FINAL RESEARCH PROJECT: New Uses for Lignin

SPONSOR: Professor George JP Britovsek
 Chemistry Department
 Imperial College London

PRINCIPLE INVESTIGATORS: Arthur J. Ragauskas, Professor
 Institute of Paper Science and Technology
 Georgia Institute of Technology
 500 10th St., NW, Atlanta, GA 30332

PROJECT OBJECTIVE: The GA Tech deliverable in this project was to provide training, access and testing of a series of lignin samples generated at Imperial College and analyzed at the research laboratories of Dr. Ragauskas.

Dr. C. Conner (post doctoral research fellow from ICL) arrive at IPST@GT in March 2011 and was trained in Ragauskas research protocols for hydrogenation of lignin, NMR and GPC analysis of lignin followed by well established published procedures. i,ii,iii,iv

A series of ICL lignin samples were analyzed by (i) NMR and (ii) acetylated and GPC by Ragauskas research team and this data was subsequently email to ICL. The results of this analysis are also summarized below:

Samples
1. Lig-AC (Chris Conifer's commercial sample of lignin that had underwent our 3 days acetylation process)
2. Lig (Chris Conifer's commercial sample of "Ethanol Organosolv Lignin Acetate")
3. 503 (The 500 series are largely unknown, based on the Mass distribution profiles, they're various samples of EOL), 504, 506, 508 and 509
null
Several lignin related were also analyzed by NMR and these results are summarized below:

Two-dimensional ^1H-^{13}C heteronuclear single quantum coherence (HSQC) correlation NMR spectra were recorded in a Bruker III 400 spectrometer. The HSQC analysis was performed using a standard Bruker pulse sequence with a gradient field in the Z direction. The lignin sample (60~100 mg) was dissolved in deuterated dimethyl sulfoxide (DMSO-d$_6$) (0.50 mL). The mixture was allowed to shake in a Vertex shaker for dissolution. The sample was then transferred into a 5-mm NMR tube. The HSQC experiments were acquired with a 1.5 s interscan delay, a $^{1}J_{CH}$ of 145 Hz (i.e. CNST2), and 32 or 64 scans at 50 °C. The central solvent peak (δc 39.5 ppm; δH 2.5 ppm) was used for chemical shifts calibration. Spectra processing was carried out with Bruker Topspin software 2.1.

The ^1H-^{13}C HSQC NMR spectra were presented below in Figures 1-5.
Figure 1. HSQC spectrum of sample # 503.

Figure 2. HSQC spectrum of sample # 504.
Figure 3. HSQC spectrum of sample # 506.

Figure 4. HSQC spectrum of sample # 508.
Figure 5. HSQC spectrum of sample # 509.

References:

