facets of the integer hull.

PI

πx ≤ π0

Figure 2: The integer hull, PI and a cut πx ≤ π0

1.3 Cutting Planes in the Solution of Mixed Integer Programs

The terminology of cutting planes is well-suited to its application in mixed integer

programming. At a high level, the cutting plane scheme consists primarily of two steps.

First the LP relaxation is solved producing some extreme point solution (x∗, y∗). If y∗ ∈ Zq+,

then (x∗, y∗) is optimal. Otherwise, identify some cutting plane πx+µy ≤ π0, and introduce

this constraint to the LP relaxation, cutting off the point (x∗, y∗). This process is repeated

until a feasible solution is identified.

The earliest example of this approach appeared in the solution of a 49-city traveling

salesman problem [24]. After employing some simple preprocessing reducing the problem

to 42 cities, the authors are able to identify a tour with the addition of just seven subtour

elimination constraints and two comb inequalities. Impressively, this feat was accomplished

using only hand calculations.

Of course, haphazardly adding cutting planes would quickly render this approach hope-

lessly ineffectual. Therefore, one must seek well-behaved cutting planes to guarantee finite

convergence.

Ideally, these cuts are facets of PI. In some cases, such as matching [27, 28] and lot-

sizing [9], a complete description of PI is known. However, this is more often the exception

than the rule. At best, we typically have a partial understanding of PI that is manifested in

the form of cut classes or cut families. These may either be derived from PI itself or from

6

some subsystem of Ax + Gy ≤ b. Some well-known families of cuts are the subtour and

comb inequalities for the traveling salesman problem [16, 24, 39]; the clique and odd-hole

inequalities for set packing [63]; the cover inequalities for the knapsack problem [5,8,40,58];

the ℓ-S inequalities for lot-sizing [9]; and the flow cover inequalities for fixed-charge network

flow [41,64,72].

The sufficiency of an incomplete description of PI to characterize optimal solutions

is highly dependent on the objective function; for example, Wagner-Whitin costs greatly

simplify the facets needed to describe the optimal solution in many lot-sizing problems [65].

Relying on this behavior is tenuous at best. Therefore, many solvers come equipped with

an arsenal of general-purpose cutting plane techniques that can be applied to any mixed

integer program.

The potential of cutting planes for solving general problems was first demonstrated by

Gomory in the setting of pure integer programming [34]. Here, he describes a procedure that

correctly identifies a sequence of cutting planes that is guaranteed to produce an integer

solution in finitely many iterations. Gomory later extended this result to mixed integer

programming [33]. The driving force behind these finitely-convergent algorithms are the

Gomory fractional cut and the mixed integer cut. Since then, a number of cutting planes

have been developed for mixed binary integer programs such as lift-and-project cuts [6]

and Lovász-Schrijver cuts [51] and for mixed integer programs such as the mixed integer

rounding cuts [60] and split cuts [21].

Classifying cutting planes is not strictly limited to either problem specific cuts or generic

cuts. One particularly successful avenue of research is aimed at characterizing “simple”

mixed integer sets that possess some non-trivial structure, but can be used to derive valid

inequalities for a wide array of problems. The mixing set and its variants have recently

enjoyed considerable attention [17–19, 43, 73]. The so-called mixing inequalities have been

used to expand existing families of cuts and have found further application in mixed integer

programs derived from probabilistic constraints [49,52].

Despite the broad selection of cuts at our disposal, pure cutting planes algorithms are

often subject to numerical instability. At the heart of this issue, adding cuts alters which

7

cuts can subsequently be derived. Gomory’s original cutting plane algorithm overcomes this

obstacle by precisely identifying which cuts to add, but in fact, utterly fails under different

cut selection criteria [78].

An alternate approach to solving mixed integer programs is branch-and-bound. In the

context of mixed integer programming, branch-and-bound operates by solving the LP re-

laxation to produce some optimal (x∗, y∗). If y∗ is integral, then (x∗, y∗) is optimal for

(1). Otherwise, there exists some y∗j /∈ Z, and the problem can be split into two disjoint

subproblems: one with yj ≤ ⌊y∗j ⌋ and the other with yj ≥ ⌈y∗j ⌉. Trivially, the maximum

of these two subproblems will be a maximum for the original problem. This process is

applied recursively until the resulting subproblem has an integral optimum, is infeasible,

or can be eliminated using global bound data (typically by comparing the objective value

of the LP relaxation with best known integral solution). This can be represented by a

branch-and-bound tree as in Figure 3.

x2 = 0

x1 = 0

x2 = 1 x2 = 0

x1 = 1

x2 = 1

Figure 3: A typical branch-and-bound tree for a binary integer program

The theory behind a pure cutting plane approach tends to understate the computational

challenges that inevitably arise. Certainly, early work identified the potential of cutting

planes, but this was infrequently realized in practice. General purpose cuts were relegated

to theory, but once again found life in the landmark work of Crowder, Johnson, and Padberg

[22]. Their approach incorporated general cutting planes into a traditional branch-and-

bound framework–a method now known as branch-and-cut–to solve binary integer programs.

This idea was extended to mixed integer programming [7], and is now a major driver in the

8

practical solution of mixed integer programs.

Branching strategies are no less important than cutting planes, and can vastly improve

solution times. For example, branching can be made to accommodate column generation [10]

in the solution of high-dimensional integer programs. Another clever branching strategy can

break the symmetry that would otherwise hamstring a näıve branch-and-cut implementation

[54,55,61,62]. Indeed, branching rules play just as integral in modern day solvers, and merit

continued research.

1.4 Thesis Outline

For this dissertation, we focus on the role of cutting planes in mixed integer program-

ming. Our goal is to improve the quality of cuts used in a branch-and-cut framework.

Within this context, we wish to obtain cuts that produce better bounds earlier in the so-

lution process. This in turn can greatly reduce the number of branching steps required to

solve a mixed integer program, improving solve times.

In Chapter 2, we further develop the structure of corner polyhedra. These polyhedra

provide a framework for understanding and deriving cuts for pure integer programs. Most

notably, the mixed integer cut is one of many cuts that arise in this setting. We give

a structural description of the mixed integer cut, specifically characterizing its adjacent

facets. It is not unreasonable that these adjacent facets may work well in conjunction with

the mixed integer cut.

We next explore the role of lifting in developing cuts in Chapter 3. In particular, we

expand on previous work in superadditive lifting to show how the technique can be used

to derive cuts without explicitly solving the lifting problem. We show this idea first in the

context of fixed-charge network flow, and then provide a more general template for how this

can be achieved to simplify the approximation of higher dimensional lifting functions. Using

this approach, it is possible to derive cuts that might otherwise be prohibitively expensive

to obtain.

In Chapter 4, we probe deeper into the structure of superadditive lifting functions. Our

9

primary contribution is an algorithm that can construct strong superadditive approxima-

tions of piecewise linear functions used in the derivation of cuts. Subsequently, we also

obtain a concise description of the “strongest” lifting functions. This work is the first of its

kind and provides a tool that can either be used offline to assist in the derivation of new

families of cuts, or can be used online to enable the application of superadditive lifting in a

more general setting.

In Chapter 5, we show how the ideas from Chapters 3 and 4 can be applied to several

classical problems in mixed integer programming. We first show how one can construct

superadditive approximations for a fixed-charge flow set that is additionally constrained by

a knapsack inequality. Next, we consider the intersection of multiple knapsacks, and show

how traditional cover inequalities can incorporate additional problem structure. Lastly, we

conclude by revisiting the odd-hole inequalities for the stable set polytope and demonstrate

how one might modify the problem to accommodate superadditive lifting.

Finally, in Chapter 6, we revisit our main contributions and discuss some future work.

10

CHAPTER II

GOMORY’S GROUP PROBLEM REVISITED

The first topic we explore in cutting plane theory is Gomory’s group problem (also

known as the corner relaxation). The connection between integer programming and groups

is embodied in the periodicity of solutions. All other things remaining fixed, as the right

hand side of an integer program is increased, certain parts of the solution begin to repeat.

This is most easily observed in the context of knapsack problems, but is entirely general.

Many of the recurring themes in mixed integer programming find their roots in the group

problem. In many respects, the master cyclic group polyhedron is among the first simple

integer sets to be studied extensively. For example, the mixed integer cut enjoys a very

natural representation in this setting and can be extended using various group operations.

Perhaps the most noteworthy of these extensions arises by using homomorphisms between

groups. It is here that the idea of lifting, which we study extensively in subsequent chapters,

finds its origin.

Similarly, recent work studying the relation between lattice-free convex sets and valid

inequalities build off of ideas originating from the corner relaxation (see for example [11,12,

15]). Whereas the group problem we consider in this chapter is finite, the work in lattice-free

convex sets is more closely connected to the infinite group problem [36, 37, 44]. This work

establishes theoretical foundations for multi-row cuts that cannot be obtained by simple

constraint aggregation.

In this chapter, we characterize the mixed integer cut as a facet of the master cyclic

group polyhedron. This is a significant step in understanding one of the most widely used

cuts in the practical solution of mixed integer programs, and it may shed light on possible

cuts that tend to work well in conjunction with the mixed integer cut. We primarily build

off of the work of Aráoz et al [3] and show that their tilted knapsack facets are the only

non-trivial facets adjacent to the mixed integer cut. Lastly, we extend earlier results on

11

various group mappings to provide extensions of our characterization under homomorphic

lifting.

2.1 Algebraic Prerequisites

Before going into depth about the group problem, we take a moment to review some

standard definitions and useful theorems from algebra in order to provide a clearer and

more complete exposition for the reader less familiar with the subject. We will further

provide numerical examples that we develop throughout our discussion to highlight our

results. Although the main ideas presented here are common throughout any algebra text,

we borrow much of our notation from [26].

Definition 2.1.1. Let the pair (G, ⋆) denote a set G, and a binary operation ⋆ : G×G → G.

We say that (G, ⋆) is a group if it satisfies the following axioms:

(i) (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for all a, b, c ∈ G (i.e. ⋆ is associative),

(ii) there exists an element e ∈ G called the identity of G, such that a ⋆ e = e ⋆ a = a for

all a ∈ G,

(iii) for each a ∈ G there is an element a−1 ∈ G called the inverse of a such that a ⋆ a−1 =

a−1 ⋆ a = e.

Further if a ⋆ b = b ⋆ a, then the group (G, ⋆) is called abelian.

For brevity, we will typically refer to the group by its underlying set G and we will sup-

press ⋆ entirely when the underlying operation is understood from context. When speaking

of abelian groups we often replace ⋆ with + and e with 0.

The groups that we study in this chapter will all be finite and abelian, so we restrict

our examples accordingly.

Example 2.1.1. The following two examples most closely reflect the groups we study:

1. Let Zm denote the set {0, . . . ,m−1} under addition modulo m where m is some finite

integer. It is easy to verify that Zm is a group with e = 0 and a−1 = m− a for a ̸= 0.

12

2. Let Λ = {Az : z ∈ Zn}. Then Λ is a group under addition with e = 0 and for a = Az,

a−1 = −a = A(−z).

Let g ∈ G, and define g0 = e. For k > 0, let gk = gk−1 · g and g−k = g−(k−1) · g−1. In

the context of abelian groups, gk is typically denoted kg.

The group Zm in the above example represents a special kind of group called a cyclic

group that will be the primary focus of our study of the group problem. A group G is called

cyclic if there exists some element g ∈ G such that G =
{
gk : k ∈ Z

}
.

When we get into the details of the group problem, we will need to use some elementary

results from algebra. The following theorem will be explicitly used later:

Theorem 2.1.1. If |G| = n is finite, then gn = e for all g ∈ G.

Beyond the groups themselves, we will also refer explicitly to well-behaved mappings

between groups.

Definition 2.1.2. Let G and H be groups, and let φ : G → H. We say that φ is a

homomorphism if φ(xy) = φ(x)φ(y). If H = G and φ is bijective, then φ is more specifically

called an automorphism.

We will assume that φ is surjective by restricting H to the image of G. If φ is also

injective, then the sets G and H are said to be isomorphic, denoted by G ∼= H, and φ is

called an isomorphism. As we will see in the next definition, homomorphisms naturally

induce a partition of G:

Definition 2.1.3. Let φ be a homomorphism from G ontoH, and K = {g ∈ G : φ(g) = eH}.

K is referred to as the kernel of φ. For any g ∈ G the set gK = {gk : k ∈ K} is called a

coset of G and g is referred to as its coset representative.

Observe that all elements in gK map to the same value under φ. Furthermore, if

φ(g1) = φ(g2) then g2 ∈ g1K. As g ∈ gK the cosets partition G.

Definition 2.1.4. The set G/K = {gK : g ∈ G} with (g1K)(g2K) = (g1g2)K is called the

quotient group of G. Moreover, G/K ∼= H (the isomorphism being ϑ(gK) = φ(g)).

13

There is one key result about the cosets and the quotient group induced by a homomor-

phism that is explicitly used in this chapter.

Theorem 2.1.2. Suppose that G is finite, and let φ : G → H be a homomorphism with

kernel K. Then |gK| = |K| for all g ∈ G and |H||K| = |G|.

Example 2.1.2. The homomorphisms and automorphisms we consider later in this chapter

closely resemble the following examples:

1. Let G = Z and H = Zm under addition (taken modulo m in the latter set). Let

φ : Z → Zm, map z to its residue modulo m. Then φ is a homomorphism, with kernel

K = mZ = {mz : z ∈ Z}. Further the cosets h+K = {z ∈ Z : z = h+ km} partition

Z.

2. Let G = Z7 and let φ : Z7 → Z7 be defined by

φ(z) = 3z (mod 7).

Then φ is an automorphism; for if φ(z1) = φ(z2) then 3(z1 − z2) = 7z3. Therefore

z1 = z2 and hence φ is bijective.

Observe that in this first example mZ is a one-dimensional lattice. More generally

consider the lattice Λ of Example 2.1.1 when A is restricted to be non-singular and integer

valued. In this context, it is reasonable to define congruence modulo A:

Definition 2.1.5. For z1, z2 ∈ Zn,

z1 = z2 (mod A) ⇔ (z1 − z2) = Az

for some z ∈ Zn.

Analogous to the one-dimensional case, let G = {z + Λ : z ∈ Zn}. Every element of Zn

naturally maps to its coset which is a translate of the lattice generated by A. The set G is

finite and forms a group where addition is defined by adding the coset representatives. It

is this group that will be most relevant in our discussion of the group problem.

14

2.2 Master Group Polyhedra

Now that we have highlighted the algebra underlying the group problem, we can intro-

duce the group relaxation and master group polyhedra. Consider the integer program

zIP = min
{
cx : Ax = b, x ∈ Zn+

}
,

where all data are assumed to be rational and A is m× n and b is m× 1. Given a solution

to the LP relaxation, we can partition A into basic and non-basic columns, hence we can

rewrite zIP as

zIP = min
{
cBxB + cNxN : BxB = b−NxN , xB ∈ Zm+ , xN ∈ Zn−m+

}
.

Now observe that xB ∈ Zm if and only if b−NxN belongs to the lattice Λ = {Bz : z ∈ Zm}.

However, this condition on its own is insufficient to guarantee the non-negativity of xB.

As B is invertible, this implies that xB = B−1(b − NxN). Therefore, if we relax the

non-negativity of xB, we can eliminate these variables entirely from the problem, yielding

the group relaxation:

zGR = zLP +min
{
c̃NxN : NxN ≡ b (mod B), xN ∈ Zn−m+

}
(5)

where zLP = cBB
−1b denotes the objective of the LP relaxation and c̃N = (cN − cBB

−1N)

denotes the reduced cost vector. The corresponding set in the original space of variables is

often called the corner polyhedron and is depicted in Figure 4.

x
∗

P
∗

PI

Figure 4: The corner polyhedron P ∗ obtained from the group relaxation for x∗

Gomory explores the properties of this relaxation and shows sufficient, although by no

means necessary, conditions that guarantee the non-negativity of xB and hence tightness of

the group relaxation. However, these conditions are generally too restrictive to be of any

practical use.

15

Instead, the utility of the group relaxation derives from its polyhedral structure. With

this in mind we explore the underlying set, i.e.

X =
{
x ∈ Zn−m+ : Nx = b (mod B)

}
.

Now let Λ = {Bz : z ∈ Zm} and G = {z + Λ : z ∈ Zm}. Then every column of N naturally

maps to an element of G: namely its coset which is a translate of Λ. Define

N = {g ∈ G | ∃j : Nj + Λ = g} .

In plain terms N denotes the collection of cosets represented by the columns of N . Let

d = |N |. As not all g ∈ N may be uniquely represented by a column of N , it is quite

possible that d < n−m. Let g0 = b+ Λ and let

t(g) =
∑

j:Nj+Λ=g

xj .

At this point the algebraic structure of the set emerges:

X(G,N , g0) =

t ∈ Zd+ :
∑
g∈N

g · t(g) = g0

 , (6)

where equality is now taken with respect to the group operation. We will refer to the set

P (G,N , g0) = conv {X(G,N , g0)} as the group polyhedron.

Valid inequalities for P (G,N , g0) map to valid inequalities of X by replacing t(g) with

an appropriate sum. The study of P (G,N , g0) is not itself transparent; hence it is more

natural to consider the master group polyhedron:

P (G, g0) = conv

t ∈ Z
|G+|
+ :

∑
g∈G+

g · t(g) = g0

 , (7)

where G+ = G \{0}. If G is a cyclic group, we refer to the above system as the master cyclic

group polyhedron. Throughout, we shall assume that g0 ̸= 0 as this case has considerably

less practical appeal.

We now give a concrete example with a one-row system to show an explicit derivation

of this system.

16

Example 2.2.1. Let X be the integral system defined by the constraint

7x1 + 13x2 + 3x3 − x4 + 5x5 + 11x6 = 24.

Taking B = 7, the group relaxation is obtained by replacing equality with equivalence

modulo 7. Thus we have

13x2 + 3x3 − x4 + 5x5 + 11x6 = 24 (mod 7).

Each column can be replaced with its residue modulo 7 which is an equivalent coset repre-

sentative. Therefore, the above system is identical to

6x2 + 3x3 + 6x4 + 5x5 + 4x6 = 3 (mod 7),

and the corresponding group polyhedron is defined by the constraint

3t3 + 4t4 + 5t5 + 6t6 = 3 (mod 7).

Therefore, the master cyclic group polyhedron for this system is

P (C7, 3) = conv
{
t ∈ Z6

+ : t1 + 2t2 + 3t3 + 4t4 + 5t5 + 6t6 = 3 (mod 7)
}
.

We shall return to this example later as we explore in more detail the polyhedral structure

of the set.

As suggested earlier, master group polyhedra provide a mechanism to obtain valid in-

equalities for specific instances of group polyhedra. The specific group polyhedron occurs

as a face of its corresponding master group polyhedron:

P (G,N , g0) = P (G, g0) ∩ {t : t(g) = 0, g /∈ N} .

Thus, for any valid inequality πt ≥ π0 of the master polyhedron, a valid inequality of the

group polyhedron can be obtained by including only the columns corresponding to N .

Before getting into too much depth about valid inequalities, we take a moment to in-

troduce a shorthand notation to describe an inequality. Namely,

(π, π0) :=
∑
g∈G+

π(g)t(g) ≥ π0. (8)

17

In the subsequent discussion, the dimension of π and π0 are understood from context.

Returning to P (G, g0), we are specifically interested in the inequalities (π, π0) that define

facets of this set. In his seminal work on corner polyhedra [35], Gomory fully characterizes

the polar. This description has since been revisited and refined in the works of [70].

Theorem 2.2.1. (π, π0), π0 > 0, is a non-trivial facet of P (G, g0), g0 ̸= 0 if and only if it

is a basic feasible solution to the system of equations and inequalities:

π(g0) = π0

π(g) + π(g0 − g) = π0, g ∈ G+, g ̸= g0

π(g) + π(g′) ≥ π(g + g′), g, g′ ∈ G+

π(g) ≥ 0, g ∈ G+.

(9)

Although the number of facets of P (G, g0) typically grows exponentially with |G|, its

polar can still be expressed succinctly. This fact was exploited in [38] to investigate the

strength of facets via shooting experiments. At a high level, a non-negative vector is ran-

domly generated, and a linear program based on (9) is solved to identify the first facet hit

along this direction. Despite the large number of facets of the polyhedra tested, a surpris-

ingly small number of facets received the majority of hits, indicating their importance in

characterizing P (G, g0).

Typically these facets could be classified either as the mixed integer cut or some mapping

of a mixed integer cut. It is precisely these facets and mappings that we study; hence, we will

conclude this section by introducing the relevant theorems and returning to our example.

Theorem 2.2.2. Let n be integral and r ∈ C+
n . The inequality (µ, 1) with

µi =

i
r i ≤ r

n−i
n−r i > r

(10)

is facet-defining for P (Cn, r).

The inequality (µ, 1) is called themixed integer cut and has played a central role through-

out pure and mixed integer programming. Even though this inequality hardly resembles

18

the mixed integer cut that most are familiar with, we show as an illustrative example that

they are in fact the same.

Example 2.2.2. Consider the one row integer program where all data are rational and

b /∈ Z:

X =

x ∈ Zp+ :
∑
j∈J

ajxj = b

 ,

and let P = conv(X). Let fj = aj − ⌊aj⌋ and f0 = b− ⌊b⌋. The mixed integer cut for this

set is the inequality

∑
j∈J :fj≤f0

fjxj +
f0

1− f0

∑
j∈J :fj>f0

(1− fj)xj ≥ f0.

Let N be chosen such that Naj ∈ Z for all j ∈ J and Nb ∈ Z. Therefore, we can scale by

N so that all coefficients are integral,

X =

x ∈ Zp+ :
∑
j∈J

(⌊aj⌋+ fj) ·Nxj = (⌊b⌋+ f0) ·N

 .

Now consider the group relaxation obtained by replacing the equality with equivalence

modulo N . It follows that aj maps to fj ·N for each j ∈ J and b maps to f0 ·N . The mixed

integer cut for P (CN , f0N) is given by

µi =

i

f0·N i ≤ f0 ·N

N−i
N−f0·N i > f0 ·N.

Therefore, to recover a valid inequality, we simply read off coefficients. If fj ≤ aj then xj

receives coefficient
fj
f0
; otherwise xj receives coefficient

1−fj
1−f0 . So the two inequalities indeed

coincide.

Using automorphisms and homomorphisms, it is possible to produce facets for P (G, g0)

from related polyhedra. Let φ : G → G be a non-trivial automorphism (i.e. there exist some

g such that φ(g) ̸= g).

Theorem 2.2.3. If (π, π0) is a facet of P (G, g0), with components, π(g), then (π′, π0) with

components π′(g) = π(φ−1(g)) is a facet of P (G, φ(g0)).

19

Similarly, consider some homomorphism ψ : G → H such that ψ(g0) = h0 ̸= 0.

Theorem 2.2.4. Let (π, π0) be a non-trivial facet of P (H, h0). Then (π′, π0) is a facet of

P (G, g0) where π′(g) = π(ψ(g)) for all g ∈ G \ K, and π′(k) = 0 for all k ∈ K.

As described before, a homomorphism ψ induces a partition of G into cosets. In homo-

morphic lifting each element of a coset receives the same coefficient.

We conclude by giving a concrete example.

Example 2.2.3. Recall that

P (C7, 3) = t1 + 2t2 + 3t3 + 4t4 + 5t5 + 6t6 = 3.

The mixed integer cut for P (C7, 3) is given by

1

3
· t1 +

2

3
· t2 +

3

3
· t3 +

3

4
· t4 +

2

4
· t5 +

1

4
· t6 ≥ 1.

Now consider the automorphism of φ of C7 that sends g to 4g. This gives

g 0 1 2 3 4 5 6

φ(g) 0 4 1 5 2 6 3

Therefore, applying Theorem 2.2.3 to the mixed integer cut for P (C7, 3) we obtain the

inequality

2

3
· t1 +

3

4
· t2 +

1

4
· t3 +

1

3
· t4 +

3

3
· t5 +

2

4
· t6 ≥ 1.

as a facet of P (C7, 5). Next we consider a homomorphism ψ : C14 → C7 such that ψ(g) = g

(mod 7). By applying Theorem 2.2.4 to the mixed integer cut for P (C7, 3), we have that

1

3
· t1 +

2

3
· t2 +

3

3
· t3 +

3

4
· t4 +

2

4
· t5 +

1

4
· t6

+
1

3
· t8 +

2

3
· t9 +

3

3
· t10 +

3

4
· t11 +

2

4
· t12 +

1

4
· t13 ≥ 1.

is a facet of P (C14, 10) and P (C14, 3).

The corresponding mixed integer cut and its related facets obtained through automor-

phisms and homomorphisms are depicted in Figures 5 and 6.

20

1 2 3 4 5 6

1

Figure 5: The mixed integer cut coefficients

5

1

7

1

Figure 6: The mixed integer cut coefficients under automorphic mapping (left) and homo-
morphic lifting (right)

2.3 Master Knapsack Polyhedra and the Mixed Integer Cut

Our primary result in this section is a characterization of the extreme points and adjacent

facets of the mixed integer cut. Along these lines, it will be easier to regard the mixed integer

cut as the polytope:

PMIC(n, r) = P (Cn, r) ∩ {t : µt = 1} . (11)

In this setting, a facet (π, π0) of P (Cn, r) is adjacent to (µ, 1) if (π, π0) defines a facet of

PMIC(n, r).

For our characterization, we will also need the master knapsack polyhedron:

P (Km) =

{
x ∈ Zm+ :

m∑
i=1

i · xi = m

}
. (12)

As we will show, this set is intrinsically related to PMIC(n, r). Like the group problem, facets

of the master knapsack problem can be described by a small system of inequalities [2]:

Theorem 2.3.1. The facets (ρ, ρm) of P (Km) are extreme rays of the cone defined by

ρi + ρj ≥ ρi+j 1 ≤ i, j, i+ j ≤ m,

ρi + ρm−i = ρm 1 ≤ i ≤
⌊m
2

⌋
.

21

Using this characterization, the authors in [3] are able to derive a new class of non-trivial

facets of P (Cn, r) from non-trivial facets of P (Kr).

The next theorem describes a class of facets of P (Cn, r) called tilted knapsack facets

introduced in [3].

Theorem 2.3.2. Let (ρ, ρr) be a non-trivial facet of P (Kr) such that ρ ≥ 0, ρi = 0 for at

least one i, and ρr = 1. Let

ρ =

(
ρ1, . . . , ρr = 1,

n− r − 1

n− r
, . . . ,

1

n− r

)
.

Then there exists some α ∈ R such that (π, π0) = (ρ+ αµ, 1 + α) is a facet of P (Cn, r).

Details for computing the tilting coefficient, α, are contained in [3]. Although not stated

explicitly in the original work, these facets can also be obtained from P (Kn−r).

Corollary 2.3.3. Let (ρ, ρn−r) be a non-trivial facet of P (Kn−r) such that ρ ≥ 0, ρi = 0

for at least one i, and ρn−r = 1. Let

ρ =

(
1

r
, . . . ,

r − 1

r
, 1 = ρn−r, ρn−r−1, . . . , ρ1

)
.

Then there exists some α ∈ R such that (π, π0) = (ρ+ αµ, 1 + α) is a facet of P (Cn, r).

Proof. Observe that the mapping φ : Cn → Cn defined by φ(i) = n− i for i ∈ {1, . . . , n− 1}

is an automorphism of Cn. By Theorem 2.2.3 with φ and Theorem 2.3.2 applied to P (Kn−r)

the result follows.

The conditions placed on (ρ, ρr) are without loss of generality. For completeness we

describe how any facet of P (Kr) can be made to conform to these conditions.

Proposition 2.3.4. Let (ρ, ρ0) be a non-trivial facet of P (Km). Without loss of generality

we may assume that (ρ, ρ0) ≥ 0, ρ0 = ρm = 1. Moreover, we may assume there exists some

i ̸= m such that ρi = 0.

Proof. We may add the knapsack equation to (ρ, ρ0) so that (ρ, ρ0) ≥ 0. Since x = em is a

feasible solution, ρ0 ≤ ρm. If ρ0 < ρm, then xm = 0 for all x satisfying (ρ, ρ0) at equality,

22

contradicting that the facet is non-trivial. Furthermore, if ρ0 = 0 the inequality is implied

by non-negativity constraints; thus ρ0 > 0, and we may assume by scaling that ρ0 = 1.

Now if for all i, ρi ≥ i
m , we may subtract the knapsack equation scaled by 1

m to yield an

inequality implied by the non-negativity constraints (since the right hand side is 0 and the

left hand side is non-negative). Therefore, there must exist some ρi <
i
m , so by subtracting

the appropriately scaled knapsack equation, and rescaling, we may further assume that

there exists some i ̸= m such that ρi = 0.

Hence, every non-trivial facet of P (Kr) maps to a corresponding facet of P (Cn, r). We

will show these tilted knapsack facets are in fact facets of PMIC(n, r). Before doing so, we

describe an operation we call extending a knapsack solution.

Proposition 2.3.5. If x ∈ P (Kr), x = (x1, . . . , xr), then t = (x1, . . . , xr, 0, . . . , 0) ∈

PMIC(n, r). If x ∈ P (Kn−r), x = (x1, . . . , xn−r), then t = (0, . . . , 0, xn−r, . . . , x1) ∈

PMIC(n, r).

Proof. For x ∈ P (Kr), the result is trivial. So take x ∈ P (Kn−r). Since P (Kn−r) is convex

and integral, we may assume that x is integral. Rewriting i = n − (n − i) for i = 1, . . . , r

and applying the assumption that x is an integer knapsack solution

n−1∑
i=r

iti =
n−1∑
i=r

nxn−i −
n−1∑
i=r

(n− r)xn−i = r (mod n),

and the proposition follows.

Note that P (Cn, r) is full-dimensional since its recession cone is the non-negative orthant.

As (µ, 1) defines a facet of P (Cn, r), it must have dimension n− 2.

Observation 2.3.6. The dimension of PMIC(n, r) is n− 2.

Therefore to prove that an inequality (π, π0) defines a facet of PMIC(n, r), we can proceed

by identifying n− 2 affinely independent points.

Moreover, P (Km) must have dimension m − 1. Indeed, its dimension cannot exceed

m − 1 as it resides in a lower dimensional subspace. Hence by listing out the m affinely

independent points ei+(m− i) · e1 for i = 2, . . . ,m and m · e1, we conclude that this upper

bound is tight.

23

Observation 2.3.7. The dimension of P (Km) is m− 1.

By this observation, every facet of P (Kr), (respectively, P (Kn−r)) must contain r − 1

(respectively, n− r − 1) affinely independent points.

Proposition 2.3.8. The tilted knapsack facets are facets of PMIC(n, r).

Proof. We argue for facets tilted from P (Kr); an analogous argument proves the result for

facets tilted from P (Kn−r).

Let (π, π0) be tilted from (ρ, 1), and let ρ be as described in Theorem 2.3.2 and α

be the corresponding tilting coefficient. Since (ρ, 1) is a facet of P (Kr), there exist r − 1

affinely independent extreme points x1, . . . , xr−1 satisfying (ρ, 1) at equality. As described in

Proposition 2.3.5, these points may be extended to points t1, . . . , tr−1 ∈ PMIC(n, r). Clearly

this operation preserves affine independence. Moreover, for i = 1, . . . , r − 1, µti = 1 and

ρti = ρx = 1, thus

πti = (ρ+ αµ)ti = ρti + α · µti = 1 + α = πr.

Now consider n− r affinely independent extreme points y1, . . . , yn−r of P (Kn−r), and again

as in Proposition 2.3.5, extend them to points s1, . . . , sn−r ∈ PMIC(n, r).

πsi = (ρ+ αµ)si = ρsi + α · µsi = 1 + α = πr.

It is easily seen that {t1, . . . , tr−1}∩ {s1, . . . , sn−r} = er. Therefore we have produced n− 2

affinely independent points, proving the claim.

Consider a tilted knapsack facet (π, π0) arising from the facet (ρ, 1) of P (Kr) with

tilting coefficient α. Letting µ′ denote the first r coefficients of µ, the same facet of P (Kr)

is described by (γ, 0) = (ρ, 1)− (µ′, 1). In particular letting,

(γ̄, 0) = (γ1, . . . , γr = 0, 0, . . . , 0),

it follows that (π, π0) = (γ̄, 0) + (1 + α)(µ, 1). The same applies to tilted knapsack facets

arising from P (Kn−r).

Therefore we will think of tilted knapsack facets as arising from facets of the form (ρ, 0),

and by subtracting off the mixed integer cut we think of tilted knapsack facets in the form

(ρ̄, 0).

24

We now prove our main result.

Theorem 2.3.9. The convex hull of PMIC(n, r) is given by the tilted knapsack facets and

the non-negativity constraints.

Proof. For convenience, say that P (Kr) has non-trivial facets (ρ1, 0), . . . , (ρM , 0) and that

P (Kn−r) has non-trivial facets (γ1, 0), . . . , (γN , 0). Let (ρ̄i, 0) and (γ̄i, 0) denote the tilted

knapsack facets from (ρi, 0) and (γi, 0) respectively.

We shall show that the system

min c · t

s.t. µ · t = 1

ρ̄i · t ≥ 0 i = 1, . . .M

γ̄i · t ≥ 0 i = 1, . . . N

t ≥ 0

(13)

attains an integer optimum that belongs to PMIC(n, r) for every c.

Let

c′ = (c1, . . . , cr), c′′ = (cn−1, . . . , cr)

and

µ′ =

(
1

r
, . . . ,

r − 1

r
, 1

)
, µ′′ =

(
1

n− r
, . . . ,

n− r − 1

n− r
, 1

)
.

Consider the systems

min c′ · x′

s.t. µ′ · x′ = 1

ρi · x′ ≥ 0 i = 1, . . .M

x′ ≥ 0

(14)

and

min c′′ · x′′

s.t. µ′′ · x′′ = 1

γi · x′′ ≥ 0 i = 1, . . . N

x′′ ≥ 0

(15)

25

representing P (Kr) and P (Kn−r) respectively. Since both systems are integral, the minima

are obtained at integer extreme points x∗ and x∗∗ respectively. Now let t∗ be obtained by

extending the solution achieving the smaller objective value to a feasible point of PMIC(n, r).

Indeed this t∗ is feasible and integral; it remains to show that it is optimal.

We now consider the duals. The dual of (14) is given by

max
λ1,α′

(
λ1 : λ1µ

′ + α′
1ρ

1 + · · ·+ α′
Mρ

M ≤ c′, α′ ≥ 0
)
, (16)

and the dual of (15) is given by

max
λ2,β′

(
λ2 : λ2µ

′′ + β′1γ
1 + · · ·+ β′Nγ

N ≤ c′′, β′ ≥ 0
)
. (17)

Lastly the dual of (13) is given by

max
λ,α,β

λ :
λµ+ α1ρ̄

1 + · · ·+ αM ρ̄
M + β1γ̄

1 + · · ·+ βN γ̄
N ≤ c

α, β ≥ 0

 . (18)

Let (λ∗1, α
∗) and (λ∗2, β

∗) attain the maxima in (16) and (17) respectively. Setting

λ∗ = min(λ∗1, λ
∗
2),

it easily follows from the zero pattern of (13) and non-negativity of µ that (λ∗, α∗, β∗) is

feasible to (18). Moreover λ∗ = c · t∗, proving optimality.

Further observe that PMIC(n, r) is pointed, and so from this same proof we get the

following characterization of extreme points:

Corollary 2.3.10. A point t is an extreme point of PMIC(n, r) if and only if it can be

obtained by extending an extreme point of P (Kr) or P (Kn−r).

Therefore, we have fully characterized the polyhedral structure of PMIC(n, r). However,

by applying a different proof technique, we can in fact generalize the previous corollary to

all integer points.

Theorem 2.3.11. t ∈ PMIC(n, r) ∩ Zn−1 if and only if t can be obtained by extending an

integer solution of P (Kr) or P (Kn−r).

26

Proof. If t = er the claim is obvious. So we suppose that tr = 0. We shall show that if

t ∈ PMIC(n, r) ∩ Zn−1, tr = 0, then either (I) (t1, . . . , tr) > 0 or (II) (tr, . . . , tn−1) > 0 but

not both.

Since t ∈ P (Cn, r),

t1 + · · ·+ (r − 1)tr−1 + rtr + (r + 1)tr+1 + · · ·+ (n− 1)tn−1 ≡ r (mod n).

Thus there exists some β ∈ Z such that

t1 + · · ·+ (r − 1)tr−1 + rtr + (r + 1)tr+1 + · · ·+ (n− 1)tn−1 = r + βn,

and since r > 0, we may rewrite this

1

r
t1 + · · ·+ r − 1

r
tr−1 + tr +

r + 1

r
tr+1 + · · ·+ n− 1

r
tn−1 = 1 + β · n

r
. (19)

Now, t ∈ PMIC(n, r) therefore

1

r
t1 + · · ·+ r − 1

r
tr−1 + tr +

n− r − 1

n− r
tr+1 + · · ·+ 1

n− r
tn−1 = 1

or

1

r
t1 + · · ·+ r − 1

r
tr−1 + tr = 1−

[
n− r − 1

n− r
tr+1 + · · ·+ 1

n− r
tn−1

]
. (20)

Substituting (20) into (19), we obtain

1−
[
n−r−1
n−r tr+1 + · · ·+ 1

n−r tn−1

]
+ r+1

r tr+1 + · · ·+ n−1
r tn−1 = 1 + β · nr

⇒
(
r+1
r − n−r−1

n−r

)
tr+1 + · · ·+

(
n−1
r − 1

n−r

)
tn−1 = β · nr

⇒ n
r · 1

n−r tr+1 + · · ·+ n
r · n−r−1

n−r tn−1 = β · nr

⇒ 1
n−r tr+1 + · · ·+ n−r−1

n−r tn−1 = β

⇒ [tr+1 + · · ·+ tn−1]︸ ︷︷ ︸
(∗)

−
[
n− r − 1

n− r
tr+1 + · · ·+ 1

n− r
tn−1

]
︸ ︷︷ ︸

(∗∗)

= β.

Because t was assumed to be integral (∗) is necessarily integral. Suppose conversely

that both (I) and (II) hold; by the assumption that tr = 0 and because t is necessarily

non-negative, the relation

n− r − 1

n− r
tr+1 + · · ·+ 1

n− r
tn−1 = 1−

[
1

r
t1 + · · ·+ r − 1

r
tr−1 + tr

]

27

implies that (∗∗) must be fractional. But this contradicts that β is integral. Therefore (I)

and (II) cannot simultaneously hold.

Example 2.3.1. In the following example, we use PORTA to explicitly determine the

convex hulls of PMIC(7, 3) and P (K3) and P (K4) to demonstrate our results in action. We

have that

P (K3) =

x ∈ R3
+ :

x1 + 2x2 + 3x3 = 3

x1 − x2 ≥ 0

and

P (K4) =

x ∈ R4 :
x1 + 2x2 + 3x3 + 4x4 = 4

x1 − x3 ≥ 0

 .

The convex hull of PMIC(7, 3) is given by

PMIC(7, 3) =

t ∈ R6 :

1
3 · t1 + 2

3 · t2 + 3
3 · t3 + 3

4 · t4 + 2
4 · t5 + 1

4 · t6 = 1

t1 − t2 ≥ 0

t6 − t4 ≥ 0

 .

For P (C7, 3), the tilted knapsack facets given by the two inequalities are defined by

5x1 + 3x2 + 8x3 + 6x4 + 4x5 + 2x6 ≥ 8

2x1 + 4x2 + 6x3 + x4 + 3x5 + 5x6 ≥ 6,

which can easily be verified to arise by appropriately scaling and adding the mixed integer

cut to the knapsack inequalities.

2.4 Extreme Points and Adjacency under Group Mappings

As described in Theorems 2.2.3 and 2.2.4, automorphisms and homomorphisms of groups

can be used to generate facets for one master group polyhedron from facets of another. A

natural question arising from these theorems is how extreme points and adjacent facets

translate through such mappings. In this section, we depart from the setting of cyclic

groups, and once again consider P (G, g0) in full generality. We will always denote an

automorphism by φ : G → G and a homomorphism by ψ : G → H.

28

2.4.1 Automorphic Mappings

The case of automorphisms is handled very naturally. Indeed, if t satisfies (π, π0) at

equality, then s with components s(g) = t(φ−1(g)) satisfies (π′, π0) at equality, and since φ

is an automorphism of G,

φ(g0) = φ

∑
g∈G+

g · t(g)

 =
∑
g∈G+

φ(g) · t(g) =
∑
g∈G+

g · s(g);

and thus s necessarily satisfies the group equation for P (G, φ(g0)). As an obvious conse-

quence, a point t lies on the facet (π, π0) of P (G, g0) if and only if the corresponding point

s lies on the facet (π′, π0) of P (G,φ(g0)).

Hence we obtain the following:

Proposition 2.4.1. If (π, π0) and (γ, γ0) are facets of P (G, g0), then (π, π0) and (γ, γ0)

are adjacent if and only if (π′, π0) and (γ′, γ0) are adjacent facets of P (G, φ(g0)), where

π′(g) = π(φ−1(g)) and γ′(g) = γ(φ−1(g)).

Proof. Since (γ, γ0) and (π, π0) define adjacent facets, there exist affinely independent points

t1, . . . , t(|G|−2) satisfying both at equality. By the previous remarks, we may define points

s1, . . . , s(|G|−2) satisfying both (π′, π0) and (γ′, γ0) at equality. Since these are all defined

by applying a fixed permutation to the indices of t1, . . . , t(|G|−2), affine independence is

preserved.

As an immediate application of this proposition we can extend our characterization of

PMIC(n, r) to accommodate facets obtained from an automorphic mapping of the mixed

integer cut. Letting (µ′, 1) denote the permuted mixed integer cut, we have the following

theorems.

Theorem 2.4.2. The non-trivial facets of P (Cn, φ(r)) adjacent to (µ′, 1) are exactly those

obtained by applying φ to tilted knapsack facets.

Likewise, we can describe the integer points (including the extreme points) that satisfy

(µ′, 1) at equality.

29

Theorem 2.4.3. An integer point t ∈ P (Cn, φ(r)) satisfies (µ′, 1) at equality if and only if

t is obtained by extending a knapsack solution of P (Kr) or P (Kn−r) and applying φ to the

indices of t.

2.4.2 Homomorphic Lifting

The next task will be to describe how adjacency and integer points are preserved un-

der homomorphic lifting. Unfortunately, the extension of Theorem 2.2.4 is not nearly as

transparent as the extension of Theorem 2.2.3.

To begin, we prove the following proposition showing that the intersection of two non-

trivial facets is not contained on the face described by a non-negativity constraint.

Proposition 2.4.4. Let (π, π0) and (γ, γ0) be adjacent non-trivial facets in P (H, h0), h0 ̸=

0. Then the affine subspace

T = P (H, h0) ∩
{
t ∈ R|H|−1 : πt = π0, γt = γ0

}
does not lie in the hyperplane H(h) = {t ∈ R|H|−1 : t(h) = 0} for any h ∈ H+.

Proof. By Theorem 2.2.1 every non-trivial facet (π, π0) of P (H, h0) satisfies

π(h) + π(h0 − h) = π(h0) = π0.

In particular for all h ∈ H+ \ h0, the point t = eh + eh0−h belongs to T , and has t(h) > 0.

Similarly, the point t = eh0 belongs to T and has t(h0) > 0.

Despite its simplicity, this proposition provides a useful tool for producing affinely inde-

pendent points. We now show as an extension of Theorem 2.2.4 that homomorphic lifting

preserves the adjacency of facets.

Proposition 2.4.5. Let (π, π0) and (γ, γ0) be adjacent non-trivial facets of P (H, h0), and

let (π′, π0) and (γ′, γ0) be facets of P (G, g0) obtained by homomorphic lifting using the

homomorphism ψ. Then (π′, π0) and (γ′, γ0) are adjacent.

Proof. Let K = ker(ψ). Let ϑ be a function selecting one element from each coset of G/K

distinct from K. Denote by ϑ(H) the set of coset representatives chosen by ϑ.

30

Since (π, π0) and (γ, γ0) are adjacent there exist |H| − 2 affinely independent points

t1, . . . , t|H|−2 in P (H, h0) satisfying (π, π0) and (γ, γ0) at equality. As (π′, π0) and (γ′, γ0)

are obtained by homomorphic lifting, g0 /∈ K; thus ψ(g0) = h0 ̸= 0 so by Proposition 2.4.4,

for all h ∈ H+, there exists an i ∈ {1, . . . , |H| − 2} such that ti(h) > 0.

Using these points, we will construct |G| − 2 affinely independent points belonging to

P (G, g0) that satisfy both (π′, π0) and (γ′, γ0) at equality. Before going into specifics, we

give a high level description of how we will proceed. Given a point ti, we will use ϑ to map

each element of H to an element of G; by construction, this assignment is unique. Observe

that

ψ

(∑
h∈H

ϑ(h)si(ϑ(h))

)
= h0;

therefore ∑
h∈H

ϑ(h)si(ϑ(h)) = g0 + k

for some k ∈ K, i.e. it is in the same coset as g0. So by setting si(−k) = 1, the point is

made to satisfy the group equation. Next if si(ϑ(h)) > 0, then we can interchange ϑ(h)

with any element of g belonging to the same coset by modifying which element of the kernel

K we include in our solution. Finally, we generate affinely independent points from each

kernel element of K.

Taking this high level description, we now explicitly construct |G|−2 affinely independent

points:

(i) Set N = H+

(ii) For i = {1, . . . , |H| − 2}

Set N (i) = {h ∈ H+ : ti(h) > 0} ∩ N

Define si as follows:

si(ϑ(h)) = ti(h), ∀h ∈ H

si(g) = 0, g ∈ G \ (K ∪ ϑ(H))

si(k) = 1, k = g0 −
∑

g∈G+\K s
i(g) · g

si(k) = 0, k ̸= g0 −
∑

g∈G+\K s
i(g) · g

31

For each h′ ∈ N (i), k′ ∈ K+, define the point sk′,h′ as follows:

sk′,h′(ϑ(h
′)) + k′) = ti(h′)

sk′,h′(ϑ(h
′)) = 0

sk′,h′(g) = si(g), g ∈ G+ \ K, g ̸= ϑ(h′), g ̸= ϑ(h′) + k′

sk′,h′(k) = 1, k = g0 −
∑

g∈G+\K s
i
k′,h′(g) · g

sk′,h′(k) = 0, k ̸= g0 −
∑

g∈G+\K s
i
k′,h′(g) · g

Set N = N \ N (i)

(iii) For each k ∈ K+, define sk by sk = s1 + |G|ek

By construction these points satisfy (π′, π0) and (γ′, γ0) at equality. By the above

remarks, it is clear that the points constructed in (ii) are feasible to P (G, g0). Furthermore,

from Theorem 2.1.1, |G|k = 0; hence the points constructed in (iii) still satisfy the group

equation. We first verify that the above procedure produces |G| − 2 points.

Note that we have the |H| − 2 points s1, . . . , s|H|−2. By Proposition 2.4.4, we obtain

(|H| − 1)(|K| − 1) points sk,h for k ∈ K+ and h ∈ H+, and lastly, we obtain |K| − 1 points,

sk for k ∈ K+. Using the identity |G| = |K||H|, it immediately follows that we have |G| − 2

points.

Lastly, we prove that these points are affinely independent. Suppose to the contrary

that these points are affinely dependent, then there exist coefficients α, β, and ζ such that

|H|−2∑
i=1

αisi +
∑

h∈H+,k∈K+

βh,ksh,k +
∑
k∈K+

ζksk = 0,

|H|−2∑
i=1

αi +
∑

h∈H+,k∈K+

βh,k +
∑
k∈K+

ζk = 1.

(21)

Now observe that sk,h is the only element with s(ϑ(h) + k) > 0. Therefore βk,h = 0 for all

k ∈ K+, h ∈ H+. Suppose there exists some α and ζ satisfying (21). Thenα1 +
∑
k∈K+

ζk

 s1(ϑ(h)) +
∑
i>2

αisi(ϑ(h)) = 0,

32

for all h ∈ H. But this implies thatα1 +
∑
k∈K+

ζk

 t1 +

|H|−2∑
i=2

αiti = 0,

contradicting that t1, . . . , t|H|−2 are affinely independent.

Next we show the converse of this proposition, proving that adjacency of lifted facets

occurs only if the original facets were adjacent.

Theorem 2.4.6. Let (π, π0) and (γ, γ0) be non-trivial facets of P (H, h0), and let (π′, π0)

and (γ′, γ0) be facets of P (G, g0) obtained by homomorphic lifting using the homomorphism

ψ. Then (π′, π0) and (γ′, γ0) are adjacent if and only if (π, π0) and (γ, γ0) are adjacent.

Proof. We already have the forward implication by Proposition 2.4.5, so it remains to show

that if (π′, π0) and (γ′, γ0) are adjacent, then (π, π0) and (γ, γ0) are adjacent.

Consider the affine space,

T = P (H, h0) ∩
{
t ∈ R|H|−1 : πt = π0, γt = γ0

}
,

and suppose that T contains at most |H| − r affinely independent points. Following the

construction of affinely independent points in Proposition 2.4.5 and by noting Proposition

2.4.4, we can construct at least |G| − r affinely independent points satisfying both lifted

inequalities.

Now we take a closer look at combinations of certain columns. First note that for any

k ∈ K+,

|G|ek = s1 − sk.

Because the sum of the coefficients is 0, we may add and subtract out elements of K+ at our

leisure when considering affine combinations. With this in mind, we may freely disregard

elements of the kernel for the remaining points. Similarly, for any g ∈ ϑ(h)+K, there exists

some i such that

sk,h − si = si(ϑ(h))
[
eϑ(h)+k − eϑ(h)

]
,

so we can distribute weight among the elements of a given coset as we choose.

33

Thus take some point s that satisfies (π′, π0) and (γ′, γ0) at equality. From this point,

construct a point t by setting

t(h) =
∑

g∈G:ψ(g)=h

s(g).

Trivially t satisfies both (π, π0) and (γ, γ0) at equality, so it can be expressed as an affine

combination:
|H|−r∑
i=1

αiti = t.

Therefore by applying weights αi to the lifted points si and using the previous observation,

it follows that s can be expressed as an affine combinations of the points we constructed.

Thus there can be no more than |G| − r affinely independent points satisfying the lifted

inequalities at equality.

Now consider G = Cn′ , g0 = r′, a homomorphism ψ : Cn′ → Cn, ψ(r′) = r ̸= 0, and

let (µ′, 1) be obtained by applying homomorphic lifting to (µ, 1). Similarly by applying

Theorem 2.4.6, we know that the only facets lifted under ψ that are adjacent to (µ′, 1)

come from tilted knapsack facets. Stated precisely:

Theorem 2.4.7. Let (π′, π0) be obtained by homomorphic lifting using ψ applied to (π, π0).

Then (π′, π0) is adjacent to (µ′, 1) if and only if (π, π0) is a tilted knapsack facet.

Moreover, for the integer points we obtain the following:

Theorem 2.4.8. If an integer point s ∈ P (Cn′ , r′) satisfies (µ′, 1) at equality. Then the

point t defined by the mapping

ti =
∑

j:ψ(j)=i

sj

is an integer point of P (Cn, r) and satisfies (µ, 1) at equality. In particular it is obtained

from extending a knapsack solution of P (Kr) or P (Kn−r).

Although we are able to produce a nice characterization of which lifted facets are adja-

cent to the lifted mixed integer cut, it is not in general true that all adjacent facets come

from homomorphic lifting. We conclude this section with an example that suggests that

the problem of identifying the remaining adjacent facets is still open.

34

Example 2.4.1. Consider P (C14, 10). Let ψ : C14 → C7 be defined by ψ(g) = g (mod 7).

Recall from Example 2.2.3 that the lifted mixed integer cut is given by

1

3
· t1 +

2

3
· t2 +

3

3
· t3 +

3

4
· t4 +

2

4
· t5 +

1

4
· t6

+
1

3
· t8 +

2

3
· t9 +

3

3
· t10 +

3

4
· t11 +

2

4
· t12 +

1

4
· t13 ≥ 1.

By using Theorem 2.4.8 it is easy to list out the extreme points of the lifted mixed integer cut

to use in PORTA. Solving for the convex hull yields 12 non-trivial facets. Noting Example

2.3.1, PMIC(7, 3) only has 2 non-trivial facets. Therefore, most of these facets cannot be

described by homomorphic lifting.

It is quite easy to see, for example, that the facet

8x2 + 12x3 + 9x4 + 6x5 + 3x6 + 4x8 + 8x9 + 12x10 + 9x11 + 6x12 + 3x13 ≤ 12,

cannot arise by applying homomorphic lifting to either of the tilted knapsack inequalities

as the coefficients do not exhibit the proper periodic structure.

2.5 Closing Remarks

Several questions remain for both the group polyhedron and knapsack polytope. One

worthy avenue of research is to expand the existing library of knapsack facets, which in turn

will provide even more information about the mixed integer cut. This cut has been one of

the most successful tools in the solution of mixed integer programs, and it is reasonable

that a greater understanding of its polyhedral structure will yield similarly effective cuts.

To this end, the mixed integer cut can also be represented in the infinite group setting. It

may be possible to generalize the notion of adjacency to this setting and develop a family

of valid inequalities that work well in conjunction with the mixed integer cut.

Another interesting problem is to obtain non-trivial necessary and sufficient conditions

to describe the extreme points of the master knapsack polytope and the master group poly-

hedron. A natural idea was considered for the group polyhedron in terms of irreducibility.

This condition is necessary for all vertices, but insufficient. One might hope that this

condition becomes sufficient for the master knapsack polytope; however, it again fails.

Lastly, a closer inspection will reveal that in homomorphic lifting we gain no information

about the kernel of our homomorphism. If we consider the lifted mixed integer cut as a

35

polyhedron, it is no longer sufficient to characterize its extreme points in terms of two

related knapsacks. As the last example demonstrated, lifted tilted knapsack facets are not

the only adjacent non-trivial facets of the lifted mixed integer cut. One might address

whether there exists a family of facets that when added to the lifted tilted knapsack facets

completely characterizes the adjacent facets of the lifted mixed integer cut.

36

CHAPTER III

TECHNIQUES FOR SUPERADDITIVE LIFTING

In conjunction with branching methods, cutting planes have played a crucial role in

the practical solution of mixed integer programs. In this chapter, we will explore a pow-

erful technique called lifting that has produced some of the most effective cutting planes

implemented in modern-day mixed integer program solvers.

At a high level, the lifting problem takes a valid inequality for a lower-dimensional set

and lifts it to a valid inequality for a higher-dimensional set. We have already seen this

idea in the previous chapter, and indeed, lifting traces its roots to homomorphic lifting

introduced by Gomory in the context of corner polyhedra [35]. The idea reappears in

Padberg’s treatment of the set packing polytope [63] and was subsequently generalized in

the works of Wolsey [75], Zemel [79], and Balas and Zemel [8].

Lifting is usually carried out by fixing variables and sequentially reintroducing them

to the problem. Performing exact lifting can unfortunately be quite cumbersome because

it depends on this sequence; however, this difficulty may be remedied through the use of

superadditivity. The connection between lifting and superadditivity was first recognized

by Wolsey [76] in the context of binary integer programs. Wolsey shows that if the lifting

function is superadditive, then lifting does not depend on the sequence that variables are

reintroduced. This result was further extended by Gu et al. [40,42] to mixed binary integer

programs and by Atamtürk [4] to general mixed integer programs.

In the study of cutting planes, lifting is one of the more frequently used tools to derive

and strengthen cuts. Padberg uses lifting to strengthen odd-hole inequalities for the set

packing polytope. Similarly, Balas and Zemel lift minimal cover inequalities for the knapsack

polytope. Crowder et al. [22] use lifting as a key ingredient to strengthen the general purpose

cuts they used in their landmark work on branch-and-cut. Gu, Nemhauser, and Savelsbergh

[41] apply superadditive lifting to derive lifted flow cover inequalities for the fixed-charge

37

network flow problem. In each of these works, the application of lifting quite often produces

all-around better cuts that dominate their unlifted counterparts both theoretically and

empirically.

Lifting has also found applications to more general problem structures. One fairly

demonstrative example of the power of lifting is highlighted by the work of de Farias et

al. [25]. The authors derive cuts for a continuous knapsack set subject to a cardinality

constraint; however, by using lifting, they are able to obtain these cuts without explicitly

introducing auxiliary variables. Superadditive lifting is also used to obtain facets of the

knapsack with a single continuous variable [53] and the related dynamic knapsack set [50].

Many mixed binary integer programs can be mapped to these sets to obtain other well-

known classes of cuts. Lastly, Richard et al. study the lifting problem, specifically with

respect to the continuous variables, of a mixed knapsack polytope [67,68]. This model can

be applied to rows of a simplex tableau as an alternative to the standard Gomory mixed

integer cut [56].

The standard application of superadditive lifting typically requires that an exact lifting

function be computed and then approximated with a superadditive approximation. For

certain well-behaved problems, this is often possible, but for more complicated problems it

may not be reasonable to compute the exact lifting function. This is particularly true of

higher-dimensional lifting functions.

In this chapter, we develop techniques to accommodate superadditive lifting that do not

explicitly require the exact lifting function. Our approach is primarily aimed at simplifying

the approximation of higher-dimensional lifting functions, but the idea is by no means

exclusive to higher-dimensional problems. The framework we provide is guaranteed to

produce approximations that are at least as good as and can easily dominate those obtained

from the one-row relaxations. Our techniques help expand the applications of lifting, and

open previously inaccessible problems to this powerful approach.

We begin this section by defining the lifting problem and review several important results

for superadditive lifting. Next, we explore a variant of lifted flow cover inequalities and show

how a superadditive approximation can be obtained even though an exact lifting function

38

is quite difficult to characterize. Finally, we show a more general approach, essentially

surrogate constraints for lifting functions, that can be used to simplify the approximation

of higher-dimensional lifting functions.

3.1 Lifting and Superadditivity

Intuitively, the sets involved in the lifting procedure must be related. Rather than speak

in generalities, we begin by introducing the main concepts in an example for the knapsack

polytope and then proceed to make these ideas more general.

The results and proofs in this section essentially come from [40] and borrow from [4] to

extend to the setting of general mixed integer programs.

Example 3.1.1. Consider the binary knapsack problem defined by

X =
{
y ∈ {0, 1}5 : 5y1 + 5y2 + 4y3 + 2y4 + 2y5 ≤ 10

}
=
{
y ∈ {0, 1}5 : 5y1 + 5y2 + 4y3 ≤ 10− 2y4 − 2y5

}
.

The set C = {1, 2, 3} is a cover in the sense that 5 + 5 + 4 > 10. Moreover, C is minimal

with this property; in particular, no subset of elements of C exceeds the knapsack capacity.

Consider a restriction of the problem obtained by setting y4 = 0 and y5 = 0. This

restricted system is defined by

X ′ =
{
y ∈ {0, 1}3 : 5y1 + 5y2 + 4y3 ≤ 10

}
Observe that since C is a cover, no solution can have y1 = y2 = y3 = 1. Therefore we obtain

the valid inequality

y1 + y2 + y3 ≤ 2. (22)

It is easy to see that this inequality is facet-defining for conv(X ′). Indeed, the three affinely

independent points

y1 = (1, 1, 0), y2 = (1, 0, 1), y3 = (0, 1, 1)

all belong to X ′ and satisfy (22) at equality. Our goal will be to reintroduce y4 and y5 to

obtain a valid (and hopefully facet-defining) inequality for conv(X). First reintroducing y4,

39

we seek a coefficient α4 such that

y1 + y2 + y3 + α4y4 ≤ 2

is valid for the system

X ′′ =
{
y ∈ {0, 1}4 : 5y1 + 5y2 + 4y3+ ≤ 10− 2y4

}
.

We can rewrite this as a small integer programming problem:

α4y4 ≤ min

2− [y1 + y2 + y3] :
5y1 + 5y2 + 4y3 ≤ 10− 2y4,

y ∈ {0, 1}4

 .

The expression on the right is an example of a lifting function. We will visit this in more

detail later.

When y4 = 0, we get the inequality 0 ≤ 0, yielding no additional information about α4.

On the other hand, if y4 = 1, then we obtain the inequality α4 ≤ 1. Thus we take α4 = 1

to obtain the inequality

y1 + y2 + y3 + y4 ≤ 2.

It is easily verified that this inequality is facet-defining for conv(X ′′). Proceeding as before

we solve the integer program

α5y5 ≤ min

2− [y1 + y2 + y3 + y4] :
5y1 + 5y2 + 4y3 + 2y4 ≤ 10− 2y5,

y ∈ {0, 1}5 .

When y5 = 1 we get the inequality α5 ≤ 0; thus we set α5 = 0. The final inequality we

obtain is given by

y1 + y2 + y3 + y4 ≤ 2.

This can further be verified to be facet-defining for conv(X).

Observe that in this example we could have chosen to reintroduce y5 before y4. The

process would proceed identically; however it would yield the facet-defining inequality

y1 + y2 + y3 + y5 ≤ 2.

40

This highlights an obstacle that is inherent to the lifting procedure: namely, that it is

sequential and requires the solution of multiple integer programs. However, through the

use of superadditivity, we can often overcome this challenge.

We first describe the lifting procedure in greater detail. Consider the mixed integer set

X =

x ∈ Rn
+ :

∑
j∈N

ajxj ≤ d,

xj ∈ Z, j ∈ J

 ,

where aj , d ∈ Qm. Let the sets Ni for i = 0, . . . , r partition N and have cardinality ni.

Further, let Ji = Ni∩J . Our goal is to derive valid inequalities for X by considering simpler

subsystems obtained by fixing variables in Ni for i = 1, . . . , r.

For i > 0, fix xj = bj for all j ∈ Ni. This produces a sequence of restrictions:

Xi =

x ∈ Rn0+···+ni
+ :

∑
0≤k<i

∑
j∈Nk

ajxj ≤ di −
∑
j∈Ni

ajxj ,

xj ∈ Z, j ∈
∪

0≤k≤i
Jk

 , (23)

where di = d−
∑

k>i

∑
j∈Nk

ajbj . Noting that

di = d−
∑
k>0

∑
j∈Nk

ajbj +
∑

1≤k≤i

∑
j∈Nk

ajbj = d0 +
∑

1≤k≤i

∑
j∈Nk

ajbj ,

we can rewrite (23).

Xi =

x ∈ Rn0+···+ni
+ :

∑
j∈N0

ajxj +
∑

1≤k<i

∑
j∈Nk

aj(xj − bj) ≤ d0 −
∑
j∈Ni

aj(xj − bj),

xj ∈ Z, j ∈
∪

0≤k≤i
Jk

 .

Beginning with a valid inequality for X0, we simultaneously reintroduce variables in N1

to construct a valid inequality for X1. Next, we reintroduce the variables in N2 and so forth

until we recover a valid inequality for X.

Suppose that we start with a valid inequality for X0,∑
j∈N0

αjxj ≤ α0. (24)

In the first iteration, we must appropriately choose coefficients αj for j ∈ N1 such that∑
j∈N1

αj(xj − bj) ≤ α0 −
∑
j∈N0

αjxj . (25)

41

We can condition both sides of (25) on
∑

j∈N1
aj(xj − bj) = z. To this end, we define

two functions that will enable us to choose valid coefficients αj . For the left hand side, we

introduce the function

hi(z) = max
∑
j∈Ni

αj(xj − bj)

s.t.
∑
j∈Ni

aj(xj − bj) = z

xj ∈ Z, j ∈ Ji

x ∈ Rni
+

(26)

If this maximization is infeasible for a given choice of z, then hi(z) = −∞.

The second function we introduce deserves special emphasis as it will receive considerable

attention throughout this chapter.

Definition 3.1.1. The lifting function f is defined by

f(z) = f1(z) = min α0 −
∑
j∈N0

αjxj

s.t.
∑
j∈N0

ajxj ≤ d0 − z

xj ∈ Z, j ∈ J0

x ∈ Rn0
+ .

(27)

If the system is infeasible for a certain choice of z then f(z) = +∞.

As a matter of notation, we will typically let D denote the domain of the lifting function.

By construction, we have the following proposition:

Proposition 3.1.1. The inequality (25) is valid for X1 for any choice of αj such that

h1(z) ≤ f(z).

Fixing xj = bj for some bj > 0 is generally risky as valid lifting coefficients are not

guaranteed to exist. We show a small example on an integer knapsack problem where we

encounter this difficulty:

Example 3.1.2. Let X =
{
x ∈ Z2

+ : 3x1 + x2 ≤ 6
}
. Fix x2 = 1, and consider the cover

inequality for the resulting system: i.e. x1 ≤ 1. The function h is defined by

h(z) = max {α2(x2 − 1) : x2 − 1 = z} .

42

Thus h(−1) = −α2 and h(1) = α2. Next define the lifting function

f(z) = min {1− x1 : 3x1 ≤ 5− z, x1 ∈ Z+} .

Observe that f(−1) = −1 and f(1) = 0. However, this implies −α2 ≤ −1 and α2 ≤ 0, but

this is impossible. Therefore there cannot exist any valid lifting coefficients.

Despite this hazard, we introduce the general theory of superadditive lifting fixing the

variables at arbitrary values, and we presuppose the existence of valid lifting coefficients.

This is a big assumption, and warrants some discussion about when valid lifting coefficients

are guaranteed to exist.

Proposition 3.1.2. If bj = 0 for all j ∈ N1, then there exist some choice of lifting coeffi-

cients satisfying Proposition 3.1.1.

Proof. If X1 = ∅, then any choice of αj is trivially valid. Therefore assume that X1 is non-

empty and let P 1 = conv {X}. By the decomposition theorem for polyhedra, P 1 = Q1+C1

for some polytope Q1 and finitely generated cone C1. Let

Q1 = conv
{
x1, . . . , xp

}
,

C1 = cone
{
y1, . . . , yr

}
.

Therefore, for any x ∈ P 1, we can express x as follows:

x =

p∑
i=1

λix
i +

r∑
i=1

µiy
i,

with
∑p

i=1 λi = 1 and λi ∈ [0, 1] for all i, and µi ≥ 0 for all i.

Suppose that α satisfies the following the following inequalities:∑
j∈N1

αjx
i
j ≤ α0 −

∑
j∈N0

αjx
i
j , i = 1, . . . , p

∑
j∈N1

αjy
i
j ≤ −

∑
j∈N0

αjy
i
j , i = 1, . . . , r.

(28)

Then it clearly follows that αx ≤ α0 defines a valid inequality of P 1. Observe αj is fixed

for j ∈ N0; therefore, the right hand side of (28) consists of scalars. Now if xij = 0 for all

43

j ∈ N1, then it follows by validity that α0 −
∑

j∈N0
αjx

i
j ≥ 0. Likewise if yij = 0 for all

j ∈ N1, then −
∑

j∈N0
αjy

i
j ≥ 0. In particular, these constraints are redundant, so we shall

assume that (28) does not contain any such rows.

We now claim that a valid choice of αj for j ∈ N1 is guaranteed to exist. Indeed, we

can rewrite (28) as Gα ≤ h. By the Farkas lemma, this system has a solution if and only

if sh ≥ 0 for all s ≥ 0 such that sG = 0. As G ≥ 0 with no zero rows, the only s ≥ 0

satisfying sG = 0 is s = 0. Trivially, this must satisfy sh ≥ 0, therefore a valid choice of α

exists.

Another important theorem provides conditions under which a lifted inequality is facet-

defining. For a vector x ∈ Rn1 let t = x − b, i.e. tj = xj − bj . A valid lifting is called

maximal if there exist exist n1 linearly vectors t1, . . . tn1 such that h1(z) = f(z).

Theorem 3.1.3. If conv(X0) and conv(X1) are full dimensional, (24) is facet-defining for

conv(X0), and α0 ̸= 0, then (25) defines a facet of X1 if and only if the lifting is maximal.

As we reintroduce variables, we determine valid choices of the coefficients αj . Accord-

ingly, we update the lifting function:

fi(z) = min α0 −
∑
j∈N0

αjxj −
∑

0<k<i

∑
j∈Nk

αj(xj − bj)

s.t.
∑
j∈N0

ajxj +
∑

0≤k<i

∑
j∈Nk

aj(xj − bj) ≤ d0 − z

xj ∈ Z, j ∈
∪

0≤k<i
Jk

x ∈ R
n0+···+ni−1
+ .

(29)

Although, this computation is usually prohibitively expensive, by repeated application of

Proposition 3.1.1, we can eventually construct a valid inequality of X:

∑
j∈N0

αjxj +
∑

1≤k≤r

∑
j∈Nk

aj(xj − bj) ≤ d. (30)

As a natural consequence of (29), we obtain the following proposition:

Proposition 3.1.4. f1 ≥ f2 ≥ · · · ≥ fr.

44

Although X0 and the valid inequality (24) may permit us to efficiently compute f , this

structure is quickly lost upon the reintroduction of variables, and it becomes harder and

harder to compute fi. Therefore we seek tools to overcome this difficulty, and fortunately

we find refuge in superadditivity.

Definition 3.1.2. A function g : D → R is superadditive if

g(u) + g(v) ≤ g(u+ v)

for all u, v, u+ v ∈ D.

Gu et al. [40,42], show under moderate restrictions that if f is superadditive, then fi = f

for all f . This idea is further generalized by Atamtürk [4] to accommodate an even greater

variety of problems. In general, f will not be superadditive. Gu proposed to remedy this

by the introduction of superadditive valid lifting functions

Definition 3.1.3. A superadditive function g ≤ f is called a superadditive valid lifting

function for f .

If for some choice of αj , hi(z) ≤ g(z) for all i, and g is a superadditive valid lifting

function, then (30) is valid for X. Therefore, by sacrificing some accuracy, we are able to

avoid the computational effort needed to recompute f .

Intuitively, some approximations may be better than others. Hence Gu proposes two

reasonable indicators of the quality of g.

Definition 3.1.4. A superadditive valid lifting function g is non-dominated if there does

not exist any superadditive valid lifting function g′ ≥ g such that g′(z) > g′(z) for some z.

Definition 3.1.5. Define the set

E = {z ∈ D : fi(z) = f(z), for all i, Ni and lifting orders} .

A superadditive valid lifting function g is maximal if g(z) = f(z) for all z ∈ E.

This definition of maximality is difficult to work with, so we must develop a much more

concrete characterization of this property. Therefore, we adapt a proof of Gu’s that relied

45

on more stringent assumptions. In doing so, we incorporate the ideas from Atamtürk, but

are less restrictive in our choice of Ni. To condense our notation we let tj = xj for j ∈ N0

and tj = xj − bj for j ∈ N \N0. Therefore the i-th lifting problem becomes

fi(z) = min α0 −
∑

0≤k<i

∑
j∈Nk

αjtj

s.t.
∑
j∈N0

ajtj +
∑

0≤k<i

∑
j∈Nk

ajtj ≤ d0 − z

tj ∈ Z, j ∈
∪

0≤k<i
Jk

tj + bj ∈ R+, j ∈
∪

0≤k<i
Nk.

(31)

Proposition 3.1.5. fi(z) ≥ minu,z+u∈D {fℓ(z + u)− fℓ(u)} , for ℓ < i.

Proof. For brevity, we will omit bound and integrality constraints from the descriptions

of the lifting functions. Let t∗ be an optimum solution to (31) for some z ∈ D. Let

u∗ =
∑

ℓ≤k<i
∑

j∈Nk
ajt

∗
j .

fi(z) = min α0 −
∑

0≤k<i

∑
j∈Nk

αjtj

s.t.
∑
j∈N0

ajtj +
∑

0≤k<i

∑
j∈Nk

ajtj ≤ d0 − z.

Splitting the sums,

fi(z) = min α0 −
∑

0≤k<ℓ

∑
j∈Nk

αjtj −
∑
ℓ≤k<i

∑
j∈Nk

αjt
∗
j

s.t.
∑
j∈N0

ajtj +
∑

0≤k<ℓ

∑
j∈Nk

ajtj ≤ d0 − z − u∗.

Note, that by fixing tj for j ∈
∪
ℓ≤k<iNj , we do not change the optimum. From the

definition of fℓ, we thus have

fi(z) = fℓ (z + u∗)−
∑
ℓ≤k<i

∑
j∈Nk

αjt
∗
j .

By assumption, ∑
0≤k<ℓ

∑
j∈Nk

αjtj +
∑
ℓ≤k<i

∑
j∈Nk

αjtj ≤ α0,

46

is valid for (31). In particular, from Proposition 3.1.1∑
ℓ≤k<i

∑
j∈Nk

αjt
∗
j ≤ fℓ (u

∗) .

Putting this all together, fi(z) ≥ fℓ (z + u∗)−fℓ(u∗) ≥ minu,z+u∈D {fℓ(z + u)− fℓ(u)}.

This proposition allows us to clearly characterize maximality.

Proposition 3.1.6. For fixed u ∈ D, u ∈ E if and only if f(u) ≤ f(u+ v)− f(v).

Proof. Suppose that f(u) ≤ f(u + v) − f(v) for all u + v, v ∈ D. By Proposition 3.1.4

f(u) ≥ fi(u). By Proposition 3.1.5, fi(u) ≥ f(u + v) − f(v) ≥ f(u). Thus fi(u) = f(u),

proving that u ∈ E.

Conversely suppose that there exist some v such that f(u) > f(u + v) − f(v). Then

suppose that h1(v) = f(v). Let t∗ be an optimal solution to f(u + v). Setting tj = t∗j for

j ∈ N0, and choosing tj ∈ N1 such that∑
j∈N1

αjtj = f(v),
∑
j∈N1

ajtj = v,

the objective value is at most f(u+v)−f(v) < f(u). Therefore f2(u) < f(u), so u /∈ E.

It is a simple corollary that if f is superadditive then fi = f since this implies E = D.

We use this proposition to redefine maximality in a much more tractable form:

Proposition 3.1.7. A superadditive valid approximate lifting function is maximal if and

only if g(u) = f(u) for all u such that f(u) + f(v) ≤ f(u+ v) for all v, u+ v ∈ D.

We conclude by showing that under mild assumptions there always exists a maximal

superadditive valid approximate lifting function. Let D satisfy the property that for all

u, v, w ∈ D such that u + v + w ∈ D, u + v, u + w, v + w ∈ D. Gu imposed a similar

restriction by considering D = R or D = [0, d]. Let

γ(u) = inf
v,u+v∈D

{f(u+ v)− f(v)} . (32)

This function was introduced in Wolsey in the context of binary integer programs [76], but

has since been revisited by Gu for binary mixed integer programs [40]. In general, we cannot

replace the infimum with a minimum when D is not finite and f has discontinuities.

47

Proposition 3.1.8. If D satisfies the property that for all u, v, w ∈ D such that u+v+w ∈

D, u + v, u + w, v + w ∈ D, then γ is a maximal superadditive valid approximate lifting

function.

Proof. Observe that by the validity of (24), f(0) ≥ 0. Therefore γ(u) ≤ f(u)−f(0) ≤ f(u).

Hence γ ≤ f .

To show that γ is superadditive consider γ(u+v). For any w ∈ D such that u+v+w ∈ D,

observe that

γ(u) ≤ f(u+ w)− f(w),

γ(v) ≤ f(u+ v + w)− f(u+ w).

Therefore,

γ(u) + γ(v) ≤ f(u+ v + w)− f(w).

As γ(u) + γ(v) is a lower bound for this quantity,

γ(u) + γ(v) ≤ inf
w,u+v+w∈D

{f(u+ v + w)− f(w)} = γ(u+ v).

So γ is superadditive as desired.

Lastly, we show that γ is maximal. If f(0) > 0, then E = ∅ as f(u) + f(0) > f(u) for

all u. Otherwise, if u ∈ E, then f(u) + f(v) ≤ f(u + v) for all v, u + v ∈ D. Therefore

f(u) ≤ f(u+ v)− f(v), so f(u) ≤ γ(u). Hence equality holds by the validity of γ.

While γ is maximal, it is typically dominated as we show in this small example.

Example 3.1.3. Let f be defined by

f(z) =

0 0 ≤ z ≤ 1

1 1 < z ≤ 4.

Such a lifting function might arise from a knapsack cover inequality. Clearly f is not

superadditive as f(2) + f(2) = 2 > f(4).

For all u ∈ [0, 1], f(u + v) ≥ f(v) = f(u) + f(v), so γ(u) = 0. If u ∈ (1, 3), then

f(4 − u) = 1. Since f(4) = 1, this gives γ(u) = f(4) − f(4 − u) = 0. Finally if u ∈ [3, 4],

48

then v ∈ [0, 1], so f(u+ v)− f(v) = 1. Thus γ(u) = 1. Hence

γ(z) =

0 0 ≤ z < 3

1 3 ≤ z ≤ 4.

However, this is clearly dominated by the function g defined by

g(z) =

0 0 ≤ z ≤ 2

1 2 < z ≤ 4,

which is easily verified to be a superadditive valid approximate lifting function.

In the next section, we will show by example that it is possible to construct superadditive

valid approximate lifting functions even without a closed form solution of the lifting function.

We follow this with a more general framework that permits us to construct approximate

lifting functions for higher-dimensional lifting functions.

3.2 A New Family of Lifted Flow Cover Inequalities

In this section we demonstrate that it is possible to construct non-trivial superadditive

valid approximate lifting functions even without a closed form description of the original

lifting function. We build on the work of Gu et al. [41] to derive a new family of lifted flow

cover inequalities.

The single node fixed-charge network flow problem is defined by the system

X =

(x, y) ∈ Rn × Zn :

∑
j∈N+

xj −
∑
j∈N−

xj ≤ b

0 ≤ xj ≤ ujyj , ∀j ∈ N

yj ∈ {0, 1} , ∀j ∈ N

. (33)

This set has been extensively studied [64, 72, 77], and its facets have proved quite useful in

the practical solution of mixed integer programs.

The sets N− and N+ represent the collection of capacitated inflow and outflow arcs,

each carrying some fixed cost, and the constant b is some exogenous flow. The constraint∑
j∈N+ xj −

∑
j∈N− xj ≤ b is often called the flow balance constraint and restricts the

49

outgoing flow to be less than the incoming flow. This can be depicted graphically as in

Figure 7.

N−

N+

b

(xj , yj)

Figure 7: Single node flow set

The key structure of the facets that we study is known as a flow cover.

Definition 3.2.1. A set C+ ∪ C− ⊆ N+ ∪N− is a flow cover if

∑
j∈C+

uj −
∑
j∈C−

uj = b+ λ, (34)

with λ > 0.

For a given flow cover, fix (xj , yj) = (0, 0) for j ∈ N+ \ C+; fix (xj , yj) = (uj , 1) for

j ∈ C−; and fix (xj , yj) = (0, 0) for j ∈ N− \C−. Letting b′ = b+
∑

j∈C− uj , the restricted

system is the set

X0 =

(x, y) ∈ R|C+| × Z|C+| :

∑
j∈C+

xj ≤ b′

0 ≤ xj ≤ ujyj , ∀j ∈ C+

yj ∈ {0, 1} , ∀j ∈ C+

. (35)

Let P 0 = conv(X0). The flow cover inequality for P 0 is

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj) ≤ b′, (36)

where C++ = {j ∈ C+ : uj > λ}. For notational convenience, let C++ = {1, . . . , r} with

u1 ≥ · · · ≥ ur, and define Uj = Uj−1 + uj for j = 1, . . . , r with U0 = 0. The following result

is well known:

Proposition 3.2.1. The flow cover inequality is facet-defining for P 0 whenever C++ ̸= ∅.

50

The lifting function associated with the flow cover inequality is given by

f(z) =

b′ −

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

 :

∑
j∈C+

xj ≤ b′ − z

0 ≤ xj ≤ ujyj , ∀j ∈ C+

yj ∈ {0, 1} , ∀j ∈ C+

. (37)

This has a compact closed form description given in the next theorem due to Gu [41].

Theorem 3.2.2.

f(z) =

−λ z ≤ −λ

z −λ ≤ z ≤ 0

kλ Uk ≤ z ≤ Uk+1 − λ, (k = 0, . . . , r − 1)

z − Uk + kλ Uk − λ ≤ z ≤ Uk, (k = 1, . . . , r − 1)

z − Ur + rλ Ur − λ ≤ z ≤ b′.

(38)

It is easy to verify that f is superadditive when z is restricted to be either negative or

positive; however, the function f is not itself superadditive over R. One can construct a

superadditive valid lifting function

g(z) =

kλ ku1 ≤ z ≤ (k + 1)u1 − λ, k = 0,±1,±2, . . .

z − ku1 + kλ ku1 − λ ≤ z ≤ ku1, k = 0,±1,±2, . . .

This function is maximal and non-dominated, but tends to produce computationally less

effective cuts than the lifted simple generalized flow cover inequalities

−λ U1 − λ U2 − λ U3 − λ

−λ

λ

2λ

z

f (z)

Figure 8: Flow cover lifting function

51

As its name suggests, these cuts are obtained by lifting the simple generalized flow cover

inequality : ∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)−
∑
j∈L−

λyj −
∑

j∈L−−

xj ≤ b′,

where L− = {j ∈ N− \ C− : uj > λ} and L−− = {j ∈ N− \ C− : uj ≤ λ}. This inequality

arises from (36) by reintroducing the variables in N− \C−. Thus, the lifted simple general-

ized flow cover inequalities are obtained by first performing exact lifting on a well-behaved

set of variables and then performing approximate lifting on the remaining variables.

Given the success of these inequalities, a promising avenue is to develop cuts obtained

by reversing the lifting order: first introducing variables in N+ \ C+ and C− using exact

lifting, and then approximately lifting in variables in N− \ C−. For the remainder of this

section, we will develop the theoretical foundations needed to obtain a new family of cuts

by doing precisely this.

3.2.1 Computing an Alternate Lifting Function

After reintroducing the variables in (N+ \ C+) ∪ C−, we obtain the set

X1 =

(x, y) ∈ Rq × Zq :

∑
j∈N+

xj −
∑
j∈C−

xj ≤ b

0 ≤ xj ≤ ujyj , ∀j ∈ N+ ∪ C−

yj ∈ {0, 1} , ∀j ∈ N+ ∪ C−

(39)

where q = |N+| + |C−|. Under mild assumptions on the arc capacities uj (see for exam-

ple [64]), conv(X0) and conv(X1) are full dimensional; therefore, we assume that these

conditions are satisfied.

Reintroducing the variables inN+\C+ and C− via exact lifting, we obtain the inequality∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

+
∑

j∈N+\C+

(αjxj − βjyj) ≤ b′ −
∑
j∈C−

f(uj) (1− yj) ,

(40)

where (αj , βj) = (0, 0) if Uk < uj ≤ Uk+1 − λ for some k and (αj , βj) = (1, Uk − kλ) if

Uk − λ < uj ≤ Uk for some k. If Ur − λ < uj , then (αj , βj) = (1, Ur − rλ).

52

One can verify that if we reintroduce these variables into the original flow cover in-

equality with these coefficients, there exist two linearly independent points satisfying the

hi(z) = f(z) at equality. For j ∈ N+ \ C+, if (αj , βj) = (1, Uk − kλ), these points are

precisely (xj , yj) = (uj , 1) and (xj , yj) = (uj − ϵ, 1) for ϵ > 0 sufficiently small. Otherwise,

for j ∈ C−, these points are (xj , yj) = (uj − ϵ, 1) and (xj , yj) = (0, 0). In particular, by

Theorem 3.1.3, (40) must be facet-defining for conv(X1).

Our goal is to lift in the variables in N− \ C−. In doing so, we calculate the lifting

function:

g′(z) = min b′ −

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

+
∑

j∈N+\C+

(αjxj − βjyj) +
∑
j∈C−

f(uj)(1− yj)

s.t.

∑
j∈N+

xj +
∑
j∈C−

(uj − xj) ≤ b′ − z

0 ≤ xj ≤ ujyj , j ∈ N+ ∪ C−

yj ∈ {0, 1}, j ∈ N+ ∪ C−

(41)

To prevent the negative signs from becoming too cumbersome, we will let g(z) = g′(−z),

so that the domain is non-negative. Desirable properties of the lifting function, namely

superadditivity, are not affected by this change.

The exact lifting function is complicated, and may not be superadditive as we show in

the following example.

Example 3.2.1. Let u1 = u2 = u3 = 4 and let b′ = 10. Suppose that we reintroduce one

variable in C− with u4 = 9. Therefore, (40) takes on the form:

x1 + x2 + x3 + 2(1− y1) + 2(1− y2) + 2(1− y3) ≤ 10− 4(1− y4).

A solution to (41) either has (x4, y4) = (9, 1) or (x4, y4) = (0, 0). Thus, the lifting function

can be expressed as the minimum of two functions, and is given in Table 1.

53

Table 1: Explicit calculation of the lifting function g

g(z) z g(z) z

−z 0 ≤ z ≤ 2 −4 7 ≤ z ≤ 9

−2 2 ≤ z ≤ 5 5− z 9 ≤ z ≤ 11

3− z 5 ≤ z ≤ 7 −6 z ≥ 11

Now observe that g(5) = −2, therefore g(5) + g(5) = −4 ≥ g(10) = −5, so g is not

superadditive.

As there are more elements in (N+ \C+)∪C−, the lifting function becomes even more

complicated. For convenience, let (N+ \ C+) ∪ C− = {j1, . . . , jp} with uj1 ≥ · · · ≥ ujp .

We now establish some simple observations that help characterize the structure of optimal

solutions to the lifting function:

Observation 3.2.3. In any optimal solution, if yj = 1 for j ∈ C−, then without loss of

generality xj = uj.

Proof. If yj = 1 and xj < uj for j ∈ C−, then increasing xj neither changes the objective

nor makes the resulting solution infeasible.

Observation 3.2.4. If (αj , βj) = (0, 0) for some j ∈ (N+ \ C+), then without loss of

generality (xj , yj) = (0, 0). Similarly if f(uj) = 0 for j ∈ C−, without loss of generality

(xj , yj) = (uj , 1) in all solutions.

Proof. If this condition does not hold for some j ∈ N+ \ C+, then we can obtain an

equivalent solution setting (xj , yj) = (0, 0). Similarly if f(uj) = 0 for some j ∈ C− then we

can set (xj , yj) = (uj , 1) to produce a solution with the same objective.

Therefore, for the purposes of lifting, we can assume that all variable pairs in N+ \C+

receive non-zero coefficients and that f(uj) > 0 for all j ∈ C−.

Observation 3.2.5. Without loss of generality any optimal solution has at most one xj

with 0 < xj < ujyj.

54

Proof. If not then there exist i and j such that 0 < xi < ui and 0 < xj < uj . This implies

that i, j ∈ N+, so we can increase xi and decrease xj by δ = min(ui − xi, xj) to preserve

feasibility and optimality.

Observation 3.2.6. In any optimal solution to the lifting function, if xj > 0 for some

j ∈ C++, then xj ≥ uj − λ. Otherwise, (xj , yj) = (0, 0).

Proof. Clearly, if 0 < xj < uj − λ in some solution, the solution obtained by setting

(xj , yj) = (0, 0) is feasible and dominates the current solution.

Observation 3.2.7. In any optimal solution to the lifting function, if xi > 0 for some

i ∈ C+, then there exists an optimal solution with xj > 0 for all j > i, j ∈ C+.

Proof. Suppose that xi > 0 and (xj , yj) = (0, 0) for some j > i. By setting (xi, yi) = (0, 0),

and (xj , yj) = (min(uj , xi), 1), the change in the objective function is [xi + (uj − λ)] −

[min(xi, uj) + (ui − λ)] ≤ 0.

Proposition 3.2.8. Without loss of generality, if yj = 1 for some j ∈ (N+ \ C+), then

xj = uj.

Proof. Consider some solution to the lifting function such that yj∗ = 1 and xj∗ < uj∗ for

some j∗ ∈ N+ \ C+. We can obtain an equivalent solution by moving flow from xj to xj∗

for j ∈ C+. In this solution, either xj∗ = uj∗ or xj = 0 for all j ∈ C+.

Suppose now that xj∗ < uj∗ and xj = 0 for all j ∈ C+. Since this solution is feasible,

b′ + z − xj∗ ≥ 0; hence b′ + z ≥ xj∗ . Setting (xj∗ , yj∗) = (0, 0), the new capacity is at least

xj∗ . Let xj∗ = Uk + δ for 0 ≤ δ < uk+1. We assume k < r (the other case being handled

similarly). Setting (xj , yj) = (uj , 1) for j = 1, . . . , k and xk+1 = δ, yk+1 = 1. The change in

the objective value is at most

[Uk+1 − (k + 1)λ]− βj∗ .

Since xj∗ > Uk, βj∗ ≥ Uk+1 − (k + 1)λ, so the objective value decreases.

In effect, this proposition implies that arcs belonging to N+ \ C+ and C− behave the

same with respect to optimizing (41). In particular, when introducing any element from

55

N+ \C+, αjxj − βjyj = f(uj). Therefore, we will say that an element j ∈ (N+ \C+)∪C−

is active if (xj , yj) = (uj , 1) for j ∈ N+ \ C+ or (xj , yj) = (0, 0) for j ∈ C−, and we need

not distinguish which set the element comes from.

The next proposition asserts that in any optimal solution, whenever the set of active

elements is non-empty, it is minimal with respect to covering z.

Proposition 3.2.9. Suppose that j is active for all j ∈ S ⊆ (N+ \C+)∪C−. Then without

loss of generality there does not exist some ∅ (S′ (S such that
∑

j∈S′ uj > z.

Proof. Suppose that in an optimal solution some such set S′ exists. Let j∗ ∈ S \ S′. Since

the solution is feasible

b′ + z −
∑
j∈S

uj ≥ 0.

Since uj > 0 and S′ (S,

b′ + z −
∑
j∈S′

uj ≥ uj∗ .

For convenience, let uj∗ = Uk + δ for 0 ≤ δ < uk+1. By the assumption that
∑

j∈S′ uj > z,

the current solution must have (xj , yj) = (0, 0) for j = 1, . . . , k + 1. Assume that k < r

(again, we can argue similarly for k ≥ r).

Setting (xj∗ , yj∗) = (0, 0) if j∗ ∈ N+ \C+ or (xj∗ , yj∗) = (uj∗ , 1) if j
∗ ∈ C−, we increase

capacity by uj∗ and decrease the objective function by f(uj∗). If 0 ≤ δ ≤ uk+1 − λ, we

set (xj , yj) = (uj , 1) for j = 1, . . . , k, xk+1 = 0, yk+1 = 0, increasing the objective by

kλ = f(uj∗). Otherwise, if uk+1 − λ < δ < uk+1, we set (xj , yj) = (uj , 1) for j = 1, . . . , k,

(xk+1, yk+1) = (δ, 1), increasing the objective by kλ+ δ − (uk+1 − λ) = f(uj∗).

Using this proposition, we can characterize g in terms of several related lifting functions.

This will in turn provide a starting point for deriving a superadditive approximation of g.

56

Define the functions gi for i = 1, . . . , p by

gi(z) = min b′ −

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

+
∑

j∈N+\C+

(αjxj − βjyj) +
∑
j∈C−

f(uj)(1− yj)

s.t.

∑
j∈N+

xj +
∑
j∈C−

(uj − xj) ≤ b′ − z

0 ≤ xj ≤ ujyj , j ∈ N+ ∪ C−

yj ∈ {0, 1}, j ∈ N+ ∪ C−

(xji , yji) = (uji , 1), ji ∈ N+ \ C+

(xji , yji) = (0, 0), ji ∈ C−

(42)

corresponding to when we force ji to be active. We are interested in this function restricted

to z ∈ [0, uji], and so by Proposition 3.2.9 this reduces to

gi(z) = −f(uji) + min b′ −

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

s.t.

∑
j∈C+

xj ≤ b′ − uji + z

0 ≤ xj ≤ ujyj , j ∈ C+

yj ∈ {0, 1}, j ∈ C+.

(43)

In particular we have gi(z) = −f(uji)+ f(uji − z). We will also define a function gp+1(z) =

f(−z) with z restricted to be non-negative.

Proposition 3.2.10. Suppose that jk1 , . . . , jkq are active in a solution to the lifting func-

tion, with jk1 ≥ · · · ≥ jkq . If z ≤
∑q

i=1 ujk , then

g(z) = −
q−1∑
i=1

f(ujki) + gkq

(
z −

q−1∑
i=1

ujki

)
.

Otherwise,

g(z) = −
q∑
i=1

f(ujki) + gp+1

(
z −

q∑
i=1

ujki

)
.

57

Proof. The proof follows easily by writing the restricted problem:

g(z) = min b′ −

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj)

+
∑

j∈N+\C+

(αjxj − βjyj) +
∑
j∈C−

f(uj)(1− yj)

s.t.

∑
j∈N+

xj +
∑
j∈C−

(uj − xj) ≤ b′ + z

0 ≤ xj ≤ ujyj , j ∈ N+ ∪ C−

yj ∈ {0, 1}, j ∈ N+ ∪ C−

(xj , yj) = (uji , 1), ji ∈ {jk1 , . . . jkq} ∩N+ \ C+

(xj , yj) = (0, 0), ji ∈ {jk1 , . . . jkq} ∩ C−.

Again, simplifying yields

g(z) = −
q∑
i=1

f(ujki) + min b′ −

∑
j∈C+

xj +
∑

j∈C++

[uj − λ](1− yj)

s.t.

∑
j∈C+

xj ≤ b′ −
q∑
i=1

ujki + z

0 ≤ xj ≤ ujyj , j ∈ C+

yj ∈ {0, 1}, j ∈ C+

Substituting in gkq or gp+1 as necessary, the statement of the proposition follows.

This proposition plays a key role in the special case that we consider next as it will allow

us to completely describe the lifting function.

3.2.2 A Special Case

Now assume that uji = Uϕ(i) for ji ∈ (N+ \C+)∪C−. Observe that f(uji) = f(Uϕ(i)) =

ϕ(i)λ. Despite the slight modification, we show that this special case is considerably more

tractable than the general case.

Proposition 3.2.11. If uji = Uϕ(i), then gi is superadditive.

58

Proof. Applying the definitions of f and gi, (38) and (43) respectively, we can easily evaluate

gi. Explicitly, this is given by

gi(z) =

[
Uϕ(i) − Uϕ(i)−j − jλ

]
− z

Uϕ(i) − Uϕ(i)−j ≤ z ≤ Uϕ(i) − Uϕ(i)−j + λ,

(j = 0, . . . , ϕ(i)− 1)

−(j + 1)λ
Uϕ(i) − Uϕ(i)−j + λ ≤ z ≤ Uϕ(i) − Uϕ(i)−(j+1),

(j = 0, . . . , ϕ(i)− 1)

when i ≤ p. Further

gp+1(z) =

−z 0 ≤ z ≤ λ

−λ z ≥ λ.

That gi is non-increasing is clear. It is represented graphically in Figure 9.

u3 u3 + u2 u3 + u2 + u1

−3λ

−2λ

−λ

gi(z)

z

Figure 9: Plot of gi

We now show that gi is superadditive for 1 ≤ i ≤ p. Consider g(u+ v)− [g(u) + g(v)].

If the slope of g to the right of u is 0, then for some small ϵ > 0,

g(u+ v + ϵ)− [g(u+ ϵ) + g(v)] ≤ g(u+ v)− [g(u) + g(v)],

g(u+ v)− [g(u+ ϵ) + g(v − ϵ)] ≤ g(u+ v)− [g(u) + g(v)],

as g(u+ v + ϵ) ≤ g(u+ v) and g(v − ϵ) ≥ g(v). On the other hand, if the slope of g to the

left of u is −1, then

g(u+ v − ϵ)− [g(u− ϵ) + g(v)] ≤ g(u+ v)− [g(u) + g(v)],

g(u+ v)− [g(u− ϵ) + g(v + ϵ)] ≤ g(u+ v)− [g(u) + g(v)],

since g(u+ v− ϵ) ≤ g(u+ v) + ϵ and g(v+ ϵ) ≥ g(v)− ϵ. Therefore, we may assume that u

and v are breakpoints of g where the slope changes from 0 to −1. Or u is such a breakpoint,

and v = d− u.

59

For ease of notation let ϕ(i) = ℓ. Let zk = Uℓ − Uℓ−tk for k = 1, 2. By the ordering

imposed on C+, uℓ ≥ uℓ+m, for all m ≥ 0. Thus

Uℓ − Uℓ−(t1+t2) = (uℓ + · · ·+ uℓ−t1+1) + (uℓ−t1 + · · ·+ uℓ−t1−t2+1)

≥ (Uℓ − Uℓ−t1) + (Uℓ − Uℓ−t2)

= z1 + z2.

Therefore, g(z1 + z2) ≥ g(Uℓ−Uℓ−(t1+t2)) = −(t1 + t2)λ = (−t1λ)+ (−t2λ) = g(z1)+ g(z2).

Lastly we test when z1 = Uℓ − Uℓ−t and z2 = Uℓ − z1 = Uℓ−t. It follows that Uℓ−t ≥

Uℓ − Ut, so g(z2) ≤ −(ℓ− t)λ, and g(z1) + g(z2) ≤ −ℓλ = g(Uℓ).

Proposition 3.2.12. If uji = Uϕ(i) for i = 1, . . . , p, then gi1(z) ≤ gi2(z) if i1 < i2 and gi1

and gi2 are both defined at z.

Proof. We show the result for i and i + 1, and the more general claim follows trivially by

induction. If 0 ≤ z ≤ λ, then the assertion is clear, so assume that λ ≤ z. For ℓ ≥ k,

Uk − Uk−j = uk + uk−1 + · · ·+ uk−j+1 ≥ uℓ + uℓ−1 + · · ·+ uℓ−j+1 = Uℓ − Uℓ−j . Now write

z = λ+
(
Uϕ(i+1) − Uϕ(i+1)−j + δ

)
,

with 0 ≤ δ < uϕ(i+1)−j . If 0 ≤ δ ≤ uϕ(i+1)−j − λ, then gi+1(z) = −(j + 1)λ. In this case set

z′ = λ+
(
Uϕ(i) − Uϕ(i)−j

)
.

Thus gi(z
′) = −(j + 1)λ. Since Uϕ(i) ≥ Uϕ(i+1), it follows that z′ ≤ z, and since gi and

gi+1 are both non-increasing, necessarily gi(z) ≤ gi+1(z). Otherwise, if uϕ(i+1)−j − λ < δ <

uϕ(i+1)−j , let ϵ = δ − [uϕ(i+1)−j − λ]. Setting

z′ = λ+
(
Uϕ(i) − Uϕ(i)−j

)
+ (uϕ(i)−j − λ+ ϵ).

Again gi(z
′) = gi+1(z) and z

′ ≤ z, thus showing gi(z) ≤ gi+1(z).

The next two theorems are central to identifying the new class of lifted flow cover in-

equalities. We will first evaluate g(z) and then show that it is superadditive. For convenience

let Vi = Vi−1 + Uϕ(i) with V0 = 0.

60

Theorem 3.2.13. Suppose that uji = Uϕ(i) for i = 1, . . . , p. Then

g(z) =

−
[∑k

i=1 ϕ(i)
]
· λ+ f (Vk−1 − z) Vk−1 ≤ z ≤ Vk, (k = 1, . . . , p)

− [
∑p

i=1 ϕ(i)] · λ+ f (Vp − z) Vp ≤ z

(44)

Proof. Consider a solution to the lifting problem, and suppose that jk1 < · · · < jkq are

active in this solution. Applying Proposition 3.2.10, it follows that

g(z) = −
q−1∑
i=1

f(ujki) + gkq

(
z −

q−1∑
i=1

ujki

)
.

We claim that jki = ji for i = 1, . . . , q. Suppose not and let ℓ denote the smallest ℓ such

that jkℓ > jℓ. Necessarily jℓ < jkq . Now consider the solution with jk1 , . . . , jkq−1 and jℓ

active. Applying the same argument as Proposition 3.2.10, the objective function is

−
q−1∑
i=1

f(ujki) + gℓ

(
z −

q−1∑
i=1

ujki

)
.

However, by Proposition 3.2.12,

gℓ

(
z −

q−1∑
i=1

ujki

)
≤ gkq

(
z −

q−1∑
i=1

ujki

)
,

so there exists a solution at least as good as the current solution that has jki = ji.

Since gp+1 ≥ gi for all i it follows that we only use gp+1 once z ≥ Vp. Applying the

definitions of gi, we obtain the function described above.

u3 u3 + u2 V1 V2 V3

−7λ

−5λ

−3λ

−λ

g(z)

z

Figure 10: Plot of g when uji = Uϕ(i)

Figure 10 gives an example of g. In the next theorem we show that g is superadditive.

For a moment, consider the superadditivity condition:

g(z1 + z2)− [g(z1) + g(z2)] ≥ 0

61

for all z1, z2, z1 + z2 ∈ D. We further know that g is decreasing and D = R+. Rather

than work directly with this condition, we begin with two points z1 and z2 and compute

g(z1) + g(z2). We then identify a point z∗ satisfying

g(z∗) ≥ g(z1) + g(z2), (45)

and show that z∗ ≥ z1 + z2. As g is decreasing, this implies that

g(z1) + g(z2) ≤ g(z∗) ≤ g(z1 + z2),

thereby showing superadditivity. As we shall see, this allows us to greatly simplify and even

avoid much of the case analysis that tends to accompany superadditivity proofs.

Theorem 3.2.14. Suppose that uji = Uϕ(i) for i = 1, . . . , p. Then g(z) is superadditive.

Proof. As in the proof of Proposition 3.2.11, we only need to test breakpoints at which the

slope of g changes from 0 to −1. We partition D into intervals of the form Di = [Vi−1, Vi]

for i = 1, . . . , p and Dp+1 = [Vp,+∞). For 1 ≤ i ≤ p, each interval further partitions into

ϕ(i) subintervals,

Dk
i = Vi−1 + [Uϕ(i) − Uϕ(i)−k+1, Uϕ(i) − Uϕ(i)−k], k = 1, . . . , ϕ(i).

The subinterval Dk
i has length uϕ(i)−k+1. Moreover, let D1

p+1 = [Vp,+∞).

Observe that the right endpoints of these subintervals correspond precisely with the

previously described breakpoints. If z is one of these special breakpoints, then g(z) =

−N(z) · λ, where N(z) denotes the total number of subintervals Dk
i = [ℓki , u

k
i] such that

uki ≤ z. Now let z1 = Vs1 + Uϕ(s1+1) − Uϕ(s1+1)−t1 and z2 = Vs2 + Uϕ(s2+1) − Uϕ(s2+1)−t2 .

We claim that we may assume that t1 = 0. Suppose that t1, t2 > 0. Without loss of

generality, ∣∣Dt1
s1+1

∣∣ ≥ ∣∣Dt2
s2+1

∣∣ ;
thus, we set t′1 = t1 + 1 and t′2 = t2 + 1. Updating z1 and z2, we have

z′1 = z1 +
∣∣∣Dt1+1

s1+1

∣∣∣ ≥ z1 +
∣∣Dt1

s1+1

∣∣
z′2 = z2 −

∣∣Dt2
s2+1

∣∣ ≥ z2 −
∣∣Dt1

s1+1

∣∣ .
62

In particular z′1 + z′2 ≥ z1 + z2 and g(z′1) = g(z1) and g(z
′
2) = g(z2). By the sorting on the

intervals, it follows that we can repeatedly perform this update until either t1 = ϕ(s1 + 1)

or t2 = 0. By appropriately incrementing s1 or interchanging the roles of s1 and s2, the

claim follows.

If there are no more than N(z2) subintervals following Vs1 , then

g(z1 + z2) ≥ − (N(z1) +N(z2))λ = g(z1) + g(z2).

Therefore we shall assume that there are at least N(z2) subintervals after Vs1 . To prove

superadditivity, we show that the total length of the N(z2) subintervals after Vs1 is greater

than the total length of the first N(z2) subintervals.

First note that Vs1 +Vs2 ≥ Vs1+s2 , and thus the intervals Ds1+1, . . . ,Ds1+s2 are entirely

covered. Consider specifically the subintervals D
ϕ(s1+i)−j+1
s1+i

and D
ϕ(i)−j+1
i . By construction∣∣∣Dϕ(s1+i)−j+1

s1+i

∣∣∣ = ∣∣∣Dϕ(i)−j+1
i

∣∣∣ .
So for i = 1, . . . , s2 and j = 1, . . . , ϕ(s1 + i), we pair D

ϕ(s1+i)−j+1
s1+i

with D
ϕ(i)−j+1
i .

Thus, we must show that the remaining t unpaired subintervals in [0, z2] are shorter

than the first t unpaired subintervals in [Vs1+s2 ,∞). This demonstrates the existence of a

suitable z∗ as in (45) with g(z∗) = g(z1) + g(z2) and z
∗ ≥ z1 + z2.

Now some of the subintervals in D1, . . . ,Ds2 may be unpaired. However, any unpaired

interval Dj
i must satisfy ∣∣∣Dj

i

∣∣∣ ≤ ∣∣D1
s1+i

∣∣ ≤ ∣∣D1
s1+s2+1

∣∣ .
In particular, these unpaired subintervals in [0, Vs2] are all shorter than any unpaired subin-

terval in [Vs1+s2 ,∞).

If t2 = 0, then we are done, so assume t2 > 0. Now we consider the intervals Ds2+1 and

Ds1+s2+1. Let t
′ denote the number of the remaining t subintervals in Ds1+s2+1. If t

′ < t2,

then t′ = ϕ(s1 + s2 + 1). Thus

∣∣Dt2
s2+1

∣∣ ≤ ∣∣∣Dϕ(s2+1)
s2+1

∣∣∣ = ∣∣∣Dϕ(s1+s2+1)
s1+s2+1

∣∣∣ .
Thus we pair Dt2−j+1

s2+1 with D
ϕ(s1+s2+1)−j+1
s1+s2+1 for j = 1, . . . , ϕ(s1 + s2 + 1). It similarly

follows that the remaining t − t′ unpaired subintervals in [0, z2] are shorter than the first

63

t− t′ unpaired subintervals in [Vs1+s2+1,∞). If t′ ≥ t2, then∣∣∣Dj
s2+1

∣∣∣ ≤ ∣∣∣Dj
s1+s2+1

∣∣∣ ,
and we pair Dj

s2+1 with Dj
s1+s2+1. This concludes our pairing argument.

Thus we have shown that the maximum z∗ such that g(z∗) = − (N(z1) +N(z2))λ is at

least z1 + z2. Since g is decreasing, this implies that g(z1) + g(z2) ≤ g(z1 + z2).

It is also possible to extend these results to when uji > Ur. The proofs follow almost

identically with the addition of an interval D0
i = [Vi, Vi + ui − Ur] whenever ui > Ur. The

same sort of pairing argument suffices for the intervals Dj
i for j > 0, and by noting that D0

i

always at least as long as D0
i+1.

3.2.3 Obtaining a Superadditive Approximation

The case when uj = Uϕ(i) is unlikely to hold. However, we can still use this special case

to construct a valid superadditive approximate lifting function even without a closed form

description of the exact lifting function. To show this we, will reformulate our problem and

relax certain constraints.

Define the following sets:

L+
1 = {j ∈ N+ \ C+ | ∃k(j) : Uk(j) − λ < uj ≤ Uk(j)},

L+
2 = {j ∈ N+ \ C+ | Ur < uj},

C−
1 = {j ∈ C− | ∃k(j) : Uk(j) < uj ≤ Uk(j)+1 − λ},

C−
2 = {j ∈ C− | ∃k(j) : Uk(j) − λ < uj ≤ Uk(j)},

C−
3 = {j ∈ C− | Ur < uj}.

We now describe a reformulation obtained in essence by splitting certain variables and

increasing variable upper bounds. For j ∈ L+
1 , we relax the variable upper bound:

0 ≤ xj ≤ ujyj 7→ 0 ≤ xj ≤ Uk(j)yj .

64

For each j ∈ C−
1 , we split xj by adding the set of constraints:

(xj , yj),

0 ≤ x1j ≤ ujy
1
j ,

yj ∈ {0, 1}

7→

xj = x1j + x2j ,

0 ≤ x1j ≤ Uk(j)y
1
j ,

0 ≤ x2j ≤
(
uj − Uk(j)

)
y2j ,

y1j = y2j ,

y1j , y
2
j ∈ {0, 1} .

Lastly, for j ∈ C−
2 , we split xj as follows:

(xj , yj),

0 ≤ xj ≤ ujyj ,

yj ∈ {0, 1}

7→

xj = x1j − x2j ,(
Uk(j) − uj

)
y1j ≤ x1j ≤ Uk(j)y

1
j ,(

Uk(j) − uj
)
y2j ≤ x2j ≤

(
Uk(j) − uj

)
y2j ,

y1j = y2j ,

y1j , y
2
j ∈ {0, 1} .

The remaining variables in L+
2 and C−

3 remain unchanged. Therefore, we can rewrite (33)

in terms of these new variables. We omit this intermediate step, and proceed to the system

obtained by eliminating the constraints y1j = y2j and replacing the variable lower bounds

with 0 for j ∈ C−
2 . As the variable lower bounds are positive, this produces the following

relaxation of X:

65

 ∑
j∈N+

xj +
∑
j∈C−

2

x2j

−

 ∑
j∈N−\C−

1 ∪C−
2

xj +
∑
j∈C−

1

(
x1j + x2j

)
+
∑
j∈C−

2

x1j

 ≤ b

xj = x1j + x2j ∀j ∈ C−
1

xj = x1j − x2j ∀j ∈ C−
2

0 ≤ xj ≤ ujyj ∀j ∈ L+
2 ∪ C−

3

0 ≤ xj ≤ Uk(j)yj j ∈ L+
1

0 ≤ x1j ≤ Uk(j)y
1
j j ∈ C−

1

0 ≤ x2j ≤ (uj − Uk(j))y
2
j j ∈ C−

1

0 ≤ x1j ≤ Uk(j)y
1
j j ∈ C−

2

0 ≤ x2j ≤ (Uk(j) − uj)y
2
j j ∈ C−

2

yj ∈ {0, 1} ∀j ∈ N.

(46)

We now must define a flow cover, S+∪S−. To avoid ambiguity we will identify elements

in the flow cover by their continuous variables. Hence we define

S+ =
{
xj : j ∈ C+

}
∪
{
x2j : j ∈ C−

2

}
S− =

{
x1j : j ∈ C−

1 ∪ C−
2

}
∪
{
x2j : j ∈ C−

2

}
∪
{
xj : j ∈ C−

3

}
Let b′ = b+

∑
j∈C− uj . Fixing variables as we did before, we obtain the flow cover inequality

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj) +
∑
j∈C−

2

x2j ≤ b′ +
∑
j∈C−

2

(
Uk(j) − uj

)
.

We have used here that Uk(j) − uj < λ for all j ∈ C−
2 . For compactness let b′′ = b′ +∑

j∈C−
2

(
Uk(j) − uj

)
.

Next we lift in variables in N+ \ S+ ∪ S− as in (40). For xj ∈ L+
2 ∪ C−

3 , the lifting

coefficients are unchanged; for j ∈ L+
1 , the lifting coefficients likewise remain the same; for

j ∈ C−
1 , f(uj) = f

(
Uk(j)

)
and uj − Uk(j) < u1 − λ, so f

(
uj − Uk(j)

)
= 0; and lastly for

j ∈ C−
2 , f

(
Uk(j)

)
= f(uj) +

[
Uk(j) − uj

]
.

66

Recovering the variables in N+ \ S+ ∪ S−, we arrive at the inequality

∑
j∈C+

xj +
∑
j∈C−

2

x2j +
∑

j∈C++

(uj − λ) (1− yj) +
∑

j∈N+\C+

[
xj −

(
Uk(j) − k(j)λ

)
yj
]

≤ b′′ −
∑

j∈C−
1 ∪C−

3

f(uj)(1− y1j)−
∑
j∈C−

2

[f
(
Uk(j)

)
(1− y1j).

Using the lifting function (44) from Theorem 3.2.13, we can perform sequence independent

lifting to obtain a new valid inequality:

∑
j∈C+

xj +
∑
j∈C−

2

x2jxj +
∑

j∈C++

(uj − λ) (1− yj) +
∑

j∈N+\C+

[
xj −

(
Uk(j) − k(j)λ

)
yj
]

≤ b′′ −
∑

j∈C−
1 ∪C−

3

f(uj)(1− y1j)−
∑
j∈C−

2

f
(
Uk(j)

)
(1− y1j) +

∑
j∈N−\C−

[πjxj + µjyj] .

where πj and µj represent valid lifting coefficients for (xj , yj). Noting that x2j = (Uk(j) −

uj)y
2
j for j ∈ C−

2 and identifying y1j and y2j as necessary, we obtain the inequality

∑
j∈C+

xj +
∑

j∈C++

(uj − λ) (1− yj) +
∑

j∈N+\C+

[
xj −

(
Uk(j) − k(j)λ

)
yj
]

≤ b′ −
∑
j∈C−

f(uj)(1− yj) +
∑

j∈N−\C−

[πjxj + µjyj] .

In particular, none of the coefficients on the variables in C− and N+ \ C+ have changed.

Thus we have demonstrated a superadditive valid approximate lifting function.

Theorem 3.2.15. Let ĝ(z) be the approximation of g obtained by replacing uj with Uk(j)

for all j ∈ (N+ \ C+) ∪ C−. Then ĝ is a superadditive valid approximate lifting function

for g.

This theorem is significant in two regards. First and most immediately, it establishes

the existence of a new family of lifted flow covers obtained through superadditive lifting.

Beyond this, it suggests the potential of superadditive lifting even in the absence of an exact

description of the lifting function.

It is unlikely that ĝ is non-dominated. Letting ν = limz→+∞ g(z), we will typically have

that limz→+∞ ĝ(z) < ν. As ĝ is negative and superadditive and ν is negative, the function

g̃(z) = max (ĝ(z), ν)

67

is superadditive, valid, and dominates ĝ. However, the initial approximation ĝ is itself non-

trivial, and uses much of the structure of g without explicitly computing g. In the next

section, we provide a more general framework for constructing superadditive valid approxi-

mate lifting functions in the absence of a closed form description of the lifting function. We

close out this section, by revisiting Example 3.2.1.

Example 3.2.2. In Example 3.2.1 we encountered a small fixed-charge flow problem with

u1 = u2 = u3 = 4 and b′ = 10. We reintroduced a single variable x4 from C− with u4 = 9.

Because u4 ̸= Uj , the resulting lifting function was not superadditive.

Applying the previous reformulation, we replace x4 and its corresponding variable upper

bound constraints with

x4 = x14 + x24,

0 ≤ x14 ≤ 8y14,

0 ≤ x24 ≤ 1y24,

y14 = y24,

y14, y
2
4 ∈ {0, 1} .

Next we relax the constraint y14 = y24.

The new flow cover is given by C+ = {x1, x2, x3} and C− =
{
x14, x

2
4

}
. Noting that

b′′ = b′ = 10, the lifted flow cover inequality is given by:

x1 + x2 + x3 + 2(1− y1) + 2(1− y2) + 2(1− y3) ≤ 10− 4(1− y14).

As y14 = y4, this corresponds precisely with the original flow cover inequality. On the other

hand, because u14 = 8, the corresponding lifting function is as follows in Table 2:

Table 2: Approximation ĝ of the lifting function g

ĝ(z) z ĝ(z) z

−z 0 ≤ z ≤ 2 −4 6 ≤ z ≤ 8

−2 2 ≤ z ≤ 4 4− z 8 ≤ z ≤ 10

2− z 4 ≤ z ≤ 6 −6 z ≥ 10

68

This approximation can easily be verified to be superadditive and is compared against

g in Figure 11.

2 4 6 8 10

-6

-4

-2

z

ĝ(z)

g(z)

Figure 11: Comparison of g and ĝ

3.3 Approximating High-Dimensional Lifting Functions

We now shift our focus to lifting functions in higher dimensions. As a motivating

example, we show that even for simple integer programs, it can be advantageous to perform

lifting in higher dimensions:

Example 3.3.1. Consider the two-dimensional knapsack problem defined by the following

constraints:

4x1 + 4x2 + 4x3 + 2x4 ≤ 10,

3x1 + 2x2 + 3x3 + 10x4 ≤ 12,

xj ∈ {0, 1} .

The set {1, 2, 3} defines a minimal cover of the first knapsack, but not the second. The

associated minimal cover inequality is

x1 + x2 + x3 ≤ 2.

We fix x4 = 0. If we ignore the second knapsack, the lifting problem is

min

2− [x1 + x2 + x3] :
4x1 + 4x2 + 4x3 ≤ 10− z,

xj ∈ {0, 1}

 .

Therefore, when we reintroduce x4, z = 2, and there exists an optimal solution with α4 = 0.

69

On the other hand, if we consider the second knapsack, then the lifting problem is given by

min

2− [x1 + x2 + x3] :

4x1 + 4x2 + 4x3 ≤ 10− z1,

3x1 + 2x2 + 3x3 ≤ 12− z2,

xj ∈ {0, 1}

.

So when we reintroduce x4, we have (z1, z2) = (2, 10). This implies that x1 = x3 = 0 in an

optimal solution. Therefore, α4 = 1, and we obtain the inequality

x1 + x2 + x3 + x4 ≤ 2,

which dominates the inequality obtained from the first knapsack alone. Furthermore, it is

easy to see that this inequality is not valid for either of the individual knapsacks.

Lifting has proved an incredibly effective tool in developing inequalities that incorporate

multiple constraints. However, the challenge of performing lifting in higher dimensions has

limited its practical application. In this section, we describe a simple tool that facilitates

the application of superadditive lifting even without full knowledge of the lifting function.

Consider the system

X =

x ∈ S :
A0x ≤ b0

Aix ≤ bi, i = 1, . . . , k

 .

The set S captures integrality, variable bounds, and other such information not contained

in the constraint matrix. Let P = conv(X), and let αx ≤ α0 be a valid inequality for P .

Consider the lifting function

f
(
z0, z1, . . . , zk

)
= min α0 − αx

s.t. A0x ≤ b0 − z0

Aix ≤ bi − zi, i = 1, . . . , k

x ∈ S.

(47)

Assume that (z0, z1, . . . , zk) ∈ D0 × D1 × · · · × Dk, and let µix ≤ µi0 be some inequality.

70

Define the function

Φi
(
zi
)
= min µi0 − µix

s.t. Aix ≤ bi − zi

x ∈ S.

(48)

Using this function we are able to construct a surrogate constraint for the lifting function.

We describe this in two simple propositions:

Proposition 3.3.1. Let ϕi ≤ Φi. Then for all zi ∈ Di, the inequality

µix ≤ µi0 − ϕi(zi),

is valid for the set conv
{
x ∈ S : Aix ≤ bi − zi

}
for all zi ∈ Di.

Proof. By construction, Φ(zi) ≤ µi0 − µix for all x ∈ conv
{
x ∈ S : Aix ≤ bi − zi

}
. As

ϕi(zi) ≤ Φi(zi), the proposition immediately follows.

Proposition 3.3.2. If ϕi(zi) ≤ Φi(zi) for i = 1, . . . , k, then the function

g
(
z0, z1, . . . , zk

)
= min α0 − αx

s.t. A0x ≤ b0 − z0

µix ≤ µi0 − ϕi(zi), i = 1, . . . , k

x ∈ S.

(49)

is a valid approximate lifting function.

Proof. Let x∗ minimize (47), then x∗ satisfies Aix∗ ≤ bi−zi. By applying Proposition 3.3.1,

it follows that µix∗ ≤ µi0 − ϕi(zi).

This framework still allows for the elimination of constraints by replacing them with the

trivial inequality 0x ≤ 0. Let Ei ⊇
{
ϕi(zi) : zi ∈ Di

}
. Define the function

ĝ
(
z0, v1, . . . , vk

)
= min α0 − αx

s.t. A0x ≤ b0 − z0

µix ≤ µi0 − vi, i = 1, . . . , k

x ∈ S,

(50)

71

where vi ∈ Ei. Trivially g
(
z0, z1, . . . , zk

)
= ĝ

(
z0, ϕ1(z1), . . . , ϕk(zk)

)
. The function ĝ may

be much easier to deal with than g. For example if Di is continuous but Ei is finite, we

may have a much easier time evaluating ĝ.

Under certain conditions we are able to use ĝ to construct a superadditive valid approx-

imate lifting function for f without explicitly calculating f .

Theorem 3.3.3. Let ĥ be a superadditive valid approximate lifting function for ĝ. If ĥ is

non-decreasing and ϕi ≤ Φi is superadditive for i = 1, . . . , k, then the function h defined by

h
(
z0, z1, . . . , zk

)
= ĥ

(
z0, ϕ1(z1), . . . , ϕk(zk)

)
is a superadditive valid approximate lifting function for f .

Proof. Let u, v, u+ v ∈ D. Note that ui, vi, ui+ vi ∈ Di, so that ϕi(ui), ϕi(vi), ϕi(ui+ vi) ∈

Ei. By definition

h
(
u0, u1, . . . , uk

)
= ĥ

(
u0, ϕ1(u1), . . . , ϕk(uk)

)
,

and

h
(
v0, v1, . . . , vk

)
= ĥ

(
v0, ϕ1(v1), . . . , ϕk(vk)

)
.

As ϕi is superadditive ϕi(ui) + ϕi(vi) ≤ ϕi(ui + vi). Therefore, because ĥ is increasing and

superadditive,

ĥ
(
u0 + v0, ϕ1(u1 + v1), . . . , ϕk(uk + vk)

)
≥ ĥ

(
u0 + v0, ϕ1(u1) + ϕ1(v1), . . . , ϕk(uk) + ϕk(vk)

)
≥ ĥ

(
u0, ϕ1(u1), . . . , ϕk(uk)

)
+ ĥ

(
v0, ϕ1(v1), . . . , ϕk(vk)

)
.

Therefore h(u0, u1, . . . , uk) + h(v0, v1, . . . , vk) ≤ h(u0 + v0, u1 + v1, . . . , uk + vk). Validity is

an immediate consequence of Proposition 3.3.2.

The assumption that ĥ is non-decreasing is not restrictive as the lifting function ĝ is

guaranteed to be non-decreasing. Likewise, Φi is non-decreasing, and we will assume hence-

forth that ϕi is also non-decreasing. Observe that Φi is itself a lifting function. In particular,

this suggests that we can recursively use this approach to construct a superadditive approx-

imation ϕi of Φi.

72

The choice of µi has been left open. In Chapter 5, we show how a properly chosen µi

and µ0 can facilitate the derivation of superadditive lifting functions for several different

problems. In the meantime, we apply this idea to the knapsack intersection in Example

3.3.1.

Example 3.3.2. In Example 3.3.1, recall we examined the intersection of knapsacks

4x1 + 4x2 + 4x3 + 2x4 ≤ 10,

3x1 + 2x2 + 3x3 + 10x4 ≤ 12,

xj ∈ {0, 1} .

By lifting we were able to obtain the facet-defining inequality x1 + x2 + x3 + x4 ≤ 2. If we

replace the second knapsack in the lifting problem with a cardinality constraint, we obtain

the system

4x1 + 4x2 + 4x3 ≤ 10− z1,

x1 + x2 + x3 ≤ 3− Φ(z2),

xj ∈ {0, 1} .

The function Φ is given by the integer program

Φ(z2) = min

3− x1 + x2 + x3 :
3x1 + 2x2 + 3x3 ≤ 12− z2,

x1, x2, x3 ∈ {0, 1}

 ,

and evaluates explicitly to

Φ(z2) =

0 0 ≤ z2 ≤ 4

1 4 < z2 ≤ 7

2 7 < z2 ≤ 10

3 10 < z2 ≤ 12.

As Φ(10) = 2, it follows that this relaxation still gives α4 = 1.

3.4 Closing Remarks

In this chapter, we demonstrated that superadditive lifting can be applied without

explicitly computing the lifting function. This deviates from the typical framework of first

deriving an exact lifting function and then identifying a valid superadditive approximation.

73

For the lifted flow cover inequality, an exact description of the second lifting function

is quite cumbersome. Nevertheless, we are able to avoid this obstacle by considering a

special case of this problem and reformulating the original problem to conform to this

case. The original cut coefficients remain the same, but we gain access to the machinery

of superadditive lifting. We are able to build on this idea and provide a general framework

for constructing valid superadditive approximations by relaxing constraints in the lifting

function.

Our approach to deriving approximate lifting functions indirectly resolves the question

of validity through the use of relaxation and reformulation. This idea has not yet been

extensively studied and seems like a promising avenue to overcoming the challenges posed

by dimension in the lifting problem.

There are still many questions to consider: perhaps most importantly, identifying condi-

tions that guarantee the non-dominance of an approximation derived using Theorem 3.3.3.

The non-dominance of ĥ is a clearly necessary condition for the non-dominance of h, but

it is not sufficient. Of course, it may still be difficult to construct a non-dominated ĥ. We

begin to address this question in the next chapter and show how it is possible to construct

non-dominated approximations of some simple (although still quite non-trivial) lifting func-

tions.

74

CHAPTER IV

SUPERADDITIVE APPROXIMATIONS OF LIFTING FUNCTIONS

In the previous chapter we discussed some general techniques that can be used to facili-

tate the application of superadditive lifting to higher-dimensional lifting functions. Despite

the collection of work utilizing superadditive lifting, there has been very little done to

address how appropriate superadditive approximations can be obtained. Past work has

typically followed the framework of first deriving a closed form of the lifting function in

question, and then proving that some approximation possesses desirable properties.

We seek a more constructive approach to producing superadditive approximations. This

idea has received some treatment in the context of knapsack problems with disjoint car-

dinality constraints [80, 81], but is still problem specific. Rather than begin with a closed

form description of f , we assume that we obtain f in a fairly generic form. For example,

we may obtain f as the output of a dynamic program.

In this chapter, we first describe the structural properties of the lifting function and

restrict our analysis to a class of functions fitting these properties. We then show that

under these conditions we can test superadditivity and non-dominance in polynomial time.

Next, we describe a slight modification of the superadditive approximation γ (see (32) from

Chapter 2) and explore its properties. We then show that it is always possible to construct

a superadditive approximation of f in polynomial time. Finally, we give an algorithm that

produces a non-dominated superadditive approximation in finite time.

4.1 Structure of the Lifting Function

The problem of even testing superadditivity is completely hopeless on general functions.

Consider a function f on [0, 1] and suppose that the function is represented by an oracle.

Any algorithm to test superadditivity sends some value z to the oracle, and the oracle

returns f(z). Now let f be superadditive, and suppose that an algorithm queries the oracle

finitely many times and correctly declares f superadditive. Then there exists a finite k such

75

that the algorithm sends z1, . . . , zk to the oracle and the oracle returns f(z1), . . . , f(zk). Let

the function f̂(z) be constructing by setting f̂(z∗) = +∞ for z∗ ∈ (0, 1) \ {z1, . . . , zk} and

f̂(z) = f(z) otherwise. The algorithm behaves no differently and will incorrectly declare f̂

superadditive. If the algorithm is restricted to be finite but can additionally use randomness,

then it will still declare f̂ superadditive with probability 1.

Fortunately, our choice of f is not completely general. Specifically it arises as the

solution of a mixed integer program:

min

cx+ gy :
Ax+Gy = d

(x, y) ∈ Rp
+ × Zq+

 .

More generally, we can define the value function.

Definition 4.1.1. The value function of a mixed integer program is

Θ(z) = min

cx+ gy :
Ax+Gy = z

(x, y) ∈ Rp
+ × Zq+

 (51)

The properties of Θ were established by Blair and Jeroslow [14]:

Theorem 4.1.1. The value function, Θ(z), is piecewise linear and lower semicontinuous.

By a simple transformation, we can apply this result to characterize the lifting function:

Corollary 4.1.2. The lifting function f(z) is non-decreasing, piecewise linear, and lower

semicontinuous.

Proof. Rewrite the lifting function

f(z) = min π0t− πx

s.t. td0 −Ax− Is = z

t = 1

x ∈ Rp
+ × Zq+

(s, t) ∈ Rm
+ ×R+.

It is a simple exercise to show that this coincides with the original lifting function. By

Theorem 4.1.1, f is therefore piecewise linear and lower semicontinuous. On the other

76

hand, if (x∗, s∗, 1) is an optimal solution to f(z), then for z′ ≥ z, (x∗, s∗ + (z′ − z), 1) is

feasible to f(z′). Therefore f is non-decreasing.

Hence, we can always assume that f is non-decreasing, piecewise linear, and lower

semicontinuous. Additionally, we shall assume that D takes on a specific form: D =

D0 ×D1, with D0 = [0, d0] and either D1 = {0} or

D1 = {0, . . . , d1} × · · · × {0, . . . , dm}

with di > 0 for i = 1, . . . ,m. Note that these restrictions on D allow us to consider one

dimensional lifting functions and lifting functions over a discrete domain. In the first case

D1 = {0} and in the latter case D0 = {0}.

For each y ∈ D1, we consider the function fy defined on D0 by fy(z) = f(z, y). By

Corollary 4.1.2, this function is itself piecewise linear and lower semicontinuous. We assume

that fy has finitely many breakpoints for all y ∈ D1. We relax the restriction that f is

non-decreasing, and assume instead that fy is non-decreasing for each y ∈ D1.

4.2 Efficiently Testable Conditions

In this section we show that validity, superadditivity, and non-dominance can be effi-

ciently tested. As an important corollary we show that non-dominance implies maximal-

ity. Let f and g be two piecewise linear and lower semicontinuous functions defined over

D = D0×D1. Assume that for all y ∈ D1, fy and gy are both non-decreasing. Further, we

assume throughout that g(0) = 0.

Definition 4.2.1. We say that a point z ∈ D1 is a breakpoint of fy if z = 0 or z = d0, fy

is discontinuous at z, or fy changes slope at z.

The main result in this section is the classification of test points in Theorem 4.2.3.

Theorem 4.2.7 is also significant in that it defines necessary and sufficient conditions for

non-dominance (given our assumptions) that can be tested efficiently using these test points.

These results subsequently play an integral role in the algorithmic construction of non-

dominated approximations.

77

Let Wy and Vy denote the breakpoints of fy and gy respectively. Define

W =
∪
y∈D1

∪
w∈Wy

(w, y),

V =
∪
y∈D1

∪
v∈Vy

(V, y).

Hence, W and V represent the collection of breakpoints of f and g. By efficiently testable,

we mean that it takes polynomially many steps with respect to |W | and |V | to certify some

property of g.

Define the function f̄y by

f̄y(z) = lim
z′↓z

fy(z
′), (52)

and let f̄y(d0) = fy(d0). Because fy is non-decreasing and lower semicontinuous, f̄y ≥ fy.

If w ∈ Wy is a discontinuity then f̄y(w) > fy(w) otherwise the two functions coincide. We

define the function f̄ by f̄(z, y) = f̄y(z) and analogously define ḡ and ḡy.

Suppose that Wy = {w1, . . . , wt} with 0 = w1 < · · · < wt = d0. We can write fy

fy(z) =

fy(0) z = 0

f̄y(wj) + λj(z − wj) wj < z ≤ wj+1, (j = 1, . . . , t− 1)

(53)

where

λj =
fy(wj+1)− f̄y(wj)

wj+1 − wj
.

We can similarly express gy. Therefore, we assume that f and g are encoded precisely by

their breakpoints and at most two values at these breakpoints.

Proposition 4.2.1. fy(z) and f̄y(z) can be computed in time O(log(|Wy|)).

Proof. We assume that the breakpoints of fy(z) are stored as a sorted list. Then using

binary search, we can identify whether z ∈ Wy. Otherwise, we identify w1, w2 ∈ Wy such

that w1 < z < w2, and there does not exist a w ∈ Wy such that w1 < w < w2. By

interpolating fy between these two points, we can evaluate fy(z).

As f and f̄ only differ at breakpoints, the same result immediately applies to f̄ .

Throughout we will ignore this log factor in our analysis, and instead focus on the

number of steps our algorithms require.

78

4.2.1 Testing Validity

Validity is the easiest property of g to test. We say that g is valid if g ≤ f . The validity

of g can be efficiently verified by considering the breakpoints f and g.

Theorem 4.2.2. g is valid if and only if g(u) ≤ f(u) and ḡ(u) ≤ f̄(u) for all u ∈W ∪ V .

Proof. Necessity is trivial; hence we prove sufficiency. Fix y and consider Ty = Wy ∪ Vy =

{t1, . . . , tr} with t1 < · · · < tr.

Now consider some arbitrary t ∈ D0. If t ∈ Ty, then by assumption gy(t) ≤ fy(t) and

ḡy(t) ≤ f̄y(t). Otherwise, t is not a breakpoint of gy or fy, so ḡy(t) = gy(t) and f̄y(t) = fy(t).

Let ti < t < ti+1. Then by piecewise linearity and lower semicontinuity,

fy(t) =
t2 − t

t2 − t1
· f̄y(t1) +

t− t1
t2 − t1

· fy(t2)

≥ t2 − t

t2 − t1
· ḡy(t1) +

t− t1
t2 − t1

· gy(t2)

= g(t).

Iterating over all y, sufficiency follows.

Therefore, we only need to test |W | + |V | points of f and g to certify the validity of

g. As we proceed to describing superadditivity and non-dominance, we will always assume

that g is valid.

4.2.2 Testing Superadditivity

We now show that we can efficiently test superadditivity by considering only a small

number of points. In particular, we are interested in which points minimize the quantity

f(u+ v)− [f(u) + f(v)]. (54)

By definition, f is superadditive if f(u) + f(v) ≤ f(u + v) for all u, v, u + v ∈ D. Hence

f(u+ v)− [f(u) + f(v)] ≥ 0, for all u, v, u+ v ∈ D: i.e.

inf
u,v,u+v∈D

{f(u+ v)− [f(u) + f(v)]} ≥ 0. (55)

79

Therefore we seek a succinct description of this infimum. We consider a slight generalization

of (55) replacing f(u) and f(v) with g(u) and g(v). First fix y1 and y2, so instead we consider

the problem of determining

ζy1,y2 = inf
z1,z2,z1+z2∈D0

{fy1+y2(z1 + z2)− [gy1(z1) + gy2(z2)]} . (56)

We can obtain the overall infimum by taking the minimum of (56) over all y1 and y2 such

that y1 + y2 ∈ D1

For this task, we will define four different but closely related quantities:

ζ1 = min
v1∈Vy1 ,v2∈Vy2
v1+v2<d0

{
f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy2(v2)]

}
ζ2 = min

w∈Wy1+y2 ,v1∈Vy1
w−v1>0

{fy1+y2(w)− [ḡy1(v1) + gy2(w − v1)]}

ζ3 = min
w∈Wy1+y2 ,v2∈Vy2

w−v2>0

{fy1+y2(w)− [gy1(w − v2) + ḡy2(v2)]}

ζ4 = fy1+y2(0)− [gy1(0) + gy2(0)]

(57)

The minimum is appropriate here as we are considering only a finite number of points. As

it turns out, the infimum of (56) is one of these values.

Theorem 4.2.3. ζy1,y2 = min {ζ1, ζ2, ζ3, ζ4}

Proof. Let ζ ′ = min {ζ1, ζ2, ζ3, ζ4}. We will first show that ζ ′ ≤ ζy1,y2 , and then we will

demonstrate that ζ ′ is in fact an infimum.

For some arbitrary z1, z2, z1 + z2 ∈ D0 consider

ζ(z1, z2) = fy1+y2(z1 + z2)− [gy1(z1) + gy2(z2)] . (58)

If z1 = z2 = z1 + z2 = 0 then this quantity is precisely equal to ζ4. So assume that at least

one of z1 and z2 is strictly positive.

The remainder of the proof is driven by a simple idea depicted in Figure 12. If any two

of the points u, v, or u + v are not breakpoints, then fixing the third, there is always a

direction that decreases the gap ζ.

80

g(w − u)

f(w) − g(u)

uu

ζ

f(u + v)

g(u) + g(v)

ζ decreases ζ decreasesζ increases ζ increases

ζ

Figure 12: f(u+ v) and g(u) + g(v) with v fixed (left), and g(w− u) and f(w)− g(u) with
w fixed (right)

First suppose that neither z1 nor z2 are breakpoints. Let λ1 and λ2 denote the slopes

of gy1 at z1 and gy2 at z2. Without loss of generality, we may assume that λ1 ≤ λ2. Let

v1 = max {v ∈ Vy1 : v < z1} ,

v2 = min {v ∈ Vy2 : v > z2} .

Then z1 = v1 + ϵ1 and z2 = v2 − ϵ2 for some ϵ1, ϵ2 > 0. Let ϵ′ = min {ϵ1, ϵ2}. For small

0 < ϵ < ϵ′,

gy1(z1 − ϵ) + gy2(z2 + ϵ) = gy1(z1) + gy2(z2) + (λ2 − λ1)ϵ

≥ gy1(z1) + gy2(z2).

There are two possibilities to consider: either ϵ1 = ϵ2, or ϵ1 ̸= ϵ2.

First, suppose that ϵ1 = ϵ2. By taking the limit as we increase ϵ to ϵ′, we conclude that

ζ(z1, z2) ≥ fy1+y2(v1 + v2)− [ḡy1(v1) + gy2(v2)] .

If v1 + v2 ∈ Wy1+y2 , then this implies that ζ(z1, z2) ≥ ζ2. Otherwise, v1 + v2 is not a

breakpoint of fy1+y2 , and therefore f̄y1+y2(v1 + v2) = fy1+y2(v1 + v2). Furthermore, this

assumption implies that v1 + v2 < d0. Thus,

f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy1(v1)]

= lim
ϵ↓0

fy1+y2(v1 + v2 + ϵ)− [ḡy1(v1) + gy1(v1 + ϵ)]

≤ fy1+y2(v1 + v2)− [ḡy1(v1) + gy1(v1)] .

Note that the last inequality follows from the continuity of fy1+y2 at z1 + z2 and lower

semicontinuity of gy2 . Therefore, we conclude in this case that ζ(z1, z2) ≥ ζ1.

81

It remains to consider when ϵ1 ̸= ϵ2. We only consider ϵ1 < ϵ2; the other case follows

similarly. Let z′2 = z2+ ϵ1. By assumption z′2 is not a breakpoint. If v1+ z′2 is a breakpoint

of fy1+y2 , then we again have that ζ(z1, z2) ≥ ζ2. So we shall assume that neither z′2 nor

v1 + z′2 are breakpoints.

Let µ1 and µ2 denote the slopes of fy1+y2 at v1 + z′2 and gy2 at z′2. Either µ1 ≥ µ2 or

µ1 < µ2. For brevity, we shall only consider the former possibility, noting that the latter

case can be handled using the same techniques. Let

w = min
{
w′ ∈Wy1+y2 : w′ < v1 + z′2

}
,

v2 = min
{
v ∈ Vy2 : v < z′2

}
.

Thus, v1 + z′2 = w + ϵ1 and z′2 = v2 + ϵ2 for some ϵ > 0. Again define ϵ′ = min {ϵ1, ϵ2}. For

0 < ϵ < ϵ′,

fy1+y2(v1 + z′2 − ϵ)−
[
ḡy1(v1) + gy2(z

′
2 − ϵ)

]
= fy1+y2(v1 + z′2)−

[
ḡy1(v1) + gy2(z

′
2)
]
− (µ1 − µ2)ϵ

≤ fy1+y2(v1 + z′2)−
[
ḡy1(v1) + gy2(z

′
2)
]
≤ ζ(z1, z2)

We consider two possibilities: either ϵ1 ≥ ϵ2 or ϵ1 < ϵ2. If ϵ1 ≥ ϵ2, then by taking the limit

as we increase ϵ to ϵ′, we have

ζ(z1, z2) ≥ f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy2(v2)] ≥ ζ1.

So assume that ϵ1 < ϵ2. Again taking the limit, we conclude

ζ(z1, z2) ≥ f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy2(w − v1)] ≥ ζ2.

The remaining cases are handled analogously to conclude that ζ ′ ≤ ζy1,y2 .

Now we must show that ζ ′ is an infimum. By scaling f and g appropriately, we may

assume that all slopes are bounded by 0 and 1. Now let ζ ′′ = ζ ′ + ϵ for ϵ > 0. We must

show that there exists some z1 and z2 such that ζ(z1, z2) < ζ ′′. If ζ ′ = ζ4, then this is clear,

so we consider when ζ ′ = ζ1 and ζ ′ = ζ2 (ζ3 being handled identically).

If ζ ′ = ζ1, then let v1 and v2 satisfy

ζ ′ = f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy2(v2)] .

82

Then by our assumption about the slopes of f and g,

fy1+y2(v1 + v2 + 2ϵ′)−
[
gy1(v1 + ϵ′) + gy2(v2 + ϵ′)

]
≥ f̄y1+y2(v1 + v2)− [ḡy1(v1) + ḡy2(v2)] + 2ϵ′

= ζ ′ + 2ϵ′.

Thus taking ϵ′ < ϵ/2, we have shown that ζ ′′ cannot be a lower bound.

Otherwise, if ζ ′ = ζ2, then let w and v satisfy

ζ ′ = fy1+y2(w)− [ḡy1(v) + ḡy2(w − v)] .

Similarly, we can apply our assumption about the slopes to conclude

fy1+y2(w)−
[
gy1(v + ϵ′) + gy2(w − v − ϵ′)

]
≥ fy1+y2(w)− [ḡy1(v) + gy2(w − v)] + ϵ′

= ζ ′ + ϵ′′.

So restricting ϵ′ < ϵ, we again have shown that ζ ′′ is not a valid lower bound. Therefore, ζ ′

is an infimum.

This theorem has an immediate consequence of allowing us to test in polynomial time

the superadditivity of a function.

Corollary 4.2.4. Superadditivity for f can be tested in O(|W |2) time.

Proof. The functions f and g in Theorem 4.2.3 were arbitrary. Therefore we can replace g

with f . To verify (55), we simply compute

ζ = min
y1,y2,y1+y2∈D1

ζy1,y2 .

f is superadditive if and only if ζ ≥ 0. As we only need to test pairs of points, to verify

superadditivity, we test at most O(|W |2) points.

4.2.3 Testing Non-Dominance

The task of certifying non-dominance seems a greater challenge. We will show, however,

that for our class of functions, it is just as tractable as testing superadditivity. Through-

out this section, we assume that the validity and superadditivity of g have already been

established.

83

We first show a sufficient condition for non-dominance and provide a simple extension

of Theorem 4.2.3. Finally we describe a procedure for testing non-dominance in polynomial

time.

Proposition 4.2.5. Suppose that g ≤ f is superadditive. If for every u ∈ D there exists

some v ∈ D such that g(u) + g (v) = f (u+ v), then g is non-dominated.

Proof. Suppose to the contrary that there exists some superadditive g′ ≤ f such that g′ ≥ g

and g′(u) > g(u) for some u. Let v ∈ D satisfy g(u) + g(v) = f(u+ v). Then

g′(u) + g′(v) > g(u) + g(v) = f(u+ v) ≥ g′(u+ v),

but this contradicts that g′ is superadditive.

The sufficiency of this condition is general. It does not depend on any other properties

of f , g or D. We will show that under our restrictions, this condition is also necessary.

However, before proceeding we dispel the notion that necessity holds in more general set-

tings:

Example 4.2.1. Consider the function f : D → R where D = {−3,−2,−1, 0,+1,+2,+3}

and an associated approximation g given in Table 3:

Table 3: Non-dominated approximation with ∆(u) > 0

u +3 +2 +1 0 −1 −2 −3

f(u) +4 +4 +4 0 −2 −6 −6

g(u) +4 +4 0 0 −4 −6 −8

Validity of g is evident and superadditivity is a simple exercise. Now we examine g in

more detail at u = −1 and u = −3. Note that the remaining u either satisfy g(u) = f(u)

or there exists some v such that g(u) + g(v) = f(u+ v); therefore we cannot increase g at

those points. Clearly

g(+2) + g(−1) = +4− 4 = 0 = g(+1).

84

So we cannot increase g(−1) without decreasing g(+2). Similarly,

g(+2) + g(−3) = +4− 8 = −4 = g(−1).

However, we showed that we cannot increase g(−1), so we cannot increase g(−3) without

decreasing g(+2). In particular, g must be non-dominated.

On the other hand, as the Table 4 demonstrates, there does not exist any u such that

g(u) + g(−1) = f(u− 1):

Table 4: Failure of ∆(u) to capture non-dominance

u +3 +2 +1 0 −1 −2

f(u− 1) +4 +4 +4 0 −2 −6

g(u) + g(−1) 0 0 −4 −4 −8 −10

Therefore, the non-dominance condition is not necessary in general.

Returning to our setting, for all u ∈ D, we can define the function

∆(u) = inf
v,u+v∈D

{f(u+ v)− [g(u) + g(v)]} . (59)

As before, we can greatly simplify the computation of ∆(u). Letting

∆1(u) = min
w∈W :w−u∈D

f(w)− [g(u) + g(w − u)]

∆2(u) = min
v∈V :u+v∈D
u1+v1<d0

f̄(u+ v)− [g(u) + ḡ(v)] ,
(60)

we can characterize ∆(u):

Proposition 4.2.6. ∆(u) = min {∆1(u),∆2(u)}.

Proof. Consider f(u+v)−[g(u) + g(v)], and suppose that neither u+v ∈W nor v ∈ V . Let

u = (z1, y1) and v = (z2, y2). Then let λ1 and λ2 denote the slope of fy1+y2 at z1 + z2 and

gy2 at z2. Further, let w
′ < z1 + z2 < w′′ and v′ < z2 < v′′, for breakpoints w′, w′′ ∈Wy1+y2

and v′, v′′ ∈ Vy2 .

85

If λ1 ≥ λ2, then for sufficiently small ϵ > 0,

fy1+y2(z1 + z2 − ϵ)− [gy1(z1) + gy2(z2 − ϵ)]

= fy1+y2(z1 + z2)− [gy1(z1) + gy2(z2)]− (λ1 − λ2)ϵ

≥ fy1+y2(z1 + z2)− [gy1(z1) + gy2(z2)] .

Letting ϵ′ = min(z1 + z2 − w′, z2 − v′), we consider the limit

lim
ϵ↑ϵ′

fy1+y2(z1 + z2 − ϵ)− [gy1(z1) + gy2(z2 − ϵ)] .

By construction if ϵ′ = z2 − v′, then f(u + v) − [g(u) + g(v)] ≥ ∆2(u), and if ϵ′ < z2 − v′

then f(u+ v)− [g(u) + g(v)] ≥ ∆1(u).

On the other hand, if λ1 < λ2, then we instead increase z2. Again we stop when we hit

a breakpoint and similarly show that f(u + v) − [g(u) + g(v)] ≥ ∆(u). In particular, we

have shown that ∆(u) ≥ min(∆1(u),∆2(u)). The proof that this value is in fact equal to

the infimum follows similarly to the proof of Theorem 4.2.3, and is omitted for brevity.

Define u∗y = inf {u′ ∈ D0 : ∆(u, y) = 0, ∀u ∈ D0, u > u′}. We can therefore recast our

non-dominance condition as follows: u∗y = 0 and ∆(0, y) = 0 for all y ∈ D1. Indeed, as ∆(u)

is an infimum, the condition that ∆(u) = 0 implies that we cannot increase g(u) without

there existing some v such that g(u) + g(v) > f(u+ v).

For now we simply state the theorem, and defer its proof until Section 4.5 where it will

follow immediately from the algorithm to construct a non-dominated approximation.

Theorem 4.2.7. Suppose fy and gy are non-decreasing, piecewise linear, and lower semi-

continuous. If g ≤ f is superadditive, then g is non-dominated if and only if ∆(u) = 0 for

all u ∈ D.

This theorem yields an immediate corollary that shows non-dominance implies maxi-

mality whenever f , g, and D fit our specified conditions:

Corollary 4.2.8. If g ≤ f is a non-dominated superadditive approximation, then g is

maximal.

86

Proof. As g is non-dominated, for every u ∈ D, ∆(u) = 0. Moreover, for any u ∈ E,

f(u+ v)− [f(u) + f(v)] ≥ 0 for all v, u+ v ∈ D. If g(u) < f(u), then

f(u+ v)− [g(u) + g(v)] ≥ f(u+ v)− [f(u) + f(v)] + [f(u)− g(u)] > 0.

Thus ∆(u) > 0 contradicting that g is non-dominated.

Now to prove a function is non-dominated, it suffices to compute u∗y for all y ∈ D1. If

u∗y > 0 for any y, then the function cannot be non-dominated. If u∗y = 0 for all y, then

we also test whether ∆(0, y) = 0. As a trivial consequence of Proposition 4.2.6 we can

efficiently compute ∆(0, y), so we must show that we can compute u∗y efficiently.

Theorem 4.2.9. In polynomial time, we can identify u∗y. In particular, we can test non-

dominance in polynomial time.

Proof. We will prove this theorem by describing an algorithm that computes u∗y efficiently.

Initialize the algorithm by setting ū = (d0, y). We successively update ū to compute u∗y.

For notational convenience let ū = (z̄, y), and assume inductively that u∗y ≤ z̄. Moreover,

we may assume that z̄ > 0; otherwise u∗y = 0. Set ∆min = f(ū)− g(ū). Define sets

W (u) = {w ∈W : w − u ∈ D} ,

V (u) = {v ∈ V : u+ v ∈ D} .

Constructing these sets for u = ū takes at mostO(|W |+|V |) steps, but it can be considerably

accelerated if they have been computed in a previous iteration.

For each w ∈W (ū),

∆(ū : w) = f(w)− [g(ū) + g(w − u)] .

Update ∆min = min {∆min,∆(ū : w)}. Similarly for each v ∈ V (ū), let v = (z̃, ỹ). If

z̃ + z̄ < d0, then compute

∆(ū : v) = f̄(ū+ v)− [g(ū) + ḡ(v)] .

Update ∆min = min {∆min,∆(ū : v)}. As |W (ū)| + |V (ū)| ≤ |W | + |V |, this step takes a

linear number of iterations.

87

If ∆min > 0, then we have shown that ∆(ū) > 0, and therefore by our inductive hypoth-

esis, u∗y = z̄. Otherwise, if ∆min = 0, then we must test whether we can update ū. Let λ

denote the slope of gy to the left of z̄, and let z′ < z̄ denote the breakpoint of gy preceding

z̄. Therefore, for all z ∈ (z′, z̄),

gy(z) = gy(z̄)− λ(z̄ − z).

Now we must identify a new ū if appropriate.

Let ν0 = 0. For each w = (ẑ, ŷ) ∈W (ū), compute

∆̄(ū : w) = f(w)− [g(ū) + ḡ(w − u)] .

If ∆̄(ū : w) = 0, then let z′′ ∈ Vŷ−y denote the smallest breakpoint of gŷ−y strictly greater

than ẑ − z̄. Letting µw denote the slope of gŷ−y to the right of ẑ,

gŷ−y(z) = ḡŷ−y(ẑ − z̄) + µw (z − (ẑ − z̄)) ,

for all z ∈ (ẑ − z̄, z′′]. If µw = λ, then set ν0 = max {ν0, z′′ − (ẑ − z̄)}.

For v = (z̃, ỹ) ∈ V (ū), compute

∆̄(ū : v) = f(ū+ v)− [g(ū) + ḡ(v)] .

If ∆̄(ū : v) = 0, then let z′′ ∈ Wy+ỹ denote the largest breakpoint of fy+ỹ that is strictly

smaller than z̄ + z̃. Again letting µv denote the slope of fy+ỹ to the left of z̄ + z̃,

fy+ỹ(z) = fy+ỹ(z̄ + z̃)− µv(z̄ + z̃ − z),

for all z ∈ (z′′, z̄ + z̃]. If µv = λ, then set ν0 = max(ν0, z̄ + z̃ − z′′).

We set ν = min {ν0, z̄ − z′} . If ν = 0, then we claim that u∗y = z̄; otherwise, we claim

that we can set ū = (z̄ − ν, y) (shown in Figure 13).

First suppose that ν = 0. As before, observe that for small ϵ > 0, then ũ = (z̄ − ϵ, y),

satisfies W (ũ) =W (ū) and V (ũ) = V (ū). For w ∈W (ū),

f(w)− [g(ũ) + g(w − ũ)] = f(w)− [g(ū) + ḡ(w − ū)] + (λ− µw)ϵ.

Again we consider f(w) − [g(ū) + ḡ(w − ū)]. If this quantity is equal to 0, then λ > µw

by the validity of g. Otherwise, it exceeds some small positive value ∆′. We may assume

88

ū− ν ū ū− ν ū

u u
g(w − u)

f(w) − g(u)

g(u) + g(v)

f(u + v)

ν ν

Figure 13: Possible updates for ū with (a) v fixed or (b) w fixed.

by scaling that all slopes are between 0 and 1; hence we choose ϵ < ∆′. In particular, this

implies that ∆(ũ : w) > 0. A similar argument applies to v ∈ V (ū).

Next suppose that ν > 0. Then there exists either some w ∈ W (ū) or some v ∈ V (ū)

such that ∆̄(ū : w) = 0 and µw = λ or ∆̄(ū : v) = 0 and µv = λ. Assume that for some

such w = (ẑ, ŷ) ∈ W , z′′ − (ẑ − z̄) ≥ ν with z′′ defined as before. By construction, for all

0 < ϵ < ν,

f(w)− [g(ũ) + g(w − ũ)] = f(w)− [g(ū) + ḡ(w − ū)] + (λ− µw)ϵ,

where ũ = (z̄ − ϵ, y). Therefore, ∆(ũ) = 0. We proceed analogously for v ∈ V (ū).

We have shown that our update is valid in the sense that z̄ − ν is a valid upper bound

for u∗y. Further we have shown that we can perform the update in O(|W |+ |V |) steps. Now

observe that the updated ū will either belong to Vy or is equal to w − v for some w ∈ W

and v ∈ V . Thus we must perform at most O(|W ||V |+ |V |) iterations.

4.3 A Modified Superadditive Approximation

There are many different superadditive approximations that we can construct. For

example, let η = minz∈D f(z), then setting g(z) = min(η, 0) is a valid, albeit fairly trivial

superadditive approximation of f . Of course, such an approximation would be entirely

ill-suited for the purposes of superadditive lifting.

We shall instead revisit the function γ studied in [40,76]:

γ(u) = inf
v,u+v∈D

{f(u+ v)− f(v)} . (61)

For our particular choice of D, γ is valid, superadditive, and maximal. Unfortunately, the

89

function γ is not guaranteed to be lower semicontinuous even when f is lower semicontinuous

(as in Example 3.1.3). Therefore we impose a slight modification on γ, and instead operate

with the function α defined by

α(u) = inf
v,u+v∈D

{
f(u+ v)− f̄(v)

}
. (62)

We will begin by establishing the properties of α. We will then show how α can be computed

incrementally to produce a strengthened approximation. Finally, we will show that α can

be constructed in polynomial time.

4.3.1 Properties of α

Here we show that α is computationally easier to handle than γ and still possesses many

nice properties. First we will show that the infimum of (62) is in fact attained by some v

such that either v ∈W or u+ v ∈W . As before, for each y ∈ D1 we can define a function

αy by αy(z) = α(z, y).

Proposition 4.3.1. The infimum of (62) is attained by some v such that either v ∈W or

u+ v ∈W .

Proof. Let u = (z1, y1) and let v = (z2, y2). Suppose that neither v nor u+v is a breakpoint

of f . Then let λ denote the slope of fy1+y2 at z1 + z2 and let µ denote the slope of fy2 at

z2.

If λ ≥ µ, then we decrease z2. Let z′ ∈ Wy2 denote the largest breakpoint strictly less

than z2, and let z′′ ∈ Wy1+y2 be the largest breakpoint strictly less than z1 + z2. Choose

ϵ′ = min(z2 − z′, z1 + z2 − z′′). Taking the limit,

fy1+y2(z1 + z2)− fy2(z2) ≥ lim
ϵ↑ϵ′

fy1+y2(z1 + z2 − ϵ)− fy2(z2 − ϵ)

= f̄y1+y2(z1 + z′2)− f̄y2(z
′
2)

≥ fy1+y2(z1 + z′2)− f̄y2(z
′
2),

where z′2 = z2 − ϵ′. We proceed similarly if λ < µ. Noting the last inequality, it follows by

construction that the infimum is actually attained.

90

Now that we know the infimum in α is attained, we can easily prove that α is indeed

superadditive.

Proposition 4.3.2. α is superadditive.

Proof. Consider u, v, u+ v ∈ D. Then by construction

α(u+ v) = f(u+ v + w)− f̄(w)

≥ f(u+ v + w)− f̄(v + w) + f(v + w)− f̄(w)

≥ α(u) + α(v).

The first inequality follows from the relation f̄(z) ≥ f(z), and the latter follows by the

definition of α.

Next we show that the function α is well-behaved with respect to our conditions.

Proposition 4.3.3. For all y ∈ D1, αy is non-decreasing, piecewise linear, and lower

semicontinuous.

Proof. We first show that αy is non-decreasing. Let u = (z1, y) and v = (z2, y) be chosen

such that z1 ≤ z2. Let

αy(z2) = fy+y′(z2 + z′)− f̄y′(z
′).

Then fy+y′(z1 + z′) ≤ fy+y′(z2 + z′); thus αy(z1) ≤ fy+y′(z2 + z′)− fy′(z
′) = αy(z2).

Next we show that αy is piecewise linear. Let w = (z′, y′) ∈ W . Define the function

α′
y,w

α′
y,w(z) =

fy′(z
′)− f̄y′−y(z

′ − z) 0 ≤ z ≤ z′

+∞ z′ < z ≤ d0

+∞ y′ − y /∈ D1.

Likewise, define the function α′′
y,w

α′′
y,w(z) =

fy+y′(z + z′)− f̄y′(z
′) 0 ≤ z ≤ d0 − z′

+∞ d0 − z′ < z ≤ d0

+∞ y + y′ /∈ D1.

91

By Proposition 4.3.1, αy(z) can be computed by taking the minimum of these functions.

Therefore, αy is the minimum of finitely many piecewise linear functions, and is thus piece-

wise linear.

Lastly we show that αy is lower semicontinuous. Fix some z̄ ∈ D0, and consider the

limit of z̄ − ϵ as ϵ decreases to 0. Now let

W ′
y(z) = {w ∈W : w − (z, y) ∈ D} = {w ∈W : w ≥ (z, y)} ,

W ′′
y (z) = {w ∈W : w + (z, y) ∈ D} =

{
(z′, y′) ∈W : z′ + z ≤ d0, y + y′ ∈ D1

}
.

For ϵ > 0 sufficiently small W ′
y(z̄ − ϵ) =W ′

y(z̄) and W
′′
y (z̄ − ϵ) =W ′′

y (z̄).

Now assume by scaling that no slope of f is greater than 1. Thus for all (z′, y′) ∈W ′
y(z̄)

and ϵ > 0 small,

fy′(z
′)− fy′−y(z

′ − z̄ + ϵ) ≥ fy′(z
′)− fy′−y(z

′ − z̄)− ϵ

≥ αy(z̄)− ϵ.

Similarly for (z′, y′) ∈W ′′
y (z̄),

fy′+y(z̄ + z′ − ϵ)− fy′(z
′) ≥ fy′+y(z̄ + z′)− fy′(z

′)− ϵ

≥ αy(z̄)− ϵ.

In particular, by taking the minimum over all such terms, we conclude that αy(z̄ − ϵ) ≥

αy(z̄)− ϵ for small ϵ > 0. Therefore, limϵ↓0 αy(z̄− ϵ) = αy(z̄), proving lower semicontinuity.

Next we consider the slopes that the function αy can attain. In particular, these slopes

must coincide with f .

Proposition 4.3.4. If αy has slope λ at z, then there exists some (z′, y′) ∈ D such that fy′

has slope λ at z′.

Proof. Recall the definitions of α′
y,w and α′′

y,w from the previous proof and for convenience,

let w = (z′, y′). The slope of α′
y,w at z is λ if and only if the slope of fy′−y is λ at (z′ − z).

Likewise the slope of α′′
y,w at z is λ if and only if the slope of fy′+y at z + z′ is λ.

92

If the slope of αy at some z is λ, then there exists some w1, w2 ∈W (possibly the same)

such that the slope of α′
y,w1

or α′′
y,w1

to the right of z is λ and the slope of α′
y,w2

or α′′
y,w2

to

the left of z is λ.

The function α possesses the desirable properties that we exploited in the previous

section to characterize non-dominance. Moreover, it behaves nicely at discontinuities and

is much easier to deal with computationally than γ. Therefore, we instead operate with α

at a very slight expense. One slight nuance is that α may not be maximal anymore as we

show in the following example.

Example 4.3.1. We revisit the example from the previous chapter. Let f be defined by

f(z) =

0 0 ≤ z ≤ 1

1 1 < z ≤ 4.

Omitting the details α is given by

α(z) =

0 0 ≤ z ≤ 3

1 3 < z ≤ 4.

Note that f(3)+ f(z) = 1 = f(3+ z) for 0 ≤ z ≤ 1. However as α(3) < f(3), it follows that

α is not maximal.

Recall that E = {u ∈ D : f(u) + f(v) ≤ f(u+ v), ∀v, u+ v ∈ D}. A superadditive ap-

proximation g ≤ f is maximal if g(u) = f(u) for all u ∈ E. Let

E′ =
{
u ∈ D : f(u) + f̄(v) ≤ f(u+ v), ∀v, u+ v ∈ D

}
.

Clearly E′ ⊆ E. We show how α behaves over E′ and where E′ and E differ.

Proposition 4.3.5. α(u) = f(u) if and only if u ∈ E′.

Proof. If u ∈ E′, then clearly α(u) = f(u). Otherwise, there exists some v such that

f(u) + f̄(v) > f(u+ v), hence α(u) ≤ f(u+ v)− f̄(v) < f(u).

Proposition 4.3.6. If u ∈ E \E′, then u = w1 − w2 for some w1, w2 ∈W .

93

Proof. Suppose that u ̸= w1−w2 for some w1, w2 ∈W . By applying Proposition 4.2.6 with

g = f , it follows that f(u+ v)− f(v) is always at least

f̄(u+ w)− f̄(w),

for w ∈ W . However, this implies that u + w /∈ W , and therefore f̄(u + w) = f(u + w).

Likewise, f(u+ v)− f(v) is at least

f(w)− f(w − u),

for some w ∈ W . Necessarily w − u /∈ W , thus f(w − u) = f̄(w − u). This implies that α

and γ can differ only when u = w1 − w2 for w1, w2 ∈ W . In particular, if u ∈ E \ E′, then

α(u) < γ(u) so u = w1 − w2.

Therefore, we see that α and γ can only differ in at most O(|W |2) points. As a slight

modification, we now say that a superadditive approximation g ≤ f is maximal if g(u) =

f(u) for all u ∈ E′ with the understanding that only a small number of points need to be

tested and adjusted to satisfy maximality in its original sense.

4.3.2 Nested Application of α

We described earlier that γ is typically dominated. In this regard, α is no different. We

show that we can strengthen α by updating the function in steps. Let

Di =
{
z ∈ D : z ≤ ui

}
,

for i = 1, . . . , r, such that u1 ≤ · · · ≤ ur. Further, assume that ∅ (D1 (· · · (Dr = D.

Next we slightly modify our definition of α so that it is parametrized by f . We define

the function α(· : f), by

α(u : f) = min
v,u+v∈D

{
f(u+ v)− f̄(v)

}
. (63)

Next we define a collection of functions for i = 1, . . . , r:

f i(u) =

α
(
u : f i−1

)
u ∈ Di

f(u) u ∈ D \Di,

(64)

where f0 = f . Despite its simplicity, this iterative procedure is easily seen to strengthen α.

94

Observation 4.3.7. f r ≤ f r−1 ≤ · · · ≤ f1 ≤ f0 = f .

Proof. This follows trivially by induction and the validity of α
(
u : f i

)
.

Observation 4.3.8. α
(
u : f i

)
≤ f(u) for all u ∈ D.

Proof. As f i ≤ f , it follows trivially that α
(
u : f i

)
≤ f(u).

Theorem 4.3.9. For i = 1, . . . , r, α
(
u : f i

)
≥ α

(
u : f i−1

)
for all u ∈ D.

Proof. We only need to show the result for i = 1. Let u ∈ D1. We claim that for u ∈ D1,

f1(u) + f̄1(v) ≤ f1(u+ v),

for all v, u + v ∈ D. First observe that since α (· : f) is superadditive, it follows from

Theorem 4.2.3 that

α(u : f) + ᾱ(v : f) ≤ α(u+ v : f).

In particular, if v ∈ D1, then because α(u+ v : f) ≤ f1(u+ v), f1(u) + f1(v) ≤ f1(u+ v).

Otherwise, v ∈ D \D1, and thus u+ v ∈ D \D1. Therefore

α(u : f) + f̄(v) ≤ f(u+ v)− f̄(v) + f̄(v) = f(u+ v).

It follows from Proposition 4.3.5, α
(
u : f1

)
= α(u : f) for all u ∈ D1.

Now for u ∈ D \D1, f1(u+ v) = f(u+ v) for all v ∈ D. Observe that f1(v) ≤ f(v) for

all v ∈ D, and therefore

α
(
u : f1

)
= f(u+ v)− f̄1(v) ≥ f(u+ v)− f̄(v) ≥ α(u : f).

Thus the approximation α(· : f1) dominates α(· : f).

Corollary 4.3.10. α(· : f i) is maximal for all i = 0, . . . , r.

Proof. For all u ∈ E′, f(u) = α(u : f) ≤ α(u : f i) ≤ f(u).

Note that we need not restrict ourselves to using α. The same construction works just

as well with γ. We conclude this discussion by providing an example demonstrating that

this approach can construct stronger approximations than α on its own.

95

Example 4.3.2. Recall the function from Example 4.3.1. Let u1 = 1+z for some 0 < z < 2.

Then f1 is given by

f1(u) =

0 0 ≤ u ≤ 1 + z

1 1 + z < u ≤ 4.

Whenever z ≥ 1, f1 is superadditive, so α(· : f1) = f1. Therefore assume that 0 < z < 1.

Observe that for 3 − z < u ≤ 4, f1(u) + f1(v) = 1 for all v such that u + v ∈ D, so

α(u : f1) = 1. For 1 + z < u ≤ 3− z, f(4)− f̄(4− u) = 0, thus α(u : f1) = 0. So α(· : f1)

dominates α(· : f0).

4.4 Computing α

In this section we discuss the task of computing α. Here we describe a restriction on

f and g that applies to many known families of lifting functions. We split this section

into two parts: first, we describe and simplify this restriction. Next, we discuss how the

task of computing α can be achieved in polynomial time with and without our structural

assumption on f .

4.4.1 Two-slope Functions

When talking of f , we rely upon properties of fy such as lower semicontinuity and

piecewise linearity. Likewise we can capitalize on the structure of f when f is a two-slope

function.

Definition 4.4.1. A piecewise linear function f is a two-slope function if there exists some

λ and µ such that the slope of fy is either λ or µ wherever it is defined. If λ = 1 and µ = 0,

then we say that f is a 0-1 function.

As far as superadditive approximations are concerned, there is essentially no difference

between two-slope functions and 0-1 functions.

Theorem 4.4.1. Without loss of generality we may assume that λ = 0, µ = 1, w ∈ Zm+1,

and f(w), f̄(w) ∈ Z for all w ∈W .

96

Proof. Assume for convenience that λ < µ. Replace f with the function f1 defined by

f1(u) = f(u) − λ · z where u = (z, y). By construction, for all y ∈ D1, the slope of f1y is

either λ′ = 0 or µ′ = µ− λ > 0.

Next for all u = (z, y) ∈ D, let u′ = (z/µ′, y). Define f2(u′) = f1(u) and accordingly

define D′ = D′
0 ×D1, with D′

0 = [0, µ′ · d0]. Hence the slope of f2y must either be 0 or 1 for

all y ∈ D1.

Finally, the breakpoints of f2 may not be integral. As there are finitely many break-

points, and all data are rational, there exists an N ∈ Z+ such that Nw, Nf2(w) and

Nf̄2(w) are all integral. Thus for u = (z, y) ∈ D′, we set u′ = (z/N, y). Let D′′ = D′′
0×D1,

with D′′
0 = [0, µ′ ·Nd0]. The function f̃ defined by

f̃(u) = Nf2(u′) = N

[
f

(
z

N(µ− λ)
, y

)
− λz

N(µ− λ)

]
satisfies the conditions of the theorem

Now we claim that the superadditive under-approximations of f̃ are in one-to-one corre-

spondence with superadditive approximations of f . First suppose that g is a superadditive

under-approximation of f . Then we claim that g̃ defined by

g̃(z, y) = N

[
g

(
z

N(µ− λ)
, y

)
− λz

N(µ− λ)

]
,

is an under-approximation of f̃ . Indeed, this is an under-approximation as

f̃(z)− g̃(z) = N

[
f

(
z

N(µ− λ)

)
− λz

N(µ− λ)

]
−N

[
g

(
z

N(µ− λ)

)
− λz

N(µ− λ)

]
= N

[
f

(
z

N(µ− λ)

)
− g

(
z

N(µ− λ)

)]
≥ 0.

Next we verify that superadditivity is preserved. Clearly,

g̃(z1, y1) + g̃(z1, y1) = N

[
g

(
z1

N(µ− λ)
, y1

)
+ g

(
z2

N(µ− λ)
, y2

)
− λ(z1 + z2)

N(µ− λ)

]
,

which by the superadditivity of g and non-negativity of N is at most

N

[
g

(
z1 + z2
N(µ− λ)

, y1 + y2

)
− λ(z1 + z2)

N(µ− λ)

]
= g̃(z1 + z2, y1 + y2).

97

Thus we have shown how to produce a superadditive approximation of f̃ from a superad-

ditive approximation of f .

Next we must show that we can produce a superadditive under-approximation g of f

from a superadditive under-approximation g̃ of f̃ . Essentially, the proof is the same, so we

will just show how to invert f̃ to recover f . Thus we have

f(z, y) =
1

N
f̃ (N(µ− λ)z, y) + λz.

Thus we recover g from g̃ by setting

g(z, y) =
1

N
g̃ (N(µ− λ)z, y) + λz.

By repeating the same arguments as above we can show that this indeed produces a valid

superadditive approximation of f .

From Proposition 4.3.4, if f is a 0-1 function, then α will be a 0-1 function. As we will

see later, this carries through to the non-dominated approximation that we construct.

It will also be useful to identify the breakpoints of f of g by their behavior. In particular,

only certain breakpoints of f and g will be necessary for testing superadditivity and non-

dominance.

Definition 4.4.2. We say a breakpoint w = (z, y) ∈W is a slope 0 breakpoint if, for small

ϵ > 0, fy(z − ϵ) = fy(z).

Definition 4.4.3. We say a breakpoint w = (z, y) ∈W is a slope 1 breakpoint if, for small

ϵ > 0, fy(z − ϵ) = fy(z)− ϵ.

Definition 4.4.4. We say a breakpoint w = (z, y) ∈ W is a jump or discontinuity if fy is

discontinuous at z.

Note that by definition (0, y) and (d0, y) are jumps. Breakpoints have played an impor-

tant role in describing efficiently testable conditions for superadditivity and non-dominance.

In the case of 0-1 functions, we can further refine these ideas to help accelerate an imple-

mentation.

98

Proposition 4.4.2. Suppose that f and g are 0-1 functions. Then for fixed u ∈ D,

min
v,u+v∈D

{f(u+ v)− ḡ(v)} ,

is minimized when either u + v is a slope 0 breakpoint of f or v is a slope 1 breakpoint or

jump of g.

Proof. Either u+v ∈W or v ∈ V . The proposition follows as a straightforward application

of the definitions.

By applying this result we can reduce the number of points that we actually need to

test for determining superadditivity and non-dominance.

4.4.2 Constructing α in Polynomial Time

Assuming that f is a 0-1 function, we are able to construct α in polynomial time. As in

Proposition 4.3.3, we can view α as a minimum of a small number of functions. We must

show that the number of breakpoints of this minimum does not blow up.

Theorem 4.4.3. α has O(|W |2) breakpoints.

Proof. We can define the function α′
w by setting α′

w(z, y) = α′
y,w(z). Now observe that

α′
w has O(|W |) breakpoints. Indeed, let w = (ẑ, ŷ), then α′

y,w has O(|Wŷ−y|) breakpoints.

Summing over all y, and noting that
∑

y |Wy| = |W |, the claim follows. We can similarly

define α′′
w and conclude that it has at O(|W |) breakpoints.

Now it is entirely possible that there are breakpoints of α that are not breakpoints of

α′
w or α′′

w for any w, but there cannot be too many of these breakpoints.

Consider αy. Let f i, i = 1 . . . r denote the collection of functions α′
y,w and α′′

y,w, and

let W i denote the collection of breakpoints of f i. Define Ty =
∪
iW

i = {t1, . . . , tp} with

t1 < · · · < tp.

Consider the interval (tj , tj+1). We claim that αy contains at most one breakpoint in

this interval. Observe that none of the functions f i have a breakpoint in (tj , tj+1); therefore,

the slopes of these functions in this interval is either 0 or 1. Now suppose that there exists

some z∗ ∈ (tj , tj+1) such that z∗ is a breakpoint of αy. Because the f i are continuous in

99

(tj , tj+1), αy must be continuous in (tj , tj+1), and in particular z∗ is a slope 1 breakpoint

of αy. Thus αy(z) = αy(z
∗) for all z ∈ (z∗, tj+1].

Putting this together with the previous observation, we conclude that α must have

O(|W |2) breakpoints.

As a natural consequence, we can compute α in polynomial time. Therefore, given

some function f in this form, it is always possible to efficiently construct a non-trivial

superadditive approximation.

Theorem 4.4.4. α can be constructed in time O(|W |3).

Proof. As before we construct the set Ty, which can be performed in linear time. Then we

sort the elements in time O (|Ty| log |Ty|). Observe that O(log |Ty|) = O(log |W |). Thus the

total effort to construct and sort T is∑
y

O (|Ty| log |W |) = O
(
|W |2 log |W |

)
.

Next we compute αy for each y.

Let f i be defined as before, and let Ty = {t1, . . . , tp}. Now for j = 1, . . . , p− 1, compute

for each i, f̄ i(tj) and f
i(tj+1). Identify the minimum of each of these quantities, which can

be achieved in time O(|W |). Let ᾱy(tj) and αy(tj+1) denote these quantities. If ᾱy(tj) <

αy(tj+1), then we must test whether their exists some breakpoint in (tj , tj+1). To do so,

simply compute z∗ = αy(tj+1)− ᾱy(tj) + tj . If z
∗ ∈ (tj , tj+1), then it is a breakpoint of αy.

Therefore, we can compute α only by considering each of the O(|W |2) points belonging

to T . Each such iteration takes, O(|W |) time; thus the statement of the theorem follows.

Our insistence that α is 0-1 function is not necessary for computing α in polynomial

time. Suppose now that we relax this restriction.

We proceed as before, defining T , and considering some interval (tj , tj+1). In this interval

each of the functions f i are again continuous and have constant slope. The next proposition

shows that there can only be O(|W |) breakpoints in this interval.

Proposition 4.4.5. Let f1, . . . , f r : R → R be affine functions over (u, v). Then α =

min
{
f i, . . . , f r

}
has at most r − 1 breakpoints in (u, v).

100

Proof. It suffices to show that the slope of α is monotone decreasing. As there are at most

r − 1 distinct slopes, this shows that there can be at most r − 1 points where the slope

changes.

For convenience let f i have slope λi, and assume that λ1 ≥ · · · ≥ λr. Suppose that

α(z∗) = f i(z∗), for some z∗ ∈ (u, v). Thus α(z) ≤ f i(z) for all z ∈ [z∗, u). In particular,

f j(z) = f j(z∗) + λj(z − z∗) ≥ f i(z) + λi(z − z∗) = f i(z)

for all j > i. Therefore, the only functions that can possibly intersect f i in [z∗, u) must

have slope strictly less than λi (see Figure 14).

f3
α

f1

f2

ti ti+1

Figure 14: Computing α

As a conservative estimate, there are at most |W | distinct slopes of f , so there can be

at most |W |−1 breakpoints in (tj , tj+1). This bound can be tightened if we know the exact

number of slopes that f can attain, but in general we have the following theorem:

Theorem 4.4.6. If f is not a 0-1 function, then α has O(|W |3) breakpoints.

We can similarly modify our algorithm to compute the breakpoints of αy to consider

all pairs of functions to determine where they intersect. We first compute the O(|W |2)

intersections and sort them. For each intersection, we can verify in constant time (by

interpolating) whether it is a breakpoint of αy. Thus we have the following theorem.

Theorem 4.4.7. If f is not a 0-1 function, then α can be computed in time O(|W |4 log |W |).

This analysis is fairly crude and it may be possible to obtain better bounds using more

sophisticated approaches. However, this is a first step in demonstrating the tractability of

the problem of constructing a superadditive approximation.

101

4.5 Constructing Non-dominated Approximations

In this section, we build on the ideas from the previous sections to construct a non-

dominated approximation. Let fy be piecewise non-decreasing and lower semicontinuous for

all y ∈ D1. In this section, we prove Theorem 4.2.6, i.e. a valid superadditive approximation

g of f is non-dominated if and only if ∆(u) = 0 for all u ∈ D. We show in the next example

that this condition is not sufficient to maintain lower semicontinuity.

Example 4.5.1. Let f be defined by

f(z) =

z 0 ≤ z ≤ 1

2 1 < z ≤ 2.

The superadditive approximation g defined by

g(z) =

0 0 ≤ z < 1

1 z = 1

2 1 < z ≤ 2

is non-dominated, but is not lower semicontinuous.

To preserve lower semicontinuity, we weaken our non-dominance condition at a finite

number of points. We modify our definition of ∆(u):

δ(u) = min
v,u+v∈D

{f(u+ v)− [g(u) + ḡ(v)]} , (65)

and instead demand that δ(u) = 0 for all u ̸= (0, y) for y ∈ D1. If g is a 0-1 function, then

we can apply Proposition 4.4.2 to conclude that either u+ v is a slope 0 breakpoint or v is

a slope 1 breakpoint or a jump.

As it turns out, the condition that δ(u) > 0 implies that there is a gap with respect to

the superadditivity condition. We will exploit this property as we strengthen g.

Proposition 4.5.1. If δ(u+ v) = 0, then

g(u+ v)− [g(u) + ḡ(v)] ≥ δ(u).

102

Proof. If v = 0 then the claim is trivial so assume that v ̸= 0. By assumption there exists

some w such that

f(u+ v + w)− [g(u+ v) + ḡ(w)] = 0.

In particular,

g(u+ v)− [g(u) + ḡ(v)] = f(u+ v + w)− [g(u) + ḡ(v) + ḡ(w)]

≥ f(u+ v + w)− [g(u) + ḡ(v + w)] ≥ δ(u).

The first inequality follows by superadditivity and the second by the definition of δ.

Much like ∆, δ can be computed efficiently by computing a small list of points. Applying

the proof of Proposition 4.2.6, δ(u) can be characterized as follows:

Proposition 4.5.2. Let

δ1(u) = min
w∈W

{f(w)− [g(u) + ḡ(w − u)] : w − u ∈ D}

δ2(u) = min
v∈V

{f(u+ v)− [g(u) + ḡ(v)] : u+ v ∈ D}.

Then δ(u) = min{δ1(u), δ2(u)}.

Note that when D is discrete, δ and ∆ coincide. Otherwise, δ and ∆ may differ when

u can be expressed as w − v for some w ∈ W and v ∈ V where both breakpoints are

discontinuities.

We will first consider the much simpler discrete case. In this case, a non-dominated su-

peradditive approximation can be constructed in quadratic time. Next we describe the pro-

cess for constructing a non-dominated approximation when fy is piecewise linear achieved

by using a specially chosen strengthening operation. However, establishing its correctness

and finite termination will be considerably more involved.

4.5.1 The Discrete Case

We begin by describing a simpler case for constructing a non-dominated approximation.

Let f and g be functions defined over D with D0 = {0}, i.e. the domain is discrete. Further

assume that g(0) = 0, g ≤ f , and g is superadditive.

103

Observe that the set D1 is partially ordered under the standard definition of ≤ for Rm.

For convenience, let |D1| = q, and let D1 = {y1, . . . , yq} be ordered such that if yi ≥ yj ,

then i ≤ j. For ease of notation, we let f(0, y) = fy, g(0, y) = gy, and δ(0, y) = δ(y).

For i = 1, . . . , q, we will identify an appropriate update for gyi and update g accordingly.

First compute

δ(yi) = min
y,y+yi∈D1

{fy+yi − [gyi + gy]} .

Next compute

δ′(yi) =

(f2yi − 2gyi) /2 2yi ∈ D1

+∞ 2yi /∈ D1.

Let δ = min {δ(yi), δ′(yi)}. We construct a function h, by setting

hy =

gy y ̸= yi

gyi + δ y = yi.

Proposition 4.5.3. h is valid and superadditive.

Proof. Validity of h is clear as δ ≤ fyi − gyi . By Proposition 4.5.1,

gyi+y − [gyi + gy] ≥ δ(yi).

for all y ̸= 0. Therefore if y ̸= yi, then hyi + hy ≤ hyi+y as δ ≤ δ(yi). Now let δ′′(yi) =

(g2yi − 2gyi)/2, and suppose to the contrary that δ′′(yi) < δ. Then

0 = g2yi −
[
gyi + δ′′(yi) + gyi + δ′′(yi)

]
= f2yi+y′ −

[
gyi + δ′′(yi) + gyi + gy′ + δ′′(yi)

]
≥ f2yi+y′ −

[
gyi + gyi+y′ + δ′′(yi)

]
.

Thus δ′′(yi) ≥ f2yi+y′ −
[
gyi + gyi+y′

]
≥ δ(yi). Therefore if δ′(yi) > δ′′(yi) then δ ≤ δ′′(yi).

Hence 2hyi ≤ h2yi , so h is superadditive.

Proposition 4.5.4. There exists some y′ such that hyi + hy = fy+y′.

Therefore, by iteratively strengthening g, we eventually construct a non-dominated func-

tion. Because each strengthening step takes at most O(|W |) time, we have the following

theorem.

104

Theorem 4.5.5. If D is discrete, then a non-dominated approximation can be constructed

in time O(|W |2).

Despite its apparent limitation, many combinatorial problems can produce lifting func-

tions defined over a discrete domain. Moreover, the surrogate approach to superadditive

lifting described in the previous chapter allows us to manage |W |. Hence we can use this

algorithm to help produce good approximations for more complex problems.

4.5.2 Strengthening Piecewise Linear Functions

We now assume that both f and g are functions such that fy and gy are increasing,

piecewise linear, and that g ≤ f is superadditive. The strengthening operation in this case

is by necessity more complex than for discrete functions. Nevertheless, some of the ideas

naturally translate. Recalling that D1 = {y1, . . . , yq} is partially ordered, we again sort the

elements such that yi ≥ yj implies that i ≤ j. Starting with i = 1, we compute

u∗yi = inf
{
u′ ∈ D0 : δ(u, yi) = 0, ∀u ∈ D0, u ≥ u′

}
.

If u∗yi > 0, then we strengthen gyi until u
∗
yi = 0. We increment i once this condition is met.

When u∗0 = 0, the resulting function is non-dominated.

The high level idea is simple enough; however, we must identify a strengthening proce-

dure that decreases u∗yi . To make the discussion easier, we will describe the procedure for

one-dimensional functions, and note that extending the results to the higher-dimensional

setting is straightforward.

Assume that f and g have slopes λ1 < · · · < λk. To facilitate later discussion about

convergence, let gt, δt, ut, and V t denote g, δ, u∗ and V at iteration t. For now we only

consider t = 0 and t = 1, i.e. the initial iteration and the first update. Further, let

W (u) = {w ∈W : w ≥ u} and V t(u) = {v ∈ V t : u+ v ≤ d}.

For all w ∈ W such that f(w) − [g0(u0) + ḡ0(w − u0)] = δ0(u0), let µ(w) denote the

slope of g0 to the right of w − u0, i.e.

ḡ0(w − u0 + ϵ) = ḡ0(w − u0) + µ(w)ϵ.

105

Similarly, for all v ∈ V 0(u) such that f(u0 + v)− [g0(u0) + ḡ0(v)] = δ0(u0), let µ(v) denote

the slope of f to the left of u0 + v. Let µ0 denote the maximum of these slopes.

We will choose some ℓ0 < u0 and construct g1 from g0 by setting

g1(u) =

g0(u) u /∈ (ℓ0, u0]

g0(u0) + δ0(u0)− µ0(u0 − u) u ∈ (ℓ0, u0].

Figure 15 depicts g0 and g1.

`0

g0(u)

u0
u

δ0(u0)

g1(u) = g0(u)

g1(u) g1(u) = g0(u)

Figure 15: Strengthening of g0.

First, we must identify conditions on ℓ0 that ensure that g1 remains superadditive and

valid. Moreover, we must show that g1 dominates g0. For convenience, we will let h0(u) =

g0(u0) + δ0(u0)− µ0(u0 − u).

The first of these conditions is that W (u) = W (u0) and V 0(u) = V 0(u0) for all u ∈

(ℓ0, u0]. For this, define

ℓ01 = max{w ∈W : w < u0}.

Clearly if ℓ0 > ℓ01, then W (u) =W (u0). Similarly, let

ℓ02 = max{u ∈ D : u < u0, d− u ∈ V 0}.

Again, if ℓ0 > ℓ02, then V
0(u) = V 0(u0), satisfying the first condition.

Next, we require that the updated function never “crosses” f . A more formal inter-

pretation of this restriction is that for all u ∈ (ℓ0, u0], g1(u) + g1(v) ≤ f(u + v). Indeed,

this condition must be satisfied if g1 is both valid and superadditive. This introduces three

different bounds on ℓ0.

106

The first of these bounds is given by

ℓ03 = max
w∈W (u0)

sup{u < u0 : f(w)− h0(u) < ḡ0(w − u)}.

Note that ℓ03 can be calculated efficiently in |V 0| and |W | by considering finitely many

suprema, each of which can be easily calculated. Examples of ℓ03 are shown in Figure 16

below:

f(w) − h0(u)
f(w) − h0(u)

g0(w − u) g0(w − u)

`03 `03 u0
u0

u u

Figure 16: When f(w)−h0(u) and g0(w−u) intersect (left) or cross at a breakpoint (right).

The next of these bounds is given by

ℓ04 = max
v∈V 0(u0)

sup{u < u0 : f(u+ v) < h0(u) + ḡ0(v)}.

Again ℓ04 can be efficiently computed in |V 0| and |W |. Possible examples of ℓ04 are likewise

depicted in Figure 17.

u
`04 u0

u
`04 u0

h0(u) + g0(v)
h0(u) + g0(v)

f(u + v)f(u + v)

Figure 17: When h0(u) + g0(v) and f(u+ v) (a) intersect or (b) cross at a breakpoint.

Proposition 4.5.6. If ℓ0 ≥ max{ℓ01, ℓ02, ℓ03, ℓ04}, then δ0(u) ≥ h0(u)− g0(u) for u ∈ (ℓ0, u0].

107

Proof. As ℓ0 ≥ ℓ01 and ℓ0 ≥ ℓ03,

0 ≤ f(w)− [h0(u) + ḡ0(w − u)]

= f(w)− [g0(u) + ḡ0(w − u)]− [h0(u)− g0(u)]

for all w ∈W (u). Thus δ01(u) ≥ h0(u)− g0(u). Applying the same argument for v ∈ V 0(u)

and instead using that ℓ0 ≥ ℓ02 and ℓ0 ≥ ℓ04, it similarly follows that δ02(u) ≥ h0(u)− g0(u).

By Proposition 4.5.2, the claim immediately follows.

The last bound relating g1 and f is given by

ℓ05 = sup{u < u0 : f(2u) < 2h0(u)}.

This can be easily computed, and in conjunction with ℓ03 and ℓ04 ensures that the two

functions never cross.

By our choice of µ0, there exists some ℓ06 such that δ0(u) = h0(u) − g0(u) for all u ∈

(ℓ06, u
0]. To compute a valid choice of ℓ06, we compute variants of ℓ03, ℓ

0
4, and ℓ05. For this

purpose define sets

W̃ (u) =
{
w ∈W 0(u0) : f(w)− [g0(u0) + ḡ0(w − u0)] = δ0(u0)

}
,

and

Ṽ (u) =
{
v ∈ V 0(u0) : f(u0 + v)− [g0(u0) + ḡ0(v)] = δ0(u0)

}
.

By the definition of δ0 one of these sets is guaranteed to be non-empty.

For all w ∈ W̃ (u), let

v(w) = min{v ∈ V 0 : v > w − u0}.

If ḡ0(u) = ḡ0(w − u0) + µ0
(
u− (w − u0)

)
for all u ∈

[
w − u0, v(w)

)
, then set u(w) =

w − v(w); otherwise, set u(w) = +∞. Let ℓ̃03 = min
w∈W̃ (u)

u(w).

Analogously, for all v ∈ Ṽ (u), let

w(v) = max{w ∈W 0 : w < u0 + v}.

If f(u) = f(u0+v)−µ0
(
(u0 + v)− u

)
for all u ∈

(
w(v), u0 + v

]
, then set u(v) = (u0+v)−

w(v); otherwise, set u(v) = +∞. Define ℓ̃04 = min
v∈Ṽ (u)

u(v).

108

Finally, if 2u0 > d, then let ℓ̃05 = +∞; otherwise, let

ℓ̃05 = min
{
u < u0 : f(2u′) = 2h0(u′),∀u < u′ ≤ u0

}
.

Note that this can again be identified by considering the breakpoints of f . This is shown

in Figure 18.

u0˜̀0
5

f(2u)/2

h0(u)

f(2u)/2

u u

h0(u)

˜̀0
5

u0

Figure 18: When 2h0(u) and f(2u) no longer intersect.

Define ℓ06 = min{ℓ̃03, ℓ̃04, ℓ̃05}. By the choice of µ0 it immediately follows that, ℓ06 < u0.

Specifically, equality is guaranteed to hold in at least one of these cases, and hence the

minimum is guaranteed to be finite.

Proposition 4.5.7. For all u ∈ (ℓ0, u0], δ0(u) = h0(u)− g0(u).

Proof. If ℓ06 = ℓ̃03 or ℓ06 = ℓ̃04, then the claim is clear. So suppose that ℓ06 = ℓ̃05. By taking the

limit as v decreases to 0 in Proposition 4.5.1, it easily follows that ḡ0(u0)−g0(u0) ≥ δ0(u0).

For any u ∈ (ℓ̃05, u
0],

f(u0 + u) = 2h0
(
u0 + u

2

)
= h0(u) + g0(u0) + δ0(u0) ≤ h0(u) + ḡ0(u0).

Thus,

f(u0 + u)− [h0(u) + ḡ0(u0)] = f(u0 + u)− [g0(u) + ḡ0(u0)]− [h0(u)− g0(u)] ≤ 0,

implying that δ0(u0) ≤ h0(u) − g0(u). In conjunction, with Proposition 4.5.6 the claim

follows.

One final bound arises from superadditivity,

ℓ07 =

u0/2 h(u0) > µ0u0

0 h(u0) ≤ µ0u0.

109

Letting ℓ0 = max{ℓ01, ℓ02, ℓ03, ℓ04, ℓ05, ℓ06, ℓ07}, we show that the function g1 dominates g0, is

valid, and is superadditive.

Proposition 4.5.8. g1(u) ≥ g0(u) for all u ∈ D.

Proof. Observe that δ0(u) = h0(u)− g0(u) for all u ∈ (ℓ0, u0]. Suppose to the contrary that

h0(u) < g0(u) for any such u. Then this implies δ(u) < 0, so there exists some v such that

f(u+ v) < g0(u) + ḡ0(v) ≤ g0(u+ v) ≤ f(u+ v).

However, this is a contradiction. Thus h0(u) ≥ g0(u) for all u ∈ (ℓ0, u0].

We now show the main result that g1 is superadditive and valid.

Theorem 4.5.9. g1 is superadditive and valid.

Proof. That g1 ≤ f follows immediately from g0 ≤ f and δ0(u) ≤ f(u) − g0(u). So it

remains to show that g1 is superadditive. Therefore we consider

g1(u+ v)− [g1(u) + g1(v)] (66)

and show that it is non-negative for all u, v, u+ v ∈ D. To do so, we consider several cases.

For the first case, we assume that u, v /∈ (ℓ0, u0]. For this case, the non-negativity of

(66) follows from the superadditivity of g0 and g1 ≥ g0.

The next case we consider is when u ∈ (ℓ0, u0] and v, u+v /∈ (ℓ0, u0]. The non-negativity

of (66) is an immediate application of Proposition 4.5.1 and δ0(u) = g1(u)− g0(u).

So suppose that u, u + v ∈ (ℓ0, u0]. Within this case there are two possibilities to

consider. If v ∈ (ℓ0, u0], then ℓ0 ≥ ℓ07 implies that g1(v) ≤ µ0v. Therefore, g1(u) + g1(v) ≤

g1(u) + µ0v = g1(u+ v).

Alternately, suppose that v < ℓ0. By increasing u, we may assume without loss of

generality that u+ v = u0. It suffices to show that ḡ1(v) = ḡ0(v) ≤ µ0v. Let v∗ satisfy

g0(u0) + δ0(u0) + g0(v∗) = f(u0 + v∗).

110

Next let w ∈ (ℓ0, u0], and add ḡ0(u0 − w) − µ0(u0 − w) to the left-hand side. Suppose to

the contrary that ḡ0(u0 − w)− µ0(u0 − w) > 0. Then

f(u0 + v∗) <
[
g0(u0) + δ0(u0)− µ0(u0 − w)

]
+
[
g0(v∗) + ḡ0(u0 − w)

]
≤ h0(w) + ḡ0(v∗ + u0 − w),

where the last inequality follows by substitution and superadditivity. However, we can

rewrite h0(w) = g0(w) + δ0(w), which implies that

f(u0 + v∗)− [g0(w) + ḡ0(v∗ + u0 − w)] < δ0(w).

But this contradicts the definition of δ0(w). In particular, taking w = u, it follows that

ḡ0(v) ≤ µ0v proving that (66) is non-negative in this case.

The last case we consider is u, v ∈ (ℓ0, u0] and u + v > u0. As u + v > u0, there must

exist some w such that

g1(u+ v)−
[
g1(u) + g1(v)

]
= f(u+ v + w)−

[
g1(u) + ḡ0(w) + g1 (v))

]
.

If w + v ≥ u0, then it follows by Proposition 4.5.1 and g1(v) = g0(v) + δ0(v) that

g(v + w) ≥ g1(v) + ḡ0(w).

Therefore, because v + w > u0,

g1(u+ v)− [g1(u) + g1(v)] ≥ f(u+ v + w)− [g1(u) + g1(v + w)] ≥ 0.

On the other hand, if v + w ∈ (ℓ0, u0], then

g1(u+ v)− [g1(u) + g1(v)] ≥ f(u+ v + w)− 2g1
(
u+ v + w

2

)
≥ 0,

where the final inequality holds because ℓ0 ≥ ℓ05.

Therefore, we have covered all possibilities showing that g1 is superadditive.

Before moving on, we revisit Theorem 4.2.7, and fill in the remaining details to its proof.

First, we show an analog to Proposition 4.5.1.

Proposition 4.5.10. Suppose that ∆(u+ v) = 0, then

g(u+ v)− [g(u) + g(v)] ≥ ∆(u). (67)

111

Proof. If v = 0 then this assertion is trivial, so assume v ̸= 0. By Proposition 4.2.6, either

there exists some w ∈ W such that g(u + v) + g(w − u − v) = f(w) or there exists some

v′ ∈ V such that g(u+ v) + ḡ(v′) = f̄(u+ v + v′).

First suppose that g(u+ v) + g(w − u− v) = f(w). Then

g(u+ v)− [g(u) + g(v)] = f(w)− [g(u) + g(v) + g(w − u− v)]

≥ f(w)− [g(u) + g(w − v)]

≥ ∆1(u) ≥ ∆(u),

where the first inequality follows because g is superadditive and the second follows from the

definition of ∆(u).

Alternately, suppose there exists some w such that g(u+v)+ ḡ(w) = f̄(u+v+w). Then

g(u+ v)− [g(u) + g(v)] = f̄(u+ v + w)− [g(u) + g(v) + ḡ(w)]

≥ f̄(u+ v + w)− [g(u) + g(v + w)]

≥ ∆(u).

Here, the first inequality follows by superadditivity and lower semicontinuity, and the last

follows as f̄ > f .

Theorem 4.5.11. Suppose fy and gy are non-decreasing, piecewise linear, and lower semi-

continuous. If g ≤ f is superadditive, then g is non-dominated if and only if ∆(u) = 0 for

all u ∈ D.

Proof. Recall that if u ̸= w − v for some w ∈ W and v ∈ V , then δ(u) = ∆(u). Let

u∗ = (u∗y∗ , y
∗) be maximal with the property that ∆(u) = 0 for all u > u∗.

If ∆(u∗) = δ(u∗), then the above strengthening procedure can be used to produce an

approximation that dominates g. Therefore assume that ∆(u∗) > δ(u∗) ≥ 0. For any non-

zero v, g(u∗ + v)− [g(u∗) + g(v)] ≥ ∆(u∗) > 0. Therefore, by increasing g(u∗) by ∆(u∗)/2,

we produce a valid superadditive approximation that dominates g.

4.5.3 Finite Convergence to a Non-Dominated Approximation

Next we show that the choice of ℓ0 in the definition of g1 allows repeated application of

the strengthening procedure to produce a non-dominated approximation in finitely many

112

iterations.

Adapting the notation from the previous section, we modify superscripts to denote a

given iteration. To show finite termination, we show that ℓt = ℓtj only finitely many times

for j = 1, . . . , 7. Throughout, we assume that ut > 0; otherwise, gt is non-dominated.

A crucial observation to proving termination follows:

Observation 4.5.12. Suppose that in iteration t, we modify (ℓt, ut]. Then ut+1 ≤ ℓt.

Proof. As δt(u) = gt+1(u)− gt(u) for all u ∈ (ℓt, ut] the claim immediately follows.

Therefore, at each iteration we are closer to our goal of a non-dominated approximation,

and the algorithm cannot repeatedly modify the same interval.

The first step is to explore how the algorithm behaves when ℓt = ℓt3, ℓ
t = ℓt4, or ℓ

t = ℓt5.

This will correspondingly enable us to bound how many times we can produce breakpoints

of a given form.

The proofs of all these propositions are essentially the same; however, we include them

for completeness.

Proposition 4.5.13. Suppose that ℓt = ℓt3 ̸= wi − vj for any wi ∈W (ut) and vj ∈ V t(ut).

Then there exists some wi ∈W (ut) such that f(wi) = ḡt+1(ℓt)+ gt+1(wi− ℓt). Moreover, if

ℓt ̸= ℓt5 then the slope gt+1 to the right of wi− ℓt for any such wi is strictly greater than µt.

Proof. For each wi ∈W (ut), let

ℓt3(wi) = sup
{
u < u0 : f(wi) < ht(ℓt) + ḡt(wi − ℓt)

}
.

Suppose to the contrary that for some wi ∈W (ut) such that ℓt3(wi) = ℓt,

f(wi) < ht(ℓt) + ḡt(wi − ℓt).

We claim that this implies that gt is discontinuous at wi − ℓt. For all ϵ > 0 such that

ℓt + ϵ ≤ ut,

ḡt(wi − ℓt − ϵ) ≤ f(wi)− ht(ℓt + ϵ).

Taking the limit as ϵ decreases to 0,

gt(wi − ℓt) ≤ f(wi)− ht(ℓt).

113

However, this implies that ḡt(wi − ℓt) > gt(wi − ℓt), and thus wi − ℓt is a breakpoint

contradicting our assumption that ℓt ̸= wi − vj .

On the other hand, suppose that f(wi) > ht(ℓt) + ḡt(wi − ℓt). As gt is continuous at

wi − ℓt, it immediately follows that for small ϵ > 0,

f(wi) > ht(ℓt − ϵ) + ḡt(wi − ℓt + ϵ).

But this contradicts that ℓt3 = ℓt. Thus f(wi) = ht(ℓt) + ḡt(wi − ℓt).

Furthermore, ḡt+1(wi − ℓt) = ḡt(wi − ℓt) = gt(wi − ℓt). Indeed gt+1 ≥ gt, and if the

inequality is strict at wi−ℓt, then the function gt+1 cannot simultaneously be superadditive

and valid. However, this contradicts Theorem 4.5.9.

Next, let wi satisfy ℓ
t
3(wi) = ℓt, and let λ denote the slope of gt at wi − ℓt. Assume to

the contrary that λ ≤ µt. Then for small ϵ > 0,

f(wi)− ht(ℓt − ϵ) = f(wi)− ht(ℓt) + µtϵ

= gt(wi − ℓt) + µtϵ

≥ gt(wi − ℓt) + λϵ

= gt(wi − ℓt + ϵ).

However, this contradicts the definition of ℓt3(wi); thus λ > µt.

Let ℓt3(wi) = ℓt. If wi − ℓt /∈ [ℓt, ut), then

gt+1(wi − ℓt + ϵ) = gt(wi − ℓt + ϵ) > ḡt(wi − ℓt) + µtϵ.

Instead, assume that wi − ℓt ∈ [ℓt, ut). By the assumption that ℓt ̸= ℓt5, wi − ℓt ̸= ℓt, and

therefore wi − ℓt ∈ (ℓt, ut). By Proposition 4.5.8 and the condition that

ḡt+1(ℓt) + gt(wi − ℓt) = f(wi),

gt+1(wi − ℓt) = gt(wi − ℓt). However,

gt(wi − ℓt + ϵ) = gt(wi − ℓt) + λt > gt(wi − ℓt) + µtϵ = gt+1(wi − ℓt + ϵ),

contradicting Proposition 4.5.8. Therefore, this cannot happen, so wi − ℓt /∈ [ℓt, ut).

114

We now address when ℓt = ℓt4. The proof of the following proposition uses many of the

same ideas as the previous argument, but it is considerably more simple.

Proposition 4.5.14. Suppose that ℓt = ℓt4 ̸= wi − vj for any wi ∈W (ut) and vj ∈ V t(ut).

Then there exists some vj ∈ V t+1(ut) such that f(ℓt + vj) = ḡt+1(ℓt) + ḡt+1(vj). Moreover,

the slope of f at ℓt + vj for any such vj is strictly greater than µt.

Proof. As in the previous proof, define

ℓt4(vj) = sup{u < u0 : f(u+ vj) < ht(u) + ḡt(vj)}.

Suppose that ℓt4(vj) = ℓt4. We claim that f(ℓt+vj) = ht(u)+ ḡt(vj). Assume to the contrary

that

f(ℓt + vj) < ht(ℓt) + ḡt(vj).

For all ϵ > 0 such that ℓt + ϵ ≤ ut,

f(ℓt + vj + ϵ) ≥ ht(ℓt + ϵ) + ḡt(vj).

Taking the limit as ϵ decreases to 0, f̄(ℓt+ vj) ≥ ht(ℓt) + ḡt(vj). However, this implies that

f(ℓt + vj) < f̄(ℓt + vj), contradicting that f is continuous at ℓt + vj .

Otherwise, assume to the contrary that

f(ℓt + vj) > ht(ℓt) + ḡt(vj).

Then for small ϵ > 0, f(ℓt + vj − ϵ) > ht(ℓt − ϵ) + ḡt(vj) by the continuity of f at ℓt + vj .

However, this contradicts that ℓt = ℓt4(vj).

We now address the slope of f at any such point ℓt + vj . Again let λ denote this slope.

Assume to the contrary that λ ≤ µt. Then for small ϵ > 0

f(ℓt + vj − ϵ) = f(ℓt + vj)− λϵ

=
[
ht(ℓt)− λϵ

]
+ ḡt(vj)

≥
[
ht(ℓt)− µtϵ

]
+ ḡt(vj)

= ht(ℓt − ϵ) + ḡt(vj).

However, this contradicts that ℓt(vj) = ℓt. Thus λ > µt.

115

It remains to verify that vj ∈ V t+1(ut). If vj /∈ V t+1(ut), then vj ∈ (ℓt, ut]. This implies

that for small ϵ > 0,

ḡt+1(vj − ϵ) = ḡt+1(vj)− µtϵ

By noting that the slope of f at ℓt + vj exceeds µ
t,

ḡt+1(ℓt) + ḡt+1(vj − ϵ) = f(ℓt + vj)− µtϵ > f(ℓt + vj).

This contradicts that g is both superadditive and valid, thus vj must be a breakpoint of

gt+1.

Recalling Figures 16 and 17, we are able to observe this behavior in ℓt3 and ℓ
t
4. Whenever

ℓt3 and ℓt4 are defined at an intersection, we see that the slopes g at w − u and f at u + v

exceed µt.

Without much difficulty, we are able to extend this analysis to ℓt5.

Proposition 4.5.15. Suppose that ℓt = ℓt5 ̸= wi/2 for any wi ∈ W (ut). Then f(2ℓt) =

2ḡt+1(ℓt). Moreover, the slope of f at 2ℓt is strictly greater than µt.

Proof. Suppose that f(2ℓt) > 2ht(ℓt). Then because f is continuous at 2ℓt, f(2ℓt − 2ϵ) >

2ht(ℓt − ϵ) for sufficiently small ϵ > 0. But this contradicts the definition of ℓt5.

Otherwise, suppose that f(2ℓt) < 2ht(ℓt). Then observe that for small ϵ > 0,

f(2ℓt + 2ϵ) ≥ 2ht(ℓt + ϵ).

Taking the limit as ϵ decreases to 0, it follows that f̄(2ℓt) ≥ 2ht(ℓt) > f(2ℓt). This contra-

dicts our assumption that 2ℓt /∈W (ut). Therefore f(2ℓt) = 2ht(ℓt).

Next, let λ denote the slope of f at 2ℓt. If λ ≤ µt, then

f(2ℓt − 2ϵ) = f(2ℓt)− 2λϵ

= 2
(
ht(ℓt)− λϵ

)
≥ 2(ht(ℓt)− µtϵ)

= 2ht(ℓt − ϵ).

Again, this contradicts the definition of ℓt5. Therefore, µ
t < λ.

116

These propositions suggest an important property of the strengthening operation. If

ℓt ̸= wi − vj and ℓt ̸= wi/2, then the next iteration will preserve continuity and simply

increase the slope to the left of ℓt. We make this formal in the next two propositions:

Theorem 4.5.16. Suppose that all of the following conditions hold:

• ut+1 = ℓt

• ℓt ̸= wi − vj for any wi ∈W (ut), vj ∈ V t(ut),

• ℓt ̸= wi/2 for any wi ∈W (ut),

• ℓt > max{ℓt1, ℓt2, ℓt6, ℓt7}.

Then δt+1(ut+1) = ḡt+1(ut+1)− gt+1(ut+1) and µt+1 > µt.

Proof. As δt+1(ut+1) = δt+1(ℓt),

δt+1(ℓt) = min{f(ℓt + v)− [gt+1(ℓt) + ḡt+1(v)] : v, u+ v ∈ D}

= min{f(ℓt + v)− [ḡt+1(ℓt) + ḡt+1(v)] : v, u+ v ∈ D}

+
(
ḡt+1(ℓt)− gt+1(ℓt)

)
.

Therefore, to prove the theorem it suffices to show that

min{f(ℓt + v)− [ḡt+1(ℓt) + ḡt+1(v)] : v, u+ v ∈ D} = 0 (68)

Again, this is simplified by noting that ḡt+1(ℓt) is fixed; therefore either v = wi − ℓt for

some wi ∈W (ℓt) or v = vj for some vj ∈ V t+1(ℓt).

Consider the case when v = wi− ℓt. If wi− ℓt /∈ [ℓt, ut), then ḡt+1(wi− ℓt) = ḡt(wi− ℓt);

hence, by Proposition 4.5.13

f(wi)− [ḡt+1(ℓt) + ḡt+1(wi − ℓt)] ≥ 0.

Otherwise, if wi − ℓt ∈ [ℓt, ut), then wi/2 ∈ [ℓt, ut). Applying Proposition 4.5.15,

f(wi)− [ḡt+1(ℓt) + ḡt+1(wi − ℓt)] = f(wi)− 2ḡt+1(wi/2) ≥ 0.

Thus, we have established that (68) is non-negative for v = wi − ℓt.

117

Next suppose that v = vj for some vj ∈ V t+1(ℓt). If vj /∈ [ℓt, ut), then ḡt+1(vj) = ḡt(vj).

Thus by Proposition 4.5.14,

f(ℓt + vj)− [ḡt+1(ℓt) + ḡt+1(vj)] ≥ 0.

Lastly, if vj ∈ [ℓt, ut), then vj = ℓt, and again by Proposition 4.5.15,

f(2ℓt)− 2ḡt+1(ℓt) ≥ 0.

Therefore, (68) is non-negative for v = vj .

Further observe that ℓt is equal to one of ℓt3, ℓ
t
4, or ℓ

t
5. By our assumptions, this implies

that (68) equals 0, implying that δt+1(ℓt) = ḡt+1(ℓt) − gt+1(ℓt). Moreover, by applying

Propositions 4.5.13, 4.5.14, or 4.5.15 as appropriate, we further conclude that µt+1 > µt.

As f has k slopes, this theorem implies that after k − 1 iterations the assumptions of

this theorem can no longer hold. We address these assumptions one at a time, and show

that each condition can only happen finitely many times.

Proposition 4.5.17. If ut+1 < ℓt, then ut+1 = vj for some vj ∈ V t+1 or ut+1 = wi − vj

for some wi ∈W and vj ∈ V t+1.

Proof. Suppose to the contrary that neither condition holds. Recall by Proposition 4.5.2,

that δt+1(ut+1) is minimized when either v = wi − vj for some wi ∈ W (ut+1) and vj ∈

V t+1(ut+1) or v = vj for some vj ∈ V t+1(ut+1).

Consider first the quantity

f(wi)−
[
gt+1(ut+1) + ḡt+1(wi − ut+1)

]
. (69)

Let λ and µ denote the slopes of gt+1 at ut+1 and wi − ut+1 respectively. By assumption

neither of these two points are breakpoints of gt+1, so these slopes do indeed exist. If (69)

is equal to 0, then λ = µ; as otherwise one of the quantities

f(wi)−
[
gt+1(ut+1 ∓ ϵ) + ḡt+1(wi ± ut+1 + ϵ)

]
is strictly less than 0 for small ϵ > 0. However, this contradicts the superadditivity and

validity of gt+1. But then, ut+1 is not minimal, again yielding a contradiction. Thus (69)

must be strictly positive.

118

Likewise consider the quantity

f(ut+1 + vj)−
[
gt+1(ut+1) + ḡt+1(vj)

]
. (70)

Applying analogous arguments, it similarly follows that (70) is strictly positive.

Therefore, δt+1(ut+1) > 0. For sufficiently small ϵ > 0,

f(wi)−
[
gt+1(ut+1 + ϵ) + ḡt+1(wi − ut+1 − ϵ)

]
> 0,

and

f(ut+1 + vj + ϵ)−
[
gt+1(ut+1 + ϵ) + ḡt+1(vj)

]
> 0.

Thus δt+1(ut+1 + ϵ) > 0. But this contradicts our choice of ut+1.

We are interested in certain milestones in the execution of the algorithm. Accordingly,

define

ti = min{t : ut ≤ wi/2}.

To show finiteness, it suffices to show that the algorithm only adds a finite number of

breakpoints between ti and ti−1. Let ni denote the number of breakpoints the algorithm

introduces between ti and ti−1. We define four related quantities, each specifying the number

of breakpoints of a certain form added between ti and ti−1:

• ni1: breakpoints of the form wi′ − vj′ with wi′ ∈W and vj′ ∈ V 0

• ni2: breakpoints of the form wi′ − vj′ with wi′ ∈W and vj′ /∈ V 0,

• ni3: breakpoints of the form wi′/2,

• ni4: breakpoints of the form ℓt = ℓt7 > 0.

By exploring the conditions of Theorem 4.5.16, we arrive at the following proposition con-

necting ni with ni1, . . . , n
i
4.

For the remainder of the discussion, we will let |W | = r and |V 0| = p

Proposition 4.5.18. ni ≤ k(ni1 + ni2 + ni3 + ni4).

119

Proof. Consider the cases in which the conditions of Theorem 4.5.16 fail to hold. Each of

these will coincide with some nij .

If ut+1 < ℓt, then either ut+1 = vj for some vj ∈ V 0 or ut+1 = wi′ − vj for some

vj ∈ V t+1. In the first case, no new breakpoint is introduced. In the latter, a breakpoint is

added that is either accounted for in ni1 or ni2.

Next suppose that ℓt = ℓt1 or ℓt = ℓt2. In the first case, ℓt = wi = wi − 0, which is

accounted for in ni1. In the latter ℓt = d0 − vj′ = wr − vj for some vj ∈ V t. This is either

included in ni1 or ni2.

If ℓt = ℓt6 then either ℓt = wi′ − vj or ℓ
t = wi−1/2. Again the first case is either included

in ni1 or ni2 and the latter is counted in ni3.

Next observe that when the conditions of Theorem 4.5.16 do hold that the slope of the

approximation decreases. Therefore, there can be at most k − 1 intermediate breakpoints

between any two such described points. Including the iteration when ℓt is among ni1, . . . , n
i
4,

the algorithm takes at most k iterations for any such point.

It remains to bound each of the above quantities. This will correspondingly enable us

to bound ni for all i. For convenience, let tr+1 = 0 and nr+1 = 0.

Proposition 4.5.19. For all i, ni1 ≤ rp.

Proof. As |W | = r and |V 0| = p, there are at most rp pairs wi′ and vj .

Proposition 4.5.20. For i = 1, . . . , r, ni2 ≤ r
(
ni+1 + · · ·+ nr+1

)
.

Proof. Suppose that vj is introduced in iteration t with ti ≤ t < ti−1. Then by assumption

wi−1/2 < vj < wi/2. In particular, wi′ − vj ≥ wi/2 for all i′ ≥ i. On the other hand

wi′′ − vj < wi′′/2 for all i′′ < i. Therefore, if wi′ − vj is introduced for some vj /∈ V 0, then

vj ∈ V ti . Trivially, there are at most ni+1 + · · ·+ nr+1 such points. For any such vj there

are at most r different wi′ .

Proposition 4.5.21. For i = 1, . . . , r, ni3 ≤ 1.

Proof. By assumption i′ < i, therefore the proposition trivially holds.

120

Proposition 4.5.22. There exist at most k distinct t such that ℓt = ℓt7. Thus ni4 ≤ k.

Proof. Suppose that ℓτ1 = ℓτ17 and ℓτ2 = ℓτ27 and τ1 < τ2. We show that µτ1 > µτ2 .

Assume to the contrary that µτ1 ≤ µτ2 . By assumption

gτi+1(u) = ḡτi+1

(
uτi

2

)
+ µτi

(
u− uτi

2

)
.

for u ∈ (uτi/2, uτi] and i = 1, 2. By Observation 4.5.12, uτ2 ≤ uτ1/2. Thus letting u =

5uτ1/8 and v = 3uτ2/4, u+ v ∈ (uτ1/2, uτ1]. Therefore

gτ2+1(u) + gτ2+1(v) > gτ2+1(u) + µτ2v

≥ gτ2+1(u) + µτ1v

= gτ2+1(u+ v).

However, this contradicts that gτ2+1 is superadditive. As there are only k distinct slopes

the proposition immediately follows.

By combining these results we conclude that the algorithm produces a non-dominated

approximation in finitely many iterations.

Theorem 4.5.23. t1 is finite. Thus there exists some t such that gt is a non-dominated

superadditive approximation of f .

Proof. By applying the Propositions 4.5.19 through 4.5.22

ni ≤ k

(
r

r∑
i′=i+1

ni
′
+ rp+ 1 + k

)
.

Observe that nr is finite; therefore, by induction it immediately follows that ni must be

finite. Thus n1 is guaranteed to be finite, and thus t1 =
∑r

i=1 n
i is finite.

4.5.4 On the Running Time

The running time yielded by the previous analysis is unfortunately exponential. Before

concluding this chapter, we take a moment to explore the proof at a high level. In particular,

we address specifically why the bound is exponential and produce (loosely speaking) an

example that demonstrates the limitations of this analysis. This, however, does not preclude

121

the possibility that the algorithm runs in polynomial time, but rather shows that any such

proof must exploit the problem structure more intimately.

At its heart, the proof relies on a simple counting argument. It counts the maximum

number of breakpoints that could possibly be added by the algorithm, but not the actual

number of breakpoints that the algorithm introduces.

Revisiting Propositions 4.5.19, 4.5.21, and 4.5.22, k(ni1 + ni3 + ni4) is polynomial in k, r,

and p. Thus, it is plain to see that the exponential blow-up results directly from the term

ni2. From Proposition 4.5.20,

ni2 ≤ r
(
ni+1 + · · ·+ nr+1

)
.

This bound originates from a simple observation: if some breakpoint v is introduced by the

algorithm, and wi − v is also introduced by the algorithm, then v ≥ wi/2. On the other

hand, the analysis does not consider information about the functions at v or wi − v.

Thus to show the limitation of this analysis, we only need to construct W and V 0 in

such a way that there are potentially an exponential number of breakpoints. We produce

such sets in the following example.

Example 4.5.2. Fix some n > 0 and let d = 22n. For i = 1, . . . , n, let wi = d−(2n−i+1−2).

Set

W = {0, d/2, d/2 + 1, w1, . . . , wn} ,

and let V 0 = {0, d}. We are interested in the collection of points of the form w − v that

can arise in the interval [d− 2n, d].

Quite naturally, the first possible point that can arise is v1 = wn − (d/2 + 1) = d/2− 1.

Next consider wn−1 − v. There are two possible points, v2 = wn−1 − d/2 = d/2 − 2 and

v3 = wn−1 − (d/2 + 1) = d/2− (4− 1).

Let T 0 = {d/2 + 1, d/2} and let

T i =
{
wn−i+1 − v : v ∈ T i

′
, i′ < i

}
.

We claim inductively that T i =
{
d/2− (2i−1 − 1), . . . , d/2− (2i − 1)

}
. Observe that

wn−i = 2
(
d/2− (2i − 1)

)
,

122

and that

wn−i − (d/2 + 1) = d/2− (2i+1 − 1).

Finally, noting that,

i∪
j=0

T j =
{
d/2 + 1, d/2, . . . , d/2− (2i − 1)

}
.

it follows that T i+1 =
{
d/2− (2i − 1), . . . , d/2− (2i+1 − 1)

}
.

Therefore, by induction, there are at least 2n − 1 points that can possibly be added.

This example shows that the exponential bound on the running time of the algorithm

cannot be improved upon unless more information is incorporated into the analysis. How-

ever, our experience with two-slope functions and step functions suggests that at least in

these cases, the algorithm tends to perform quite well. Thus, it is entirely conceivable that

this algorithm is polynomial or pseudo-polynomial.

4.6 Closing Remarks

In the discrete case, the existence of a polynomial time algorithm is unsurprising as the

problem can be easily expressed as a linear program. By moving to a continuous setting,

we are no longer afforded this luxury, and it is quite remarkable that a finite algorithm even

exists. This heavily depended on our structural assumptions.

It is also possible to consider “decreasing” functions, in which the slopes are all non-

positive and the function value decreases at discontinuities. With slight modification, the

results presented in this chapter translate fairly naturally to this setting. The strengthening

operation used to produce a non-dominated approximation would necessarily be different,

but nevertheless is a straightforward extension of its counterpart for increasing functions.

123

CHAPTER V

APPLICATIONS OF LIFTING IN HIGH DIMENSION

In this chapter, we apply results from Chapters 3 and 4 to high-dimensional lifting

problems. By way of example, we demonstrate that the tools we developed in the previous

chapters can be used offline to effectively guide the search for non-dominated superadditive

approximate lifting functions.

We begin with two traditional mixed integer programs–namely the knapsack and the

fixed-charge flow sets–and we introduce a complicating constraint in the form of an ad-

ditional knapsack constraint. When considering this additional constraint, exact lifting

becomes much more challenging; nevertheless, we are able to relax the side-constraints

using the techniques of Chapter 3 and derive valid inequalities that are not valid for the

single-row systems. Next, applying the algorithm of Chapter 4, we construct non-dominated

approximations for specific instances that we then generalize to closed form approximations.

We conclude this chapter by deriving cuts for the stable set polytope obtained by lifting

odd-hole inequalities. In the original space of variables, the dimension of the lifting function

is typically too large to consider in its entirety. Identifying an appropriate superadditive

approximation in this setting may require us to consider a prohibitively large number of

points. By reformulating the stable set problem and using the approximation scheme of

Chapter 3, we show how to manage the problem dimension. Unlike the problems previously

considered in this chapter, however, we may not be able to obtain a closed form description

of the lifting function or its superadditive approximation; nevertheless, we show that it is

possible to evaluate the lifting function and construct an approximation that yields the

deepest cut with respect to separating a current solution.

124

5.1 Knapsack Intersections

We first consider the intersection of multiple knapsacks and show how the approximation

scheme of Chapter 3 can be nested. Let

X =

x ∈ {0, 1}n :
a0x ≤ b0

aix ≤ bi, (i = 1, . . . ,m)

 .

Let C satisfy
∑

j∈C a
0
j = b+λ for λ > 0, and

∑
j∈C a

i
j+∆i = bi with ∆i ≥ 0 for i = 1, . . . ,m.

Such a subset C exists, otherwise a0x ≤ b0 is redundant. Further, assume that C is minimal

with this property.

We restrict X by fixing xj = 0 for j ∈ N \C to obtain the restricted system X ′. Because∑
j∈C a

i
j ≤ bi, these knapsack constraints are redundant. Therefore the cover inequality

∑
j∈C

xj ≤ |C| − 1

is facet defining for conv(X ′). Although redundant, these additional knapsack constraints

alter the lifting function:

f
(
z0, z1, . . . , zm

)
= min (|C| − 1)−

∑
j∈C

xj

s.t.
∑
j∈C

a0j ≤ b0 − z0

∑
j∈C

aij ≤ bi − zi, i = 1, . . . ,m

xj ∈ {0, 1} , j ∈ C.

(71)

We cannot in general hope to have a nice closed form expression of f . Our goal is to replace

the remaining knapsack constraints with a single cardinality constraint:∑
j∈C

aij ≤ bi − zi, i = 1, . . . ,m

xj ∈ {0, 1} , j ∈ C

7→

∑
j∈C

xj ≤ |C| − Φ
(
z1, . . . , zm

)
xj ∈ {0, 1} , j ∈ C.

The task of computing Φ exactly is in general no easier than computing f ; hence we can

125

construct a collection of nested relaxations for computing Φ. Let

Φi
(
zi, . . . , zm

)
= min |C| −

∑
j∈C

xj

s.t.
∑
j∈C

akjxj ≤ bk − zk, (k = i, . . . ,m)

xj ∈ {0, 1} , j ∈ C

for i = 1, . . . ,m; thus Φ = Φ1. Similarly, define Ψi,

Ψi
(
zi, zi+1, . . . , zm

)
= min |C| −

∑
j∈C

xj

s.t.
∑
j∈C

aijxj ≤ bi − zi

∑
j∈C

xj ≤ |C| −Ψi+1
(
zi+1, . . . , zm

)
xj ∈ {0, 1} , j ∈ C.

(72)

and for convenience let Ψm+1 = 0. If we let Ψ = Ψ1, then we have the following proposition:

Proposition 5.1.1. For i = 1, . . . ,m, Ψi ≤ Φi. In particular Ψ ≤ Φ.

Proof. The claim trivially holds for Ψm, and the general result follows by inductively ap-

plying Proposition 3.3.2.

It will also be convenient to have a succinct representation of the cardinality constraint

restricted to individual knapsacks. Hence, we introduce Φ̂i:

Φ̂i
(
zi
)
= min |C| −

∑
j∈C

xj

s.t.
∑
j∈C

aijxj ≤ bi − zi,

xj ∈ {0, 1} , j ∈ C

(73)

Proposition 5.1.2. Ψ
(
z1, . . . , zm

)
= max

(
Φ̂1(z1), . . . , Φ̂m(zm)

)
.

Proof. We proceed by induction on i. Trivially if i = m the statement of the proposition

holds. So consider some arbitrary i < m. We claim that

Ψi = max
(
Φ̂i(z1),Ψi+1(zi+1, . . . , zm)

)
.

126

Indeed if Φ̂i(zi) < Ψi+1(zi+1, . . . , zm), then taking an optimal solution xi of Φ̂i, we must

set xj = 0 for precisely Ψi+1(zi+1, . . . , zm)− Φ̂i(zi) additional elements to satisfy the cardi-

nality constraint. Otherwise, if Φ̂i(zi) ≥ Ψi+1(zi+1, . . . , zm), then this solution satisfies the

cardinality constraint. Applying the inductive hypothesis, the proposition holds.

Any superadditive approximation of Ψ can in turn be used to obtain a superadditive

approximation of (71). We show how such an approximation of Ψ can be attained by

composing functions.

Let Γm+1 = 0, and define Γi for i = 1, . . . ,m by

Γi
(
zi, y

)
= min |C| −

∑
j∈C

xj

s.t.
∑
j∈C

aijxj ≤ bi − zi

∑
j∈C

xj ≤ |C| − y

xj ∈ {0, 1} j ∈ C.

As in the previous proposition, Γi(zi, y) = max(Φ̂i(zi), y). Now let γi ≤ Γi be increasing,

superadditive, and satisfy the condition that γi(zi, y) ∈ {0, . . . , |C|} for i = 1, . . . ,m.

Proposition 5.1.3. Let ψm+1 = γm+1 and define ψi by

ψi
(
zi, zi+1, . . . , zm

)
= γi

(
zi, ψi+1(zi+1, . . . , zm)

)
for i = 1, . . . ,m. Then ψi ≤ Ψi is superadditive and non-decreasing. In particular ϕ = ψ1

is a superadditive, non-decreasing, under-approximation of Φ.

Proof. We proceed by induction on i. By assumption ψm+1 ≤ Ψm+1 is superadditive and

non-decreasing. So assume that ψi+1 ≤ Ψi+1 is superadditive and non-decreasing for i < m.

The composition of non-decreasing functions is itself non-decreasing, therefore ψi is non-

decreasing. Observe that ψi+1 ≤ Ψi+1 and γi is superadditive and non-decreasing. Thus

by Theorem 3.3.3, ψi ≤ Ψi is superadditive.

127

Once we have computed ϕ, we compute

ĝ
(
z0, y

)
= min (|C| − 1)−

∑
j∈C

xj

s.t.
∑
j∈C

a0jxj ≤ b0 − z0

∑
j∈C

xj ≤ |C| − y

xj ∈ {0, 1} , j ∈ C.

(74)

If we let Φ̂0(z0) denote the exact lifting function without the cardinality constraint, then

ĝ(z0, y) = max
(
Φ̂0(z0), y − 1

)
.

Note that the maximum of superadditive functions is often not superadditive; however,

any one of these superadditive functions is trivially a superadditive under-approximation of

the maximum. It is easy to construct an approximation ϕ that performs at least as well as

this simple approximation; however, we can typically do better with our nesting scheme.

We now explore the structure of Φ̂i, γi, and ĝ in greater detail and give a concrete

example of each of these functions in the computation of an approximate superadditive

lifting function. As a matter of notation, when we refer to Φ̂i, we assume that i > 0.

The evaluation of Φ̂i is no different than the standard knapsack cover inequality. Let

j1, . . . , j|C| satisfy

aij1 ≥ · · · ≥ aij|C|
,

and define Aik = Aik−1 + aijk with Ai0 = 0.

Proposition 5.1.4.

Φ̂i(zi) =

0 0 ≤ zi ≤ ∆i

k ∆i +Aik−1 < zi ≤ ∆i +Aik, (j = 1, . . . , |C|)

Proof. If xjk = 0 and xjk−1
= 1 in a solution then there is an equivalent solution with

xjk = 1 and xjk−1
= 0. Therefore we set xjk = 0 in increasing order of k.

If ∆i < aij1 , then Φ̂i is not superadditive. Let ki be defined

ki = min
k≥1

{
k :

∆i +Aik−1

k
≥ aijk

}
, (75)

128

and let āi denote this quantity. We define ϕ̂i as follows:

ϕ̂i(zi) =

0 z = 0

k kāi < zi ≤ (k + 1)āi, (k = 0, . . . , ki − 1),

Φ̂i(zi) zi > kiāi = ∆i +Ai
ki−1

.

(76)

Proposition 5.1.5. ϕ̂i ≤ Φ̂i, and ϕ̂i is superadditive.

Proof. It will be easier to consider Φ̂i and ϕ̂i as members of a family of step functions. Let

v1, v2, . . . , vp > 0. Let V0 = 0 and Vj = Vj−1 + vj . Define the function

χV (z) =

0 z = 0

j Vj < z ≤ Vj+1, (j = 0, . . . , p− 1).

Analogously define V̄j for coefficients v̄j and a function χV̄ . Clearly χV ≥ χV̄ if and only if

V̄j ≥ Vj for all j.

Therefore to show ϕ̂i ≤ Φ̂i, it suffices to show that kāi ≥ ∆i + Aik−1 for k < ki. Let

āik =
(
∆i +Aik−1

)
/k. If k < ki, then āik < aijk . By definition,

āik+1 = āik ·
k

k + 1
+ aijk ·

1

k + 1
> āik.

Now observe that k · āik = ∆i+Aik−1; hence k · āi ≥ ∆i+Aik−1 for all k ≤ ki. Thus ϕ̂i ≤ Φ̂i.

Next we show that ϕ̂i is superadditive. We show that if v1 ≥ v2 ≥ · · · ≥ vp, then χV is

superadditive. Indeed consider

χV (u+ v)− [χV (u) + χV (v)].

Let u = Vs+ϵ1 and v = Vt+ϵ2, where 0 < ϵ1 ≤ vs+1 and 0 < ϵ2 ≤ vt+1; thus χV (u)+χV (v) =

s + t. Next, observe that Vs + Vt ≥ Vs+t; therefore χV (u + v) ≥ s + t. Noting that

āi ≥ aijk ≥ · · · ≥ aij|C|
, it follows that ϕ̂i is superadditive.

We can now use this superadditive approximation to seed our algorithm to construct a

non-dominated superadditive approximation of Γi. Before moving to a more general setting,

we work out an explicit example.

129

Example 5.1.1. In this example, we consider only a single knapsack. Suppose that C =

{1, . . . , 5} and consider the knapsack

8x1 + 6x2 + 5x3 + 5x4 + 4x5 ≤ 32.

Therefore, ∆i = 4. By Propositions 5.1.4 and 5.1.5, we can easily compute Φ̂i and its

superadditive under-approximation ϕ̂i given in Table 5 below:

Table 5: Superadditive approximation ϕ̂i of Φ̂i

Φ̂i(z) z ϕ̂i(z) z

0 0 ≤ z ≤ 4 0 0 ≤ z ≤ 6

1 4 < z ≤ 12 1 6 < z ≤ 12

2 12 < z ≤ 18 2 12 < z ≤ 18

3 18 < z ≤ 23 3 18 < z ≤ 23

4 23 < z ≤ 28 4 23 < z ≤ 28

5 28 < z ≤ 32 5 28 < z ≤ 32

Recall that Γi(z, y) = max
(
Φ̂i(z), y

)
. Thus to construct an initial superadditive ap-

proximation, we set γi0(z, y) = ϕ̂i(z) for all y. By applying the algorithm from Chapter 4,

we strengthen γi0 to obtain the non-dominated approximation γi of Γi represented in Table

6.

130

Table 6: Non-dominated approximation γi

γi(z, y) y = 0, 1, 2 y = 3 y = 4 y = 5

0 0 ≤ z ≤ 6 0 ≤ z ≤ 5 0 ≤ z ≤ 5 0 ≤ z ≤ 4

1 6 < z ≤ 12 5 < z ≤ 11 5 < z ≤ 10 4 < z ≤ 9

2 12 < z ≤ 18 11 < z ≤ 17 10 < z ≤ 16 9 < z ≤ 14

3 18 < z ≤ 23 17 < z ≤ 23 16 < z ≤ 22 14 < z ≤ 20

4 23 < z ≤ 28 23 < z ≤ 28 22 < z ≤ 28 20 < z ≤ 26

5 28 < z ≤ 32 28 < z ≤ 32 28 < z ≤ 32 26 < z ≤ 32

When y = 0, y = 1, and y = 2 the values of γi(z, y) all coincide. In the above table, the

left-hand side indicates the value of γi(z, y) and the right-hand side indicates which values

of z attain this value for a given y. This function is represented graphically in Figure 19 by

considering each slice of the function associated with a fixed value of y.

6 12 18 23 28 32

1

2

3

4

5

5 11 17 23 28 32

1

2

3

4

5

5 10 16 22 28 32

1

2

3

4

5

4 9 14 20 26 32

1

2

3

4

5

z

z z

z

y = 0, 1, 2

y = 4

y = 3

y = 5

Figure 19: Graphical depiction of γi(z, y) from Example 5.1.1

Despite its small size, this numerical example is quite telling about what form a non-

dominated superadditive approximation might take. Consider the interval lengths of ϕ̂i in

the example: 6, 6, 6, 5, 5, 4. These interval lengths reappear in γi, for every fixed y, but

sometimes their order changes. In the case of y = 3, the interval lengths appear in the order

5, 6, 6, 6, 5, 4. When y = 5, the interval lengths appear in the reverse order: namely 4, 5,

131

5, 6, 6, 6.

This suggests a more general behavior; specifically, for each y the first y + 1 intervals

appear in the reverse order. To express this more succinctly, we return to the abstraction

χV used in the proof of Proposition 5.1.5, and express ϕ̂i in terms of its interval lengths:

v1 ≥ v2 ≥ · · · ≥ vp.

We propose the following approximation of Γi:

γi(z, y) =

0 z = 0

y − χ̄V (Vy+1 − z) 0 < z ≤ Vy+1

χV (z) z > Vy+1,

(77)

where χ̄V (u) = lim supz→u χV (u). We show in the next two theorems that γi is valid,

superadditive, and non-dominated.

Theorem 5.1.6. γi ≤ Γi and γi is superadditive.

Proof. Observe that γi(z, y) ≤ y ≤ Γi(z, y) for all z ∈ [0, Vy+1]. Otherwise, by the validity

of ϕ̂i, whenever z > Vy+1, it again follows that ϕ̂i(z) ≤ Φ̂i(z) ≤ Γi(z, y). Thus γi ≤ Γi

establishing validity.

To prove superadditivity, we now must show that

γi(z1, y1) + γi(z2, y2) ≤ γi(z1 + z2, y1 + y2) (78)

whenever (z1, y1), (z2, y2), and (z1 + z2, y1 + y2) are all in the domain of γi. In the same

spirit as Theorem 4.2.3, it suffices to consider whenever (z1, y1) and (z2, y2) are breakpoints.

We break the proof of superadditivity into cases. First suppose that z1 ≤ Vy1+1 and

z2 ≤ Vy2+1. In this case, express z1 and z2 as

z1 =

s∑
j=0

vy1+1−j z2 =

t∑
j=0

vy2+1−j ,

for some s ≤ y1 and t ≤ y2. Thus γi(z1, y1) = s and γi(z2, y2) = t. Within this case, there

are two possibilities to consider: either s+ t < y1 + y2 or s+ t = y1 + y2.

In the first case, we may assume without loss of generality that s < y1. We claim that

s+t+1∑
j=0

vy1+y2+1−j ≤ z1 + z2. (79)

132

Splitting the sum in (79), we obtain

s+t+1∑
j=0

vy1+y2+1−j =
s∑
j=0

vy1+y2+1−j +
t∑

j=0

vy2+(y1−(s+1))+1−j .

From the sorting of elements in V ,

s∑
j=0

vy1+y2+1−j ≤
s∑
j=0

vy1+1−j = z1.

Furthermore observe that y1 − (s+ 1) ≥ 0; therefore,

t∑
j=0

vy2+(y1−(s+1))+1−j ≤
t∑

j=0

vy2+1−j = z2,

proving (79). Thus γi(z1 + z2, y1 + y2) ≥ s+ t+ 1 with equality holding if and only if (79)

holds at equality. In particular, we must also have that

γi(z1 + ϵ1, y2) + γi(z2 + ϵ2, y2) = s+ t+ 2 ≤ γi(z1 + z2 + ϵ1 + ϵ2, y1 + y2),

for any infinitesimally small ϵ1, ϵ2 > 0.

Next suppose that s+ t = y1 + y2. Applying the same arguments, we can conclude that

Vy1+y2 =

s+t∑
j=0

vy1+y2+1−j ≤ z1 + z2 − vy2+1.

Observe that y1 + y2 ≥ y2; therefore, the next interval has length vy1+y2+2 ≤ vy2+1. In

particular, this implies that γi(z1+z2, y1+y2) ≥ s+t+1 and γi(z1+z2+ϵ, y1+y2) ≥ s+t+2

for any ϵ > 0.

Thus we have resolved when z1 ≤ Vy1+1 and z2 ≤ Vy2+1. So suppose that

z1 = Vs z2 =
t∑

j=0

vy2+1−j

for s > y1 + 1, and t ≤ y2 + 1. Either s+ t < y1 + y2 or s+ t ≥ y1 + y2.

If s+ t < y1 + y2, then
s+t+1∑
j=0

vy1+y2+1−j ≤ z1 + z2.

This claim follows as in the previous case by splitting the sum:

s+t+1∑
j=0

vy1+y2+1−j =
t∑

j=0

vy1+y2+1−j +
s∑
j=0

vy1+y2−(t+1)+1−j .

133

As y1 + y2 − (t+ 1) ≥ (s+ t+ 1)− (t+ 1) = s, it follows that

s∑
j=0

vy1+y2−(t+1)+1−j ≤
s∑
j=0

vs+1−j = Vs.

Therefore (78) follows as before.

Next suppose that s+t ≥ y1+y2. In this case, we show that Vs+t+1 ≤ z1+z2. Rewriting

Vs+t+1, we obtain

Vs+t+1 = Vs +
t∑

j=0

vs+t+1−j ≤ Vs +
t∑

j=0

vy1+y2+1−j ≤ Vs +
t∑

j=0

vy2+1−j ,

where the first inequality follows from the relation s + t ≥ y1 + y2 and the last inequality

follows from the ordering imposed on of the elements of V . Again (78) follows as in the

previous cases.

The last case we consider is when both z1 = Vs and z2 = Vt for s ≥ y1+1 and t ≥ y2+1.

In this case, (78) immediately follows from the superadditivity of ϕ̂i.

Next, we show that γi is non-dominated in the weaker sense of Chapter 4.

Theorem 5.1.7. γi is non-dominated.

Proof. First we show that for (0, y1) there exists some (z2, y2) such that

γi(0, y1) + γi(z2, y2) = Γi(z2, y1 + y2).

As γi(bi, y) = |C| = Γi(bi, y) for all y, (z2, y2) = (bi, 0) satisfies this requirement.

Next for each (z1, y1) in the domain of γi with z1 > 0, we show that there exists some

(z2, y2) such that

γi(z1, y1) + γ̄i(z2, y2) = Γi(z1 + z2, y1 + y2).

There are two cases to consider: either y1 ≤ ki − 1 or y1 ≥ ki with ki defined as in (75).

Consider first when y1 ≤ ki − 1, and observe that

γi(kiāi, y1) = ki − 1 = Γi
(
kiāi, y1

)
.

Suppose now that z1 = kāi + ϵ for some k < ki and 0 < ϵ ≤ āi. Then let

z2 = (ki − k − 1)āi + (āi − ϵ).

134

By construction z1 + z2 = kiāi, and therefore

γi(z1, y1) + γ̄i(z2, 0) = k + (ki − k − 1) = ki − 1 = Γi(z1 + z2, y1 + 0).

On the other hand, if z1 > kiāi, then γi(z1, y1) = Γi(z1, y1).

Therefore, it only remains to consider when y1 ≥ ki. In this case,

γi
(
∆i +Aiy1 , y1

)
= y1 = Γi

(
∆i +Aiy1 , y1

)
.

If z1 < ∆i +Aiy1 , then we set z2 = ∆i +Aiy1 − z1. Thus

γi(z1, y1) + γ̄i(z2, 0) = y1 − γ̄i(z2, 0) + γ̄i(z2, 0) = y1 = Γi(z1 + z2, y1 + 0).

Similarly if z1 > ∆i + Aiy1 , then γi(z1, y1) = Γi(z1, y1), concluding the proof that γi is

non-dominated.

We now consider ĝ. The structure of ĝ is quite similar to Γi, so many of the above

results translate with only slight modification. Again, we consider a numerical example to

guide our study of the properties of ĝ.

Example 5.1.2. Consider a knapsack and a minimal cover, C = {1, . . . , 5}. The restricted

system is given by

9x1 + 8x2 + 6x3 + 5x4 + 4x5 ≤ 29.

Therefore, this cover exceeds the knapsack capacity by λ = 3. Thus we can compute the

lifting function for the minimal cover inequality:

Φ̂0(z) = min

4− (x1 + x2 + x3 + x4 + x5) :
9x1 + 8x2 + 6x3 + 5x4 + 4x5 ≤ 29− z

x1, x2, x3, x4, x5 ∈ {0, 1}

 .

The closed form description in Table 7 of Φ̂0 and its superadditive approximation ϕ̂0 can

be obtained by appropriately modifying Propositions 5.1.4 and 5.1.5.

135

Table 7: Φ̂0 and its approximation ϕ̂0

Φ̂0 z ϕ̂0(z) z

0 0 ≤ z ≤ 6 0 0 ≤ z ≤ 7

1 6 < z ≤ 14 1 7 < z ≤ 14

2 14 < z ≤ 20 2 14 < z ≤ 20

3 20 < z ≤ 25 3 20 < z ≤ 25

4 25 < z ≤ 29 4 25 < z ≤ 29

Note that ĝ(z, y) = max
(
Φ̂0(z), y − 1

)
. Thus to construct an initial superadditive

approximation, we set ĥ(z, y) = ϕ̂0(z) for all y. By applying the algorithm from Chapter 4,

we again strengthen ĥ0 to obtain the non-dominated approximation ĥ of ĝ in Table 8.

Table 8: Approximation of ĝ for knapsack intersections

ĥ(z, y) y = 0, 1, 2 y = 3 y = 4 y = 5

0 0 ≤ z ≤ 7 0 ≤ z ≤ 6 0 ≤ z ≤ 5 0 ≤ z ≤ 4

1 7 < z ≤ 14 6 < z ≤ 13 5 < z ≤ 11 4 < z ≤ 9

2 14 < z ≤ 20 13 < z ≤ 20 11 < z ≤ 18 9 < z ≤ 15

3 20 < z ≤ 25 20 < z ≤ 25 18 < z ≤ 25 15 < z ≤ 22

4 25 < z ≤ 29 25 < z ≤ 29 25 < z ≤ 29 22 < z ≤ 29

When y = 0, y = 1, and y = 2, the values of ĥ all coincide. Note that this function

can also be depicted graphically as a collection of one-dimensional functions for each fixed

value of y.

As in Example 5.1.1, the order of the interval lengths also reverses for higher values of y.

This motivates a similar construction for a non-dominated superadditive approximation of

ĝ. Representing ϕ̂0 by χV , with v1 ≥ v2 ≥ · · · ≥ vp, we propose the following approximation

136

of ĝ:

ĥ(z, y) =

0 z = 0

(y − 1)+ − χ̄V (Vy − z) 0 < z ≤ Vy

χV (z) Vy < z.

The proof that ĥ is valid, superadditive, and non-dominated is no different from γi, and

thus is omitted.

Theorem 5.1.8. The function ĥ defined is a non-dominated valid superadditive approxi-

mation of ĝ.

We conclude with one final example showing how all these ideas are combined to obtain

lifting coefficients that dominate those obtained by the individual knapsack constraints.

Example 5.1.3. Consider the following set obtained by identifying some cover C and

setting xj = 0 for all j ∈ N \ C:

X =

x ∈ {0, 1}5 :

9x1 + 8x2 + 6x3 + 5x4 + 4x5 ≤ 29

6x1 + 5x2 + 8x3 + 4x4 + 5x5 ≤ 32

8x1 + 4x2 + 6x3 + 5x4 + 5x5 ≤ 32

.

Note that these are the coefficients from Examples 5.1.1 and 5.1.2, so we may use the

evaluations of ϕi, γi, and ĥ from each of these examples.

Suppose now that we want to reintroduce x6, and

(
a16, a

2
6, a

3
6

)
= (12, 23, 24) .

By Example 5.1.1, we have that ϕ̂3(24) = 4. Next we determine γ2(23, 4) = 4. Finally from

Example 5.1.2, we determine ĥ(12, 4) = 2. Thus we obtain the inequality

x1 + x2 + x3 + x4 + x5 + 2x6 ≤ 4.

In particular, this is stronger than the inequality we would obtain by ignoring the side-

constraints.

137

5.2 Knapsack-Constrained Flow Covers

We consider the fixed charge flow set with only outflow arcs and additionally impose a

knapsack side-constraint on the binary variables. The constraint set is given by

X =

(x, y) ∈ Rn × Zn :

∑
j∈N

xj ≤ b

∑
j∈N

ajyj ≤ d

0 ≤ xj ≤ ujyj , ∀j ∈ N

yj ∈ {0, 1} , ∀j ∈ N

, (80)

with 0 < aj ≤ d for all j ∈ N .

Let C be a flow cover, i.e.
∑

j∈C uj = b + λ for λ > 0, such that
∑

j∈C aj ≤ d. If no

such set C exists, then
∑

j∈N xj ≤ b is redundant. Additionally, assume that C is minimal

with this property.

Let C = {1, . . . , r}, with u1 ≥ · · · ≥ ur > λ, and set (xj , yj) = (0, 0) for j ∈ N \C. The

flow cover inequality is ∑
j∈C

xj +
∑
j∈C

(uj − λ) (1− yj) ≤ b, (81)

and the restricted system is

X ′ =

(x, y) ∈ R|C| × Z|C| :

∑
j∈C

xj ≤ b

∑
j∈C

ajyj ≤ d

0 ≤ xj ≤ ujyj , ∀j ∈ C

yj ∈ {0, 1} , ∀j ∈ C

. (82)

Because
∑

j∈C aj ≤ d, the knapsack constraint is redundant in this system. Therefore, the

flow cover inequality (81) is facet defining for conv(X ′). However, when we perform lifting,

138

the knapsack constraint influences the lifting function:

f (z1, z2) = min b−

∑
j∈C

xj +
∑
j∈C

(uj − λ) (1− yj)

s.t.

∑
j∈C

xj ≤ b− z1

∑
j∈C

ajyj ≤ d− z2

0 ≤ xj ≤ ujyj , ∀j ∈ C

yj ∈ {0, 1} , ∀j ∈ C.

(83)

Observe that if z2 is made sufficiently large, the minimum will increase as we are forced to

set yj = 0. It may happen that there exists some i and j such that ui < uj , but ai > aj .

Therefore as we increase z2, we may disable arcs in a different order as when we increase

z1. This introduces a challenge in explicitly computing f . To overcome this difficulty, we

apply Proposition 3.3.2 with (µ, µ0) given by

∑
j∈C

yj ≤ |C|.

Letting Φ denote the lifting function

Φ(z2) = min

|C| −
∑
j∈C

yj :

∑
j∈C

ajyj ≤ d− z2

yj ∈ {0, 1} , j ∈ C

 ,

we can (76) and Proposition 5.1.5 to construct an appropriate approximation ϕ.

Similar to (74) for the knapsack intersection, we thus we consider the lifting function

ĝ (z, v) = min b−

∑
j∈C

xj +
∑
j∈C

(uj − λ) (1− yj)

s.t.

∑
j∈C

xj ≤ b− z

∑
j∈C

yj ≤ |C| − v

0 ≤ xj ≤ ujyj , ∀j ∈ C

yj ∈ {0, 1} , ∀j ∈ C.

(84)

139

The cardinality constraint is considerably more manageable than the original knapsack

constraint, and we are able to explicitly compute ĝ. Letting U0 = 0 and Uk = Uk−1 + uk

for k > 0, we obtain the following description of ĝ.

Theorem 5.2.1. If v = 0 then

ĝ(z, v) =

kλ Uk ≤ z ≤ Uk+1 − λ, (k = 0, . . . , r − 1)

z − Uk + kλ Uk − λ ≤ z ≤ Uk, (k = 1, . . . , r − 1)

If 0 < v ≤ |C|, then

ĝ(z, v) =

(v − 1)λ 0 ≤ z ≤ Uv − λ

ĝ(z, 0) z ≥ Uv − λ.

Proof. If v = 0, then the cardinality-constrained lifting function is no different from its

unconstrained counterpart (38). Therefore assume that v ≥ 1. Clearly if xj > 0 in a

solution to (84) then we can assume xj > uj − λ. Next let j∗ = min {j : xj > 0}. Without

loss of generality, we may assume that xj = uj for all j > j∗ such that xj > 0. Suppose

that xj′ = 0 for some j′ > j∗. Then set (xj∗ , yj∗) = (0, 0) and (xj′ , yj′) =
(
min(xj∗ , uj′), 1

)
.

The change in the objective function is

[
xj∗ +

(
uj′ − λ

)]
−
[
min(xj∗ , uj′) + (uj∗ − λ)

]
≤ 0.

So we can construct an optimal solution as follows: first set (xj , yj) = 0 for j = 1, . . . , v.

Set (xj , yj) = (uj , 1) for all j > v. Increasing z, the solution remains optimal until the flow

constraint becomes tight. At this point decrease xv+1 until xv+1 = (uv − λ), and then set

(xv+1, yv+1) = (0, 0). We repeat this procedure for the remaining arcs until z = b.

This function is superadditive only in the trivial case when r = 1. If r ≥ 2, then

ĝ(0, 2) = ĝ(u1, 2) = λ. But ĝ(u1, 0) = λ. Therefore

ĝ(0, 2) + ĝ(u1, 2) = 2λ > ĝ(u1, 2).

There are a number of superadditive approximations that we can apply. The most trivial

approximations is to simply set ĥ(z, v) = ĝ(z, 0).

140

Using this as a starting approximation, we use the algorithm of Chapter 4 to construct

a numerical example that we can then generalize.

Example 5.2.1. Consider a cardinality-constrained fixed-charge flow set given by the fol-

lowing system of inequalities:

x1 + x2 + x3 + x4 ≤ 26

y1 + y2 + y3 + y4 ≤ 4

0 ≤ xj ≤ ujyj

with u = (10, 7, 6, 6). From Theorem 5.2.1, we obtain the evaluation of ĝ(z, 0) given in

Table 9:

Table 9: Evaluation of ĝ(z, 0) for cardinality-constrained flow-cover

ĝ(z, 0) z ĝ(z, 0) z

0 0 ≤ z ≤ 7 6 17 ≤ z ≤ 20

z − 7 7 ≤ z ≤ 10 z − 14 20 ≤ z ≤ 23

3 10 ≤ z ≤ 14 9 23 ≤ z ≤ 26

z − 11 14 ≤ z ≤ 17

Likewise, Theorem 5.2.1 allows us to compute ĝ(z, v) for v > 0. Beginning with the

initial approximation ĥ0(z, v) = ĝ(z, 0), we apply the algorithm of Chapter 4 to obtain a

non-dominated valid superadditive approximation ĥ. This is given in Tables 10 through 12,

where each table represents the function for a given value of v.

When v = 0 and v = 1, the final approximation satisfies ĥ(z, v) = ĝ(z, 0). For the

remain values of v, ĥ is as follows:

141

Table 10: Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 2

ĥ(z, 2) z ĥ(z, 2) z

0 0 ≤ z ≤ 4 6 17 ≤ z ≤ 20

z − 4 4 ≤ z ≤ 7 z − 14 20 ≤ z ≤ 23

3 7 ≤ z ≤ 14 9 23 ≤ z ≤ 26

z − 11 14 ≤ z ≤ 17

Table 11: Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 3

ĥ(z, 3) z ĥ(z, 3) z

0 0 ≤ z ≤ 3 6 13 ≤ z ≤ 20

z − 3 3 ≤ z ≤ 6 z − 14 20 ≤ z ≤ 23

3 6 ≤ z ≤ 10 9 23 ≤ z ≤ 26

z − 7 10 ≤ z ≤ 13

Table 12: Non-dominated ĥ(z, v) for cardinality-constrained flow cover with v = 4

ĥ(z, 4) z ĥ(z, 4) z

0 0 ≤ z ≤ 3 6 12 ≤ z ≤ 16

z − 3 3 ≤ z ≤ 6 z − 10 16 ≤ z ≤ 19

3 6 ≤ z ≤ 9 9 19 ≤ z ≤ 26

z − 6 9 ≤ z ≤ 12

As in the case of the of the knapsack intersection, ĥ is depicted in Figure 20 by graphing

its individual slices corresponding with each value of v.

This example is quite telling about how we might generally construct a non-dominated

approximation of ĝ. Again, we note the lengths of the slope 0 intervals and the order in

142

7 10 14 17 20 23 26

3

6

9

4 7 14 17 20 23 26

3

6

9

3 6 10 13 20 23 26

3

6

9

3 6 9 12 16 19 26

3

6

9

z

z

z

z

v = 2

v = 4

v = 0, 1

v = 3

Figure 20: The lifting function ĥ from Example 5.2.1

which they appear for each value of v.

For this example when v = 0 and v = 1 the lengths appear in the order 7, 4, 3, 3; when

v = 2, the order becomes 4, 7, 3, 3; for v = 3, the order again changes to 3, 4, 7, 3; and

finally when v = 4, the order changes to 3, 3, 4, 7. Once again, we see that the order of

these intervals reverses.

Motivated by this example, we propose the following approximation of ĝ:

ĥ(z, v) =

ĝ(z, 0) v = 0

(v − 1)λ− ĝ ((Uv − λ)− z) 0 ≤ z ≤ Uv − λ, (v > 0)

ĝ(z, 0) z ≥ Uv − λ, (v > 0).

(85)

As we did for (77), we show that ĥ is a non-dominated valid superadditive approximation.

Theorem 5.2.2. The function ĥ is valid and superadditive.

Proof. By Theorem 5.2.1, we only need to show that ĥ(z, v) ≤ ĝ(z, v) whenever v > 0 and

z ≤ Uv − λ. In this case

(v − 1)λ− ĝ ((Uv − λ)− z) ≤ (v − 1)λ = ĝ(z, v).

Therefore ĥ ≤ ĝ, proving validity.

To prove superadditivity, we must show that

ĥ(z1, v1) + ĥ(z2, v2) ≤ ĥ(z1 + z2, v1 + v2) (86)

143

for all 0 ≤ z1, z2 ≤ z1 + z2 ≤ b and 0 ≤ v1, v2 ≤ v1 + v2 ≤ r. Note that ĥ(z1, v1) is a 0-1

function with no jumps. By Proposition 4.4.2, we only need to test certain points. Namely,

we may assume that (z1, v1) is a slope 1 breakpoint (i.e. the slope changes from 1 to 0 at

(z1, v1)) and that either (z2, v2) is a slope 1 breakpoint or z1 + z2 = b.

Suppose first that ĥ(z1, v1) = ĝ(z1, 0) and ĥ(z2, v2) = ĝ(z2, 0). If z1 = z2 = 0, then (86)

clearly holds by the superadditivity of ĝ. Therefore, assume without loss of generality that

v2 > 0. Thus z1 = Us for some s ≥ v1 and z2 ≥ Uv2 − λ. In particular,

Us + (Uv2 − λ) ≥ Us+v2 − λ ≥ Uv1+v2 − λ.

Thus ĥ(z1 + z2, v1 + v2) = ĝ(z1 + z2, 0) and (86) again holds by the superadditivity of ĝ.

So assume now that z1 ≤ Uv1 − λ and v1 > 0. As we assumed that z1 was a slope

1 breakpoint, we may write z1 =
∑s

j=0 uv1−j for some s < v1 − 1. Now suppose that

z2 = d− z1; thus

z2 = (Ur − λ)−
s∑
j=0

uv1−j ≤ (Ur − λ)−
s∑
j=0

ur−j = Ur−(s+1) − λ.

Therefore if z2 ≥ Uv2 − λ, then ĥ(z2, v2) = ĝ(z2, 0) ≤ (r − s− 2)λ. In particular,

ĥ(z1, v1) + ĥ(z2, v2) ≤ (s+ 1)λ+ (r − s− 2)λ = (r − 1)λ.

On the other hand if z2 < Uv2 − λ, then v2 < r − (s+ 1). Indeed if v2 ≥ r − (s+ 1) then

v1 + v2 ≥ v1 + r − (s+ 1) > r.

Thus ĥ(z2, v2) ≤ (r − s− 2)λ, and (86) again follows.

So we may assume now that z2 is a slope 1 breakpoint. This leaves two possibilities:

either z2 ≤ Uv2 −λ or z2 > Uv2 −λ. In the first case, write z2 =
∑t

j=0 uv2−j with t < v2−1.

Therefore, s+ t+ 1 < v1 + v2 − 1 and

s+t+1∑
j=0

uv1+v2−j =
s∑
j=0

uv1+v2−j +
s+t+1∑
j=s+1

uv1+v2−j

=
s∑
j=0

uv1+v2−j +
t∑

j=0

uv2+(v1−(s+1))−j

≤ z1 + z2.

144

Thus ĥ(z1 + z2, v1 + v2) ≥ (s+ t+ 2)λ = (s+ 1)λ+ (t+ 1)λ = ĥ(z1, v1) + ĥ(z2, v2) showing

that (86) holds.

Otherwise, if z2 ≥ Uv2 − λ, then let z2 = Ut with t ≥ v2. If v1 + v2 > s+ t, then

s+t∑
j=0

uv1+v2−j =

s∑
j=0

uv1+v2−j +

s+t∑
j=s+1

uv1+v2−j

=
s∑
j=0

uv1+v2−j +
t∑

j=1

uv1+v2−s−j

≤
s∑
j=0

uv1−j +

t∑
j=1

ut+1−j

= z1 + z2.

In particular, ĥ(z1 + z2, v1 + v2) ≥ (s + t + 1)λ = ĥ(z1, v1) + ĥ(z2, v2). If v1 + v2 ≤ s + t,

then

Us+t+1 =
s+t∑
j=0

us+t+1−j =
s∑
j=0

us+t+1−j +
t∑

j=1

ut+1−j ≤ z1 + z2.

Thus ĥ(z1 + z2, v1 + v2) ≥ (s+ t+ 1)λ and (86) follows as before.

The only case left to consider now is when z1 ≥ Uv1 − λ and z2 = d − z2. Thus we

express z1 = Us for some s ≥ v1, and let

z2 = (Ur − Us)− λ =

r−s−1∑
j=0

ur−j − λ.

If z2 ≥ Uv2 − λ, then z2 ≤ Ur−s − λ, so ĥ(z2, v2) ≤ (r − s− 1)λ, implying that

ĥ(z1, v1) + ĥ(z2, v2) ≤ sλ+ (r − s− 1)λ = (r − 1)λ.

Thus (86) holds. Otherwise, if z2 ≤ Uv2 − λ, then

r−s−1∑
j=0

ur−j − λ ≤
r−s−1∑
j=0

uv2−j − λ.

Therefore, ĥ(z2, v2) ≤ (r − s− 1)λ, and (86) again holds.

Now that we have established that ĥ is valid and superadditive, we show that it is

non-dominated again using Theorem 4.2.7.

Theorem 5.2.3. ĥ is non-dominated.

145

Proof. For each point (z1, v1), we show there exists a second point (z2, v2) such that

ĥ(z1, v1) + ĥ(z2, v2) = ĝ(z1 + z2, v1 + v2).

If v1 = 0 or z1 ≥ Uv1 − λ, then ĥ(z1, v1) = ĝ(z1, v1). On the other hand, if z1 ≤ Uv1 − λ,

then setting (z2, v2) = ((Uv1 − λ)− z1, 0) clearly suffices. Thus ĥ is non-dominated.

5.3 Stable Set

We now describe how we can apply superadditive lifting to the odd-hole inequalities

of the stable set polytope. Before we can do this, we must manage the dimension of the

lifting function. We divide this section into three parts: in the first we describe the problem

setting and address the lifting function; in the second, we explore how we can specialize our

approximation to obtain a deep cut; and in the third, we compare the performance of lifted

and non-lifted inequalities.

5.3.1 The Stable Set Polytope and Lifting

Let G = (V,E) be a simple undirected graph. A stable set of G is a set S ⊆ V such that

for all distinct u, v ∈ S, (u, v) /∈ E. The complement of a stable set, a clique, is a set S ⊆ V

such that for all distinct u, v ∈ S, (u, v) ∈ E. For a vertex v ∈ V , its neighborhood, N(v),

is defined by N(v) = {u ∈ V : (u, v) ∈ E}. We will also be interested in the neighborhood

of v belonging to some U ⊆ V ; thus we define NU (v) = N(v) ∩ U .

Given a set S ⊆ V , we can encode S by its incidence vector. Thus the set of all stable

sets is defined by

X =
{
x ∈ {0, 1}|V | : xu + xv ≤ 1, ∀(u, v) ∈ E

}
. (87)

The stable set polytope is defined by P = conv(X). Observe that if we delete an edge (u, v)

from G, then this is equivalent to deleting its corresponding constraint xu + xv ≤ 1 from

the description of X.

We show that by relaxation and reformulation we can derive valid inequalities for the

stable set polytope from a much lower-dimensional set. Fix U ⊆ V and some S ⊆ U ⊆ V ,

and let VS = {v ∈ V : S = NU (v)} ≠ ∅. Let G′ = (V ′, E′) be the graph defined by setting

146

V ′ = V and

E′ = E \ {(u, v) ∈ E : v ∈ VS , u ∈ V \ (VS ∪ S)} .

Conceptually, G′ is obtained by removing the edges leaving VS that do not end in S. Let

X ′ denote the relaxed set and P ′ = conv(X ′). Clearly P ⊆ P ′, so valid inequalities for P ′

are valid for P .

Let G′′ = (V ′′, E′′) be obtained by identifying the vertices of VS with a single vertex v∗.

Therefore,

V ′′ =
(
V ′ \ VS

)
∪ {v∗} ,

E′′ =
(
E′ \

{
(u, v) ∈ E′ : {u, v} ∩ VS ̸= ∅

})
∪ {(u, v∗) : u ∈ S} .

Similarly, we define X ′′ and P ′′. The operations transforming G into G′′ are shown in Figure

21. We now show that facets of P ′′ readily translate to facets of P ′.

VS

v∗

VS

G G′
G′′

Figure 21: Relaxation and reformulation of G

Theorem 5.3.1. Let πx ≤ π0 be a non-trivial facet of P ′′ and K ⊆ VS be a maximal clique.

Define the inequality π′x ≤ π′0 as follows: π′v = πv for v ∈ V ′ \ VS, π′0 = π0, and

π′v =

πv∗ v ∈ K

0 v ∈ VS \K.

Then π′x ≤ π′0 defines a facet of P ′.

Proof. First we argue validity. At most one vertex from K can be contained in any stable

set of G′. Let x′ denote the incidence vector of a stable set of G′, and let x′′ be obtained

by setting x′′v∗ =
∑

v∈K x
′
v and x′′v = x′v for v /∈ VS . Since the set of neighbors of K not

belonging to VS is precisely S; thus x′′ defines a stable set of G′′. In particular, if π′x′ > π′0,

then πx′′ > π0.

147

Next we show that this inequality is facet-defining. Because the singletons and the empty

set are all stable sets, P ′ and P ′′ are full-dimensional, and the non-negativity constraints

are facet-defining.

Let n′ = |V ′| and n′′ = |V ′′| = n′− |VS |+1. Any facet-defining inequality of P ′ (respec-

tively P ′′) is satisfied by n′ (respectively n′′) affinely independent points. Let y1, . . . , yn
′′ ∈

X ′′ satisfy πy = π0, and fix some v̂ ∈ K. Construct n′′ affinely independent points

x1, . . . , xn
′′
as follows:

xiv =

yiv v ∈ V ′ \ VS

yiv∗ v = v̂

0 v ∈ VS \ v̂.

By construction xi ∈ X ′ and π′xi = π′0.

Now we must construct the remaining |VS | − 1 points. Because πx ≤ π0 is non-trivial,

there exists some yi such that yiv∗ = 1. For v ∈ K \ v̂, set xv = xi − ev̂ + ev. Otherwise,

for v ∈ VS \ K, there exists some v′ ∈ K such that (v, v′) /∈ E′ by the maximality of K.

Therefore, we set xv = xv
′
+ ev.

It is trivial to verify that xv ∈ X ′ and π′xv = π′0. Further, these points are necessarily

affinely independent, so we have constructed n′′ + |VS | − 1 = n′ tight affinely independent

points, proving that π′x ≤ π′0 is facet-defining.

This theorem gives us a tool for performing sequence-independent lifting on the odd-hole

inequalities. An odd-hole is simply a minimal odd-length cycle: i.e. it contains no shorter

length cycles. For k ≥ 1 integral, let C2k+1 be an odd-hole on 2k + 1 vertices. Numbering

the vertices from 1 to 2k + 1, the odd-hole inequality is defined by

2k+1∑
j=1

xj ≤ k. (88)

Whenever G = C2k+1 this inequality is facet defining for P ; however, even when G ̸= C2k+1,

the odd-hole inequality can be used to derive strong valid inequalities for P through lifting.

Given a graph G, let C be an odd-hole. Partition the vertices of V \C into sets V1, . . . , Vt

such that Si = NC(v) = NC(u) for all u, v ∈ Vi and Si ̸= Sj for i ̸= j. Let G′ be obtained

148

by deleting all edges (u, v) such that u ∈ Vi and v ∈ Vj for i ̸= j, and construct G′′ by

identifying Vi with a single vertex v∗i for i = 1, . . . , t.

By repeated application of Theorem 5.3.1, we can construct valid inequalities for P ′

(and therefore P) from P ′′.

We proceed by lifting the odd-hole inequalities. We first construct a restricted set X0

by setting xv∗i = 0 for i = 1, . . . , t:

X0 =

x ∈ {0, 1}2k+1 :
xi + xi+1 ≤ 1, i = 1, . . . , 2k

x1 + x2k+1 ≤ 1

 . (89)

The odd-hole inequality (88) is facet-defining for P 0 = conv(X0), and its associated lifting

function is given by

f(z1, . . . , zt) = min k −
2k+1∑
j=1

xj

s.t. xi ≤ 1− zj , i ∈ Sj , j = 1, . . . , t

xi + xi+1 ≤ 1, i = 1, . . . , 2k

x1 + x2k+1 ≤ 1,

xi ∈ {0, 1} , i = 1, . . . , 2k + 1.

(90)

It is worth noting that t ≤ min
{
22k+1, 2n−(2k+1)

}
. Although this may still be quite large,

it is often a substantial improvement over lifting in the original variable space.

In general, f is not superadditive as we show in the next example.

Example 5.3.1. Let C = {1, 2, 3, 4, 5}. Let S1 = {1, 2, 3} and S2 = {2, 3, 4}. In this case,

it is easy to see that f(1, 0) = 1 and f(0, 1) = 1. Similarly x5 = 1 is still feasible for f(1, 1).

Therefore,

f(0, 1) + f(1, 0) = 2 > 1 = f(1, 1),

violating superadditivity.

149

For i = 1, . . . , t, define the function

Φj(zj) = min k −
2k+1∑
j=1

xj

s.t. xi ≤ 1− zj , i ∈ Sj

xi + xi+1 ≤ 1, i = 1, . . . , 2k

x1 + x2k+1 ≤ 1,

xi ∈ {0, 1} , i = 1, . . . , 2k + 1.

We can easily calculate Φj . When zj = 0, clearly Φj(zj) = 0. Otherwise, we consider the

graph C \Sj , which is a union of isolated vertices and disjoint paths. Letting kj denote the

maximum cardinality stable set on this graph, Φj(1) = kj .

Similarly, define Ψj by

Ψj(zj , v) = min k −
2k+1∑
j=1

xj

s.t. xi ≤ 1− zj , i ∈ Sj

2k+1∑
j=1

xj ≤ k − v

xi + xi+1 ≤ 1, i = 1, . . . , 2k

x1 + x2k+1 ≤ 1,

xi ∈ {0, 1} , i = 1, . . . , 2k + 1.

It is straightforward to see that Ψj(zj , v) = max
(
Φj(zj), v

)
. In particular, Ψj(0, v) = v and

Ψj(1, v) = max(kj , v). Clearly Ψj is not superadditive whenever kj > 0. However, there

exists a family of non-dominated superadditive approximations for Ψj . One such example

is given in Figure 22.

Theorem 5.3.2. Let rj be some integer satisfying 0 ≤ rj ≤ kj. Define the function ψj(zj , v)

by ψj(0, v) = (v − rj)
+ and

ψj(1, v) =

rj + v 0 ≤ v ≤ kj − rj

kj kj − rj ≤ v ≤ kj

v kj ≤ v ≤ k.

(91)

150

Then ψj is a non-dominated superadditive valid approximation of Ψj.

Proof. Validity is clear. Superadditivity follows from case analysis. First consider ψj(0, u)+

ψj(0, v). If u ≤ rj , ψ
j(0, u) = 0. As ψj is increasing,

ψj(0, u+ v) ≥ ψj(0, v) = ψj(0, v) + ψj(0, u).

Therefore assume that u, v > rj ; hence

ψj(0, u) + ψj(0, v) = u+ v − 2rj ≤ u+ v − rj = ψj(0, u+ v).

So now we consider ψj(1, u) + ψj(0, v). Since ψj is increasing we can again assume that

v > rj . Noting that ψj(1, u) ≤ rj + u,

ψj(1, u) + ψj(0, v) ≤ (rj + u) + (v − rj) = u+ v ≤ ψj(1, u+ v).

proving superadditivity.

Next we argue non-dominance. Observe that for ψj(1, u) = Ψj(1, u) for u ≥ kj − rj

and cannot be increased. For 0 ≤ v ≤ rj , ψ
j(1, kj − rj) + ψj(0, v) = kj = ψj(1, u +

v) = Ψj(1, u + v). Therefore we cannot increase ψj(0, v). Similarly, for rj ≤ v ≤ k − rj ,

ψj(1, kj − rj)+ψj(0, v) = kj + v− rj = ψj(1, kj + v− rj) = Ψj(1, kj + v− rj), so we cannot

increase ψj(0, v). Lastly, for 0 ≤ u ≤ kj − rj , we set v = k − u, and ψj(1, u) + ψj(0, v) =

k = ψj(1, k) = Ψj(1, k), and we cannot increase ψj(1, u) or ψj(0, v − u).

We have exhaustively shown that we cannot increase ψj anywhere without having to

decrease ψj at another point. Hence we cannot increase ψj and preserve validity and

superadditivity.

5 10

2

4

6

8

10

5 10

2

4

6

8

10

vv

ψj(v,1)
ψj(v,0)

Figure 22: The function ψj for the odd-hole inequalities

151

Noting that ψj is superadditive, the next theorem follows as an immediate consequence

of Theorem 3.3.3:

Theorem 5.3.3. Let ϕt = Φt, and define ϕi by ϕi(zi, zi+1, . . . , zt) = ψ (zi, ϕ(zi+1, . . . , zt)) .

Setting ϕ = ϕ1,

ϕ (z1, . . . , zt) ≤ f (z1, . . . , zt) ,

and is superadditive.

Using ϕ we are able to determine valid lifting coefficients for xv∗i , by simply calculating

ϕ at the corresponding point. By repeatedly applying Theorem 5.3.1, we can obtain valid

inequalities for P ′ and hence P .

5.3.2 Obtaining Deep Cuts

Although it is always possible to perform superadditive lifting using this nesting scheme,

we may wish to find an approximation that reflects our goal of separating a fractional

solution. A non-dominated approximation is a reasonable starting point, but it is generally

possible that many such approximations exist and their performance will vary greatly.

For the lifting problem (90), we only considered sets S ⊆ C such that there exists some

vertex v such that NC(v) = S. Let S = {S1, . . . , St} denote the set of all such subsets of

C. Let J = {1, . . . , t}, and let I = {j ∈ J : f(ei) > 0} and Ī = J \ I. We show that it is

possible to further reduce the dimension of the lifting function by excluding vertices v∗i with

i ∈ Ī.

Rewrite f(z) as f (zI , zĪ), where zI and zĪ denote the components of z restricted to I

and Ī respectively. Consider the restriction, fR (zI) = f (zI , 0). In the next proposition we

show that a superadditive approximation of fR always obtains lifting coefficients at least as

strong as a superadditive approximation of f .

Proposition 5.3.4. Let g be a valid superadditive approximation of f . Then there exists

some superadditive approximation hR of fR such that the function h defined by h (zI , zĪ) =

hR (zI) is valid, superadditive, and produces lifting coefficients at least strong as those ob-

tained from g.

152

Proof. Let g be a superadditive approximation of f . Then the function gR defined by

gR (zI) = g (zI , 0) is a valid superadditive approximation of fR. Now let gR ≤ hR ≤ fR for

some superadditive hR. In the worst case, hR = gR.

As f is increasing, fR (zI) ≤ f (zI , zĪ). Thus the function h defined by h (zI , zĪ) =

hR (zI) must be a valid approximation of f . Moreover, we claim that h is superadditive.

Indeed, this easily follows from the superadditivity of hR, as

h (uI , uĪ) + h (vI , vĪ) = hR (uI) + hR (uI)

≤ hR (uI + vI) = h (uI + vI , uĪ + vĪ) .

Thus it remains to consider the lifting coefficients. For i ∈ I, h(ei, 0) ≥ g(ei, 0). Likewise

for i ∈ Ī, h(0, ei) = g(0, ei) = 0. In particular, the lifting coefficients obtained from h are

at least as strong as those obtained from g.

Therefore, we are able to further reduce our problem dimension, so we can assume

without loss of generality that f(ei) > 0 for all i ∈ I. Next we show that for any non-

dominated approximation, g of f , g(ei) ≥ 0.

Proposition 5.3.5. If g is non-dominated, then g ≥ 0.

Proof. Assume to the contrary that g(z1) < 0. As g is non-dominated, there exists some z2

such that

g(z1) + g(z2) = f(z1 + z2).

However, this implies that g(z2) = f(z1 + z2) − g(z1) > f(z1 + z2) > f(z2). But this

contradicts that g is valid.

Suppose now that we have some point x̄ ≥ 0 and an odd-hole C that induces some

partition VS1 , . . . , VSt of V \ C, and identify cliques K1, . . . ,Kt with Ki ⊆ VSi . Therefore,

if |C| = 2k + 1, the lifted odd-hole inequality takes the form

t∑
i=1

g(ei) ∑
v∈Ki

xv

+
∑
v∈C

xv ≤ k. (92)

Our goal is to maximize the left-hand side of (92) when evaluated at x̄. There are two

different parts of this inequality that we can control: the cliques Ki and the function g.

153

Proposition 5.3.6. Without loss of generality the g maximizing the left-hand side of (92)

is non-dominated.

Proof. Suppose that g is not non-dominated. Then by definition there exists a function h

such that g ≤ h ≤ f and h(z) > g(z) for some z. In particular, as x̄ ≥ 0,

t∑
i=1

h(ei) ∑
v∈Ki

x̄v

+
∑
v∈C

x̄v ≥
t∑
i=1

g(ei) ∑
v∈Ki

x̄v

+
∑
v∈C

x̄v.

Thus we may assume that g is non-dominated.

This immediately yields the following proposition:

Proposition 5.3.7. Without loss of generality, any choice of Ki maximizing the left-hand

side of (92), maximizes
∑

v∈Ki
x̄v.

Proof. As g is non-dominated, g(ei) ≥ 0. Thus, if there exists some clique K ′
i with∑

v∈K′
i

x̄v >
∑
v∈Ki

x̄v,

then we can replace Ki with K
′
i to obtain a larger value for the left-hand side of (92).

Therefore, the first step is to identify maximum weight cliques Ki. When VSi is small

(for example |VSi | ≤ 20) then Ki can be identified exactly by enumeration; however, if VSi

is large, we may instead opt to use a heuristic, like the greedy algorithm, to quickly identify

some clique. These cliques produce weights

wi =
∑
j∈Ki

x̄i,

that we can then use to identify the best superadditive approximation. Indeed, this can be

achieved by solving the following linear program:

max

t∑
i=1

wi · g(ei)

s.t. g(z1) + g(z2) ≤ g(z1 + z2) z1, z2, z1 + z2 ∈ {0, 1}t

0 ≤ g(z) ≤ f(z) z ∈ {0, 1}t .

(93)

154

We are not interested in the value of the lifting function at g(z) whenever z is not one of

the unit vectors. So the number of variables in (93) greatly exceeds what is needed. In the

next proposition, we show a much smaller linear program that achieves the same maximum.

Proposition 5.3.8. The linear program

max
t∑
i=1

wi · g(ei)

s.t.
t∑
i=1

zi · g(ei) ≤ f(z) z ∈ {0, 1}t

0 ≤ g(ei) ≤ f(ei) i = 1, . . . , t

g(0) = 0

(94)

achieves the same maximum as (93).

Proof. First consider an optimum solution ḡ to (93). We claim that (ḡ(e1), . . . , ḡ(et)) is

feasible to (94). Indeed, by taking a linear combination of the constraints of (93), it follows

that
t∑
i=1

zi · ḡ(ei) ≤ ḡ(z) ≤ f(z).

On the other hand, consider a solution ĝ to (94). Then if we set

ḡ(z) =
t∑
i=1

zi · ĝ(ei),

we satisfy ḡ(z1) + ḡ(z2) = ḡ(z1 + z2) for all z1, z2, z1 + z2 ∈ {0, 1}t, and ḡ(z) ≤ f(z) for all

z ∈ {0, 1}t. Therefore, this solution is feasible to (93).

As one final remark, (94) has exponentially many constraints in t. The techniques of

Chapter 3 give us a tool to manage the size of t. It is quite easy to extend these results of

this section to accommodate this slight modification.

5.3.3 Lifted Versus Non-Lifted Inequalities

Now that we have a method to identify the lifted odd-hole inequalities obtaining the

deepest cut coefficients, we demonstrate that they outperform their non-lifted counterparts.

We consider the odd-hole inequalities on a standard model of random graphs Gn,p. Let

Gn,p = (V,E), where V = {1, . . . , n} and (u, v) ∈ E with probability p for all unordered pairs

155

(u, v). We further assume that Gn,p is connected by discarding graphs that are disconnected.

This is more of a simplifying assumption than a necessity, as we could test the connected

components separately.

The problem we consider is the maximum cardinality stable set given by

z = max
∑
v∈V

xv

s.t. xu + xv ≤ 1 (u, v) ∈ E

xv ∈ {0, 1} v ∈ V.

(95)

We relax the integrality requirement and instead optimize over the LP relaxation. If the

optimum is attained at a fractional point x̄, we then attempt to find a violated odd-hole

inequality by using Dijkstra’s algorithm on a specially constructed bipartite graph (see [57]).

The first test we perform is without lifting. If a violated odd-hole is found, the odd-hole

inequality is added and the LP relaxation is resolved. This process is repeated until no

violated odd-hole inequality is found. Lifted inequalities are tested similarly; however, the

added inequality is strengthened by solving (94) and using the corresponding cut coefficients.

Again we stop when no violated odd-hole inequality is found. Note that this terminating

condition does not preclude the possibility that there exist violated lifted inequalities, but

identifying such violated inequalities seems far more challenging than separating over the

non-lifted odd-hole inequalities.

We test a small collection of instances with n = 50, 100, 200 and p = 1/8, 1/4, 3/8.

For these instances, the sizes of VSi and t are sufficiently small that enumeration is not

prohibitively expensive. For each combination of n and p we tested ten instances. As the

sampled graphs are independent and identically distributed, the performance tends to be

quite similar for fixed n and p. Therefore, we report the average value of the LP solution

upon termination, the average number of cuts added, and the average time in seconds per

cut. Represent these quantities by N , z, and τ for the non-lifted cuts and Nℓ, zℓ, and τℓ for

the lifted cuts. The results of the test are shown in Table 13.

The most apparent behavior from this table is that of z: namely it tends toward n/3.

This suggests the following proposition:

156

Table 13: Performance of (non-)lifted odd-hole inequalities

n p z N τ zℓ Nℓ τℓ
50 1/8 17.8 83.9 0.04 17.4 83.9 0.04
50 1/4 16.7 70.4 0.05 13.8 100.5 0.05
50 3/8 16.7 65.4 0.07 11.5 101.0 0.07

100 1/8 33.4 158.5 0.21 30.9 216.8 0.21
100 1/4 33.3 131.8 0.31 24.6 220.3 0.30
100 3/8 33.3 129.4 0.39 19.1 166.2 0.39

200 1/8 66.7 277.0 1.40 54.3 577.3 1.43
200 1/4 66.7 261.6 1.75 43.9 397.6 1.74
200 3/8 66.7 251.4 2.43 33.0 250.0 2.37

Proposition 5.3.9. z ≥ n/3 for all n.

Proof. Consider the solution x̂ obtained by setting xv = 1/3 for all v ∈ V . Clearly, this

solution satisfies any edge constraint; thus it remains to consider the odd-hole constraints.

Let C = {1, . . . , 2k + 1} be some odd-hole. Then the left-hand side of the corresponding

odd-hole constraint is given by
2k+1∑
j=1

1

3
=

2k + 1

3
.

If k ≥ 1, then k ≥ (2k + 1)/3. Therefore the odd-hole constraint must be satisfied.

Thus, without lifting, the odd-hole inequalities are quite limited in their performance.

But it is readily observed that the approximate lifting we proposed attains solutions beyond

this bound; moreover, their performance tends to improve as the graph contains more edges.

This trend is apparent in Figures 23 through 25, which plot the objective as a function of

the number of cuts added for various parameter settings.

For these examples, lifting does not seem to significantly impact the time it takes to

generate an individual cut; nevertheless, the impact on the final objective is quite noticeable.

The overall running times increase on many of the problems as we apply lifting, but this

is more closely related to the number cuts that we add. Considering the objective as a

function of the number of cuts added, it is evident that the lifted inequalities are the clear

winners as they are consistently capable of producing better bounds using fewer cuts.

157

0 100 200 300 400 500 600
50

60

70

80

90

100

Cuts

LP
 O

bj
ec

tiv
e

Non−Lifted
Lifted

Figure 23: Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 1/8

0 50 100 150 200 250 300 350
40

50

60

70

80

90

100

Cuts

LP
 O

bj
ec

tiv
e

Non−Lifted
Lifted

Figure 24: Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 1/4

5.4 Closing Remarks

In this chapter, we put together ideas appearing throughout this thesis to derive cuts for

higher-dimensional problems. We highlighted the potential of our algorithm to explicitly

derive non-dominated approximations for concrete examples that we could then generalize.

Using the approach of Chapter 3, these general approximate lifting functions could then

be applied to considerably more challenging problems that were otherwise inaccessible to

lifting.

Our study of lifted odd-hole inequalities exposed the potential for superadditive lifting to

be embedded into a cutting plane framework even without a priori knowledge of the lifting

functions involved. By using superadditivity we were able to simultaneously ensure validity

158

0 50 100 150 200 250 300
30

40

50

60

70

80

90

100

Cuts

LP
 O

bj
ec

tiv
e

Non−Lifted
Lifted

Figure 25: Non-lifted versus lifted odd-hole inequalities with n = 200 and p = 3/8

and target the deepest cut. This idea might readily be extended to other combinatorial

problems. The difficulty of describing valid lifting coefficients in the general and mixed

integer case translate to this setting. In this regard, it is an interesting open problem how

and when one might be able to extend this idea to these cases.

As we demonstrated, lifting in higher dimensions enables us to strengthen known families

of cuts; however, it also offers the potential to obtain entirely new cuts. The tools we have

developed can help reveal previously unexplored applications for this powerful technique.

159

CHAPTER VI

FUTURE WORK

In this thesis, we investigated cutting planes in mixed integer programming. Generally

speaking, our main contributions are to the theoretical understanding of the Gomory mixed

integer cut and to techniques for deriving multi-row cuts through lifting.

Our study of the mixed integer cut in Chapter 2 approached the problem by considering

it as a facet of the master cyclic group polyhedron. We showed that its adjacent facets

are precisely tilted knapsack facets that arise from one of two different knapsack polytopes.

Given the practical success of the mixed integer cut, this result indicates that the tilted

knapsack facets may play an important role in the solution of mixed integer programs.

Therefore, one worthy pursuit is the identification of new classes of knapsack facets.

We were also able to generalize our results under automorphic and homomorphic map-

pings by extending two of Gomory’s original results to include adjacency. Under automor-

phic mapping our result translates in its entirety; however, we are unfortunately left with an

incomplete understanding of the lifted mixed integer cut obtained through homomorphisms.

The same shooting experiments that frequently hit the mixed integer cut often hit its lifted

counterparts; thus, these facets may be quite important. Another avenue of research would

be the classification of adjacent facets to the lifted mixed integer cut that do not arise by

lifting the tilted knapsack facets.

In Chapter 3, we considered the task of lifting an already lifted flow cover inequality. The

lifted simple generalized flow cover inequality is obtained similarly, but reintroduces a dif-

ferent set of variables before performing the second lifting step. This example demonstrated

the challenge in characterizing the second lifting function let alone even approximating it.

In particular, the standard practice of using the exact lifting function to establish the valid-

ity of an approximation becomes very cumbersome. By exploiting the fact that the lifting

function arises through the solution of a mixed integer program, we are able to reformulate

160

and relax the lifting problem to prove that the superadditive approximation we proposed

was indeed valid.

We take this idea further and give an entire framework for obtaining approximate lifting

functions for high-dimensional problems by relaxing sets of complicating constraints with

lifting functions. Despite its simplicity, this idea has not yet been explored; moreover, it

gives us a tool for incorporating side constraints that would otherwise be discarded into

the lifting function. By simplifying the lifting problem, we are able to open entirely new

problems to the approach and obtain multi-row cuts.

There are a number of open questions that naturally follow from this work. For the

fixed-charge flow set we studied, one very interesting question is whether a non-dominated

approximation can actually be constructed and how it would compare computationally

against the highly successful lifted simple generalized flow cover inequalities. With regard

to the approximation of high-dimensional lifting functions, another worthwhile endeavor is

determining conditions under which the non-dominance of the final superadditive approxi-

mation is guaranteed.

Next in Chapter 4 we address the computational aspects of constructing non-dominated

superadditive approximations. We restricted our attention to one-dimensional lifting func-

tions and simple variants of one-dimensional lifting functions restricted to the positive

orthant. Our work revealed that the desirable characteristics of validity, superadditivity,

and non-dominance can all be efficiently tested. These results also simplify proofs of super-

additivity and non-dominance by reducing the tests to an easily certifiable condition over

a small collection of points in the domain. However, our main result in this chapter is the

existence of a finite algorithm that constructs non-dominated approximations.

By far the biggest limitation in this work is the assumption we make about the problem

domain. Along this line, there are two natural extensions. The first is the development of

a necessary and sufficient condition to characterize non-dominance when the domain can

include negatives. Even for a one-dimensional discrete domain, the presence of negatives

greatly complicates matters. Such work might also lead to an algorithmic construction

of non-dominated approximations in this slightly more general setting. Additionally, we

161

limited the continuous part of the function to be one-dimensional. This essentially limits

the algorithmic treatment of superadditive approximations to lifting functions with one

continuous argument. There is no reason we need to restrict ourselves to this setting. The

structure of the lifting function is well understood in high dimensions; thus, it may be

possible to use this structure to extend our results to more general lifting functions.

Lastly, note that we were only able to prove the finite termination of our algorithm.

The bound we obtained was exponential in the number of breakpoints, but our experience

working examples did not seem to agree with this bound. This suggests two possibilities:

either the algorithm is polynomial or pseudo-polynomial and a different analysis would

reveal this, or the algorithm requires exponential time and we have not yet considered the

right example. Conclusively resolving this question one way or the other would give a much

more complete picture of this work.

We concluded in Chapter 5 by applying lifting to several high-dimensional problems.

Using the algorithm from Chapter 4, we were able to guide our intuition to identify lifting

functions that generate cut coefficients that are at least as good and possibly better than

could otherwise be obtained from the single-row systems. In this chapter, we only considered

knapsack covers and flow covers, but there are many classical problems for which side

constraints might be used to further strengthen cuts.

Finally, we considered the odd-hole inequalities for the stable set polytope. The more

traditional approach to superadditive lifting relies on an a priori description of the lifting

function. However, taking this approach directly for the odd-hole inequalities would com-

pletely blow up the size of the lifting function. We are able to overcome this challenge by

computing the lifting function as we need it. We can then use a linear program to identify

a superadditive approximation that gives the deepest separation with respect to a current

fractional solution.

We rely specifically on the variables we reintroduce being binary; therefore our approach

seems well suited to combinatorial problems. There is a wide array of such problems where

superadditive lifting has not actively been explored as an option for obtaining good cuts.

It may be possible to further generalize this technique to general integer and mixed integer

162

problems; however, the choice of lifting coefficients producing the deepest separation be-

comes far less transparent. Progress on this problem will reveal even more possibilities for

lifting, and might be a large step in the search for effective multi-row cuts.

163

REFERENCES

[1] Applegate, D., Bixby, R., Chvatal, V., and Cook, W., The traveling salesman
problem: a computational study. Princeton University Press, 2007.

[2] Aráoz, J., Polyhedral neopolarities. PhD thesis, University of Waterloo, 1973.

[3] Aráoz, J., Evans, L., Gomory, R., and Johnson, E., “Cyclic group and knapsack
facets,” Mathematical Programming, vol. 96, no. 2, pp. 377–408, 2003.

[4] Atamtürk, A., “Sequence independent lifting for mixed-integer programming,” Op-
erations Research, vol. 52, no. 3, pp. 487–490, 2004.

[5] Balas, E., “Facets of the knapsack polytope,” Mathematical Programming, vol. 8,
no. 1, pp. 146–164, 1975.

[6] Balas, E., Ceria, S., and Cornuéjols, G., “A lift-and-project cutting plane algo-
rithm for mixed 0–1 programs,” Mathematical programming, vol. 58, no. 1, pp. 295–324,
1993.

[7] Balas, E., Ceria, S., Cornuéjols, G., and Natraj, N., “Gomory cuts revisited,”
Operations Research Letters, vol. 19, no. 1, pp. 1–9, 1996.

[8] Balas, E. and Zemel, E., “Facets of the knapsack polytope from minimal covers,”
SIAM Journal on Applied Mathematics, vol. 34, no. 1, pp. 119–148, 1978.

[9] Barany, I., Roy, T., and Wolsey, L., “Uncapacitated lot-sizing: The convex hull
of solutions,” Mathematical Programming at Oberwolfach II, pp. 32–43, 1984.

[10] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P.,
“Branch-and-price: Column generation for solving huge integer programs,” Operations
Research, vol. 46, no. 3, pp. 316–329, 1998.

[11] Basu, A., Conforti, M., Cornuéjols, G., and Zambelli, G., “Maximal lattice-
free convex sets in linear subspaces,” Mathematics of Operations Research, vol. 35,
no. 3, pp. 704–720, 2010.

[12] Basu, A., Conforti, M., Cornuéjols, G., and Zambelli, G., “Minimal inequali-
ties for an infinite relaxation of integer programs,” SIAM Journal on Discrete Mathe-
matics, vol. 24, no. 1, pp. 158–168, 2010.

[13] Bertsimas, D. and Tsitsiklis, J. N., Introduction to linear optimization. Athena
Scientific series in optimization and neural computation, Belmont, Mass.: Athena Sci-
entific, 1997.

[14] Blair, C. and Jeroslow, R., “The value function of a mixed integer program: I,”
Discrete Mathematics, vol. 19, no. 2, pp. 121–138, 1977.

164

[15] Borozan, V. and Cornuéjols, G., “Minimal valid inequalities for integer con-
straints,” Mathematics of Operations Research, vol. 34, no. 3, pp. 538–546, 2009.

[16] Chvátal, V., “Edmonds polytopes and weakly hamiltonian graphs,” Mathematical
Programming, vol. 5, no. 1, pp. 29–40, 1973.

[17] Conforti, M., Di Summa, M., and Wolsey, L., “The mixing set with flows,” SIAM
Journal on Discrete Mathematics, vol. 21, no. 2, pp. 396–407, 2007.

[18] Conforti, M., Di Summa, M., and Wolsey, L., “The mixing set with divisible
capacities,” Integer Programming and Combinatorial Optimization, pp. 435–449, 2008.

[19] Conforti, M., Wolsey, L., and Zambelli, G., “Projecting an extended formula-
tion for mixed-integer covers on bipartite graphs,” Mathematics of operations research,
vol. 35, no. 3, pp. 603–623, 2010.

[20] Cook, W., Cunningham, W., Pulleyblank, W., and Schrijver, A., Combinato-
rial optimization. Wiley-Interscience series in discrete mathematics and optimization,
New York: Wiley, 1998.

[21] Cook, W., Kannan, R., and Schrijver, A., “Chvátal closures for mixed integer
programming problems,” Mathematical Programming, vol. 47, no. 1, pp. 155–174, 1990.

[22] Crowder, H., Johnson, E., and Padberg, M., “Solving large-scale zero-one linear
programming problems,” Operations Research, vol. 31, no. 5, pp. 803–834, 1983.

[23] Dantzig, G., “Maximization of a linear function of variables subject to linear inequal-
ities,” New York, 1951.

[24] Dantzig, G., Fulkerson, R., and Johnson, S., “Solution of a large-scale traveling-
salesman problem,” Journal of the operations research society of America, pp. 393–410,
1954.

[25] de Farias Jr, I. and Nemhauser, G., “A polyhedral study of the cardinality con-
strained knapsack problem,” Mathematical programming, vol. 96, no. 3, pp. 439–467,
2003.

[26] Dummit, D. and Foote, R., Abstract algebra, vol. 43. Prentice Hall New Jersey,
1999.

[27] Edmonds, J., “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of
Research of the National Bureau of Standards B, vol. 69, pp. 125–130, 1965.

[28] Edmonds, J. and Johnson, E., “Matching: A well-solved class of integer linear
programs,” in in: Combinatorial structures and their applications (Gordon and Breach,
Citeseer, 1970.

[29] Ford, L. and Fulkerson, D., “Maximal flow through a network,” Canadian Journal
of Mathematics, vol. 8, no. 3, pp. 399–404, 1956.

[30] Ford, L. and Fulkerson, D., “A suggested computation for maximal multi-
commodity network flows,” Management Science, vol. 5, no. 1, pp. 97–101, 1958.

165

[31] Gilmore, P. and Gomory, R., “A linear programming approach to the cutting-stock
problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[32] Gilmore, P. and Gomory, R., “A linear programming approach to the cutting stock
problem–part ii,” Operations research, vol. 11, no. 6, pp. 863–888, 1963.

[33] Gomory, R., “An algorithm for the mixed integer problem,” tech. rep., DTIC Docu-
ment, 1960.

[34] Gomory, R., “Outline of an algorithm for integer solutions to linear programs,” Bul-
letin of the American Mathematical Society, vol. 64, no. 5, pp. 275–278, 1958.

[35] Gomory, R., “Some polyhedra related to combinatorial problems,” Linear Algebra
and its Applications, vol. 2, no. 4, pp. 451–558, 1969.

[36] Gomory, R. and Johnson, E., “Some continuous functions related to corner poly-
hedra,” Mathematical Programming, vol. 3, no. 1, pp. 23–85, 1972.

[37] Gomory, R. and Johnson, E., “Some continuous functions related to corner poly-
hedra, ii,” Mathematical Programming, vol. 3, no. 1, pp. 359–389, 1972.

[38] Gomory, R., Johnson, E., and Evans, L., “Corner polyhedra and their connection
with cutting planes,” Mathematical Programming, vol. 96, no. 2, pp. 321–339, 2003.

[39] Grötschel, M. and Padberg, M., “On the symmetric travelling salesman problem
ii: lifting theorems and facets,” Mathematical Programming, vol. 16, no. 1, pp. 281–302,
1979.

[40] Gu, Z., Lifted Cover Inequalities for 0-1 and Mixed 0-1 Programs. PhD thesis, Georgia
Institute of Technology, 1995.

[41] Gu, Z., Nemhauser, G., and Savelsbergh, M., “Lifted flow cover inequalities for
mixed 0-1 integer programs,” Mathematical Programming, vol. 85, no. 3, pp. 439–467,
1999.

[42] Gu, Z., Nemhauser, G., and Savelsbergh, M., “Sequence independent lifting in
mixed integer programming,” Journal of Combinatorial Optimization, vol. 4, no. 1,
pp. 109–129, 2000.

[43] Günlük, O. and Pochet, Y., “Mixing mixed-integer inequalities,” Mathematical
Programming, vol. 90, no. 3, pp. 429–457, 2001.

[44] Johnson, E., “On the group problem for mixed integer programming,” Approaches
to Integer Programming, pp. 137–179, 1974.

[45] Karmarkar, N., “A new polynomial-time algorithm for linear programming,” in
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 302–
311, ACM, 1984.

[46] Karp, R., “Reducibility among combinatorial problems,” Complexity of Computer
Computations, 1972.

[47] Khachiian, L., “Polynomial algorithms in linear programming,” Doklady Akademii
Nauk SSSR, vol. 224, pp. 1093–1096, 1979.

166

[48] Khachiian, L., “Polynomial algorithms in linear programming,” Zhurnal Vychisli-
tel’noi Matematiki i Matematicheskoi Fiziki, vol. 20, pp. 51–68, 1980.

[49] Küçükyavuz, S., “On mixing sets arising in chance-constrained programming,” Math-
ematical programming, vol. 132, no. 1, pp. 31–56, 2012.

[50] Loparic, M., Marchand, H., and Wolsey, L., “Dynamic knapsack sets and capac-
itated lot-sizing,” Mathematical Programming, vol. 95, no. 1, pp. 53–69, 2003.

[51] Lovász, L. and Schrijver, A., “Cones of matrices and set-functions and 0-1 opti-
mization,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190, 1991.

[52] Luedtke, J., Ahmed, S., and Nemhauser, G., “An integer programming approach
for linear programs with probabilistic constraints,” Integer Programming and Combi-
natorial Optimization, pp. 410–423, 2007.

[53] Marchand, H. andWolsey, L., “The 0-1 knapsack problem with a single continuous
variable,” Mathematical Programming, vol. 85, no. 1, pp. 15–33, 1999.

[54] Margot, F., “Pruning by isomorphism in branch-and-cut,” Mathematical Program-
ming, vol. 94, no. 1, pp. 71–90, 2002.

[55] Margot, F., “Exploiting orbits in symmetric ilp,” Mathematical Programming,
vol. 98, no. 1, pp. 3–21, 2003.

[56] Narisetty, A., Richard, J., and Nemhauser, G., “Lifted tableaux inequalities for
0–1 mixed-integer programs: A computational study,” INFORMS Journal on Comput-
ing, vol. 23, no. 3, pp. 416–424, 2011.

[57] Nemhauser, G. and Sigismondi, G., “A strong cutting plane/branch-and-bound
algorithm for node packing,” Journal of the Operational Research Society, pp. 443–
457, 1992.

[58] Nemhauser, G. and Vance, P., “Lifted cover facets of the 0–1 knapsack polytope
with gub constraints,” Operations Research Letters, vol. 16, no. 5, pp. 255–263, 1994.

[59] Nemhauser, G. and Wolsey, L., Integer and combinatorial optimization. Wiley-
Interscience series in discrete mathematics and optimization, New York: Wiley, 1988.

[60] Nemhauser, G. and Wolsey, L., “A recursive procedure to generate all cuts for
0–1 mixed integer programs,” Mathematical Programming, vol. 46, no. 1, pp. 379–390,
1990.

[61] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S., “Constraint orbital
branching,” in Integer Programming and Combinatorial Optimization (Lodi, A., Pan-
conesi, A., and Rinaldi, G., eds.), vol. 5035 of Lecture Notes in Computer Science,
pp. 225–239, Springer Berlin / Heidelberg, 2008.

[62] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S., “Orbital branching,”
Mathematical Programming, vol. 126, no. 1, pp. 147–178, 2011.

[63] Padberg, M., “On the facial structure of set packing polyhedra,” Mathematical pro-
gramming, vol. 5, no. 1, pp. 199–215, 1973.

167

[64] Padberg, M., Van Roy, T., and Wolsey, L., “Valid linear inequalities for fixed
charge problems,” Operations Research, vol. 33, no. 4, pp. 842–861, 1985.

[65] Pochet, Y. and Wolsey, L., “Polyhedra for lot-sizing with wagnerwhitin costs,”
Mathematical Programming, vol. 67, no. 1, pp. 297–323, 1994.

[66] Pochet, Y. and Wolsey, L. A., Production planning by mixed integer programming.
Springer series in operations research and financial engineering, New York ; Berlin:
Springer, 2006.

[67] Richard, J., de Farias Jr, I., and Nemhauser, G., “Lifted inequalities for 0-1
mixed integer programming: Basic theory and algorithms,” Mathematical program-
ming, vol. 98, no. 1, pp. 89–113, 2003.

[68] Richard, J., de Farias Jr, I., and Nemhauser, G., “Lifted inequalities for 0-1
mixed integer programming: Superlinear lifting,” Mathematical programming, vol. 98,
no. 1, pp. 115–143, 2003.

[69] Schrijver, A., Theory of linear and integer programming. Wiley-Interscience series
in discrete mathematics and optimization, Chichester ; New York: Wiley, 1986.

[70] Shim, S. and Johnson, E., “Cyclic group blocking polyhedra,” Mathematical Pro-
gramming, pp. 1–35, 2012.

[71] Stigler, G., “The cost of subsistence,” Journal of Farm Economics, vol. 27, no. 2,
pp. 303–314, 1945.

[72] Van Roy, T. and Wolsey, L., “Valid inequalities for mixed 0–1 programs,” Discrete
Applied Mathematics, vol. 14, no. 2, pp. 199–213, 1986.

[73] Van Vyve, M., “The continuous mixing polyhedron,” Mathematics of Operations
Research, vol. 30, no. 2, pp. 441–452, 2005.

[74] Wagner, H. and Whitin, T., “Dynamic version of the economic lot size model,”
Management Science, vol. 5, no. 1, pp. 89–96, 1958.

[75] Wolsey, L., “Technical notefacets and strong valid inequalities for integer programs,”
Operations Research, vol. 24, no. 2, pp. 367–372, 1976.

[76] Wolsey, L., “Valid inequalities and superadditivity for 0–1 integer programs,” Math-
ematics of Operations Research, vol. 2, no. 1, pp. 66–77, 1977.

[77] Wolsey, L., “Valid inequalities for 0–1 knapsacks and mips with generalised upper
bound constraints,” Discrete Applied Mathematics, vol. 29, no. 2, pp. 251–261, 1990.

[78] Zanette, A., Fischetti, M., and Balas, E., “Can pure cutting plane algorithms
work?,” Integer Programming and Combinatorial Optimization, pp. 416–434, 2008.

[79] Zemel, E., “Lifting the facets of zero–one polytopes,” Mathematical Programming,
vol. 15, no. 1, pp. 268–277, 1978.

[80] Zeng, B. and Richard, J., “A framework to derive multidimensional superadditive
lifting functions and its applications,” Integer Programming and Combinatorial Opti-
mization, pp. 210–224, 2007.

168

[81] Zeng, B. and Richard, J., “A polyhedral study on 0–1 knapsack problems with dis-
joint cardinality constraints: strong valid inequalities by sequence-independent lifting,”
Discrete Optimization, vol. 8, no. 2, pp. 259–276, 2011.

169

