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Abstract—Power aware sensor networks has been an active
area of research in the last decade and a lot of solutions have
been proposed for maximizing the lifetime of a sensor network.
However, an underlying assumption in most of the existing work
is that the performance of a sensor remains the same throughout
its lifetime, which is not always true. In this paper, we identify
the problem of the effects of power decay on the performance
of an individual sensor and of the entire network. In particular,
we examine networks with decaying footprints, akin to those
of RF- or radar-based sensors and relate the performance of
a sensor to its available power. Moreover, we propose proba-
bilistic scheduling controllers that compensate for the effects of
decrease in power while maintaining an adequate probability
of event detection under two sensing models, namely, Boolean
and non-Boolean. Finally we perform Monte Carlo simulations,
which verify that our proposed controllers maintain the desired
performance level throughout the lifetime of a network.

I. I NTRODUCTION

A sensor network consists of a large number of sensors
that are typically low-cost, low-power devices with limited
sensing, processing, and communication capabilities. Because
of their low-power requirement, sensors are normally powered
by batteries, which deplete with time. Unfortunately, the re-
placement of batteries in a large number of sensors is virtually
impossible, particularly in an inaccessible or potentially hostile
environment, so the lifetime of each sensor is limited ([1]
and [5]). Therefore, a critical problem, which is a subject of
active research in the wireless sensor networks community,
is power conservation. One approach to conserving power is
to turn sensorsoff when they are not needed. However, such
an approach is risky because critical events can be missed and
information lost while the sensor isoff. Other approaches have
been proposed, ([2], [3], [6], [7], [13], [15], and [17]), toname
just a few.

Despite the numerous approaches to conserving power that
have been proposed, one issue that still requires attentionis the
effect of power decay on both individual sensor performance
and the entire network. Obviously, the extent of the impact
depends on the type of devices used. For example, if a system
consists of vision-based sensors, power levels may be related
to the maximally available frame rate; for RF- or radar-based
sensors, the footprint area may be reduced with a reduction
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in power; and in any system, latency issues may arise across
the network. Thus, in this paper, we first explicitly couple the
performance of a sensor network comprised of RF- or radar-
based sensors with power consumption. Note that this choice
of sensors is simply a starting point for more comprehensive
future research. After establishing this relationship, weuse it
during the network design phase to ensure that the network
maintains a desired level of performance through out its life-
time regardless of the adverse effects of power consumption.

The network that we examine in this paper consists of
randomly-deployed sensors in a region of interest. Random
deployment allows us to use well-established tools from
probability theory and stochastic geometry for the design
and the analysis of our system. From probability theory, we
model random deployment as a stationary spatial Poisson
point process, and from stochastic geometry, we model sensor
coverage using the well-known germ-grain model. After we
represent our system with these models, we design a controller
that schedules the duty cycle of sensors so that we can ensurea
constant probability of event detection throughout the lifetime
of the network in the presence of power decay. Here, we denote
the probability of event detection as our desired performance
criterion. We start with common Boolean sensing scheme (i.e.,
an event is detected only when in the footprint of a sensor)
and derive sensor scheduling control laws for persistent and
non-persistent events. We also propose non-Boolean sensing
model, which is more closely related to practical systems, and
derive a similar scheduling scheme. The preliminary findings
along these lines were presented in [10].

II. SYSTEM DESCRIPTION

Consider a domainD ⊂ R
2 in which a large number

of sensors are randomly deployed such that the location of
each sensor is independent of the locations of all the other
sensors. For example, such a scenario can arise when sensors
are dropped from the air into a region of interest. From [16],
we know that this sensor deployment can be modeled as a
stationary spatial Poisson point process with constant intensity
λ (the expected number of sensors in a unit area). Given a set
in D with areaA, the probability of havingn sensors in this
area is given by

Pn(A) =
(λA)ne−λA

n!
. (1)

To analyze the random deployment of sensors, we assume
the following about our system. We first assume that the
total number of sensors in the region of interest goes to



infinity. This assumption is for the purpose of analysis only,
for the results presented in this paper are still applicableto
any practical system comprising a sufficiently large numberof
sensors with identical battery power and sensing capabilities
when deployed. Secondly, we take only the sensing capability
of the network into account, and we are not concerned with
the communication among sensors. Finally, we assume that all
sensors are RF or radar based. Therefore, the footprint of each
sensori is a closed ball,Br(t)(xi), of radiusr(t), centered at
xi, which is the position of the sensor. In addition to these
assumptions, we define the footprint of a sensor as the region
in which a sensor can detect any event and communicate with
other sensors. The union of all these footprints, centered at
the locations of the corresponding sensors, form the famous
germ-grain model of stochastic geometry in which sensors are
the germs and their footprints are the grains ([8] and [16]).
In the rest of the paper, we will use the terms “grains” and
“footprints” interchangeably.

To conserve power, we let the sensors beonwith probability
q. Each sensor can switch its state fromon to off or vice versa
only at discrete time instancesk∆t (or simply at instancek),
where∆t is the sample time. The state of a sensor at instance
k is maintained throughout interval[k, k + 1) of length∆t.
A sensor can sense only when it ison, and for an event
to be detected, it should be within the footprint of at least
one on sensor. One obvious fact is that when a sensor is
on, it consumes power, and its battery is depleted. Using the
discrete time version of the battery dynamics in [14], we model
the power of each sensor in theon state using the following
dynamics

η(k + 1) = η(k)−∆tγη(k),

whereγ is the decay constant andη(k) represents the remain-
ing battery power available for sensing at time instantk. We
define a switching signalσ(k) as

σ(k) =

{

1 if a sensor ison at time instantk
0 if a sensor isoff at time instantk

Since a sensor ison with probability q, the expected value
of σ(k) is E{σ(k)} = σ̂(k) = q(k). We know that power is
consumed only when a sensor ison, so we can modify the
power model as

η(k + 1) = η(k)−∆tγσ(k)η(k). (2)

Since σ̂(k) = q(k) and σ(i) is independent ofσ(j) for all
i 6= j, the expected power level of each sensor is

η̂(k + 1) =

[

k
∏

i=0

(1−∆tγq(i))

]

η(0). (3)

Moreover, for allt ∈ [k, k+1), we assume thatη(t) = η(k).1

1We should note that in this analysis, we are not considering the potential
power consumption resulting from switching between theon andoff states.

III. PROBABILITY OF EVENT DETECTION

Consider a non-persistent event that takes place at some
point xe ∈ D at some arbitrary timet ∈ [k, k + 1). A non-
persistent, which a sensor can detect only at the time of its
occurrence, does not leave a mark in the environment. Hence,
this event is detected if it is within the footprint of at least
one sensor in theon state at timek. We first investigate the
probability of event detection for a non-persistent event in a
non-decaying sensor network (i.e., a network of sensors whose
footprints and probabilitiesq do not change with time). From
[9], we know that the probability of an event going undetected
by a non-decaying sensor network deployed randomly with
intensityλ is

Pu = e−λAq, (4)

whereA is the area of the sensor footprint with radiusr andq
is the probability of a sensor beingon. The proof of Equation
(4) is based on the observation that the probability of an event
going undetected is equal to the sum of probabilities of the
event being inside the range ofn ∈ [0,∞] sensors, all of
which areoff.

After examining a non-decaying network, we take into
account a decaying network in which the power of the sensors
is consumed when they areon, resulting in a decrease in
the area of the sensor footprints, which is proportional to the
decay in power [4]. In [12], it was shown that if the sensor
range model is based on the RF-power-density function for an
isotropic antenna, the sensor footprint is proportional tothe
available power of the sensor node, i.e.,

r2(t) ∝ η(t), (5)

wherer(t) is the radius of the sensor footprint at timet ∈
[k, k+1). Hence, the area of footprint of a sensor at timet is

A(t) = πr2(t) = αη(t), (6)

whereα = ζπ is a constant withζ being the constant of the
proportionality in Equation (5). If we substitute the power, η,
in Equation (6) with the expected power,η̂, from Equation (3),
we will get the expected footprint area of a sensor which is

Â(k) = c

[

k−1
∏

i=0

(1−∆tγq(i))

]

, (7)

wherec = αη(0) is a constant.

Lemma 3.1: The probability of an event being detected by
a decaying sensor network is given by

Pd(k) = 1− e−λÂ(k)q(k), (8)

whereÂ(k) is the expected footprint area of all the sensors.

Proof: From Equation (4), we know that an event atxe ∈
D is detected in a non-decaying sensor network if at least one
sensor in theonstate is present inBr(xe), wherer is the radius
of the sensor footprint. For a decaying network, this reasoning
cannot be applied directly. Although all sensors are initially
identical, we have no reason to believe that the battery power



and the footprint areas are the same throughout the network at
any timek 6= 0 because of sensor switching and power decay.

From stochastic geometry [8], we know that the probability
of any given pointx ∈ D not being covered by set

⋃

iBri(xi)
in the germ-grain model is

P (x not covered) = e−λÂ, (9)

whereBri(xi) is the grain corresponding to the germxi with
areaAi and Â is the expected area of grainsBri(xi) for all
i. Our scenario slightly differs from that in [8], because in
our system, a sensor ison only with probability q(k) at any
instancek. Therefore, even ifx ∈ Bri(xi) for any arbitraryi,
it may still not be covered since that sensor can beoff. As a
result, the probability of an event being undetected,Pu, can
be obtained by updating Equation (4) as

Pu(k) = e−λÂ(k)q(k). (10)

Note that, we are using the expected area of a grain,Â(k),
instead ofA(k). Finally, to conclude the proof, we substitute
the value ofÂ(k) in Equation (10) with Equation (7) and use
relationshipPd = 1− Pu.

Equation (8) confirms that, if the probability of sensors being
on, q, is constant then the chance of an event being detected,
Pd, clearly decreases with time.

IV. D UTY CYCLE SCHEDULING FORCONSTANT EVENT

DETECTION PROBABILITY

A key requirement in many practical applications of sensor
networks is to maintain a minimum satisfactory probabilityof
event detection. In order to maintain the desired probability of
event detection, we propose a controller that adjustsq(k), the
probability of a sensor beingon at timek, which is the main
goal of this paper. In other words, we wish to findu(k) ∈ [0, 1]
such that

q(k + 1) = u(k), (11)

yields a scheduling scheme for the duty cycle of sensors that
maintains the probability of event detection for the overall
network at a desired level.

Definition 4.1: The desired network performance,Pdes,
is the minimum satisfactory probability of an event being
detected.

Consider a case in which a desired probability of event
detection is the given performance parameterPdes. Hence,
β = 1−Pdes is the probability of an event going undetected.
The duty cycle scheduling of sensors can help maintain such
performance in the presence of decreasing sensor power.

Theorem 4.1: [Main Result] A feedback scheduling con-
troller of the form

u(k) = min

{

1,
1

1−∆tγq(k)
q(k)

}

, (12)

will guarantee that the desired network performance is main-
tained for the lifetime of the network.

Proof: Using the result of Lemma 3.1, we have
[

k−1
∏

i=0

(1−∆tγq(i))

]

q(k) =
ln( 1

β
)

λc
. (13)

Replacing the value ofk in the above equation with0, we can
compute the initial value ofq as

q(0) =
ln( 1

β
)

λc
. (14)

Rearranging the terms of Equation (13) results in a feedback
controller forq(k) as

q(k + 1) =
1

1−∆tγq(k)
q(k). (15)

Since the input of the controller is a probability, it cannot
have a value greater than 1. Taking into account this fact, our
proposed probabilistic scheduling controller takes on theform

u(k) = min

{

1,
1

1−∆tγq(k)
q(k)

}

.

As long asu(k) is less than 1,q(k) evolves according to
Equation (15) and the desired performance is maintained.
However, the lifetime of the sensor network is completer when
u(k) reaches its maximum value, which is proved in the next
Lemma. Now, solving resulting controlled dynamical Equation
(15) with initial condition (14) produces an expression forq(k)
as

q(k) = min

{

1,
−1

γk∆t+ λc
ln(β)

}

. (16)

Note that Equation (16) provides a scheduling strategy for the
duty cycle of sensors, which guarantees a constant probability
of event detection. However, this desired probability can be
maintained for a limited time only.

Theorem 4.2: The maximum achievable event detection
probability in a sensor network with given spatial distribution
intensityλ is 1− e(−λc).

Proof: Consider Equation (14), which yields the initial
probability of a sensor being in theon state. This probability
should always remain inside interval[0, 1]. Sinceβ ∈ [0, 1], it
is guaranteed that

0 ≤ q(0) =
ln( 1

β
)

λc
≤ 1,

for all givenβ, λ, andc. To ensure thatq(0) ≤ 1, the condition

β ≥ e−λc,

must be satisfied. Hence,Pdes ≤ 1− e−λc.

Definition 4.2: The lifetime of the sensor network is the
maximal time beyond which the desired network performance
cannot be achieved.

Characterizing the lifetime of sensor network is essentialto
its design.



Lemma 4.3: The lifetime of the sensor network with
desired event detection probabilityPdes is given by
−1
γ

(

1 + λc
ln(1−Pdes)

)

.

Proof: At the end of the lifetime of a sensor network, all
sensors should beon, i.e., q(kf ) = 1, wherekf denotes the
final time instance. Supposeq(kf ) 6= 1, which suggests that
one of the sensors can still be in theoff state. This implies that,
turning this sensoron will increase the detection probability
by an amount equal to the probability of an event being in
its footprint. This increase in the detection probability will
in turn increase the lifetime of the sensor network, which
results in a contradiction since we have already assumed
that the lifetime of the network has ended. Therefore, we
have proven thatq(kf ) = 1 at the end of the lifetime of
a network. Substitutingq(kf ) in Equation (16) by1 yields

kf∆t = −1
γ

(

1 + λc
ln(1−Pdes)

)

.
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Fig. 1. The evolution of the probability of a sensor beingon for given desired
performancePdes whereλ = 10, c = 1, and r(0) = 2. In each case, the
lifetime of the network is achieved whenq = 1.

Figure (1) depicts how the duty cycle of sensors (the
probability of sensors beingon) needed to maintain a constant
event detection probability, varies with time. For a constant
event detection probability,Pdes, the lifetime of the network
is achieved when all sensors are turnedon, as is shown in the
proof of Lemma 4.3. Moreover, asPdes increases, the lifetime
of the network decreases.

Corollary 4.4: Given a desired lifetime of the sensor net-
work, tf , the maximum probability of event detection that can

be maintained in time interval[0, kf ] is Pd = 1 − e
−λc

1+γkf∆t ,
wheretf ∈ [kf , kf + 1).

Proof: As mentioned in the proof of Lemma 4.3, at the
end of the lifetime of a sensor network, all nodes areon to
maintain the desired network performance, i.e.,q(kf ) = 1.
Therefore, we substituteq(kf ) in Equation (16) with1, which
results in

γkf∆t+
λc

ln(β)
= −1.

Finally, we solve the above equation forβ and replace it with
1− Pd, which conclude the proof.

V. SIMULATIONS

To confirm the validity of the proposed duty cycle schedul-
ing strategy, we implement a Monte Carlo simulation of a
sensor network that is deployed randomly. For this simulation,
we consider a 10 by 10 unit rectangular area withAtotal =
100. Sensors are deployed in this area according to a spatial
stationary Poisson point process with constant intensity per
unit area ofλ = 10. This means that the expected number
of sensors in the area of interest isλAtotal = 1000. The
initial footprint of each sensor is set to be a closed ball of
the unit radius centered at the position of the sensor. Events
are generated randomly at each time instant throughout the
area of interest. To increase the accuracy of the results, each
value ofPd is averaged over 100 iterations of simulation.

In order to ensure that a decaying network maintains
the desired performance throughout its lifetime, we need to
vary q according to Equation (16) as is shown in Figure
(1). The effects of varyingq according to Equation (16)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

P
d

Fig. 2. Event detection probabilityPd vs time t for decaying networks
with given Pdes = 0.63 (constant dashed line); with the scheduling scheme
(solid line) and without the scheduling scheme (decaying dashed line). Here
λ = 10, A(0) = 1, γ = 1, andc = 1.

are depicted in Figure (2), which illustrates the simulation
results for a decaying network with and without our proposed
scheduling scheme. We set the desired network performance
Pdes = 0.63 (constant dashed line). First, we simulate the
system without applying our proposed scheduling scheme
and plot the probability of event detection (decaying dashed
line). Then, we apply our proposed scheduling scheme and
simulate the system again. The results for the later simulation
(solid line) reveal that the probability of event detectionis
Pd ≈ 0.62. The simulated event detection probability,Pd, is
very close to the desired performance,Pdes, which indicates
the validity of our scheme. Moreover, the improvement in
the performance measure because of our proposed scheme is
obvious by comparing the plots for the two simulations (solid
line vs decaying dashed line).

VI. D ETECTION PROBABILITY FOR PERSISTENT EVENTS

Until now, we have been analyzing a non-persistent event,
which a sensor can detect only at the time of its occurrence.
However, in practical systems, we regularly encounter events
that persist for some time durationtev. It is intuitive that the
probability of detection of a persistent event is more than a



non-persistent event, and this probability must increase with
the increase intev. However, this relationship between the
probability of event detection andtev cannot be linear because
of the shrinking footprints. Therefore, in this section we find
the exact event detection probability for persistent events.

Let tev be the total time for which an event persists andPdp

be its detection probability. Iftev < ∆t and tev ⊂ [k, k + 1),
then Pdp = Pd(k). The two probabilities are equal because
∆t is the sample time for which a sensor remainson or off.
Now, consider a case in which an event persists for two time
slots. Then,

Pdp = 1− P (event is undetected in both slots k and k+1),

= 1− Pu(k)Pu(k + 1|k),

where

Pu(k) =

∞
∑

n1=0

(1− q(k))n1
(λÂ(k))n1e−λÂ(k)

n1!
.

In the above equation, the number of sensors that can detect the
event during interval[k, k+1) is n1, which ranges from0 to∞
and cannot increase over the subsequent time intervals because
the footprints of all sensors decrease with time. Therefore, the
number of sensors that can detect the event during interval
[k + 1, k + 2) is at maximumn1. As a result,

Pu(k+1|k) =

n1
∑

n2=0

(1−q(k+1))n2
(λÂ(k + 1))n2e−λÂ(k+1)

n2!
.

Now, we can generalize the above equation forj time slots

Pdp = 1−

j−1
∏

i=0

Pu(k + i|k + (i− 1)).

Thus,

Pdp = 1−

j−1
∏

i=0

[

ni−1
∑

ni=0

(1− q(k + i))niPni
(Â(k + i))

]

, (17)

where from Equation (1),Pni
(Â(k + i)) is the probability of

havingni sensors inÂ(k + i).
For i = 0, the number of sensors in the sensing region ranges
from 0 to ∞.

VII. EVENT DETECTION PROBABILITY FOR A

NON-BOOLEAN SENSING MODEL

All the results in the previous sections were derived for
Boolean sensing model, i.e., an event is either detected with
probability one, if it is within the footprint of a sensor that is
on, or is undetected. In fact, ifr is the radius of the footprint of
a sensor, then an event is detected if it occurs at a distance of
r−ε from a sensor, and it is undetected if it occurs at a distance
of r+ε (for any arbitrary0 < ε < r) from a sensor. Therefore,
the Boolean sensing model is a relatively simple model, which
may not be applicable to all the physical systems. In this
section we will analyze a more realistic sensing scheme in

which the probability of event detection is a function of the
distance from the sensor location.

Let l be the distance of an event from a sensor. Then, the
probability of event detection increases asl decreases and
vice versa, which means that the probability of an event being
detected is a direct function ofl, i.e.,Pd(k) ∝ α(l, k). Here,
α(l, k) relates the probability of event detection to the distance
of an event from a sensor,l, and the expected power level of a
sensor at instancek, η̂(k). This relationship depends on type
of the sensing devices being used and can be described in
various forms. In this paper we defineα(l, k) as
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Fig. 3. Comparision of Boolean sensing and non-Boolean sensing under the
scheduling scheme (15). Heres = 2 for non-Boolean sensing.Pdes = 0.63
(constant dashed line); Boolean sensing (solid line) and non-Boolean sensing
(decaying dashed line). Hereλ = 10, A(0) = 1 andγ = 1.

α(l, k) = e
−

s
η̂(k) l. (18)

According to this model, the probability of event detection
decrease exponentially as result of increase inl or decrease in
η̂. The third parameter in the model iss, which is a constant
defining the rate of decay of the event detection probability.
Even though, the model defined in Equation (18) is just one
choice, but it relates the parameters of interest in a logical
manner and is close to the behaviour of many sensors of
interest.

Next, we design a scheduling scheme for non-Boolean
sensing. One possible solution is to use controller (12), which
was designed for Boolean sensing. This approach can be
verified easily by including non-Boolean sensing scheme in
Monte Carlo simulation of Section V. The results are presented
in Figure (3), which clearly proves that our previous controller
does not maintain constant event detection probability under
non-Boolean sensing. Thus, using the similar concept as in
[18], we propose a new scheme for maintaining desired
performance under non-Boolean sensing:

Theorem 7.1: For a non-Boolean sensing model with
α(l, k) as defined in Equation (18), the probability of event
detection for a non-persistent event is

Pd(k) = 1− e−λŝ[
∏k−1

i=0 (1−∆tγq(i))]
2
q(k) (19)

where ŝ = 2πη(0)2

s2
.



The proof is similar to that of Theorem 4.1 and can be found
in [11].

By following the same technique as used for Boolean
sensing in Section IV, we design a controller that maintainsthe
desired network performance,Pdes, for non-Boolean sensing.
From Equation (19) we know that

[

k−1
∏

i=0

(1−∆tγq(i))

]2

q(k) =
ln( 1

β
)

λŝ
. (20)

From the above expression, we can find the initial value ofq

as

q(0) =
ln( 1

β
)

λŝ
.

Rearranging the terms in Equation (20) yields the dynamics
of q(k) as

q(k + 1) = min

{

1,
1

(1−∆tγq(k))2
q(k)

}

. (21)

Hence, we have a non-linear control law for duty cycle
scheduling that maintains the desired performance measure
throughout the lifetime. To verify the validity of our proposed
scheme, we run a series of Monte Carlo simulations. The
set up used for simulations is the same as was described in
Section V. Figure (4) depicts the results for non-Boolean sens-
ing. The proposed scheme maintains the desired performance
throughout the lifetime of the network. The lifetime of the
network in this case depends also on the parameters and
can be found numerically from Equation (21). Ass increases,
lifetime decreases and vice versa. Here we sets = 2.
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Fig. 4. Event detection probabilityPd (solid line) vs timet for decaying
networks and non-Boolean sensing model with givenPdes = 0.63 (constant
dashed line). The values of the parameters ares = 2, γ = 1, η(0) = 1.

VIII. C ONCLUSIONS

In this paper, we presented a scheduling scheme for the duty
cycle of dynamic sensor networks comprised of RF- or radar-
based sensors, whose footprints shrink with the decrease in
available power. In particular, we examined networks in which
sensors were deployed randomly according to a stationary
spatial Poisson point process, which simplified the compu-
tation of the probability of event detection and allowed us to
use this probability as our performance criterion. To establish
the relationship between the desired performance criterion

and the lifetime of a network, we performed a theoretical
analysis in which we investigated both persistent and non-
persistent events and proposed scheduling schemes for boththe
scenarios that maximized the lifetime of a network. Moreover,
we examined two sensing models, namely, Boolean and non-
Boolean, in order to incorporate varied physical systems inour
system model. The results generated through the theoretical
analysis were validated by the Monte Carlo simulations of
proposed controllers, which proved that our proposed schemes
maintained the desired performance through out the lifetime
of the network.
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