X-Ray Determination of the Degree of Polarization of Ceramic Transducers

Project No.: A-1284

Project Director: C. E. Wagner

Sponsor: U. S. Army, Frankford Arsenal

Effective: August 17, 1970

Estimated to run until: October 31, 1970

Purchase Order No. DAAA-25-71-M0372

Amount: $500.00

Reports: Letter Report and Photographs due 10/31/70.

Contact Person: Miss C. Young

U. S. Army, Frankford Arsenal

Tauny & Bridge Streets

Philadelphia, Pa. 19137

Phone: (AC 215) JE5-2900

Extension 28212

Assigned to Physical Sciences Division

COPIES TO:

☐ Project Director
☐ Director
☐ Associate Director
☐ Assistant Director(s)
☐ Division Chiefs
☐ Branch Head
☐ General Office Services
☐ Engineering Design Services
☐ Photographic Laboratory
☐ Research Security Officer
☐ Accounting
☐ Purchasing
☐ Report Section
☐ Library
☐ Rich Electronic Computer Center
PROJECT TERMINATION

Date 3/10/71

PROJECT TITLE: X-Ray Determination of the Degree of Polarization of Ceramic Transducers

PROJECT NO: A-1284

PROJECT DIRECTOR: C. E. Wagner

SPONSOR: U. S. Army, Frankford Arsenal

TERMINATION EFFECTIVE: March 8, 1971

CHARGES SHOULD CLEAR ACCOUNTING BY: ________

NOTE: No work was done or funds expended on this project. Frankford Arsenal failed to forward the samples that were to be analyzed.

Physical Sciences Division

COPIES TO:
Project Director
Director
Associate Director
Assistant Directors
Division Chief
Branch Head
Accounting
Engineering Design Services

General Office Services
Photographic Laboratory
Purchasing
Report Section
Library
Security
Rich Electronic Computer Center
U.S. Army, Frankford Arsenal
Tacony & Bridge Streets
Philadelphia, Pennsylvania 19137

Attention: Miss C. Young

Subject: Letter Report, Project A-1284
"X-Ray Determination of the Degree of Polarization of Ceramic Transducers"

Gentlemen:

A preliminary investigation of the ceramic transducer samples from Automation Industries, Inc. and Branson Instruments, Inc. was made by x-ray diffraction techniques to determine if there was any observable parameter which was indicative of the degree of polarization of the samples. The results obtained do not indicate the existence of such a parameter which would be a useful indicator.

The samples from Automation Industries were a PZT-4 and a PZT-5 disk, 3/4" in diameter. From Branson we received six 3/8" diameter disks (assumed to be lead-metaniobate from their diffraction patterns), three of low polarization and three of high polarization.

Two-theta scans were made on a standard powder diffractometer for two orientations of the PZT disks, differing by a 90° rotation about the disk normal. Both high and low polarization disks from Branson were likewise run. Scans from 15° to 130° two-theta were made. In no cases were variations in peak heights, peak widths, or peak positions between two samples or between two orientations of the same sample, greater than variations encountered in repeating a data scan.
To investigate any variation of intensity with sample orientation of a pole-figure device was employed. Two differing Bragg reflections of the PZT crystals were investigated. No significant variations in intensity were observed.

Since diffraction line widths are indicative of internal strains, several diffraction lines were carefully scanned to detect any variations. Two orientations of the PZT crystals, and both high and low polarization of the lead metaniobate crystals were examined for several reflections. No variations were observed in line width (or line position) which exceeded normal statistical variations.

It thus appears there are no useful parameters observable by these x-ray techniques which would serve as indicators of sample polarization.

Respectfully submitted,

C. E. Wagner
Project Director

CEW:brj