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SUMMARY

Among all the possible missions for Unmanned Air Vehicles (UAVs), reconnaissance is
still ranked as the most important missiand endurance is one of the most important
performance criteria. In recent years, a new class of smalll UAVs, powerd by fuel
cells, has demonstrated significant endurance improvements over the conventional gas
powered UAVs of the same weight clagdong with the development of fuel cell
powered UAVS, the design optimization of such UAWas been a research focus
However, sudies on the energy management of fuel pelivered UAVs in operation
have beenmostly limited to steady state flight condition$rajectoy analyses of
conventional gas powered UAVan the other handjave beertarried out extensively in
the literature The trajectory optimizatioror fuel cell powered UAVs can be properly
addressed only if the dynamic constraints consider the dynamics of a fuel cell system.
Path planning that considers the characteristics of the optimal trajectories may further
improve the mission performance. In addition, if the influence of fuel cell system
dynamics on mission performance can be established, fuel cell system design parameters
can be optimized for different missions.

This dissertation progressively addressesatheve research problems related to
the trajectory optimizatiofior fuel cell powered UAVs, from propulsion system model
development, to optimal trajectory analyses and optimal trajectory applicafions.
dynamic model of a fuel cell powered UAV propulsigistem is derived by combining a
fuel cell system dynamic model, an electric motor dynamic model, and a propeller

performance modelThe influence of the fuel celystemdynamics on the optimal

XXiii



trajectories of a fuel cefpowered UAVis investigated in twghases. In the first phase,
the optimal trajectories of a fuel cell powered configuration and that of a conventional
gas powered configuration are compared for ptmsgoint trajectory optimization
problems with different performance index functionstha second phase, the influence
of the fuel cell system parameters on the optimal fuel consumption cost of the minimum
fuel pointto-point optimal trajectories is investigated.

This dissertation also presents two applications for the minimum fuel-fpeint
point optimal trajectories of a fuel cell powered UAV: thoemensional minimum fuel
route planning and path generation, and fuel cell system size optimization with respect to
a UAV mission. The proposed method for minimum fuel route planning and path
generation problems for a fuel cell powered UAV consists of three steps: fuel
consumption cost estimation, route plan optimization with a genetic algorithm, and flight
path generation with optimal trajectories. The proposed method successfully solves case
study problems with different waypoint densities. In addition, an iterative method is
proposed to find the optimal fuel cell system size for a given UAV mission. Case study of
the fuel cell system size optimization fifferent missions suggests that theimgal fuel

cell system sizes for different missions are expected to be different.
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CHAPTER 1 INTRODUCTION

1.1 Overview

Since the first flying bomb was developed in World Word [, the capabilities of UAVs
have been expanded to many areas, including intelligence surveillance and
reconnaissangeeommunication, force protection, and signal intelligence, etc. Many of
these role have been successfully demonstrated in \\gtslt is very common for a
single type of UAV to perform multiple missions, for which different performance
measures are desired. The operational aspE#ctdAVs have been studied in the
literature with a focus on the optimal trajectories of conventional gas powered UAVS.
Some of the examples are minimum fuel loitering trajectories, obstacle avoidance
trajectories, minimum time travel trajectories, and mmaxn target tracking trajectories.

In recent years, a new type of UAVs powered by fuel cell systems has
demonstrated significant endurance improvemdutsto thdow fuel consumption rates
of fuel cell systems. Since fuel cell powered UAVs are relatinely, their operational
aspects have not been well addressed in the literature. The immediate question is whether
studies on the optimal trajectoriesconventional gas powered UAVs are still applicable
to fuel cell poweed UAVs. If the studies for conventional gas powered UAVs are not
applicable to fuetell poweed UAVs, how can we investigate the optimal trajectosies
fuel cell powered UAVs? What are the differences between the optimal trajectbaes
fuel cell povered UAV and that of a conventigas powesd UAV? How can we apply

the optimal trajectories in mission planning and path generation problems? Can we bring



the influence of fuel cell system dynamics to the mission level so that the fuel cell system
designparameters can be optimized for a given mission?

To address these questions regarding the trajectory optimization focdilel
poweed UAVS, the following sections of this chapter present a literature review on
related researclegiming with anintrodudion to fuel cells anduel cell powered UA\5.

A survey onresearch activities on fuekll poweed UAVs summarizes the current state

of the art in research areas related to fuel cell powered UAMU=view of fuel cell
performance models and dynamic mad#ien identifies the appropriate models to be
used in this dissertatioA review on thetrajectory optimizatiorfor conventionalgas
poweed UAVs reviews different formulation methods and different trajecttimegshave

been studied in the literaturBext, a review of numerical methods for optimal control
problems determines the appropriate method for solving trajectory optimization problems.

The research objectives of this dissertation focus on trajectory optimization for
fuel cell powered UAVs, frompropulsion system model development, to optimal
trajectory analysignd optimal trajectory applications. A dynamic model of a foell
poweered UAV propulsion system is developed to facilittte trajectory optimization
study for a fuel cell powered UAV oosidering the fuel cell system dynamics.
Subsequently, the optimal trajectories of a fuel cell powered UAV are investigated by
comparing the optimal trajectories of a fuel cell powered configuration and that of a
conventional gas powered configuration.ndly, this dissertation presents two
applications of the minimum fuel po#x-point optimal trajectories: thredimensional

minimum fuel route planning and path generation, and fuel cell system size optimization.



1.2 Literature Review

1.2.1 Introduction to Fuel Cells

A fuel cell operates like a battery by converting chemical energy to electricity, but it
differs from a battery in a number of waj&. The most significant difference is where

the chemical energy is stored. With batteries, the chemical energy is stored in the
substances inside the batteries. When all the stored chemical energy is converted to
electrical energy, the batteries must bewmn away or recharged. With a fuel cell, on the
other hand, the chemical energy is stored outside of the fuel cell. The electrical energy
can be continuously generated as long as the fuel cell is supplied with the fuel and

oxidant. The inputs and outputsaofuel cell are illustrated iRigurel1.1.
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Figurel.1 A fuel cell's inputs and outpuf8§].

A fuel cell and electric motor pair is similar to a conventional reciprocating
engine. Both are converting chemical energy to mechanical energy. One of the main
differences is that the generation of electricity in a fuel @eéls notinvolve very high

temperature. The Carnot efficiency of a heat engine does not apply to a fuditell



Hence the efficiency of a fuel cell with an electric motor is higher than that of a
conventional reciprocating engine.

Many types of fuel cells have been developed since the creation of the first fuel
cell prototype by W.R. Grove in 1834]. Due to the differences in the electrolytes a
fuel types that have been used, fuel cells can be categorized as shbabileif.1 [5].

Proton exchange memdne fuel cells (PEMFC) are primarily used for automotive power
generation. Direct methanol fuel cells (DMFC) are used mainly for portable power
generation. Alkaline fuel cells (AFC) were developed for the space programs to produce
electricity and drinkingvater. Phosphoric acid fuel cells (PAFC), molten carbonate fuel
cells (MCFC) and solid oxide fuel cells (SOFC) are often seen in stationary power
applications.

Among the many types of fuel cells, the proton exchange membrane (PEM) fuel
cells are most comonly used in the aerospace industry. The first version of a PEM fuel
cell rated at 1kW was developed by General Electric for the Gemini spacecraft program
in the early 1960§6]. However, in subsequerpace flights, AFCs were used due to the
fact that the membrane of the PEM fuel cells at that time was not stable enough for the
desired power density. The breakthrough for PEMFC happened in the 1980s, when the
perfluorinated sulfonic acid polymer, Nafiomyas used as the electrolyf€]. The
chemical stability of Nafion greatly exceeded that of the previously known membranes.
In recent years, due to the high demand and investment in clean energy, the speci
power of PEM fuel cells has achieved up to 800 mW/cni and the lifetime is now
several tens of thousands of holigs. Zerocemission vehicle prototypes powered by

PEM fuel cells have been developed by many leading car manufg@li@s



Tablel.1 Characteristics of the important fuel cqiig.

PEMFC DMFC AFC PAFC MCFC SOFC
Primary Automotive  Portable Space Stationary Stationary  Vehicle
Applications and power vehiclesand  power power auxiliary
stationary drinking power
power water
Electrolyte  Polymer Polymer Concentrated Concentrated Molten Yttrium-
(plastic) (plastic) (30-50%) 100% Carbonate stabilized
membrane membrane KOH in H,O phosphoric  retained in  Zirkondioxide
acid a ceramic
matrix of
LIAIO,
Operating 50-100°C 0-60°C 50-200°C 150-200°C 600-700°C  700-1000°C
temperature
Charge H* H* OH H* COy” o
carrier
Primary cell Carbon Carbon Carbon Graphite Stainless Ceramic
components based based based based steel
Catalyst Platinum Pt+Pt/Ru Platinum Platinum Nickel Perovskites
Primary fuel H, Methanol H, H, H,, CO, H,, CO
CH,
Startup Seemin Secmin Hours Hours Hours
time
Power 3.86.5 ~0.6 ~1 0.81.9 1.52.6 0.1-1.5
density
(kW/m®)
Combined  50-60% 30-40% 50-60% 55% 55-65% 55-65%
cycle fuel
efficiency

Figure 1.2 shows the critical components of a PEM fuel ,cethich consists of

gas flow channels, gas diffusion layers, catalyst layers and electrolyte [l8lyeFhe gas

flow channels provide the guided flow of hydrogen and oxy@srthe anode side of the

fuel cell, hydrogen molecestravel through the gas diffusion layer by pressure gradient

and concentratiordifferences. At the intesice betweerthe catalyst layer and the

electrolyte layer, the hydrogen moleesilarebroken into protons and electrons. Electrons

travel throughthe external circuit, which effectively generatelectricity. The protons

travel throughthe electolyte layerand arrive at theathode side catalyst layer. Similar to

what happens othe anode side, oxygen moleadtravel throughthe cathode side gas



diffusion layer and arrive at theatalyst layer.On the @thode sidea catalyst layer,

protons, electron@ndoxygenmoleculesform watermolecules.
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Figurel.2 The schematics of a PEM fuel cell.

1.2.2 Fuel Cell Powered UAV Prototypes

With many successful applications of PEM fuel cells in the automotive industry,
researchers in the aerospace industry started to equip UAVs with PEM fuel cells. The
first fuel cell poweed UAV prototype was designed by AeroVironment and Lynntech in
2003[1]]. As shown inFigurel.3, the Hornet weighted only 6 ounces, and its wing span
was 15 inches. The incorporatiohthe fuel cell system as the power plant was designed
to double the endurance, but during the flight test, the Hornet was able to fly for only

about 5 minutes. The difference between the achieved endurance and the potential



endurance of the Hornet sugtgsthe need for additional research on fuel cell powered

UAVs at that time.

. Figure1.3 AeroVironment Hornet fuel cell UAML2].
Since 2003, many groupsave beeninvolved in the development of fuekll

powerd UAVS. Severalprototypes have demonstrated supefiight endurance over
conventional gas or battery powered UAVs in the same weight. clas007,
AeroVironment equippethe PumaUAV with PEM fuel cells and achieved nearly five
hours of flight endurance That was double the flight time for the same airframe with
standard rechargeable batter[ds]. In 2009, the first commercial fuelell poweed
UAV, named Boomerangvas showcased dlhe AUVSI exhibition in Washington by
BlueBird Aero Systemgl4]. The Boomerang weighexhly 9 kg and flew for more than
nine hours. The fuel cell packhamed Aropak,was from the Horizon Fuel Cell
Technologies. The same fuel cell pack was usetthdisrael Aerospace Industries tre
Birdeye 650 which extended thdlight endurance to 6 hoursvhich wasmore than
doubk its endurance wittihe lithium batterieg[15]. In November 2009, théon Tiger
from Naval Research Laboratory achieveflight endurance of 26 houfd6]. The lon

Tiger, which weighed approximately 17 kgvasequipped witha 550W PEM fuel cell

v



propulsion system from Protonex. The -26ur flight endurance significantly
outperformedthe flight endurances demonstrated psevious small UAM. In August
2011, the Faucon KHUAV, from EnergyOr achieved 10 hours of flight endurance, which
once again demonstrated the endurance advantage of fupbegiedUAVs [17]. The

key specifications of thabovefuel cellpowered UAVs are sumamized inTablel.2.

Tablel.2 Fuel cell powered UAV prototypes.

e Gross | Fuel Cell Winasoan
Company UAV () | Weight | Power (r?])p Year
(Ib) (W)
AeroVironment Puma 9 5.7 - 2.6 2008
BlueBird Aero
Systems Boomerang 9 9 200 2.75 2009
Naval Research .
Laboratory lon Tiger 26 16.8 550 5.2 2009
Israel Aerospace Birdeye 650
Industries (IAl) LE 6 11 200 3 2010
ENergyor | caucon H2| 10 9 210 3 2011
Technology

1.2.3 Research Activities on Fuel CelfoweredUAVs

Although the long endurances of fuel cell powered UAVs have tesdized only
in recent five years, the conceptual design study ofdei€poweed UAVs can be traced
back to the 1980s. In 1984, NASA Langley Research Center published a preliminary
performance analysis and conceptual design of an unmanned airplane witldlayulti
endurance capabilifpd 8]. In the conceptual design, a mixewbde electric power system
was proposed with solar cells for daytime flight and fuel cells for nighttime flight. Based
on the fuel cell technology at that time, the conceptual design study led to a class of

airplares with very low wing loadings and relatively long wing spans.



With many successful applications of the PEM fuel cells in the automotive
industry, the conceptual designs of fuel cell powered UAVs in the 2000s were much
closer to realization. In 2003, Jeff conducted an analytical feasibility and performance
assessment of a fuel cell powered small electric airplane based on th@ M@ seaer
plane[19]. The results indicated that the flight with afi-the-shelf fuel cell may be
possible with reduced speed, climb rate, range, and paglraging capabilities. Jeffery
also highlighted the need for advanced fuel cell technology to achieve comparable
reciprocating engine aircraft performance. In the esayear, researchers at Boeing
Research & Technology Europe initiated a fuel cell demonstrator design with a fuel
cell/battery hybrid configuratiof20]. A battery was needed for startup and takeoff
assistance. The Boeing fuel cell demonstrator was completed in 2007, and flight was
demonstrated in 20021].

With the advancement of the fuel cell technology, researchers started to
investigate the integted design optimization of fueell poweed UAVs. Among them,
researchers from Georgia Tech contributed a series of papers on theisaiyptinary
design optimization of fuetell poweed UAVs [222324]. They proposed a design
method that optimized the design variables with respect to aircraft performance metrics.
The mapping from the design variables to the aircraft pegoom metrics was based on
subsystem level contribution analyses, in which empirical and phyag=d models
were used to model the subsystems. The design uncertainties were further reduced when
the contribution analyses with significant contribution te gerformance metrics were

validated through the experimental data. To validate the design methodology, the Georgia



Tech researchers constructed and flight tested the Georgia Tech fuel cell aircraft
demonstrator in 200R25].

To improve the performance of fuetll poweed UAVS, many researchers have
proposed a hybrid power system, in which both fuel cells and batteries are used for
propulsion[26]. Fuel cells are known for high energy density and low power density.
Batteries, on the other hand, have the properties of low energy density and high power
density. The idea of hybridization allows the energy demand and power demand to be
separated.Ref. [27] investigatedthe effect of such hybridization on the flight
performance in a simulatiprand concluded that the use of a fuel cebattery hybrid
system did not improve the endurance of a tedll poweed UAV if the fuel cell system
alone was sufficient to meet the power requiremi@et. [27] alsoclaimed that the only
benefit of the hybrid power system was to decouple the design requirementdirab
flight from those of a cruise flight.

For conventional gas powered UAVS, researchers have realized that using a
periodic flight path pattern can improve the endurance performance as compared to using
a steadystate flight path patterf28]. Ref.[29] confirmed this possibility for UAVs in a
constant wind in 208 in which the optimal periodic flight path was partitioned into a
boost arc and a caaarc. Ref. [27] evaluatedlte same flight path pattern on a feell
poweed UAV to maximize the flight endurancehich claimed that the optimal flight
path for endurance was a steady level flight #rad there wasn't any benefit for a fuel
cell powered UAV to fly in the periodic boesbast flight path pattern. It seemed that
trajectory optimizatiorfor a fuel cell powered UAV was not required. However, in real

applications, many different flight pattother than steady state level flight are required to
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complete a flight mission. In addition, the dynamics of a fuel cell system on the optimal
trajectories was not considered [&7]. The trajectory optnization for a fuel cell
powerd UAV can be appropriately addressed only if the dynamic constraints include the

dynamics of a fuel cell system.

1.2.4 Fuel Cell Performance Model

The performance of a fuel cell is represented by its polarization curve, whatkois
known as a voltageurrent curveFigure 1.4 shows the potential losses of a typical fuel

cell as a function of the current density, where the major potential losses are illustrated
[30]. The role of a fuel cell performance model is to accurately predict these potential
losses. Since the research scope of this dissertation concerns only PEM fuel cells, only

performance models for PEM fuel cells are discussed in this section.
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While reviewing the approaches to PEM fuel cell modeliReyf, [31] categorized
PEM fuel cell models into three categories: analytioaldels semiempirical models,
and mechanisticnodels Ref. [32] presented an analytical fuel cell model, using an
equivalent electric circuit with simple mathematics. In this model, the voltage current
relationship is valid only within a limited operation range. Sempirical models were
also developed by combiningpe theoretically derived equations with the empirically
determined relationg31]. For example, the equations[b} used theoretical relations for
the activation losses and the ohmic losses, and an empirical relation for the concentration
losses.

The mechanistic models of PEM fuel cells can be further classified into two
categories based on the computation scope of the mi®8lel The first type of model
deals only with a specific part of fuel cells. This model is good for representing the
details within that particular part of a fuel cell. The second type of model includes all the
parts of a fuelcell, where all the potential losses at different current densities can be
obtained. Depending othe level of complexity, thistype of models rangefrom one
dimensional tathreedimensionaland from single phase to twahase[33]. Figure 1.5
illustrates the three dimensions within a fuel cell gas flow channel. In-dior@nsional
model, gas properties are uniformthe flow channels. Only gas diffusions across the x
direction are modeled. In a tadbmensional model, gas properties are-naiform along
the flow channel direction {glirection). In a threglimensional model, gas properties in
the cross direction {direction) of the gas flow channel are nomform. The terms

Asingl e phesheatsedand eifitewo to the forms of
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single phase model, water is either in liquid form or in vapor form. In gtvase model,

water is in botHiquid and vapor forms.

Figurel.5 Schematic diagram of a thre@mensional fuel cell mod¢B4].

Ref.[30] developed one of the earlier edinensional fuel cell models, in which
they derived coupled differential equations to model the species transpoephaszs
transport and electrochemical relatiofi$ie results showed that this edienensional
modelcould predict the fuel cell performance in the low and intermediate current density
region. Further improvements have been achieved by the development of two
dimensional and thredimensional fuel cell models. Although thréenensional models
are capablef capturing the full picture of the gas properties in the gas flow channels,
commercial softwarpackages are often required to solve the coupled equfBgns

This dissertation uses the seempirical fuel cell performance model discussed in
[36] to develop the dynamic model of a fuel cell powered UAV propulsion system.

Compared to analytical models, the samipirical model can predict the fuel cell

13



performance in a wide operating range. Unlike mechanistic models, thessgmmical

model does rarequire iterative procedures.

1.2.5 Fuel Cell Dynamic Moded
Although the performance model of a fuel cell is capable of determining the steady state
voltagecurrent relation, it fails to capture the transient behavior under load variations.
Depending on thelifferent requirements, a dynamic model of a fuel cell may include
various transient effects such as the doldyer charging effect, théuel cell delay
effect, and the temperature effect.

The doubldayer charging effect of a fuel cell is similar to apecitor effect,
which is when positive and negative charges gather on two opposite[Bldtds a fuel
cell (Figure 1.2), the membrane allows only protons to pass and electrons reach the
cathode through an external circuit. Across the boundary of the cathode and the
membrane, two charged layers are formed flmgygms and electrons, which behave like a
capacitor. The doublyer charging effect is modeled with an equivalent capacitor
coupled with equivalent resistors, as shownFigure 1.6. Based on the equivalent
electric circuit model, the transient voltage of a fuel cell exhibits a first order delay when
the current density is changed. Ttheublelayer charging effect was considered in the

fuel cell dynamic models i[87,38,39].
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Figurel.6 Equivalent electric circuit of the doublayer charging effedt37].

The fuel cell delayeffect is caused by the delay between the change in the load
current andhe flow of the fuel and oxidafB7]. When there i® sudden change in the
load current, additional protorsse requiredo travel throughthe membrane Iger. But
hydrogen and oxygen moleculeske time to travel from the gasflow channelsto the
electrolyte layersThe delay is due to the transport process of the protons, hydrogen,
oxygen, water vapor, and liquid water through the fuel cell membranes. Fuel cell
dynamic models that include this effect are founfBin4Q].

Another important parameter that affects the dynamics of a fuel cell is
temperature. The temperature dynamics are derived based on the energy balance of a fuel
cell as net heat gain or loss results in temperaturease or decrease. As indicated in
the Nernst Equationf3], the temperature affects the amount of Gibbs energy that is
available for converting into electrical energy. Hence, the fuel cell voltage dsofise
temperature increases. However, the effect of rising temperature on the fuel cell voltage
is dominated by the reduction on the activation resistance, resulting in improved fuel cell
performancd4,41]. Fuel cell dynamic models that include the temperature effect can be
found in[37,42,43].
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Among the various dynamic effects of a fuel cell, doeiblelayercharging effect
mainly affects the fuel cell transient responses in the -ginogt range. This effect is
similar to a capacitor in an electric circuit, where the shor¢ energy buer smoothes
the voltage ripples due to load variations. When the load of a fuel cell is increased
suddenly, the delain thefuel and oxidant results in a sudden voltage dip. The voltage
recovers from the dip once the fuel and oxidant flows reach théysségtes. Among the
above transient effects, the temperature effect is the slowest. As the current loading
increases, the temperature of a fuel cell increases, resulting in additional voltage being
recovered due to the reduction in activation lossessd dgnamic effects can be seen in
Figurel.7 from [44], which shows the measured transient voltage of a fuelivbelh the

current increases from one level to another level.
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When deriving the dynamic model for a fuel cell powered UAV propulsion
system, this dissertation assumes that the temperature is constant. This assumption is
based on the fact that many commercial fuel cell systems use -tbagedontrollers to
regulate he fuel cell temperature. The doultdger charging effect and ttieel cell delay

effect are included in the fuel cell dynamic model.

1.2.6 Trajectory Optimization for UAVs

A trajectory optimization problem, also known as an optimal control problem, can be
stakd as followqd45]: "Determine the control signals that will cause a system to satisfy
the physical costraints andat the same time, mimize (or maximize) some performance
criterion” In a trajectoryoptimization problem, variables are separated into two classes,
state variables and control variables. The evolutions of state variables are determined by
the control variables through a set of differential equations, which represent the dynamics
of the plysical system. The solution of a trajectory optimization problem is the control
variables that minimize (or maximize) the performance criterion and that satisfy the
dynamic equations and other constraints.

Applications of optimal control to UAVs for trajeory optimization are
essentially the formulation of the performance criterion and the derivation of the dynamic
equations. Depending on different objectives, various performance criteria and UAV
dynamic equations have been explored in the literatufd€lnthe optimal trajectories of
UAVs to avoid multiple radars were studied, and the UAV dynamic model was a simple
2-D planar point mass model with the heading variation onlyj4%, optimal control
problems with a similar-bD UAV dynamic mode were formulated to find the optimal

waypoints and control sequences to avoid threats and obstacleD potht mass
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kinematics model including the targaiotion dynamics was used 48], in which the
optimal trajectories for tracking various types of targets were obtained. A more
sophisticated skstate point mass UAV model including three positions, aigipflight

path angle, and heading angle was derivefdl to investigate the optimal trajectories
for extracting energy from downdraft. Similar point mass UAV models were used to
investigate varioutrajectory optimization problems [50,51,52,53].

Trajectory optimization problems for UAVs amtassified as periodic or nen
periodic depending on the time domain of the problem. In a periodic trajectory
optimization problem, the initial states and the final states are identical. The performance
criteria of such problems are usually tiareeraged alues. This type of problem
formulation is mostly for loitering trajectories. Examples of periodic problems are found
in [49,50]. In a nonperiodic trajectory optimization problem, some or all of the initial
states and the final states are different. This type of problem formulation is often applied
to pointto-point travel trajectories. Examples of such a problem are foutbih7,54].

Depending on different mission objectives, trajectory optimization problems can
be formulated for obstacle avoidance, target tragkminimum time, and minimum fuel,
etc. In some applications, dynamic equations or performance indices do not include the
propulsion system characteristics. Results obtained in these studies are applicable to any
type of UAV. In other applications, the pmalsion system characteristics are embedded
in the dynamic equations or the performance indieeslthe optimal trajectories are
strongly influenced by the propulsion system characteristics. The optimal trajetbories
avoid multiple radars obtained [d46] and the optimal trajectories to track moving or

stationary targets obtained i8] are not influenced by the propulsion system
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characteristics. Theinimum fuel periodic loitering trajectories for a jet engine aircraft
obtained in[50], on the other hand, are highly influenced by the specific fuel
consumption curve. Although the optimal flight patterns for extracting energy from
downdraft to enhance endurance for a jet engine powered aircraft and a propeller
powered aircraft obtaineth [49] are similar, the corresponding engine activities are
different.

As compared to a conventional gas powered UAV propulsion system, a fuel cell
powered UAV propulsion system is different in the trans response delay and the
specific fuel consumption curve. The delay in the transient response is expected to
influence the transient trajectories of a fuel cell powered UAV. The specific fuel
consumption curve is expected to influence the minimum fpeial trajectories, but
exactly how the optimal trajectories are influenced by the characteristics of the fuel cell

system has not been addressed in the literature.

1.2.7 Numerical Methods for Optimal Control Problems

Numerical methods areidely used to solveoptimal control problems, which can be
classified into two main categories: direct methods and indirect mefb&flsin an

indirect method, the optimal control problem is converted tiwwo-point bounday value
problem by applying the calculus of56.vari at
The resulting boundary value problem is then solved by numerical methods. In a direct
method, the optimalantrol problem igranscribeddirectly to a nonlinear programming

(NLP) problem. The resulting NLP problem is then solved numerically by NLP solver

The direct methods have the advantage that the first order necessary conditions do not
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need to be derived. They also have larger radii of convergencéhthiadirect methods,
which do not require a good initial gud53].

The direct methods can be further classified into different oatsgbased on the
guantities (controls or/and states) to be discretized. Two common categories of direct
methods are control parameterization and state and control parameteriz&lion a
control paameterization method, the control variables are approximated and the dynamic
control equations are solved by numerical integra#oghooting method is one example
of control parameterization. In a state and control parameterization methothésithte
and control variables are approximated. The dynamic equations are converted to
algebraic constraints at the discretized nodes. Most pseudospectral methods are
categorized as state and control parameterizations.

The differences between pseudospectral oushand other state and control
parameterization methods are the choiceb@bass functiors used for parameterization.
Since the interpolation basis functions are orthogonal at the collocation points, the
pseudospectral methods are also refetoeas orthogonal collocation methodS9]. In a
pseudospectral method, a finite basis of interpolating polynomials is used to approximate
the state and control trajectories at a set of collocation points. yiteenit constraints
are approximated bthe time derivative of the approximating polynomials, resulimg
set of algebraic constrdiequations. Similarly, the integration cost is also approximated
by integraing the approximation polynomials. The main advantage of the pseudospectral
methods is that the approximation of the derivatives twedntegrations for smooth

functions exhibit spectral accurafg0].
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In the literature othe pseudospectral methods for optimal control, several well
known pseudospectral methods have been develdpedChebyshev pseudospectral
method[61], the Legendre pseudospectral meth6d], the Radau pseudospectral method
[63] and the Gauss pseudospectral meth@d]. Among these methodshe Legendre
pseudospectral method is the most vesliablished method witkeveralconvergence
theorems. The Radau and Gauss pseudospectral methioidh are extensions athe
Legendre pseudospectral methodeplae the Legendré&saussLobatto points with
LegendreGaussRadau points andegendreGauss pointgespectively.

Some examples of software packages based on pseudospectral methods are
PSOPT[65, GPOPY[66], which are open source software packages, DIBT), and
SOCS[68] . PSOPT is an optimal control package writtelCirt+ that uses the Legendre
pseudospectral method. The compatible NLP solvers are IPOPT and SNOPT. The IPOPT
solver is an open source C++ implementation of an interior point nonlinear programming
method[69]. The SNOPT solver is a proprietary large scale NLP solver that uses a
sequential quadratic programming (SQP) algorithfid0]. GPOPS, (General
Pseudospectral Optimization Software) is a software prognaitten in MATLAB, for
solving multiphase optimal control problems using the Radau pseudospectral method.
Similar to PSOPT, GPOPS also uses the SNOPT solver to solve transcribed NLP
problems.

An indirect method would be very difficult to implement wheolveg the
trajectory optimization problems for fuel cglowered UAVs since there are many
nonlinear relations in the dynamic equations. Among different direct methods,

pseudospectral methods are welbwn for their approximation accuraey relatively
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fewer grid points. In this dissertation, different pseudospectral methods are implemented
with one generalized framework to transcribe optimal control problems into nonlinear
programming problems. The SNOPT solverused to solve the transcribed NLP
probleams. The trajectory optimization problems studied in this dissertation are solved by

the generalized framework.

1.3 Research Objectives

The research objectives stated in this section are progressively staged to investigate the
trajectory optimization for fueladl powered UAVs, from model development, to optimal
trajectory analysis, to optimal trajectory applications.

Research Objectivel: To derive a dynamic model of a fuel cell powered UAV
propulsion system that can be used for the study of trajectory opimniZzar a fuel cell
powered UAV.

A fuel cell system, as a propulsion power source, has its own dynamic behavior.
For this research, the dynamic model of a el poweed UAV propulsion system is
developed by combining dynamic model of a fuel cell sygsn,a dynamic model of an
electric motor, ané performance modef a fixedpitch propeller. The developed model
is usedo determine the influence of the fuel cell system parameters on the effective time
constants and the step command responses. dises used to study the optimal
trajectoriesof fuel cell powered UAVS.

Research Objective2: To understand the differences between the gohpbint
optimal trajectories of a fuekell poweed UAV and those of a conventiorgds powesd

UAV.
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As optimal trajectories are often used for mission planning and path planning, it is
beneficial to understand the differences between the optimal trajectories of celfuel
poweed UAV and thosef a conventional gas powered UAV. Since the specific fuel
consumption curve of a fuel cell system is different from that of a reciprocating engine,
the minimum fuel optimal trajectories of a fusll poweed UAV are expected to be
different from those of a conventional gas powered UAV. First, trajectory optionzat
problems with different performance index functions are formulated for a fuel cell
powered configuration and a conventional gas powered configuration. After this, the
optimal trajectories of these two configurations are compared to understand the
charateristics of the optimal trajectories of a fuel cell powered UAV.

Research Objective3: To develop a method for threimensional minimum fuel
route planning and path generation problems for a fuel cell powered UAV.

One of the goals of trajectory optimtican is to assist the mission planning and/or
path planning. Current mission planning methods for UAVs either do not consider the
characteristics of the UAV propulsion system, or they are formulated based on the
conventional gas powered UAV propulsion gyst In this dissertation, significant
differences between the optimal trajectories of a fuel cell powered UAV asddha
conventional gas powered UAV are observed in the minimum fuel-pwpaint optimal
trajectories. A method for thretmensional rmimum fuel route planning and path
generation problems for a fuel cell powered UAV, considering the characteristics of
minimum fuel optimal trajectories, is expected to generate a route plan and flight path

that is both dynamically feasible and fuel oim
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Research Objective4: To develop a design optimization method that can bring
theinfluence of the fuel cell system dynamics on UAV performance to the mission level
so that the fuel cell systedesign parametersn be optimizedbr a given mission.

Desdgn optimizations for a given UAV mission are often formulated with steady
state performance measures. In this research, the influence of a fuel cell system on the
optimal trajectories isbserved irboth steady state segments and transient segments. The
fuel cell system dynamics are expected to influence the UAV performance at the mission
level. If the relations between the fuel cell system design parameters and the mission
performance can be established, the fuel cell system can be optimized with t@spect

given mission.

1.4  Organization of Dissertation

This chapter (Chapter 1) reviews thierature related to fuel cells, fuekll poweed
UAVs, and trajectory optimization for UAVsThe research objectives address the
research gapassociated witltrajecory optimization for fuelcell poweed UAVs, from
dynamic model development, to optimal trajectory analysis, to optimal trajectory
applicatiors.

Chapter 2 derives the dynamic model for a fuel cell powered UAV propulsion
system, which is the combination affuel cell system, an electric motor, an electric
motor controller, and a fixegitch propeller. The derived model is used to model both the
steady state performance and the transient performance. Parametric studies then
determine the influence of fuellcsystem parameters on the effective time constants and

step command responses.
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In Chapter 3, a fuel cell powered UAV configuration is obtained by modifying the
Aerosonde UAV with a properly sized fuel cell system. The conventional gas powered
reciprocatng engine, the conventional gasoline fuel, and the conventional fuel tank of the
original configuration is replaced with a fuel cell system, an electric motor, compressed
hydrogen, and a compressed hydrogen tank. The gross weight of the fuel cell powered
configuration is the same as that of the conventional gas powered configuration. The
performance of the fuel cell powered configuration is evaluated and compared to that of
the conventional gas powered configuration.

Chapter 4 proposes a generalized frantéwior pseudospectral methods to
transcribe an optimal control problem to a nonlinear programming (NLP) optimization
problem for any given set of collocation points. With this framework, different
pseudospectral methods are compared with one NLP solver maimber of example
optimal control problems. In addition, the proposed framework is used to evahmte a
pseudospectral method wiimewset ofcollocation points.

In Chapter 5, thénfluence of the fuel cell system on the optimal trajectories of a
fuel cell powered UAVs investigated in twghasesIn the firstphase the point-to-point
optimal trajectories ofhe fuel cell powered configuration and that of the conventional
gaspoweaed configuratiorarecomparediy using different performance index functions
In the seconghase the optimal fuel consumption costs of the minimum fuel paaat
pointoptimal trajectoriesvith different fuel cell system parameten® compared

Chapter 6 proposes a method to solve tdieeensional minimum fuel route
planning and path generation problems as an application of the minimum fuetgpoint

point optimal trajectoriesf a fuelcell poweed UAV. The proposed method consists of
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the develpment of a minimum fuel cost model, the implementation of a genetic
algorithm for route planning, and the generation of the optimal path with optimal
trajectories.

In Chapter 7, an iterative method is proposed to optimize the fuel cell system size
parametes, in other words, the number of cells and the cell area, for a given mission.
With the fuel consumption cost model, the proposed method considers both the steady
state cost and the transient cost associated with the optimal flight trajectories. Ad the en
of the design optimization procesmth the optimal fuel cell system size and the optima
route planaredetermined for a given mission

Chapter 8 presents conclusions drawn from this dissertagiosummary of

original contributionsand recommendatisrfor future work.
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CHAPTER 2
DYNAMIC MODEL OF AF UEL CELL POWERED UAV

PROPULSION SYSTEM

2.1 Introduction

When a fuel cell system is used to provide the propulsion power to a UAV, it is
connected to an electric motor and a propeller. The connection between the fuel cell,
electric motor, and propeller is similar to that of a battery powered UAV, which is shown
in Figure 2.1 [71]. To allow the variation of the propelleotational speed, a control
signal 6) is fed to the speed controlled)( Depending on the control signal, a different
amount of voltage from the battery)(is applied to the electric motoR)(through the

speed controller. With voltage applied to the electric motor, the electrical energy is
converted into mechanical energy to rotate the propdljeibe fuelcell poweed UAV
propulsion system discussed in this dissertation is a UAV propulsion system that consists
of a fuel cell system, an electric motor, an electric motor controller, dnakdpitch

propeller.

O] @ ® O,

- Propeller / Luftschraube / Vrtule
- AXI Motor

- Speed Controller / Drehzahiregler / Regulator
- Accu / Akku / Akumulator

- Voltage / Spannung [V] / Napéti

- Current / Strom [A] / Proud

Figure2.1 A battery powered UAV propulsion systdifi].

-l 3 N =i
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In this chapterthe dynamic model of a fuel cell powered UAV propulsion system
is developed by combining tldyynamic model of a fuel cell system, the dynamic model
of an electriamotor,and the performance model ofiged-pitch propeller The dynamic
model of a fuel celsystem models both the steady state performance and the transient
performance of a fuel cell system. The steady state performance model is-a semi
empirical model, which uses equations from both theoretical relations and experimental
observations. The dynac model includes two dynamic effects: the dotlbiger
charging effect and théuel cell delayeffect. As the influence of the gas pressure
variables on the fuel cell voltage insignificant, these variables are reduced to steady
state variables. In adwbn, the transient characteristics of a fuel cell powered UAV
propulsion system are studied in the form of effective time constant and step command

responses with the derived dynamic model.

2.2  Dynamic Model of a Fuel Cell System

As fuel cells are the mostitical subjects to be studied in this dissertation, their unique
characteristics need to be clearly understood. This section explains all the fundamental
principles and details of a fuel cell that are needed to study the trajectory optimiaation

a fuelcell powered UAV. Fundamentals to a fuel cell are the aspects of electrochemistry
and energy conversion. The steady state fuel cell performance curve represents the
relation between the current density and voltage when a fuel cell is operating in steady
states. This relation includes the energy loss that occurs when a fuel cell is used in an
electric circuit to supply power. The dynamic model simulates the transient behavior of a

fuel cell, which are critical when analyzing their influence on the UAV'sstemt
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responses. A fuel cell dynamic model can be simplifieddaicing somensignificant

fuel cellstates testeady states.

2.2.1 Fundamentalsof PEM Fuel Cells
Chapter 1 introduced the basic operation principle of a fuel cell. In this section, the
energy onversion aspect of a PEM fuel cell is explained. As showfigare 2.2, the
PEM fuel cell is fed with hydrogen at the membrane's anode side and oxygen at the
membrane's cathode side. The catalyst at the anode causes the hydrogen atoms to release
their electronsnd become Hions (protons).

000 cQ (2.1)

The core of a PEM fuel cell, the proton exchange membrane (Patliglvsonly
protonsto pass through. The electrons have to travel to the cathode through the external
circuit. The travel of these electrons from the anode to the cathode realizes the generation
of electricity. On the cathode side] kbns, electrons, and oxygen moleculesrfovater

with the following reaction:

¢Q ¢O MO © 00 (2.2)
4L—F ﬁ" ﬁ\ A~ 4'2-
\\.‘I.I 'I\.‘ln'
Load
Fuel in 2Hy — O, Oxidant (air) in
4o de”

- b vé‘l-

Positive ion \\ 2H,O

Depleted fuel and +——— ——* Diepleted oxidant
product gases A [ Y and product gases
*H,0 Anode-----4 0 Lo Cathode *H, 0

Electrolyte

Figure2.2 Electrochemical reactions in a PEMIF&}.
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The overall reaction is shown asllbws, which is the same as the reaction of
hydrogen combustion.

0 ™0 ° 00 (2.3)

Since hydrogen combustion is an exothermic process, the above equation can be
modified as follows, where the heat is the difference between the heat of formation of the
product {O0) and that of the reactant®(andra U ).

O ™0 © 00 MOO (2.4)

The heat of formation of liquid water is¢  &J/molatg UC and the heat of
formation of H and Q are zers. Therefore, the enthalpy change of the above reaistion
-286 kJ per mole of Hat 25°C. The negative sign means that energy is released in the
reaction. The enthalpy change from the hydrogen combustion reaction is also called the
hydrogen's heating valjd].

However, there is no combustion in a fuel cell. Only a portion of the hydrogen's
heating value can be converted into electricity. This amount corresponds to Gibbs free
energy with the following definition:

Yo YO "¥Y (2.5)
whereOis the Gibbs free energis the enthalpy,Yis the temperature in Kelvin, afid
is the entropyY refers to the changes from the reactants to the products.
The equivalence of the Gibbs free energy to the fuel cell potential (voltage) is

linked thraugh Faraday's constang)

6 Yo (2.6)
© & 00 (2.7)
O WOT PH O & TAWRWO & € & (2.8)

The theoretical potential (voltage) of a fuel cell is obtained as follows:
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y'O
- (2.9)
© €0
At 25 °C, the theoretical PEM fuel cell potential cell is 1.229 Volts.

yo (2.10)
£ 0

At a temperature other than 2& anda pressure other than 1 atine Nemst

equation4] is usedto compute théheoretical open circuit voltage.
y"O "W-"Y :Y 2 1
l() T — \_né 8“r] L 8 (211)
€0 € n n
wherery ,n andr are partial pressures in the unit of atm.

However, in practice, the open circuit cell potential is significantly lower than the
theaetical cell potential due to the losses in the fuel cell even when no external current is
generated. The cell potential drops even further when the fuel cell is connected to an
external circuit to provide electricity. The next section explains the fuél ce

characteristics when it is in operation.

2.2.2 Performance Model of &uel Cell
Figure2.3 shows the polarization curve (voltagarrent curve) of a typical PEM fuel cell.
The xaxis of the curve is the current density with the unit of A/cfie yaxis is the cell
potential (voltge) with the unit of Volt. From the curve, the operation voltage of a fuel
cell can be determined as a function of the current density. The polarization curve is
commonly used to evaluate the performance of a fuel cell. It provides a graphic
indication ofthe losses associated with a fuel cell, namely open circuit losses, activation
losses, ohmic losses, and mass transportation losses.

As shown inFigure 2.3, even wherthe current density is zero, which means no

electrical load is connected to the fuel cell, the cell potential is less than the theoretical
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voltage from Equation (2.11). This difference may be due to the fuel crossover from

anode to the cathode, the existef an impurity, or current leakafzs].

1.5

Theoretical maximum voltage

1.2=-1 Mixed potential, impurities, crossovers and shorts

i ” B ¥
IAcm'aunn polarization region
I |
|

0.9 #
Ohmic polarization region
\T‘* - f/ :
|
0.6 = | e
| | I
I I

0.3 | |

Voltage (V)

0.0 T ¥ T *
0 500 1000 1500
Amperage (mA/cm?)

Figure2.3 Polarization curve of a typical PEM fuel cgl].

The activation polarization is the voltage differences that are needed to drive the
electrochemical reactions (Equation (2.1) and (2.2)) in the direction of electron
generation from the chemical reaction equilibrium. This behavior was observeddby Taf
in 1905 through experimenf®]. The amount of the activation losses is given by the
following equation, which is also known as the Tafel Equation.

Yo but® o duem (2.12)
where(s the current density ari@is the exchange current density.

The exchange current densi@¥is the current density at which the fuel cell starts
to have useful cell potentittiat isgreater than zero.

This behavior was later explained theoreticalbyng theButler-VolmerEquation

[4]. The activation losses can be expressed as follows,
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Vo Y ai— Y e (2.13)
wherg s the transfer coefficient at the cathode, [ands the transfer coefficient at the
anode.

For a PEM fuel cell, the activation losses at the cathode are much more significant
than the activation losses at the anode. The activation voltage losses €arther
simplified as follows:

o o fem (2.14)

Equation (2.14) is modified to include the open circuit voltage losses due to fuel

crossover and internal resistar2g

o, Y'Y QQ

Yo oo — 8 (2.15)

Ohmic losseswhich aredue to the resistance to the flow of ions in the electrolyte
and the flow of the electrons through the conductive components of a fuel cell, can be
expressed by the Ohm's law, which stdtext thevoltagelosses are proportional to the
internal resistance of a fuel cell.

Yéy K04 (2.16)
where theY is the area specific resistance, with the ni [0

Concentration losses are significant when the reactants are consumed rapidly to
deliver high current density. When a fuel cell is operating at high current density, the
reactions at the anode and cathode cause a pressure drop for the hydrogen and oxygen at
the gas flow channel. The reduction in gas pressure leads to a reduction in voltage.
However, an analytical solution to model this behavior is absent from the literature.
Equation (2.17) is a commonly used empirical equation, which fits the experimental

results very wel[36].
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N dQuyQ (2.17)
With the above voltage losses, the cell potential of a fuel cell in operation can be

obtainedas follows:

v

0 0O Yo Yoo Yo (2.18)
Q Q

0 O _8 & " aQmnHQ (2.19)
Figure2.4 shows a comparison of the experimental data and the numerical model

using Equation (2.19). The experimental data was obtained from a PEM fuel cell system

with 50 cnf active area with low platum loading and a Nafi@ 115 membrang36].

The fuel cell model parameter®,, Q ,"Q,Y , &, and¢ are obtained through

nonlinear programming optimization software that minimizes the differences between the

model and the experimental data.

Fuel Cell Polarization Model and Validation
1.1 r r r r r

O Data
1 Model T

0.9 QQ%
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0.7 oot

0.6 O

Voltage (V)
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N &,
%
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Current Density (A/cmz)

Figure2.4 Model validation for the polarization curve of affgell.
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2.2.3 Dynamic Model of a Fuel Cell

The polarization curve of a fuel cell addressely the steady state relationship between
the current density and the cell potential. Dynamic modeling of a fuel cell is needed to
understand the transient behavior wiisncurrent density is changed from one level to
another levelAn éectric circuit model of a fuel cell is commonly used to model the
dynamic behavior of a fuel c4lB].

As shown in Equatio(2.11) the ideal voltage of a fuel cell depends on the partial
pressure of the reactantshichis determined by theumberof reactants inside the gas
flow channel, whichareinfluenced by the supply and consumption of the reactants. The
reactant consumption idetermined by the current at the electric circuit. The partial

pressursof the reactants can be determined througtidt@wving ideal gas equations

oW © (2.20)

Y YQ 6 h 'O

o, .0 (2.21)

YYQ0 h 170

O . o

P = (2.22)
Qo ¢ O

D o . (2.23)

""@s o "

wherer| is the partial pressure of hydrogen, is the partial pressure of O, is the
volume of the anode flow channel,is the volume of the cathode flow chann€is the
universal gas constarilis the temperaturéls the current,Ois the Faraday constant,
0 § Iisthe net molar flow rate of hydrogeamd0 f is the net molar flow rate of
oxygen.

At a steady stateondition the net flow rateof hydrogen and oxygen is balanced

with the current delivery in the electric circuit.
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o - c% o - (2.24)

Another important transient behavior of a fuel celthe doublelayer chargg
effect[37]. The membrane of a PEM fuel cell alloasly the flow of protos, while the
electrons have to travel througfie external circuit. At the stace of the membraneghe
electronsand protons form two charged layers of oppositerglarhe charged double

layer behaves like a super capacitor. The equivalent circuit of a fuel cethwgittouble

layer charging effect is shown iRigure 2.5, which is modeled with @& equivalent

capacitor.

.-“.‘.._u‘nll‘_.‘\-\._\I|I e
Fohm 1 +
.S
i >
.:i { L rf
.:-::- &
Rmn ::H
_l.._ i";
N 2
~ E*N
|
2

Figure2.5 Equivalent electric circuit model affuel cell.

The corresponding mathematical equations can be obtained as follows

6 062 vy (2.25)
Qo
6 0 & O (2.26)

where the'Y and’Y are the equivalent resistances for activation losses and

concentration losses.
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Although Equations (2.20) to (2.23)onsider the effect of reactadynamicson
the partial pressurehére isanadditional transient voltage drop due to thel cell delay
effect [37]. The fuel cell delay which is the delay between the load current and the
change in the flow of fuel and oxidans caused by the transport process of proton,
hydrogen, oxygen, water vapor and liquid water within the fuel cell membfa#ed he
simplified model from[37] is used to model thiuel cell delayeffectand is shown as

follows:

2.8 P Q0 (2.27)
o TO° -@

The dynamiequationf afuel cell systemwhich is formed by connecting many

fuel cells in seriesaresummarized as follows

o, .0 (2.28)
s S h ~
Y'YQO ¢O
oo 0
om . .9 (2.29)
Y'YQO 10
_hoP Oy (2.30)
Qo t ¢O
7Q) AL/
hP Oy (2.31)
Qo t 10
o P DO (2.32)
Q06 Y Y &8 &
o T°°% -
where
wry v
0 © ‘_“Yé‘n — O —éer] ne (2.34)
€ n n €
Y'Y .'QQ
0O O — E—5 §0.4 4 Qwnj Q (2.35)
0 0 00 w oY (2.36)
9 2 (2.37)
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5 5 2 (2.38)
0]
v (2.39)
(0]
YY .QQ 0
Y — ¢ — (2.40)
8 @
0
Y 1QOHQ —— (2.41)
o why D

2.2.4 Model Reduction

From Equatiors (2.29)to (2.33) it can be observed that the statgs,f ,0  and

0 | are isolated from othedynamicstates. These states are influenoaty by the
current. Figure 2.6 shows the dynamic respomssef the partial pressures and the
corresponding theoretical open circuiitage O ). It can be observed that the magnitude
of the change in the partigtessurg] ) from one operatig point to another operati

point is very smallThe calculation of the corresponding theoretical open circuit voltage
is given by Equaton (2.34) The term— , which is very small, leads to very little

influence observed inthe theoretical open circuit voltagebue to the insignificant
influence of these four dynamic states on the fuel célleoretical open circuioltage,

thesestates are reduced $teady states
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Figure2.6 Transient responses of the partial pressures in a fuel cell.

With the gas states reduced to steady states, there are two dynamic effects to be
included in auel cell dynamic model, the doublayer charging effect (Equation (2.32))
and the fuel cell delay effect (Equation (2.38)jgure2.7 shows thdransient response of
a fuel cell system, whose performance curve is showsgare 2.8, when the current is
changed from one level to another levetan be observed figure2.7 that the fuel cell
output voltaged ) drops tathelowest level immediately after the current step and then
slowly reachesnother steady state value. When there is a sudden chahgecurrenta
voltage drop is expected due to the fuel cell delay effect. This voltage drofy slow
recovers back to zer@he associate operating points in the fuel cell performance curve
are shown irFigure2.8. The delay in the fuel cell output voltage directly translates to a
delay in the power available from the fuel cell system, which is expected to lead to

additional delay in the propeller rotaial speed.
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Fuel cell transient response
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Figure2.7 Fuel cell transient response for a step change in the current.
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Fuel cell performance cune
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Figure2.8 Fuel cell operating points for a step change in the current.

2.3  Dynamic Model of an Electric Motor

BrushlessDirect Current (BLDC) motorswhich are electronically commutated instead
of using brushes forcommutation are widely used inthe appliance, automotve,
aerospae, and automationindustries[73]. Their advantageare high dynamic response,
high efficiency, long operation lifegnd noiseless operation, ef@3]. These advantages
make BLDC motors excellent for UAV applications.

Figure 2.9 shows the equivalerglectric circuit of a BLDC motor.When a DC
voltage is applied to BLDC motor, there is curremd the windings due to Ohm'swa
The electric current in the windingegether with the magnetic field around the windjngs
generate mechanical forces (torque) due ttee electronotive effect. Whenthe motor

rotates a back EMF(BEMF) voltage isgenerateddue tothe electromotiveeffect of a
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rotatioral current ina magneticfield. Therotatioral speedof the BLDC motorreaches a

constant levelvhen the torque of the motmr equal tahe torque of the load

Figure2.9 BLDC motor equivalent circuif74].

Figure 2.10 illustrates the working principle of a BLDC motor withpeopeller.
The control signal of the speed controller determifes oltage ¢ ) applied to the
motor circuit.An increase inw leadsto anincrease irthecurrent (Equatiorf2.42). The
increase irthe current lead to an increase inthe motor torque (Equatioii2.43). The
rotational speedf the propelleincrease due to the difference in the driving torque and
the loading torque (Equatiq@.44). The increase in the motor rotati@rspeed resutan
increasein the BEMF (w ) due tothe electranotive effect (Equation(2.45). The
increase irthe BEMF (w ) limitstheincrease of theurrent. The whole system reaches a
steady state when the driving torque of the molor)(is the same as the aerodynamic

torque of the propelled( ).
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Figure2.10 Diagram of a BLDC motor connected wilpropeller.

The mathematical relations of the above pro@essummarized in Equatien

(2.42) to (2.45)

6 oY b2 g (2.42)
Qo
5 2 (2.43)
U
Q v b (2.44)
Qo U
o — (2.45)
U

where’Y ,0 ,"Q, ,0 are motor specific parameters.

2.4  Performance Model of a Fixed-Pitch Propeller

A propeller produces thrust force by rotating its lifting suréaaieout a shaft75]. The
rotation of the lifting surfaceshe propeller bladesleads toseveral relative moti@of
the air.As shown inFigure2.11, wis the axial velocity due to de stream air velocity,
mi is the rotational velocity of the propelleand™y and™Y are the induced velocities

causedy the propelledisturbance
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Figure2.11 Velocity of a blade elemef75|.

The fundamental relations for a propeller are derived from the Kaottkowsky
theorem and the twdimensional airfoil theory[75. The equationdrom [75] are
summarizeds follows:

Q0 " Qi (2.46)
whereQ (s the lift force on a blade elemehtjs the air density)Y is the resultant total
velocity, 3 is the bound circulatigrand’Q iis the blade element radial dimension.

QYT ® i1 6 Qi (2.47)

Q0 " aw 6 1Qi (2.48)
whereQ"¥s the sectional thrusf) Uis the sectional torqueand6 ando are the
induced velocities.

From the two-dimensional airfoil theory, & sectional lift force is determined by
the local angle of attack of the blade element.

Q0 %*Y QOQ | Em | @ Y QQi (2.49)
where® is the lift curve slope, is the local angle of attack is the zerdift angle of
attack,andais the blade chord.

The local angle of attacls computed as %9 wherd is the geometric

blade angle anthis the angle of the resultant velocity to the plane of the propeller.
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% O m“% (2.50)
The link between the bound circutat and airfoil lift can be obtained from
Equation(2.49)and(2.51)
& gm O YE (2.51)
The above equations define the fundamental relations of a propaikethe
relationsamongthe bound circulatiorthe blade geometryand the induced velocities are
difficult to determine The investigation of the propeller theoriles these relationsan
be dated back ttheearly 190s[76,77,78].

The nondimensional propeller performance parametidesthrust coefficientd ),

thepower coefficientd ), andthe efficiency of a propelleare defined as follosv

5 AOio (2.52)
Y
DLEL QI (2.53)
Ty
_ Y@ 6o (2.54)
DE0 Qi

Studying the dynamic behavior of a fuel cell powered propelksuires thathe
propeller's performance dakee obtained either from a comprehensive propeller inflow
model or fromthe experimentalmeasurementlata. The thrust coefficient and torque
coefficient can be determined based the rotational speed and the free stream air
velocity. The resulting thrust force and required power are computed using Eguation

(2.52)and(2.53)
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2.5 Dynamic Model of aFuel Cell Powered LAV Propulsion System

The dynamic model of a fuadell poweed UAV propulsion system is obtained by
combining the dynamic model of a fuel cell system, the dynamic model of an electric
motor, and the performance model of a fixed pitch propeller. The electric circuit
illustration of a fuelcell poweed UAV propulsion system is shown figure2.12. The
left portion of the diagram represents a fuel cell system, where betistéady state
performance and theansientperformance are modeled. The right portion of the diagram
represents an electric motor and a propelldére electric motor is modeled with an
inductor and a resistpand thethrust and power of thpropeller & calculated fromits
aerodynamic performance data. The center portion represents an electric motor gontroller
which controls the amount of voltage from the fuel cell system to be applied to the
electric motor according to the input signal.
The dynamic egations of a fuel cell powered UAV propulsion system are derived
with the following assumptions:
1 Both the performance model and dynamic modetheffuel cell system
arebased on ondimensional treatment.
1 The gases inside the fuel cell systems are assumed to be uniformly
distributed.
1 The temperature of the fuel cell system is assumed to be constant as it is
regulated by the fuel cell system controller.
1 The partial pressuseof the hydrogen and oxygen argesamed to be
constant as their influence on the open circuit voltage is insignificant.

1 The electric motor is modeled witHwampedresistor and inductor
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1 Both the backEMF and the driving torque of the electric mo#&welinear
functiors of themotorconsant (0 ).

1 The delay between the propeller rotational speed and the thrust generated
is assumed to beegligible

1 The propeller performance model is simplified with -@iwensional
treatment, and the thrust coefficient and power coefficient are funcifons
the inflow ratio only.

The equations for a fuelell poweed UAV propulsion systermodel are shown
in Equations 2.55 through 2.58), in which w is the voltage of the equivalent capagitor
'O is the voltage drop associated witte fuel cell delayeffect,”O is the electric motor
current andmis the propeller rotational speed. The transient behavia fofel cell
system is modeled in Equatio(&55 and @.56). The electric motor current as function
of input voltage, motor resistancand BEMF are modeled in Equation2(57). The
propeller rotational speed is governed by the torque difference between the electric motor
and the propeller aerodynamic loadiag shown in Equatior2(58.

Equations 2.59 to (2.69 are derived based on physicabtens Equation 2.59
determines the fuel cell voltage as a function of load current density. The current density
("Ris defined as current penit area as shown in Equatio®.§1). Equation 2.59 also
models the steady state performance of a fuélsgstem. The parametei®, ,"Q 'Y,

a, andg, in Equation 2.59 are obtained by validating the fuel cell performance curve
against the manufactute performance data. The output voltage of the fuel cell system
(w ) is computed usg Chm's Law as shown in Equatior2(60). The three types of

losses associated with a fuel cell system in operation, the activation 106s6s the

47



ohmic losses’Y ) and the concentration lossé$ ( ), arecalculatedusing Equations
(2.63 to (2.695. Equation 2.66)is the amount of voltage from the fuel cell systidat is
applied to the electric motor as a linear function of the input sidjaEQuation 2.67) is

the back EMF voltage from the electric motor. Equati2169 is the toque available
from the electric motor, which is proportional to the current of the electric motor.
Equation .69 is the aerodynamic torque from the propelighosetorque coefficient

(6 ) is obtained from the propeller performance model.
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Figure2.12 Electric circuit illustration of the fuel cell powered UAV propulsion system
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2.6  Transient Characteristics of a Fuel CellPowered UAV Propulsion System

In this section the dynamic model for a fuel cglowered UAV propulsion systelis

used to study the influence of the model parameters on the tramsgmninse
characteristics of a fuel cgllowered UAV propulsion system ihe form of effective

time constants and step command respofi$e=effectivetime constants are obtained by
computing the eigenvalues of the linearized model at a specific operating point. The step
responses are obtained by computing the time history of the state variables when the

input signal is stepped from one value to another value.
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The fuelcell poweed UAV propulsion systensizedfor the Aerosonde UAV is
used as the nominal moddlhe nominal values of the model parameters,0, T, _ ,

andy, are shown imable2.1.

Table2.1 Nominal values of the model parameters.

Model Parameters Nominal Values
Electric motor inductance)( ) ¢ T TIQ
Fuel cell capacitanc®] ¢nmoO
Fuel cell delay time constant { ¢8ti QW
Fuel cell delay gain constant | TI8T T WF0
Propeller Inertial () T8 TT QO

2.6.1 Trim and Linearization

The nonlinear model of a fuel cgdbwered UAV propulsion system implemented in

MATLAB as shown inFigure2.13, where the MATLAB function blocks the nonlinear
equaions shown in Equations2(55 to (2.69. The model is trimmed alifferent input

signal { ) values (from0.4 to 0.9, andat an air speed of 20 m/§he steady state

propeller rotational speed at different input values is shovgire2.14.

MATLAE 1 |4

or Functiocn E
Dutputs

x_dot=f{>,u) Integrator

Figure2.13MATLAB implementation of the nonlinear model of a fuel pellvered
UAYV propulsion system.
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Fuel cell powered UAV propulsion system trim at 20 m/s
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Figure2.14 Propeller rotatioal speed at different input values at 20 m/s.

As shown inFigure 2.14, the propeller rotational speed increases with the input
value when the input value is less than 0.7. The propeller rotational speed decreases with
the input value wén the input value is more than OThis can be explained by the fuel
cell performance curves shown kigure 2.15 and Figure 2.16. When the input value
increases, more power is required frtme fuel cell systa, butthere is a limit on the
maximum power that can be delivered by the fuel cell system. When the operating
current of the fuel cell is more than thalue that corresponds the maximum power
(marked as * inFigure 2.16), the pover available from the fuel cell system drops as the
current increases. The drop in the power from the fuel cell system leads to a decrease in

the propeller rotational speed.
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Fuel cell operating points (Voltage) at 20 m/s
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Figure2.15 Fuel cell operating points on the voltage performance curve.
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Figure2.16 Fuel cell operating points on the power performance curve.
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Whena fuel cell powered UAV propulsion system is integrated with a UAV, the
input signal is similar téhat ofthe throttle signal im conventionabas powezd UAYV, in
which an increase in the throttle signal is expected to lead to an increase in the propeller
rotationalspeed. Hence, the range of the input siggaét betweef.4 and 0.7.

The linearized model cd fuel cellpowered UAV propulsion system obtained
by linearizing the nonlinear modghown inFigure2.13 at different operation pots.The
time constantst() of the linearized model are computed by using the eigenvalueas(
shown in Equation2.70. The time constants of the nominal system are showialuhe
2.2 at different input valuesAmong the foutime constants, thinird time constantt |, is

the largest.

(2.70)

I |o

Table2.2 Time constants of the nominal system.

Input Time Constants (sec)

(6) T T T t
0.4 | 0.0018 | 0.0956 | 2.3421 | 0.2888
0.5 0.0014 | 0.0758 | 2.3455 | 0.2244
0.6 0.0012 | 0.0451 | 2.3053 | 0.2675
0.7 0.0010 | 0.0271 | 2.2336 | 0.3234

2.6.2 Parametric Study on Time Constants
In the parametric study on the time constants of the fuepoglered UAV propulsion

system, thevalue of each model parameter,, 0, T andv, variesbetween 20% and

500% of the nominal value listed TFable2.1. The time constants at input value of 0.5

are used in this study.
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Table2.3 Time constants for different motor inductance.

U Time Constants (sec)

0 j t t T T
0.2 0.0003 | 0.0766 | 2.3455 | 0.2244
0.5 0.0007 | 0.0763 | 2.3455 | 0.2244
1.0 0.0014 | 0.0758 | 2.3455 | 0.2244
2.0 0.0036 | 0.0745 | 2.3456 | 0.2241
5.0 0.0075 | 0.0722 | 2.3458 | 0.2237

Table 2.3 shows the time constants of the linearized model of the fuel cell
powered UAV propulsion system for different values of the motor inductance The
first time constantf his significantly influenced by the motor inductance. This suggests
thatt is associated with the electric motor current. Since the magnitutieisoiuch
smaller thanthat of other time constants, the influence of the motor inductance is

insignificant.

Table2.4 Time constants for different fuel cell capacitance.

0 Time Constants (sec)

0 T T T T

0.2 0.0015| 0.0181 | 2.3485| 0.1834
0.5 0.0014 | 0.0433 | 2.3474 | 0.1952
1.0 0.0014 | 0.0758 | 2.3455 | 0.2244
2.0 0.0014 | 0.1155| 2.3390 | 0.3705
5.0 0.0014 | 0.1316 | 2.3583 | 0.7248

Table 2.4 shows the time constants of the linearized model of the fuel cell
powered UAV propulsion system for different values of the fuel caflacitanced).
Both the second and the fourth time constants are influenced by the fuel cell capacitance.
The influence of the fuel cell capacitance is similathtat ofan RC circuit, where higher

capacitance leads to longer time constants.
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Table2.5 Time constants for different propeller inertial.

0 Time Constants (sec)
v t t T t
0.2 0.0015| 0.0243 | 2.3823 | 0.1336
0.5 0.0014 | 0.0530 | 2.3690 | 0.1577
1.0 0.0014 | 0.0758 | 2.3455 | 0.2244
2.0 0.0014 | 0.0900 | 2.2607 | 0.4927

5.0 0.0014 | 0.0938 | 2.0191 | 1.0599

Table2.5 shows the time constants of the linearized model for different values of
the propeller inertia. Similar to the fuel ceddpacitance, both the second and fourth time
constants are influenced by the propeller inertia. The influence of the propeller inertia to
the propeller rotational speed is due to the aerodynamic drag of the propeller, where

higher propeller inertia leads kargertime constants.

Table2.6 Time constants for different fuel cell delay time constants.

T Time Constants (sec)

i f f f t
0.2 0.0014 | 0.0809 | 0.4038 | 0.2447
0.5 0.0014 | 0.0769 | 1.1443 | 0.2268
1.0 0.0014 | 0.0758 | 2.3455 | 0.2244
2.0 0.0014 | 0.0752 | 5.9403 | 0.2232
5.0 0.0014 | 0.0750 | 11.9291| 0.2229

Table2.6 shows the time constants of the linearized model for different values of
the fuel cell delay time constant . It can be seen that the third time constént,s
significantly influenced by the fuel cell delay time constant. This suggestd tist
associated with fuel cell delay voltag® J. The magnitude of is slightly larger than

that of T . Sincet is the largest among the four time constantsjrémesientresponse of

55



the propellerrotational speeds expected to be highly influenced by the fuel cell delay

time constant.

Table2.7 Time constants for different fuel cell delay gain constants.

Time Constants (sec)
t t T t

0.2 0.0027 | 0.0491 | 2.0677 | 0.2114
0.5 0.0020 | 0.0606 | 2.1707 | 0.2162
1.0 0.0014 | 0.0758 | 2.3455 | 0.2244
2.0 0.0009 | 0.0962 | 2.7047 | 0.2406
5.0 0.0004 | 0.1216 | 3.8262 | 0.2802

<

Table2.7 shows the time constants of the linearized model for different values of
the fuel cell delay gain constant §. As indicated in Equation (26), _ determines the
amount of voltage drop casponding to the rate of change in the current during the
transient This parameter influences all four time constants.

In summary, the correspondence between the time constants of the linearized
model and the four dynamic states is identified. Amomgfdlur time constants, the delay
due to electric motor current is insignificaahd the delay due to fuel cell delay effect is

most significant.

2.6.3 Parametric Study orStep Response

When the input signal is in the range of 0.4 to 0.7, an increase inpilitesignal leads to

an increase in the propeller rotational speed. Due to the delay in the fuel cell system, a
delay in thetransientresponse of the propeller rotational speed is expected. The
variations of the model parameters in the parametric study on step responses are the same
asthose presented e previous section. In this study, the input signal is stepped from

0.4 to 0.6 and the corresponding propeller rota@bspeed is increased from 412 rad/s to
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521 rad/sThestep response of th@opeller rotational speadlith ideal voltage supply is

alsopresented for reference.

Parametric study on step responses (Lm)

540 ¢
520 /ﬁ
500
g 480 j
% 460 / ideal woltage
| ~ i
8 k1—0.2
k1:0.5
440 -+
/ k1:1.0
420 k;=2.0
k1:5.0
400° ; ; :
0 5 10 15 20

time (sec)
Figure2.17 Step response variations due to electric motor inductance

Figure 2.17 shows the propeller rotational speed step responses for different

values of the motor inductance, whé&®e There are no observable diféeices in

h
the step responses. This agrees with the study on time constants that the influence of

motor inductance is expected to be insignificant.
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Parametric study on step responses (C)

540
520 //\ﬂ
500 (
f
Q ﬁ
& P ideal volt
g 460 j | e_a oltage n
5 J k,=0.2
440 j k,=0.5 |
} k,=1.0
420 k2:2.0 L
k,=5.0
400 E :
0 5 10 15 20

time (sec)
Figure2.18 Step response variatie due to fuel cell capdance
Figure 2.18 shows the propeller rotational speed step responses for different

values of fuel cell capacitancehereQ ——. A capacitor is an energy storage device

that stores or releases enevghyen there is a change in the current. When the input signal
is increased from 0.4 to 0.6, energy stored in the fuel cell dubetaloublelayer

charging effect is released. Higher fuel cell capacitance corresponds to more energy

storage, which leads tofaster response in the propeller rotational speed.
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Figure2.19 Step response variations dodhefuel cell delay time constant

Figure 2.19 shows the propeller rotational speedpstesponses for different

values of the fuel cell delay time constanthereQ

— The fuel cell delay time

constant determingbetime delay in the voltage drop associated with the rate of change

in the currentAdditional delay due to thuel cell delay time constant is observed in the

propeller rotational speed. However, the impact of the fuel cell delay time constant

appears only after the initial delay due to the propeller aerodynamic drag.
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Parametric study on step responses (J)
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Figure2.20 Stepresponsesariations due to propeller inertia.
Figure 2.20 shows the propeller rotational speed step responses for different

values of the propeller inertiavhere®@ —. Due to aerodynamic drag, higher

propeller inertia leads to a longer time delay in the propeller rotational speed. If time
constantt is smaller than time constaht, the step response of the propeller rotational
speed is mainly caused by thel cell delayeffect. If ime constantt is larger than time
constantf , the step response of the propeller rotational speed is mainly due to the

aerodynamic drag.
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Parametric study on step responses (Iamdae)
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Figure2.21 Step response variations due to fuel cell delay gain constant.

Figure 2.21 shows the propeller rotational speed step responses for different

values of the fuel cell delay gain constawhereQ The fuel cell delay gain

h

constanis proportional to thenagnitude of the voltage drajue to tle rate of change in
the current, whiclinfluences the magnitude of the propelletational speed delay due to
thefuel cell delayeffect When the fuel cell delay gain constant is sufficiently latige,
delayin the propeller rotational speed due to the aerodynamic drag beswigesficant.

In summary, the five model parameters influence tthasientresponse of the
propeller rotational speed in different ways. Changes in these parameters may reduce the
delays in the propeller rotational speed, which may improver#msientperformance of

a fuel cellpowered UAV.
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2.7 Summary

In this chaptera dynamic model of a fuel ceppowered UAV propulsion system was
derived by combining the dynamic model of a fuel cgditem, the dynamic model of an
electric motoy and the performance model of a propeller. In the dynamic model of a fuel
cell system, the steady state performance is modeled with aesgpirical polarization
curve and the transient performance is modelgth a doublelayer charging effect and

the fuel cell delayeffect. The partial pressures of the hydrogen and the air were reduced
to steady states, as their variationsrevensignificant. The influencef the fuel cell
system parameters on the transidraracteristics of a fuelell poweed UAV propulsion
system was investigated through the effective time constants and step command

responsesandthe influence of théuel cell delayconstantsvasthe most significant.
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CHAPTER 3

A FUEL CELL POWERED UAV CONFIGURAT ION

3.1 Introduction

The Aerosonde UA(Figure3.1), developed by Aerosonde Pty Ltd, Australia, is one of
the few commercial UAVs in its weight class that offers an endurance of more than 24
hours[79]. It was also the first unmanned aircraft that cedsbe Atlantic Ocean witha
flight distance of 3,270 kilometefg9]. Its small scale, light weighand high efficiency
engine contribue to its excellentenduranceperformance.The AeroSim aeronautical
simulation blockset is a set of MATLAB Simulink based tools that provide rapid
development of nonlinear-@of aircraft dynamic model§80]. The Aerosonde UAV
model is one ofthe examples from the AeroSim blockset, which provides open loop
simulation of the Aerosonde UAV.

In this chapterthe performance data of the Aerosonde Uid¥xtracted from the
AeroSim blockseto definethe benchmarlconventionaas powesd configuration Next,
the Aerosonde UAV modak modified with a fuel cell propulsion system, where the
reciprocatingengine with fuel tanks replaced witha fuel cell system an electric motor
andacompressetiydrogen tank. Thergss weight of the fuel cglloweredconfiguration
remairs the same atha of the conventional gas powerambnfiguration The associated
fuel cell specification data needed for the adaptatidisted in this chapteTowards the
end of the chapter, theerformance ofhe fuel cellpoweredconfigurationis compared

againstthoseof the conventional gas powerednfiguration
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Figure3.1 Aerosonde UAV from AAI Corporatiofi79].

3.2  Aerosonde UAV Specificatiors

The key geometric data of the Aerosonde UAMtracted fromthe AeroSim blockset
[80], is listed inTable3.1. The overall lift and draft coefficient as a function of angle of
attack is listed inFigure 3.2. The propeller performance dashown inFigure 3.3, is
presented as the nalimensional thrust coeffient and power coefficiewith respect to
the propeller inflow ratio. The defiions of theinflow ratio, thrust coefficienttorque
coefficient andpower coefficient are given in Equat®(8.1)to (3.4). Since the original
data from the AeroSim bléset are in the form of discrete data points, polynomial
functions have beenusedto fit the data points tabtain smooth functions for the
propeller performance curves.
Inflow ratio:
0 i (3.2)
Thrust coefficient:
v Loy g (3.2)

Torque coefficient:
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ATV (3.3)
Power coefficient:
5oy (3.4)
wherew is the free stream air velocity (m/s),is the propellerrotational speedrad/s),

'Yis the propeller radius (mand” is the air density (kg/m”3).

Table3.1 Specifications of the Aerosonde UAS(Q].

Empty Weight: 8.5 kg
Gross Weight: 13.5 kg
Wingspan: 29 m
Length: 1.74 m
Wing Area: 055 m’
1.5
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Figure3.2 Cl, Cdof the Aerosonde UAV model.
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Figure3.3 Propeller performance data of the Aerosonde UAV.

3.3  Fuel Cell SystemSelection

To fit an appropriatéuel cell systemwith the Aerosonde UAV modehformation about
the weight, size and powés required.Horizon Fuel Cell Technologies offers a wide
range of offtheshelf PEM fuel cell systems from 10W to 5k}81]. As a fuel cell

systemcan be resized biphe numberof cells andthe cdl area,for the current research,
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mass models developed so thafuel cell system at other sizes can be used in the
analysis In this study, the cell area is defined as the esessional areé0) of a fuel cell
system instead of the active aif@a). The relationbetween the crossectional are#0)
and the active are@® ) is shown in Equation (3.5wherethe coefficient® andQ are
derived from the manufactutedata.
6 0 Qo (3.5)

Table3.2 shows the physical specifications of tlfieel cell systera available from
Horizon Fuel Cell Technologie2], ranging from 100W to 1000W. The weigldf
different fuel cell systemwith respect to the number of cells (N) and cell areagi)
used to determine the coefficients Hguation(3.6), and the coefficientare listed in
Table3.3. Figure 3.4 shows the fuel cell weight as a functiontieé numberof cells and

thecell areatogether withthe manufacture'seference data points.

0 4 4@ 70 A 726 & 7 Hz0 (3.6)

Table3.2 Specifications of fuel cell systems from 100W to 100[B2].

; Cell
Power | Weight | Cell N Cell A Length
Model Volume
W | @ | O e | g | mm)
H-100 100 865 16 108.46 976.14 90.00
H-200 200 1485 32 108.46 1648.59 | 152.00
H-300 300 2070 48 108.46 2315.62 | 213.50
H-500 500 2520 24 328.30 5252.80 | 160.00
H-1000 1000 4000 48 328.30 7189.77 | 219.00
Table3.3 Parameters for fuel cell mass model.
a (9) a (9g/N) a  (glem”2) a i (9/(N-cm”2))
-112.4 25.81 3.51 0.11
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Fuel Cell System Mass vs (N & A)
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Figure3.4 Fuel cell systemveight model with respect to N and A.

Besides the weight of auel cell systemthe polarization curve (voltagairrent
curve) is requiredo choosean appropriatefuel cell systemsize Since the power
requirement for the Aerosonde UAYV is in the range of 500W to 1006Mthe current
researchyoltagecurrentcurves of the Horizon ¥500 and H1000fuel cell systera are
used to validatehe mathematical model of th&el cell system Figure 3.5 shows
performance curvesf the H-500 and H1000fuel cell system, where the F500fuel cell
systemis rated at 500W maximum power atige H-1000 is rated at 2000W maximum
power. Figure 3.6 shows a comparson of the voltagecurrent curve computedusing
Equation(2.59) and that of the manufactul® dat. The validated fuel celberformance
model isappliedto scale thduel cell systenfor selecting the appropriate fuel cell system

size for the fuel cell powered UAV configuration.
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Performance Curves of H-Series Fuel Cell Systems
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Figure3.5 Performanceurvesof H-500 and H1000fuel cell systers.
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Figure3.6 Fuel cell performance modealidation.
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With the fuel cell systemmass model (Equatiof3.6)) and fuel cell system
performance modelF{gure 3.6), a few candidatéuel cell systera areselected wittthe
number of cellgangingfrom 36 to 64 and the cell area from 200°dm 300 cri. The
calculated wight and maximum power for the candidate fuel cells are listédbie3.4
and Table 3.5. As shown inFigure 3.7, the power capability of duel cell system
increases withan increase int weight. Thepower to weight ratio of theeciprocding
engineof the Aerosonde UAV is also shown kiigure 3.7. It can be observed thata
power densitiesof the fuel cell systera are much lower than that of theeciprocating
engine.

The same gross weight fahe conventional gas poweredonfiguraton is
maintained foithe fuel cell poweredconfiguration The weight breakdowns are shown in
Table 3.6. The weight of thehydrogen tanks referenced fronthe lon Tiger fuel cell
powered UAV[83]. Theweight allowancdor thefuel cell systenand te electric motor
is 36 kg, where 6 kg is allocated tothe electric motor{71]. The corresponding
maximum powers less than700W. The performance of the fuel cell configuration is
expected to be poorer than thatlog conventionalgyas powesd configuration.The detail

performance comparisenf the two configurationarepresented ithe next section.

Table3.4 Weight information of candidate fuel cell systems.

F”V‘jt'e%er:'t Z{;;em A=200 cnf A=250 cnf A=300 crf
N=36 23 2.7 3.0
N=43 2.9 33 3.8
N=64 3.6 4.2 4.7
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Table3.5 Maximum power rating of candidate fuel cell systems.

Fuel cell system _ _ _
Max. Power (W) =200 cnf A=250 cnf A=300 cnf
N=36 469 586 703
N=48 625 781 937
N=64 833 1041 1250
Fuel cell system mass vs maximum power
1000 [ F T -,,
O Data Points //
900}~ linear &
P
ey
800 <
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g 700 -
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400 -
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Figure3.7 Fuel cell systenmaximum power with respect to weight.

Table3.6 Weight breakdowns of the conventional gas powered configuration and the fuel

cell powered configuration.

Conventional Gas

Fuel CellPowered

PoweredConfiguration Configuration
Airframe 3.6 kg 3.6 kg
Avionics/Payload 2.1 kg 2.1 kg
Power Plant 2.2 kg 3.6kg

(motor and fuel cell)

Fuel + Tank Weight

5.6kg (5 kg fuel)

4.2 kg (600 gm B)

Gross Weight

13.5 kg

13.5 kg
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3.4  Steady State Performancévaluation

After the Aerosonde UAVmodel is modified with a fuel cell system, its flight
performance isevaluated and compared to that of tbenventional gaspowered
configuration.During the fuel cell adaptation process, the airframe and the gross weight
of both configurations are kept identicklis observed that the two propulsion system of
these two configurations differed in both maximum available and specific fuel
consumption rate.

The fuel consumption rate of the Aerosonde U#A\Vobtained from both the
AeroSim blockse{80] and the engine developntereport[84]. The data from both
sourcesareshown inFigure3.8, wherea curve fitting model in the form of Ea@ition (3.7)
is applied. Itcan beobserved that the specific fuel consumption rate of the conventional
reciprocatingengine @creases as the power increases, wihaelthes t@lmostconstant

when the engine power is more than 400W.

- ~ @
6« oael O - 3.7

C

Thepolarization curve of the selectégkl cell systenis shown inFigure3.9, and
the fuel consumption rate is shownHigure3.10. Different from that ofthe conventional
reciprocatingengine, the specific fuel consumption rate of a fuel cell increases when the
power increasesBecausethe energy density ofydrogen is much higher than that of
gasoline, the fuel consumption rate of fhel cell systems only a fraction of thabf the
conventionalreciprocatingengine. For example, at 400W, the fuel consumption rate of
the conventional reciprocatingngine is about 140 g/hr. The fuel consumption rate of the

fuel cellsystemat 400W is only 2@/hr.
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The endurance estimations of bdtte conventioml gas poweredconfiguration
and the fuel cell poweredconfigurationare presented irFigure 3.11 and Figure 3.12.
Although the fuel consumption rate thie fuel cell poweed configuration is significantly
lower than that of theonventionabas powegd configuration, its endurance gpermance
is inferior to that of theconventionalgas powesd configuration. This is due to the
constraint that only 600 grasof fuel (compressed hydroggrs carried forthe fuel cell
poweredconfiguration, as compared to 5 kg of fuel for tbenventionbhgas powered
configuration.

Since the airframes for both configurations are identimath the maximum speed
andthe maximum rate of climb are determinedly by the maximum available power.
The reciprocating engine of the conventiorgds poweed configuration is rated at
1000W, and the maximum power of the selecteel cell systemis only 62W. The
differences in the maximum speeds for both configurations are shdwgure3.13. The
comparisons of their maximum rate of climb at different speeds are shdwgune3.14.
Both the maximum speed and maximum rate of clinibth® fuel cell powered
configuration are inferior to those of the conventional gas powered configuration.

Due to the lower available power from the fuel cell system, the flight trajectories
of the fuel cell powered configuration are more likely to be wamed by the maximum
available power. Optimal trajectories that do not consider the propulsion system
characteristics are likely to be unfeasible. For example, if the fuel posllered
configurationis totravel from point A to point B and the heightfdifence between these
two points is significant, the minimunfuel optimal trajectoy obtained for the

conventional gas powered configuratiss most likely not feasible for the fuel cell
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powered configuration. Trajectory optimization considering the foell system

dynamics is required to mininezhe fuel consumption for a fuel cell powered UAV.

Fuel Consumption Rate (g/hr)
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Figure3.8 Fuel consumption rate and specific fuel consumption rate afrihmal gas

powered internal comistion engine
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N=48, A=215 cmz, mass=3.0 kg, max. power=634 W
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Figure3.9 Polarization curve of the selectkel cell system
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Figure3.10 Fuel consumption rate and specific faehsumptiorrate of theselecteduel
cell system
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Figure3.11 Endurance estimation féihe conventional ggsoweredconfiguration.

76



Airspeed (m/s)

Fuel Flow Rate (g/hr)

Endurance (hr)

35

30

25

20

15

60

50

40

30

20

10

40

35

30

25

20

15

100

200

300

44o 500 600 700 800 900 1000

Power (W)

A

100

200

300

44o 500 600 700 800 900 1000

Power (W)

A

AN

100

200

300

400 500 600 700 800 900 1000

Power (W)

Figure3.12 Endurance estimation feie fuel cellpoweredconfiguration.
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Figure3.14 Performance comparison (maximum rate of climb).
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3.5 Summary

In this chapter, a fuel cell powered UAV configuration was obtained by modifying the
Aerosonde UAVwith a fuel cellpowered propulsion system, where a fuel cell system
was sized based dhefuel cel systemperformance and weight data. The gross weight of
the fuel cellpoweredconfiguration was kepthe same as that of theonventional gas
poweredconfiguration. The performance of both configuratiorms@ompared, including

the specific fuel consumiph rates, endurances, maximum speeasd maximum rates of
climb. The performance of the fuel cell configuratiovas inferior to that of the
conventional gapoweredconfigurationdue tothe lower available poweof the fuel cell
system Due to the loweavailable powertrajectory optimization is more likely required

to find feasible flight trajectories.
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CHAPTER 4
A GENERALIZED FRAMEWORK FOR

PSEUDOSPECTRAL METHODS

4.1  Introduction

An optimal control problenfor a trajectory optimization problgmns to find the conbl
variables that satisfy the dynamic constraints and, at the same time, minimize the
performance index function. For a fuel cell powered UAV, the dynatoitstraint
equationsareobtained by combining the point mass UAV model and the dynamic model
of a fuel cell powered UAV propulsion systeiue the nonlinearities in these dynamic
equations, it is very difficult to find analytic solutions. Instead, numerical methods are
used to solvéhetrajectory optimization problems.

Among the different numerical methods for optimal control problesn
pseudospectral methodse a class oftate and control parameterization methods, where
a finite basis of interpolating polynomials is used to approximate the atadecontrols
The main difference between a pseudesfral method and othestate and control
parameterizatiormethod is that theinterpolating polynomialsare orthogonal at the
discretization points. The main advantage opseudospectral methods is that the
approximation of the derivatives arttie integratons for smooth functions exhibit
spectral accurady6Q].

The first application of spectral methods to optimal control problenas
introduced by 85] in 1988 where Chebyshev polynomials were used as the interpolating

polynomials.In 1995, Ref. [62] proposedihe Legendre pseudospectral metitbBM),
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where Lagrange polynomials collocated at the Lege@@dussLobatto (LGL) points
were used as the interpolating polynomidfs.200l, Ref. [86] extendedthe Legendre
pseudospectral method to generate costate estimates. Around the sanietirf&]
introduced the Chebyshev pseudospectral me(@&M), where Lagrange polynomials
collocated at the Chebysh&aussLobatto (CGL) points were useth 2005, Ref. [87]
proposed another psgospectral method for infinteorizon nonlinear optimal control
problems based on Lagrange polynomials collocated at the Leg@adssRadau (LGR)
points[87]. The Gaussgeudospectral methd@&PM)was proposed bjp7] in 2005 ard
the Radau pseudospectral met{@PM) for finite-horizon problems was proposed by
[88] in 2011

Among different pseudospectral methods, there are four pseudospectral methods
that are based on Lagrange polynomials, namelyi.fin [62], the CPM[61], the GPM
[57], and the RPM88]. Due to the similarities in these pseudospectral methods, several
comparisons and unified framewsrkave been idcussed in the literatureln [89], the
LPM, GPM and RPMvere compared with continuous Mayer problemg9j, a unified
view of the LPM, GPM, an@RPM was presented to show the similarities and differences
in these methoddn [91], pseudospectral methods on arbitrary gnase proposed to
unify the LPM and CPM. 1163], a unified frameworkvaspresented for the GPM and
RPM, where thecollocation points of these two methods do not include all the end points

A pseudospectral method converts an optimal control problemidB& problem
which requires & NLP solver to find the solution. Software packages based on
pseudospectral methods are often available in paired packages of one pseudospectral

method and one NLP solver. For example, the PSQH is a pair package of the
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Legendre pseudospectral method and the IPOPT sdaherGPOPJ66] is a paired
package of the Radaseudospectral metd@and the SNOPT solver, and thédO [67]
has its owmroprietaryNLP solver. Thesolution of an optimal control problem, which is
also the solution of a transcribed NLP problem, is highly influenced by the chdice of
NLP solver In addition, the performances of different pseudospectral methods are
different for different problems[63]. A generalized framework for different
pseudospectral methods withe sameNLP solver is desiredo evaluate different
pseudospectral methods.

This chapter proposesa generalized framework for the four pseudospectral
methods basedn the Lagrange polynomialBifferent from other unified frameworks,
the generalized framework includes all four psespgztral methods, where only the
collocation points are required to define a pseudospectral metted.equivalences
between the pseudospectral methods implemented with the proposed framework and the
original pseudospectral methods are verified throughpeosisons on the differentiation
matrices and the quadrature weights for integration. Example problems are used to
compare the performance of differepseudospectral method defined by different
collocation poins. The proposed framework is also used to lest® a new
pseudospectral method that is based on Lagrange polynomials collocatd sét of

collocation points.

4.2  Approximation with Lagrange Polynomials
Lagrange polynomial§92] are commonly used for interpolation. For a giveet of

0 distinct pairs of data point o FE hoh FE ho hwy , the interpolation
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polynomial in the Lagrange fornd, 0 , is a linear combination of Lagrange basis

polynomialse 0, as folbws
RY R @e 0 (4.1)
. 0 0
© 5 o (4.2)

It is the polynomial of the least degree that has exact function values at the given
data points.
w w0 0o0h Q pfEM (4.3)
The basis functiom 0 has the following property

Lo p Q0Q 4.4
(0] T 0 :'Q ( )
Figure 4.1 shows an example of Lagrange polynomialith four collocation

points.

N=4 [phi, (x)] N=4 [phi,(x)]
1 1
05 05
0 0
-0.5 -0.5
1 05 0 05 1 1 05 0 05 1
N=4 [phiy(x)] N=4 [phi,(x)]
1 - 1
0.5 05
0 : 0 o
-0.5 -0.5
1 05 0 05 1 1 05 0 05 1

Figure4.1 Basis functions of Lagrange polynomial.
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With a polynomial approximation ab 6, the integration of functioiQc 6 o
can be approximated by summation of the function values evaluatetioaiationpoints
Qw6 M , weighted by the correspondiggadrature weights fontegration[93)].

VOO U JQwo (4.5)

0 .« Q0 (4.6)

The differentiation ofv 0 with respect to timev 0 is approximated as follows

0o e O (4.7)
o G 0O 0 "HQ (4.8)
B b 0O O
(4.9)
e 0 .
b 0O O
B b 0O O
(4.10)
0°HQ « o -
b (0] (0]

In summary, for a given set of data pointsfto FE hofw FE ho Fo |, the
functionw 0 can be approximated by the summation of a set of Lagrange polynomials.
The integration of the functici2c o I can be approximated by weighted summation
of the function valuesThedifferentiation of the function with respect tonéw 0 can be
approximated by the product of the differentiation matrix and the associated function
values.The quadrature weigh{Equation (4.6))and the differentiation matrigequation
(4.10))for an arbitrarygrid arecomputedoy using the MATLABfunctions developeah

[94] and[95].
84



The data point location® FE b determine the exact Lagrange polynomial
being used for the approximations. The dataints 6 FE fd are alsoknown as the
collocationpoints In the literature of pseudospectral methaasdptimal control, there
are fourses of well-known collocatiorpoints, the Legendre Gauskobatto (LGL) points,
the ChebysheGaussLobatto (CGL) points, the Legendr&auss (LG)points and the
LegendreGaussRadau (LGR)points. The LGL, LG and LGRpointsare defined based
onthe zeros of different forms of thegendre polynomials 0.

The Legendre polynomiald 6 h'Q miphE are the eigefanctions of the
singular SturreLiouville problem[93].

p 00 O TQQpb o m (4.11)

The Legendre polynomial 0 satisfesthe followingrecursve relation

oo 2 P% o 25 o
Qp T p (4.12)
Do p
D6 o

The grid locationsfor the four pseudospectrainethods are defineds follows:
LegendreGaussLobatto (LGL)points

0 pld  pd Q pFE R p are zeros ob (4.13)

ChebyshexvGaussLobatto CGL) points

., QL .
) 0¢ =" A0 TiE R (4.14)
LegendreGauss (LG)oints

0 Q E M are zeros ob (4.15)

LegendreGaussRadau (LGR)oints

0 Q MEM arezerosobh 0 (4.16)
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Figure4.2 shows the collocatiopointsfor the four methodsand the uniform grid
points Both the CGL and the LGL pointahich include both end points ap andp, are
defined in pfp The LG pointswhich do not include any of the end poirdse defined
in  plp . The LGR points which include only the end point atp, are defined
in  plp . As compared tahe uniformly distributedpoints all the othercollocation

points are denser towatide twoends at p andp.

Comparison of Collocation Points

T T L L L L L L C

x LGL

L + CGL ||
*+ LG

LGR

Uniform ||

[T>

-1 -0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Figure4.2 Collocationpointsfor different pseudospectral methods.

With the collocation points defined for various methods, the approximation
accuracy for interpolation, differentiatipand integration are evaluated using a simple

continuous functioif .
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wo Q
@o 0 (4.17)
u DOQO A Q oBCoOw

Figure 4.3 shows the improvement of interpolation error with respectht®
number ofcollocation pointsExceptthe approximation with uniformly distributed points
the interpolation errors for atither methods are close to machine zgyor( ) with more
than 15 collocation nodes. The differentiation error shoavsimilar trend. Wherthe
number of thecollocationpoints ismore than 13the results from the uniform grid fails
to improve further. This phenomenon is refet@dsthe Runge phenomend®6]. From
this, it can beconcludel that unifornty distributed points arenot suitablefor a
pseudospectral method. The integration error does not achieve machine zero when the

interpolation error achieves machine zero. This is due to the numerical error in the

computation of integration weights.

Intepolation Error [f(t)=et]
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Figure4.3 Interpolation error trend with respect to number of nodes.
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Differentiation Error [f(t)=et]
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Figure4.4 Differentiation error trend with respect to number of nodes.

No. of points

Integration Error [f(t)=et]
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Figure4.5 Integration error trend with respect to number of nodes.
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4.3  Transcription Equations for the GeneralizedFramework
The proposed generalized framework traiss an optimal control problem tanaNLP
problem. The corresponding transcription equations theesame asthose forthe
Legendre pseudospectral metljéd].

Consideran optimal control problem where the objective is to find stai@s
T and control 6 N T on the intervab® 6o that minimize a cost in the Bolza

form [56]. The cost is
0 wo Qoo o Qo (4.18)
where (T T O T is the terminal cost an@[T T T O T is the integral cost.
The states arsubject to the differential dynamic constraints,
Qw .
= Qwof o (4.19)
Qo
where @[T T T O T . The states are also subject to the boundary conditions in
the form
[ o Mo v (4.20)
where[ T T 71 T0 7 .
The standard grid points are defined on the intervafp . The first step is to
change the time interval of the optimal control problem flomo b totn  plp .

This is done by the linear mapping

o 2 %94 2 © (4.21)
C C
With this mapping, tle optimal control problem can be replaced as follows

Minimize the cost

b qp °c° Qat ot QY (4.22)
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subject to dynamic constraints

Qw o o

22 NPT (4.23)
Ot Qwt ho t ht
and boundary conditions
o poph (4.24)

Discretizng the dynamic constraintsequires the states and controlf® be
approximatediy usng a set of Lagrange interpolating polynomials at thedNocation

points
0o Mo 0o D> 0 (4.25)

66 Yo 60 3 0 (4.26)
whered iQ phE R, are the grid points and o are the Lagrange polynomials of
degree N1. From the property of the Lagrange polynomialso | , it follows
that

wo OO (4.27)
60 Yo (4.28)
The time derivatives of the states are approximated by thed@meatives of the

interpolation polynomials. The derivatives at the grid points are evaluated as follows

Q6 Q0 § .
‘ C o 0 h 0 pfEW (4.29)

06°  Qo°
The derivative matriJOis defined by the derivative of the Lagrange polynomials

at the grid points.

S (4.30)
Qo °

The derivative matrix allows the dynamic equations to be collocated at the grid

points. The resulting algebraic constraints are
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G
0 O

0 2 QORYM h  Q pfE M (4.31)

The boundary constrains are enforced as follows
r o n (4.32)
The integration in the cost function is discretized using the quadrature rule as

follows:

=
8:<

3 o 0o
0 » QM RY 0} (4.33)

where0 are the integration weights.

In summary, the continuous optimal control problem is discretizech thiLd
problem where the objective is to find the variablés,N T ,"Y N T ,Q phE R
ando o N T that

minimize the cost

. 0 0 .
0 & c QO RYD D (4.34)
subject to
S 0@ aofvh (4.35)
0 0
r oD n (4.36)

4.4  Generalization of Different Pseudospectral Methods

The four pseudospectral methods, the Legem$reudospectral methods (LPM), the
Chebyshev pseudospectral method (CPM), the Gauss pseudospectral method (GPM), and

the Radau pseudospectral method (RRvE based on Lagrange polynomials at different
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collocation pointsThe transcription equations of ¢éamethod areomparedn [97]. In

all four pseudospectral methods, the states and comirtile continuous domaiinom o

to 0 are mapped tahe discrete domain front to T

, wheret pandt p.

The transcription equations for the differential constraints and the performance index

function are summarizeblelow. In addition, the transcription equations of the proposed

generalized framework (&V) are also presented with the same collocaitholex as in

[97].

LPM

CPM

GPM

n’(’b-'-’T
Ild)-':p 1
1 € n
oty n
u*)TU p U

n’d) tr
lld)tp 1
1€ n
Lty n
Lo 1 p U

Discretization of states:

D 9” Il m(f) Tn 'l
11 e’ ] 1 Iw IP 1
11 é Iy o 11 e Y] (437)
IHé n LI T(; 1

Wo  whty , U

Differential constrants approximation

Ot T Y 1

R . o v o
Oty - o &'t Ot T, AY T, -
0o, & 5 2 % & fo(4.38)
o 0 ° : : "Otyhd Ty AY T -
W o U WOts phd ty o AY T, o U
L0 T Offd tr AY
woxon | |d) TP ™ ‘0 O 11 "OTPM) TP WY Tp o
P, & n 2 O & L (4.39)
wty o U Jots ity , AYty , U
d) TTI n;‘o TT[FXI) TT[ F];‘Y TT[ |’|
goso ©T 2o Orothe T, Y, (4.40)
" c I I é I,I
© T GOTsfid 1 RY Ty U
o o Ot fido t AYT
ot 0 2 é (4.41)
¢ 'Ot bt RYt
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Performance index function approximation:

"ot hRdt RAYT

Oty t RYt
0 Qi ) é’w
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0 d” é
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4.4.2 Generalization of the Legendre and Chebyshev Pseudospectral Methods

The collocation points of both the Legengseudospectral methahd the Chebyshev
pseudospectral method atefined in  plp . These pointsnclude both end points atp
andp. The collocation points for the proposed framework are also definecpip and
include both end points atp andp. When the proposed framework is supplied with the
LegendreGaussLobatto points and the CheyshevGaussLobatto points the proposed
framework isexactly the same adoth the Legendrepseudospectral methaahd the

Chebyshev pseudospectral method.

4.4.3 Generalization of the Gauss Pseudospectral Method

The collocation points of the Gauss pseudospectral metteatefined in - pfp anddo
not include the end points ap andp. The differential matrix is derived based on the
points at-p and the interior pointsaas shown in Equation (A% This means thstates at
final time arenot related tahe states at other time#&n additional equation Equation
(4.41) is used to ensuthatthe states at final time satisfy the dynamic constréifiten
this additional equation is used is equivalent to usg both the end points and the
interior points to ompute the differential matrixin this way, Equation (4.40) and
Equation (4.41) are equivalent to Equation (4.43) if the Lege@dress points, together
with the two end points, are supplied to the generalis@dework as shown in Equation

(4.49).

:
+ + (4.49)
T

Due to thedistribution ofthe LegendreGausspoints, the associated integration

weights at -1 and 1 are exactly zeroas shown in Equation (4.50This means the
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quadrature approximatioof the generalizedrameworkand that of the original Gauss

pseudospectral method are the same.

Tt
0 0 (4.50)

Tt

4.4.4 Generalization of the Radau Pseudospectral Method

The collocation points of the Radau pseudospectral methedefined in - pip do not
include the end point @t The differential matrix is derived based on the LGR points and
the point ap, as shown in Equation (4.42). The LGR paitdgether with the point at,
arein the same form as the collocation points used in the prdpgosmework, and
include both the end points ap andp. Equation (4.42) is equivalent to Equation (4.43)
if the LGR points, together with the end point at 1, are sagplo the generalized

framework as shown in Equation (4.51).

" (4.51)

.I.
T
Similar to the Legendr&auss points, the associatgdadratureweight for the
collocation point of the generalized framework at 1 is exactly zero (as shown in Equation

(4.52)). This means the quadrature approximation for the generalized Radau

pseudospectral method and that of the original Gauss pseudospectral anettiedsame.

0 0 (4.52)
Tt

4.4.5 Discussionon the Generalized Framework

With the proposedyeneralizedframework, a pseudospectral methd obtained by
supplying a set of collocation poindefinedin  plp , where the differentiation matrix

and the gadrature weights are computed numerically. Since the collocation points of the

Legendre pseudospectral method and the Chebyshev pseudospectral method are also
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defined in  plp , these two methods amaturally includedvith the proposed framework.

If the aiginal collocation pointsof the Gauss and Radau pseudospectral methods,
together with the end pointsare supplied to the proposed framework, thsulting
generalized Gauss pseudospectral method and Radau pseudospectral métecshare

as the origial Gauss pseudospectral method and Radau pseudospectral method,
respectivelyWith the end pointincluded both the differentiation matrix and quadrature
weights for integrationgrom the proposed frameworltre the same as dbe of the
original Gauss and Radau pseudospectral methodhkis way, all four pseudospectral

methods have been generalized with the proposed framework.

4.5 Comparison of Different Collocation Points with Examples

To solve the transcribed nonlinear programming problems from the proposed generalized
framework, the SNOPT NLP solver froffi0] is used Since each pseudospectral method

is defined by the corresponding calddion points, which can be supplied to the
generalized framework for implementation, the performance of each pseudospectral
method can be compared with one NLP solier. afair comparison, the initial guesses

are keptthe same for all the pseudospectrakthods. The comparisaa based orthe

ability to find the optimal solution and the NLP execution tifdesides the four sets of
collocation points defined in Equations (4.13) to (4.16), a new set of collocation points,

based on geometric series, is ud#d in this comparison.

4.5.1 Geometric Collocation Points
One of the motivations for the generalized framework for pseudospectral methods is to
evaluate new pseudospectral methods tme different collocation points. Similar

motivation was presented 1], which formulated pseudospectral methods on arbitrary
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grids. As highlighted iM91], the collocation points of all the pseudospectral methods
share the common property of dense distribution around the end points. In this section, a
new set of collocation points, nam&®ometricCollocation (GC) points, is defined as
shown inFigure 4.6 and Figure4.7. The distance between two consecutive collocation
points decreses at a rate & In this way, more points are distributed around the end

points.

K K k 1 k KK R
p—C— e — e — — G — — — G — — —b— —O— &4

[ 1

1 08 06 04 02 0 02 04 06 08 1
Figure4.6 Definition for theGeometricCollocationpoints (%O A 1

| |
-1 08 -06 04 -02 0 0.2 0.4 0.6 0.8 1

Figure4.7 Definition for theGeometricCollocationpoints ( / A)A

4.5.2 Example 1: Brachistochrone Problem
Consider the following optimal control problethe Brachistochrone problem, originally
formulated by Johann Bernoulli in 16983].

Minimize the cost function

0 o (4.53)
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subject to dynamic constraints

® Ui Q&
G VOE (4.54)
0 "HE
and boundary conditions
(A)T[‘T[(JOTE'I‘TUT[ Tt (4.55)
®Oo ¢ wo q

Brachistochrone Problem (N=10)
(0 LGL) (+ CGL) (X LG) (* LGR) (. GC)
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Figure4.8 Optimal state trajectoridsr the Brachistochrone problem.
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Brachistochrone Problem (N=10)
(0 LGL) (+ CGL) (X LG) (*LGR) (. GC)
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Figure4.9 Optimal control trajectoriefr the Brachistochron@roblem.

Table4.1 NLP execution time fothe Brachistochrong@roblem.

Collocation Points NLP Execution Time (second]
LGL 0.5304
CGL 0.7304
LG 0.6311
LGR 0.9518
GC(Q 1) 0.5928

Figure4.8 andFigure4.9 show the optimal state and control trajectories ftben
generalized framework with dérent sets of collocation pointer the Brachistochrone
problem, andTable 4.1 shows the correspondingNLP execution time.All the
pseudospectral methods definedthgfive sets collocation pointasre able to converge to
the optimal solution. The NLP execution time of tteL pointsis the shortesand that

of theLGR pointsis the longest.
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4.5.3 Example 2:Trajectory Optimization fora Dubins Airplane

The threedimensioml Dubins airplane moddP9] is often used to study the optimal
trajectories for UAVS.A minimum distance poirb-point trajectory optimization
problemfor a given initial configuration and finabnfigurationis shown as follows:

Minimize the cost function

0 WQO (4.56)

subject to dynamic constraints
L0 OO Erimeri
S Owélil Qe
a0 P (4.57)
[ 0
Vi r o
and boundary conditions
O mod Q QQ

-
v o -

I’p 0o o FD(O Ui

00 o Mo ¢ phg phy T (4.58)
:: ro m o T
op I o o T
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Minimum distance optimal trajectory (N=25)
(0 LGL) (+ CGL) (x LG) (* LGR) (. GC)
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Figure4.10 Optimal trajectorie®f the example trajectory optimization problem

Table4.2 NLP Execution timeof the example trajectory optimization problem

Collocation Points NLP Execution Time (second)
LGL 8.51
CGL 8.68
LG 1.71
LGR 1.28
GC(Q ™y 8.60

Figure4.10 shows the optimal trajectories from different pseudospectral methods
for the example minimum distance trajectory optimization propleand the
corresponding NLP execution time is shownTiable 4.2. All the methods are able to
converge to the optimal solution. The NLP execution timiefpseudospectral methods
defined by the LG and LGR poinis significantly shorter than that of the methods

defined by the LGL, CGL, and GC points
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Through examples, the proposed generalized framework providessy tool for
comparing the performance of different pseudospectral methods. In general, a problem
that can b solved by one pseudospectral method alo be solved by another
pseudospectral methotHowever, the NLP executiontime for the same problems
usually differentdepending on th@seudospectral methatthat is used An efficient

method for one problem manot be efficient for another problem.

4.6  Summary

This chapter proposedgeneralized framework for pseudospectral methods to transcribe
an optimal control problemas a nonlinear programming (NLP) optimization problem,
where only the collocation points werequiredto define a pseudospectral methddhe

four pseudospectral methods, namely the Legendre pseudospectral method, the
Chebyshev pseudospectral method, the Gauss pseudospectral,naethdde Radau
pseudospectral methosere implemented by supplyinghe corresponding collocation
points to the proposed framewgdnd the differentiation matrix and quadrature weights

for integration were computed automatically for all four meth&igh the proposed
framework, different pseudospectral methadse compared witlithe same NLP solver

through examples
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CHAPTER 5
TRAJECTORY OPTIMIZAT I0ON FOR

A FUEL CELL POWERED UAV

51 Introduction

This chapter attempts to demonstrateuaderstanohg of the influence of a fuel cell
system on the optimal trajectories of a fuell powered UAV by formulating the
trajectory optimization problemsor a fuel cell poweed UAV as optimal control
problems, where the dynamégjuationsof a fuelcell poweed UAV propulsion system
are included aspart of the dynamic constraintsThe generéized framework for
pseudospectral methods presented in the previous chapteseds to transcribe the
optimal control problems to nonlinear programming (NLP) problems, whichhaie
solved by using the SNOPT solvetQ]. In this chapter, th@ptimal trajectories othe
fuel cell poweed configuration and that afie conventionalgas poweed configuration
are compare for pointto-point optimal trajectores with different performance index
functions. Among different trajectory optimization problemshetmost sigificant
differencesare thosdetweerthe minimum fuel pointo-point optimaltrajectores of the
fuel cell poweed configuration and that diie conventionalgas powegd configuration.
Due to the specific fuel consumption curvetloé fuel cell poweed configuration, there
is an optimal flight path angle when the height difference betwkemitial position and
the final position is significant.

The influence ofthe fuel cell systemmodel parameter®n the minimum fuel

pointto-point optimal trajectoriess studiedherethroughtheir influence on the optimal
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fuel consumption cost. The influenoéthe transient parametgthe fuel cell capacitance
(6) andthe fuel cell delay gaimonstant ( )) on the optimal fuel consumption cast
insignificant and the influence of thfuel cell delaytime constant(t ) is only slightly
more significant. These transient parameters caesed bydesign parameters at the
membrane level of th&uel cell systemHowever, he influence of the fuel cell system
size parametergéthe number of cells {§f ) andthe cell area ¢)) on the optimal fuel
consumption cosis significant This is becaus¢éhe efficiency of a fuel cell system

increases as isize increase

5.2  Trajectory Optimization Problem Formulation

One of the most essential steps in formulating a trajectory optimization problem is the
derivation of the dynamic constraint equations. In this section, the dynamic constraint
equations fom trgjectory optimization problem are obtained by combining the dynamic
model of a fuel celpowered UAV propulsion system and the dynamic equations of a
point mass UAV model.

The UAV dynamic behavior at the trajectory level can be approximated by a
threedimensional point mass model and the corresponding assumptions are summarized
as follows

1 The earth is assumed to be flat.

1 The UAV performs coordinated turns

1 The bank angle and the angle of attack of the UAV can be changed
instantaneously.

1 The lift and drag of the UAV changes instantaneously with respect to the

angle of attack.
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1 The mass of the UAV is assumed to be constant during thertiereal of
the trajectory optimization problems, as the fuel weight is very small
relative to the gross weight a fuel cell powered UAV.
Figure5.1 shows he forces in a UAV point mass model are shown in where the
UAV is flying at a flight path angle ¢f with an air speed ab. The kinematic equations
for the threedimensional point mass model are Equatidn$)(to (5.6). Equations §.7)
to (5.11) are the dynamiequationf a fuelcell poweed UAV propulsion systenThe
link between the UAV states and the propulsion systéateds the propeller rotational
speed. The completet of equations, Equations (5.1) to (5.11jhesdynamic constraint
equationsvhenformulating the trajectory optimization problems fofuel cell poweed
UAV. This setincludes both the UAV dynamics and the fuel cell powered propulsion

system dynamics.

7

Figure5.1 Forces in a UAV point mass model.

® QOOENQEN (5.1)

O OO N (5.2)

a o 0 (5.3)

. “Yah wst|)| | O 02 (5.4)
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