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Abstract—Power aware sensor networks has been an active in power; and in any system, latency issues may arise across
area of research in the last decade and a lot of solutions have the network. Thus, in this paper, we first explicitly coughie t
been proposed for maximizing the lifetime of a sensor netwdx: performance of a sensor network comprised of RF- or radar-

However, an underlying assumption in most of the existing wd b d ith i Note that this choi
is that the performance of a sensor remains the same througlub ased sensors with power consumption. Note that this choice

its lifetime, which is not always true. In this paper, we ideriify ~ Of sensors is simply a starting point for more comprehensive
the problem of the effects of power decay on the performance future research. After establishing this relationship,uge it

of an indiyidual sensor and of the (_entire netv_vork. In_particular, during the network design phase to ensure that the network
we examine networks with decaying footprints, akin to those 5intains a desired level of performance through out its lif

of RF- or radar-based sensors and relate the performance of fi dl f the ad ffects of i
a sensor to its available power. Moreover, we propose proba- Ime regardiess of the adverse etiects or power consumption

bilistic scheduling controllers that compensate for the ects of The network that we examine in this paper consists of
decrease in power while maintaining an adequate probabilit randomly-deployed sensors in a region of interest. Random

of event detection under two sensing models, namely, Boolea deployment allows us to use well-established tools from
and non-Boolean. Finally we perform Monte Carlo simulatiors,  ohahility theory and stochastic geometry for the design
which verify that our proposed con.trolllers maintain the dedred d th vsis of ¢ = bability th
performance level throughout the lifetime of a network. ana the analysis or our system. From probabiiity theory, we
model random deployment as a stationary spatial Poisson
|. INTRODUCTION point process, and from stochastic geometry, we model senso
) coverage using the well-known germ-grain model. After we
A sensor _network consists of a large n_umber. of _Sens‘?'éspresent our system with these models, we design a cantroll
that are typically low-cost, low-power devices with lintte 5 schedules the duty cycle of sensors so that we can emsure
sensing, processing, and communication capabilitiesa8# . nqtant probability of event detection throughout thetiiife
of their low-power requirement, sensors are normally p@ater ¢ s o nework in the presence of power decay. Here, we denote
by batteries, which deplete with time. Unfortunately, e r 1,0 pronability of event detection as our desired perforrean
placement of batteries in a large number of sensors is Wtuajerion, We start with common Boolean sensing scheme (i.e
impossible, particularly in an inaccessible or potentilbstile 5 eyent is detected only when in the footprint of a sensor)
environment, so the lifetime of each sensor is limited ([g gerive sensor scheduling control laws for persistedt an
and [5]). Therefore, a critical problem, which is a subjett q,,n_persistent events. We also propose non-Boolean sensin

gctlve research in .the wireless sensor networks_ Comm”nﬁ?/odel, which is more closely related to practical systemd, a
is power conservation. One approach to conserving pPowersrive a similar scheduling scheme. The preliminary finging
to turn sensor®ff when they are not needed. However, Suc&long these lines were presented in [10]

an approach is risky because critical events can be misskd an
information lost while the sensor &ff. Other approaches have Il. SYSTEM DESCRIPTION

been proposed, ([2], [3], [6], [7], [13], [15]. and [17]), mme  ~,\iqer a4 domairD c R? in which a large number

JUSSa fgw. h h . Ef sensors are randomly deployed such that the location of
espite the numerous approaches _to conserving _powert 8th sensor is independent of the locations of all the other
have been proposed, one |ssue_tha_1t .S“" requires attesstibe sensors. For example, such a scenario can arise when sensors
effect of power decay on bOt.h individual sensor perfor_man%‘?e dropped from the air into a region of interest. From [16],
and the entire network. Opwously, the extent of th.e IMP3Gle Lnow that this sensor deployment can be modeled as a
depe.nds ofn t.h_e tyEe of ddewces used. Forl exa}mple, |fba le ionary spatial Poisson point process with constaahsity
consists of vision-based sensors, power levels may becelag (the expected number of sensors in a unit area). Given a set

to the maximally av_ailable frame rate; for RF- or radar-lnhs?n D with areaA, the probability of having: sensors in this
sensors, the footprint area may be reduced with a reducU&%a is given by
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infinity. This assumption is for the purpose of analysis pnly [1l. PROBABILITY OF EVENT DETECTION

for the results presented in this paper are still applicable consider a non-persistent event that takes place at some
any practical system comprising a sufficiently large nuntfer noint -, ¢ D at some arbitrary time < [k, k +1). A non-
sensors with identical battery power and sensing cap@bilitpersistent, which a sensor can detect only at the time of its
when deployed. Secondly, we take only the sensing capabilfccurrence, does not leave a mark in the environment. Hence,
of the network into account, and we are not concerned Withis event is detected if it is within the footprint of at leas
the communication among sensors. Finally, we assume thatg{e sensor in then state at timek. We first investigate the
sensors are RF or radar based. Therefore, the footprin©bf egropability of event detection for a non-persistent evenai
sensori is a closed ballB, ;) (i), of radiusr(t), centered at non-decaying sensor network (i.e., a network of sensorsaho
a;, which is the position of the sensor. In addition to thesgotprints and probabilities do not change with time). From
assumptions, we define the footprint of a sensor as the reg[gli} we know that the probability of an event going undetdcte

in which a sensor can detect any event and communicate Wil 5 non-decaying sensor network deployed randomly with
other sensors. The union of all these footprints, centeted;gensity \ is

the locations of the corresponding sensors, form the famous P, = e M4, (4)
germ-grain model of stochastic geometry in which sensas ar . o .
the germs and their footprints are the grains ([8] and [lGB\/hereA is the area of the sensor fOOtprInt with I’adruandq
In the rest of the paper, we will use the terms “grains” ani§ the probability of a sensor beiran. The proof of Equation
“footprints” interchangeably. (4) is based on the observation that the probability of ameve
To conserve power, we let the sensorbavith probability going undete_cte_d is equal to the sum of probabilities of the
g. Each sensor can switch its state fromto off or vice versa €vent being inside the range af € [0,00] sensors, all of
only at discrete time instancés\¢ (or simply at instancé), Which areoff. _ _
whereAt is the sample time. The state of a sensor at instance®ftér examining a non-decaying network, we take into
k is maintained throughout intervék, k + 1) of length A¢. accounta decaying network in which 'Fhe power of the sensors
A sensor can sense only when it @, and for an event IS consumed when they aren, resulting in a decrease in
to be detected, it should be within the footprint of at leadp€ area of the sensor footprints, which is proportionaht t
one on sensor. One obvious fact is that when a sensor §§cay in power [4]. In [12], it was shown that if the sensor
on, it consumes power, and its battery is depleted. Using tfg€ model is based on the RF-power-density function for an
discrete time version of the battery dynamics in [14], we elodiSOtropic antenna, the sensor footprint is proportionathte
the power of each sensor in tiua state using the following available power of the sensor node, i.e.,

dynamics r2(t) o< n(t), (5)

n(k 4+ 1) = n(k) — Atyn(k), wherer(t) is the radius of the sensor footprint at timecs

) [k, k+1). Hence, the area of footprint of a sensor at titre
where~ is the decay constant amdk) represents the remain-

ing battery power available for sensing at time instantVe A(t) = mr(t) = an(t), (6)

define a switching signat(k) as wherea = (7 is a constant withC being the constant of the

proportionality in Equation (5). If we substitute the power

1 if a sensor ison at time instant: in Equation (6) with the expected powét,from Equation (3),
o(k) = { 0 if a sensor isoff at time instantc we will get the expected footprint area of a sensor which is
Since a sensor isn with probability ¢, the expected value R k=l ,
of o(k) is E{c(k)} = 6(k) = q(k). We know that power is A(k) = ¢ H(1 — Atyq(i)) | (@)
consumed only when a sensords, so we can modify the =0
power model as wherec = an(0) is a constant.
n(k + 1) = n(k) — Atyo(k)n(k). ) Lemma 3.1: The probability of an event being detected by
a decaying sensor network is given by
Since&(k) = q(k) ando(i) is independent ofr(j) for all Pak) =1 e—AA(k)q(k)’ ®)

i # 7, the expected power level of each sensor is

A where A (k) is the expected footprint area of all the sensors.

Hk+1) = [H (1- AWCI(Z'))] 7(0). 3 Proof: From Equation (4), we know that an eventate
=0 D is detected in a non-decaying sensor network if at least one

Moreover, for allt € [k, k+ 1), we assume thaf(t) = n(k)'l sensor in thenstate is present i8,.(z. ), wherer is the radius
’ of the sensor footprint. For a decaying network, this reamspn

1We should note that in this analysis, we are not considetiegpbtential pannpt be applled d|reCtly' AIthOUg_h all sensors are '“M'a
power consumption resulting from switching between oineand off states.  identical, we have no reason to believe that the battery powe



and the footprint areas are the same throughout the network a Proof: Using the result of Lemma 3.1, we have
any timek # 0 because of sensor switching and power decay. b1 ()
From stochastic geometry [8], we know that the probability lH (1- At'yq(z'))] q(k) = —L2. (13)
of any given pointc € D not being covered by sg, B,, (z;) =0 Ac
in the germ-grain model is

Replacing the value of in the above equation with, we can

P(x not coverell = e*A/‘, (9) compute the initial value of as
whereB,., (z;) is the grain corresponding to the gemmwith 0) = 111(%) (14)
areaA; and A is the expected area of graiis., (x;) for all v = Ae

i. Our scenario slightly differs from that in [8], because ilRearranging the terms of Equation (13) results in a feedback
our system, a sensor @ only with probability ¢(k) at any controller forq(k) as

instancek. Therefore, even it € B, (z;) for any arbitraryi, 1

it may still not be covered since that sensor camfieAs a gk +1)= ———q(k). (15)

result, the probability of an event being undetect®d, can 1= Atyq(k)
be obtained by updating Equation (4) as Since the input of the controller is a probability, it cannot

_xA()a(k) have a value greater than 1. Taking into account this fagt, ou
Py(k) =e aEL (10) proposed probabilistic scheduling controller takes onftie

Note that, we are using the expected area of a grA(m:,), . 1
instead ofA(k). Finally, to conclude the proof, we substitute u(k) = min 31, 11— Amq(/{)Q(/{) :
the value ofA(k) in Equation (10) with Equation (7) and us

e . :
relationshipP; = 1 — P,. As long asu(k) is less than 1g4(k) evolves according to

Equation (15) and the desired performance is maintained.
Equation (8) confirms that, if the probability of sensorsngei However, the lifetime of the sensor network is completer whe
on, g, is constant then the chance of an event being detected;) reaches its maximum value, which is proved in the next
Py, clearly decreases with time. Lemma. Now, solving resulting controlled dynamical Eqoati

IV. DUTY CYCLE SCHEDULING FORCONSTANT EVENT (15) with initial condition (14) produces an expressiond@i)

as
DETECTION PROBABILITY
A key requirement in many practical applications of sensor q(k) =min{ 1 e S (16)
. . . LT . oy ) Ac :
networks is to maintain a minimum satisfactory probabitify YhAL + M)
event detection. In order to maintain the desired proksiwh -

event detection, we propose a controller that adjyéts, the  note that Equation (16) provides a scheduling strategyter t
probability of a sensor being. at timek, which is the main q,ty cycle of sensors, which guarantees a constant pratyabil
goal of this paper. In other words, we wish to fink) € [0,1]  of event detection. However, this desired probability can b
such that maintained for a limited time only.

q(k +1) = u(k), (11) " Theorem 4.2: The maximum achievable event detection
yields a scheduling scheme for the duty cycle of sensors tiebability in a sensor network with given spatial distrilmn
maintains the probability of event detection for the overaintensity\ is 1 — el
network at a desired level.

Proof: Consider Equation (14), which yields the initial
Definition 4.1: The desired network performanc®,.,, Probability of a sensor be_ing_in than state_. This probabil_ity
is the minimum satisfactory probability of an event beinghould always remain inside intervial 1]. Sincej € [0, 1], it

detected. is guaranteed that

1
Consider a case in which a desired probability of event 0< g(0) = In(3) <1
detection is the given performance paramefyr,. Hence, - e 7

B =1~ Pyes is the probability of an event going undetectedor all given 3, ), ande. To ensure thag(0) < 1, the condition
The duty cycle scheduling of sensors can help maintain such e
performance in the presence of decreasing sensor powetr. Bze™,

ifi _ ,=Ac
Theorem 4.1: [Main Result] A feedback scheduling con-must be satisfied. Hencgye, <1—e™". u

troller of the form Definition 4.2: The lifetime of the sensor network is the
. 1 maximal time beyond which the desired network performance
u(k) = min {17 m‘ﬂ@} ; (12)  cannot be achieved.

will guarantee that the desired network performance is maiCharacterizing the lifetime of sensor network is essental
tained for the lifetime of the network. its design.



Lemma 4.3: The lifetime of the sensor network with V. SIMULATIONS

desired event detection probability%;.; is given by T confirm the validity of the proposed duty cycle schedul-
_71 (1 + ln(lficpdes) : ing strategy, we implement a Monte Carlo simulation of a
sensor network that is deployed randomly. For this simaihati
Proof: At the end of the lifetime of a sensor network, all;» <onsider a 10 by 10 %m}; rectangula)r/ area with,,; —
sensors should ben, i.e., q(ky) = 1, wherek; denotes the ;4 gensors are deployed in this area according to a spatial

final t]imhe instance. S“ppl(l)zgkff)gé L, whmE_sm_Jggle_sts rt]hat stationary Poisson point process with constant intensity p
one of the sensors can still be in wiéstate. This implies that, | it area ofA — 10. This means that the expected number

turning this sensoon will increase the detection probabilityof sensors in the area of interest Jd,op; = 1000. The

e . o ota. - .
by an arr_10unt "?‘ql%a' to the_probablllty Of an event _t?e_'”g Witial footprint of each sensor is set to be a closed ball of
!ts footp_rlnt. This Increase n the detection probabﬂﬂyllvv_ the unit radius centered at the position of the sensor. Bvent
in trn Increase the_llf_et|me_ of the sensor network, WhICQre generated randomly at each time instant throughout the
results in a contradiction since we have already assumgdl,”of interest. To increase the accuracy of the resuith, ea

that the lifetime of the network has ended. Therc_efore, Wfalue of P, is averaged over 100 iterations of simulation.
have proven thay(k;) = 1 at the end of the lifetime of

a network. Substituting/(k;) in Equation (16) byl yields

—1 Ac
kAt = = (1 T m=Pac)

In order to ensure that a decaying network maintains
the desired performance throughout its lifetime, we need to
B vary ¢ according to Equation (16) as is shown in Figure
(1). The effects of varyingg according to Equation (16)
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Fig. 1. The evolution of the probability of a sensor beargfor given desired
performanceP;.s where A = 10, ¢ = 1, andr(0) = 2. In each case, the
lifetime of the network is achieved whepn= 1.

Fig. 2. Event detection probability?; vs time ¢ for decaying networks
with given P,;., = 0.63 (constant dashed line); with the scheduling scheme
(solid line) and without the scheduling scheme (decayinshdd line). Here
A=10, A(0) =1,y =1, andec = 1.

Figure (1) depicts how the duty cycle of sensors (the
probability of sensors beingn) needed to maintain a constan@re depicted in Figure (2), which illustrates the simulatio
event detection probability, varies with time. For a constaesults for a decaying network with and without our proposed
event detection probability?,.,, the lifetime of the network scheduling scheme. We set the desired network performance
is achieved when all sensors are turmeg as is shown in the Faes = 0.63 (constant dashed line). First, we simulate the

proof of Lemma 4.3. Moreover, a&,., increases, the lifetime System without applying our proposed scheduling scheme
of the network decreases. and plot the probability of event detection (decaying ddshe

line). Then, we apply our proposed scheduling scheme and
Corollary 4.4: Given a desired lifetime of the sensor netsimulate the system again. The results for the later sirionat
work, ¢y, the maximum probability of event detection that cagsolid line) reveal that the probability of event detectiisn
be maintained in time intervaD, k] is P; = 1 — QWAFM, P; =~ 0.62. The simulated event detection probabilify, is
wheret; € [kf, k; +1). very close to the desired performandg,;, which indicates
the validity of our scheme. Moreover, the improvement in
Proof: As mentioned in the proof of Lemma 4.3, at thghe performance measure because of our proposed scheme is

end of the lifetime of a sensor network, all nodes areto  obvious by comparing the plots for the two simulations @oli
maintain the desired network performance, igk%s) = 1. |ine vs decaying dashed line).

Therefore, we substituig(k ) in Equation (16) withl, which

results in VI. DETECTION PROBABILITY FOR PERSISTENT EVENTS
e Until now, we have been analyzing a non-persistent event,
vk At + ln(—B) =-1 which a sensor can detect only at the time of its occurrence.

However, in practical systems, we regularly encounter &ven
Finally, we solve the above equation férand replace it with that persist for some time duratiap,. It is intuitive that the
1 — P4, which conclude the proof. m probability of detection of a persistent event is more than a



non-persistent event, and this probability must increagk wwhich the probability of event detection is a function of the

the increase int.,. However, this relationship between thalistance from the sensor location.

probability of event detection arntd,, cannot be linear because Let [ be the distance of an event from a sensor. Then, the

of the shrinking footprints. Therefore, in this section wedfi probability of event detection increases Aslecreases and

the exact event detection probability for persistent event vice versa, which means that the probability of an eventdein
Lett., be the total time for which an event persists df¢ detected is a direct function df i.e., Py(k) o «(l, k). Here,

be its detection probability. lf., < At andt., C [k,k+ 1), «(l,k) relates the probability of event detection to the distance

then Py, = Py(k). The two probabilities are equal becausef an event from a sensdt,and the expected power level of a

At is the sample time for which a sensor rema@msor off.  sensor at instanck, (k). This relationship depends on type

Now, consider a case in which an event persists for two tino¢ the sensing devices being used and can be described in

slots. Then, various forms. In this paper we definél, k) as
Py, = 1— P (eventis undetected in both slots k and k+1) ool
1— Pu(k)Pu(k + 1]k), SO
where e e S
R o 05} =
- s (VA(E))r e AR
Pu(k) = Y (1= qlk))" ==
n1=0 v 0.2
In the above equation, the number of sensors that can deéect t .l ‘ ‘ ‘ ‘
event during intervallk, k+1) is ny, which ranges fron to co % 2 ‘L 6 8

and cannot increase over the subsequent time intervalsigeca
the footprints of all sensors decrease with time. Therefiie Fig. 3. Comparision of Boolean sensing and non-Booleanisgnsder the

number of sensors that can detect the event during interygleduling scheme (15). Hese= 2 for non-Boolean sensing?;es = 0.63
constant dashed line); Boolean sensing (solid line) andBmolean sensing

[k + 1,k +2) is at maximumn;. As a result, (decaying dashed line). Here= 10, A(0) =1 andy = 1.
n1 )\A E+ 1)) —AA(k+1)
Pu(k+1]k) = Z(l—q(k+1))”2( ( )2'6 . \
na=0 z a(l,k) = e am", (18)

Now, we can generalize the above equationjfdime slots , , . ,
g q J According to this model, the probability of event detection

-1 decrease exponentially as result of increaskandecrease in

Pip =1- H Py(k +ilk + (i = 1)). 7. The third parameter in the model 4s which is a constant
=0 defining the rate of decay of the event detection probability
Thus, Even though, the model defined in Equation (18) is just one
j—1 ni1 choice, but it relates the parameters of interest in a ldgica
Pyp=1- H Z (1- q(/g+i))”ipm(ﬁ(/€+i)) , (17) manner and is close to the behaviour of many sensors of
i=0 Ln;=0 interest.

. - Ny . Next, we design a scheduling scheme for non-Boolean
where from Equation (1)P,, (A(k +1)) is the probability of sensing. One possible solution is to use controller (12)¢ckvh

Ea"'.”% ?ﬁnsors LnA(k:er - inth . . was designed for Boolean sensing. This approach can be
ore =9, Ihé nuUMber of Sensors In the Sensing region rang@S e easily by including non-Boolean sensing scheme in

from 0 to oo. Monte Carlo simulation of Section V. The results are presgnt
VIl. EVENT DETECTION PROBABILITY FOR A in Figure (3), which clearly proves that our previous coltro
NON-BOOLEAN SENSING MODEL does not maintain constant event detection probabilityeund

on-Boolean sensing. Thus, using the similar concept as in
-{,8], we propose a new scheme for maintaining desired
performance under non-Boolean sensing:

All the results in the previous sections were derived f
Boolean sensing model, i.e., an event is either detecteu
probability one, if it is within the footprint of a sensor thia
on, or is undetected. In fact, ifis the radius of the footprintof  Thegrem 7.1: For a non-Boolean sensing model with
a sensor, then an event is detected if it occurs at a distence,g 1) as defined in Equation (18), the probability of event
r—e from a sensor, and it is undetected if it occurs at a distanggtection for a non-persistent event is
of r+¢ (for any arbitrary0 < e < r) from a sensor. Therefore,
the Boolean sensing model is a relatively simple model, wvhic Py(k)=1- o~ N[TTESS (1=Atya(i)] *a(k) (19)
may not be applicable to all the physical systems. In this )
section we will analyze a more realistic sensing scheme wheres = 2’”;#.



The proof is similar to that of Theorem 4.1 and can be fourahd the lifetime of a network, we performed a theoretical
in [11]. analysis in which we investigated both persistent and non-
By following the same technique as used for Boolegpersistent events and proposed scheduling schemes fothigoth

sensing in Section 1V, we design a controller that mainttties scenarios that maximized the lifetime of a network. Morepve
desired network performancé,.s, for non-Boolean sensing. we examined two sensing models, namely, Boolean and non-

From Equation (19) we know that Boolean, in order to incorporate varied physical systenmiin
) system model. The results generated through the thedretica
k=1 . In() analysis were validated by the Monte Carlo simulations of
H (1= Atyq(@) | q(k) = VI (20) proposed controllers, which proved that our proposed sesem
=0 maintained the desired performance through out the liketim
From the above expression, we can find the initial value ofof the network.
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Fig. 4. Event detection probability?; (solid line) vs timet for decaying [13]
networks and non-Boolean sensing model with givén, = 0.63 (constant
dashed line). The values of the parameterssare2, v = 1, n(0) = 1.



