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SUMMARY  

 

As demand for real-time image processing increases, the need to improve the 

efficiency of image processing systems is growing. The process of image segmentation is 

often used in preprocessing stages of computer vision systems to reduce image data and 

increase processing efficiency. This dissertation introduces a novel image segmentation 

approach known as leap segmentation, which applies a flexible definition of adjacency to 

allow groupings of pixels into segments which need not be spatially contiguous and thus 

can more accurately correspond to large surfaces in the scene. Experiments show that 

leap segmentation correctly preserves an average of 20% more original scene pixels than 

traditional approaches, while using the same number of segments, and significantly 

improves execution performance (executing 10x - 15x faster than leading approaches). 

Further, leap segmentation is shown to improve the efficiency of a high-level vision 

application for scene layout analysis within 3D scene reconstruction.  

The benefits of applying image segmentation in preprocessing are not limited to 

single-frame image processing. Segmentation is also often applied in the preprocessing 

stages of video analysis applications. In the second contribution of this dissertation, the 

fast, single-frame leap segmentation approach is extended into the temporal domain to 

develop a highly-efficient method for multiple-frame segmentation, called video leap 

segmentation. This approach is evaluated for use on mobile platforms where processing 

speed is critical using moving-camera traffic sequences captured on busy, multi-lane 

highways. Video leap segmentation accurately tracks segments across temporal bounds, 

maintaining temporal coherence between the input sequence frames. It is shown that 
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video leap segmentation can be applied with high accuracy to the task of salient segment 

transformation detection for alerting drivers to important scene changes that may affect 

future steering decisions.  

Finally, while research efforts in the field of image segmentation have often 

recognized the need for efficient implementations for real-time processing, many of 

todayôs leading image segmentation approaches exhibit processing times which exceed 

their camera frame periods, making them infeasible for use in real-time applications. The 

third research contribution of this dissertation focuses on developing fast 

implementations of the single-frame leap segmentation approach for use on both single-

core and multi-core platforms as well as on both high-performance and resource-

constrained systems. While the design of leap segmentation lends itself to efficient 

implementations, the efficiency achieved by this algorithm, as in any algorithm, is can be 

improved with careful implementation optimizations. The leap segmentation approach is 

analyzed in detail and highly optimized implementations of the approach are presented 

with in-depth studies, ranging from storage considerations to realizing parallel processing 

potential. The final implementations of leap segmentation for both serial and parallel 

platforms are shown to achieve real-time frame rates even when processing very high 

resolution input images.  

Leap segmentationôs accuracy and speed make it a highly competitive alternative 

to todayôs leading segmentation approaches for modern, real-time computer vision 

systems. 
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CHAPTER 1 

INTRODUCTION  

 

Over the past decade, the pervasiveness of cameras in almost all areas of modern 

life has created a growing need for efficient image analysis and understanding 

techniques. Camera use is ubiquitous: 

ü in ñsmartò cell phones [73] for image capture and minor image editing, 

ü in factories [87] for real-time monitoring and inspection of products, 

ü on streets [16] for catching traffic violations and illegal parking, 

ü in cars [38], [81] for improving highway safety, 

ü in hospital rooms [82] for remote monitoring of patient vital signs.  

One of the more prevalent uses of cameras today is in video surveillance to 

monitor areas in combating crime. Surveillance cameras have become common in 

airports, businesses, and homes to identify and track suspicious behavior. Self-guided 

cameras have also been developed for use in combat environments for automated 

reporting of combat situations [29]. Often, surveillance cameras operate on mobile, 

resource-constrained systems, requiring image analysis methods to rapidly process 

images for conclusive identification of significant activity in real-time (e.g. [6], [8], [9]).  

Employing vision processing in intelligent vehicle systems has also grown 

extensively over the past several years. Cameras have been placed in mobile vehicles for 

use in driver aid and alert systems [38], [48], and, in some developing car designs, in 

automatic steering systems [81]. Computer vision systems can be used to analyze traffic 
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scenes and alert drivers of potentially dangerous events as they occur in real time, thus 

increasing the safety of road ways. Prototype intelligent vehicle systems have already 

been demonstrated on highways across the country [54]. Due to their operating 

environment, intelligent vehicle systems are inherently mobile, requiring vision 

applications to be both accurate and efficient in their implementation for successful 

operation in this resource-constrained, real-time environment. 

All these applications are driving ground-breaking research in embedded image 

processing to develop novel methods for image analysis and understanding. An important 

early step in most of these vision applications is image segmentation, which is critical in 

reducing image data and enabling efficient execution. Image segmentation separates an 

image into homogeneous, perceptually significant regions of pixels that can each be 

processed as a group. Segmentation is often used in vision applications to preprocess 

pixel data prior to image analysis methods, such as edge detection, stereo matching, and 

object tracking. For many segmentation approaches the primary objective is to accurately 

detect whole object positions and boundaries in an image, a process referred to as under-

segmentation. However, under-segmentation often causes enormous loss of image detail 

as pixels are grouped to form overly-large segments. While these identified primitives are 

often useful for high-level visual processing tasks, there exists a separate class of high-

level vision applications which instead require an over-segmentation of the input image. 

In over-segmentation, segments correspond not with whole image objects, but with 

homogeneous regions of pixels within image objects that can be similarly processed 

because of their affinity. High-level vision applications incorporate image over-

segmentation techniques into their preprocessing stages primarily to reduce the image 
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data which must be processed by the vision system, thus improving overall execution 

efficiency. However, in many such applications, the resulting image blurring and loss of 

detail can be detrimental to the accuracy of the functioning system. For example, if one 

were to segment a photograph before performing facial recognition, the human facial 

features must remain discernible or the recognition accuracy would suffer. For a highway 

surveillance system to identify specific vehicles, the vehicle license plates must remain 

legible after segmentation. An intelligent vehicle vision system may require street sign 

and road marking information to autonomously make steering decisions. While small, 

these details cannot be blurred during segmentation without reducing the accuracy of the 

high-level steering system, which would have life-threatening ramifications. 

Developing a New Segmentation Approach 

The goal of this research is to develop a novel over-segmentation approach for the 

preprocessing stages of real-time vision applications that require salient-feature 

preservation to achieve accuracy. This specific class of vision applications is one for 

which traditional approaches, both under-segmentation and even over-segmentation, have 

proven inadequate due to loss of detail and blurring. In particular, this application class 

requires the following:  

1. Efficiency. Demand is steadily growing for image processing on portable, low 

power devices. Efficient implementations of computer-vision techniques are 

needed for computing on mobile systems such as cell phones and digital cameras. 

To meet this demand, an embedded-computing trend is emerging in the field of 

computer vision [50]. Recently, many traditional image-processing techniques 

have been revisited to develop faster, more efficient implementations that can 
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function in an embedded environment. Real-time, high-level vision applications 

apply image over-segmentation during preprocessing to improve their overall 

execution efficiency. The over-segmentation technique must therefore be efficient 

in its own execution to avoid counteracting any system performance 

improvement. Meeting performance requirements in this area has proven 

challenging. Existing segmentation approaches often fail to meet real-time 

processing standards, particularly when applied to high-resolution images. 

Research in novel over-segmentation approaches is needed that focuses on highly-

efficient preprocessing of input image data for real-time applications. 

 

2. Salient-Feature Preservation. The question of how much detail should be 

preserved during segmentation depends on the target application. Many current 

high-level applications that apply image-segmentation techniques in 

preprocessing expect a certain degree of image blurring and detail loss when 

applying existing segmentation algorithms in their preprocessing stages. This 

detail loss is expected and useful in those applications which favor treating whole 

image objects as single entities, rather than several pieces forming a whole 

(segments). However, scene-interpretation applications (such as those for natural 

scene reconstruction, human facial recognition, and highway scene 

understanding) require a higher degree of salient-feature preservation during 

segmentation preprocessing for reliable performance. Excessive blurring of input 

images or loss of salient detail (e.g. street sign lettering, lane markings, or facial 

features) during segment formation is detrimental. A lack of detail preservation in 

preprocessing would greatly reduce the utility of these vision applications. The 
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specific class of applications of interest in this research requires a segmentation 

approach that balances salient-detail preservation with the reduction of image 

data. 

In this dissertation, a novel approach, called leap segmentation, is developed that 

focuses on this task of improving segmentation preprocessing both in efficiency and 

feature preservation (Forsthoefel et al.) [34]. This approach efficiently transforms raw 

pixel data into feature preserving, palletized, color-similar and illumination-similar 

regions for use in preprocessing to facilitate performance improvements in high-level 

vision systems. 

Leap segmentation is so named because the approach allows grouping of adjacent 

but non-neighboring pixel values. Pixels can ñleapò across segmentation boundaries to 

join nearby chromatic and luminance-similar segments. This technique preserves salient 

scene details during segmentation as shown in Figure 1. The leap-segmented image on 

the right strongly resembles the original image on the left with little loss in detail. 

However, 154,401 pixels in the original image are now replaced by 132 regions, which 

 

 

                                     (a)                                                          (b) 

Figure 1. Leap segmentation output example (Planes). (a) Original image 481x321 

pixels. (b) Image segmented using leap segmentation with 132 segments. 
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can be more efficiently processed. 

Segmentation algorithms typically partition an image into regions, often referred 

to as ñsuperpixelsò [66], which can be processed together because of their affinity (based 

on color, texture, intensity, etc.). Leap segmentation removes unimportant image features 

and minute pixel variations (such as texture and minor chromatic variations), while better 

preserving fine detail (such as vehicle license plate lettering or highway scene markings), 

than existing segmentation approaches. By relaxing strict adjacency constraints, leap 

segmentation produces larger groupings of similar pixels. In practice, this novel approach 

is able to produce perceptually correct groupings of non-contiguous regions such as 

stripes, as shown in Figure 2. Traditional segmentation approaches often needlessly 

segment each stripe into a separate segment, an inefficient use of resources.  

Similarly, traditional segmentation approaches often have difficulty processing 

high-variation or porous regions, such as trees and grass. A traditional segmentation 

approach which builds only contiguous segments will attempt to segment each tree leaf 

 

  

                                       (a)                                                     (b) 

 

Figure 2. Leap segmentation groups together non-contiguous segments such as 

stripes. (a) Original image. (b) Colorized representation of the image segmented 

using leap segmentation. 
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as a separate segment, a tremendous waste of resources. This method of processing also 

burdens high-level applications with the need to perform additional steps to group these 

leaf segments into a ñtreeò object. The leap segmentation approach groups pixels in high-

variation regions such as sparse vegetation together within a specified adjacency 

neighborhood into a small number of segments representing the color information in 

these regions, thus eliminating the need for additional steps in high-level vision 

applications and reducing the resources required to represent the segmented image scene.  

Admittedly, existing segmentation approaches could be redesigned to allow the 

grouping of non-contiguous pixels into their segmentations. However, such adjustments 

to these algorithms would dramatically increase their complexity, making them 

computationally infeasible for real-time applications. Leap segmentation is designed 

specifically to produce such output and thus is capable of doing so with reduced time and 

storage resources. 

Multiple-Frame (Video) Segmentation 

In addition to the challenges of single-frame image segmentation (efficiency and 

salient-feature preservation), this dissertation explores ways of meeting segmentation 

challenges in multiple-frame (video) applications. Video segmentation has been applied 

in many vision applications including video compression and video indexing and 

retrieval [39]. Many video segmentation techniques are designed to operate off-line, 

requiring all frames in the input video sequence as input [41]. Since future frames must 

be known, these approaches are not feasible for real-time applications where only current 

and past frames are available. A few on-line approaches exist in the literature, but they 

are limited in accuracy. Meeting both high accuracy and high efficiency requirements in 
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video segmentation is a challenging task, and further research in this field is needed to 

meet real-time processing standards. 

Parallelizing Leap Segmentation 

Finally, this dissertation explores the potential for parallelizing leap segmentation 

on multi-core hardware platforms. Modern demand for real-time image processing 

algorithms has inspired several research efforts in fast, multi-core image segmentation. 

However, contemporary approaches often require specialized hardware and achieve only 

moderate frame rates on low-resolution images and exhibit extremely slow frame rates 

when applied to high resolution images [1], [43], [58]. Real-time, multi-core 

implementations have not been fully realized. There remains much room for 

improvement to achieve real-time (>25 fps) image segmentation executions on 

commercially-available CPUs with multiple processing cores that do not require special 

hardware. 

1.1. Problem Statement and Research Contributions 

The goal of this research is to provide vision applications with a faster, more 

accurate image segmentation approach that is robust enough to be used in both single and 

multiple-frame scene analysis and efficient enough for embedded and mobile platforms. 

This goal will be achieved through the following contributions:  

1. A novel, single-frame segmentation approach, called leap segmentation, is 

presented that efficiently reduces and restructures image data into regions while 

preserving the salient features in the image that are needed in scene analysis 

applications (Forsthoefel et al.) [31], (Forsthoefel et al.) [34].  
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2. The single-frame leap segmentation algorithm is extended to efficiently process 

videoðmultiple, consecutive frames in timeðwhile maintaining region boundary 

continuity between image frames. Temporal analysis of the multiple-frame leap 

segmentation algorithm is performed to evaluate segmentation stability over time 

in video sequences from moving camera traffic scenes (Forsthoefel et al.) [32], 

(Forsthoefel et al.) [33].  

3. Single-frame leap segmentation is parallelized in a multi-core implementation of 

the approach that achieves real-time frame rates when segmenting high-resolution 

input images on embedded, mobile platforms (Forsthoefel et al.) [35].  

These three contributions to the image segmentation field are evaluated further in 

the following subsections. 

1.1.1. Contribution 1: Single-Frame Leap Segmentation 

The first contribution of this dissertation introduces leap segmentation, a highly-

efficient, non-contiguous segmentation approach designed to reduce and restructure 

image information while accurately preserving salient details in the scene. Leap 

segmentation builds a new image representation, replacing individual pixel data with a 

map-indexed palette of chroma-luminance-similar regions that are adjacent but not 

necessarily contiguous. High-level algorithms can process this compact image 

representation for efficient execution. Leap segmentation is evaluated using both the 

Berkeley Segmentation Dataset and new, publicly available datasets that target real-time 

vision applications, such as those used in intelligent vehicle systems. In experiments, leap 

segmentation demonstrates high region-assignment accuracy and, compared to other 
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approaches, preserves a higher level of scene integrity (up to 30-40% higher) using a 

given storage resource (Forsthoefel et al.) [34].  

In addition, it is demonstrated that this novel segmentation technique can 

significantly improve scene layout analysis within 3D scene reconstruction (Forsthoefel 

et al.) [31]. Leap segmentation can be used in preprocessing to form homogeneous 

regions of pixels that need not be spatially contiguous and can thus more accurately 

correspond to larger surfaces in the scene. In this way, leap segmentation provides more 

meaningful spatial support to scene layout analysis methods. A detailed evaluation of the 

leap segmentation approach and comparisons with related, existing segmentation 

methods are provided. The presented implementation is computationally efficient, 

exhibiting execution time improvements of 10x - 15x over traditional approaches. The 

diagram in Figure 3 provides a full, graphical summary of this contribution. 

 

 
 

Figure 3. Graphical summary of the first dissertation contribution: single-frame 

leap segmentation. 
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1.1.2. Contribution 2: Leap Segmentation in Video Analysis 

Multiple-frame (video) segmentation is an important step in many video analysis 

applications for identifying and tracking specific features as they move through a scene. 

In a mobile, resource-constrained environment, such as an intelligent vehicle system, 

video segmentation can be used to reduce image information and increase processing 

efficiency for high-level scene understanding applications. The second contribution of 

this dissertation introduces video leap segmentation, a highly efficient multiple-frame 

segmentation approach for use on embedded and mobile platforms where processing 

speed is critical. This novel video segmentation method is demonstrated to successfully 

track segments across spatial and temporal bounds, generating fast, stable segmentations 

of images from moving-camera video sequences (Forsthoefel et al.) [33]. Video leap 

segmentation is applied to the task of salient segment transformation detection for 

alerting potential drivers of critical scene changes that may affect steering decisions. Trial 

results demonstrate that video leap segmentation enables coarse detection of salient 

region transformations in traffic scenes, correctly detecting 80% of salient segment 

transformations in trial scenes with less than 5% false positives. Reducing high-level 

processing to salient areas using this approach can significantly improve the processing 

efficiency of scene interpretation applications in intelligent vehicle systems. The diagram 

in Figure 4 provides a graphical summary of this contribution. 

A supplementary contribution of this research is the development of a publicly 

available image dataset called the GTTraffic Dataset (Forsthoefel et al.) [32]. GTTraffic 

is a collection of moving-camera traffic sequences captured at Georgia Tech for use in 

vision evaluation experiments. The sequences contain fast-moving traffic events, such as 
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vehicles quickly swerving into the driverôs lane. These sequences are made publicly 

available as part of this research to motivate and evaluate vision-based approaches to 

improving highway safety.  

1.1.3. Contribution 3:  Embedded, Multi-Core Leap Segmentation 

Existing segmentation approaches often fail to meet real-time processing 

standards and exhibit extremely slow frame rates when applied to high resolution images. 

The third contribution of this dissertation first presents a highly optimized serial 

implementation of the leap segmentation approach. This serial implementation is 

demonstrated to achieve frame rates exceeding that of the state-of-the art (it segments 

more than 80 fps on 640x360 images and more than 20 fps on high resolution (1280x720) 

images). Leap segmentation is then analyzed further for its inherent parallelism and 

restructured for use on a multi-core system to achieve additional speed-up (Forsthoefel et 

al.) [35]. On a multi-core, mobile processing system with four threads, multi-core leap 

 
 

Figure 4. Graphical summary of the second dissertation contribution: video leap 

segmentation with salient transformation detection identifies salient foreground 

objects when everything is moving, including the camera. Color indicates segment 

direction relative to the camera. 
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segmentation achieves frame rates of over 114 fps on 640x360 images and more than 31 

fps on 1280x720 images, thus easily exceeding real-time processing standards. The 

diagram in Figure 5 graphically summarizes this contribution. 

1.2. Summary of Results 

The key results of this dissertation are as follows:  

ü An efficient, non-contiguous segmentation approach designed to reduce and 

restructure image information while accurately preserving salient details in the 

scene is presented (Forsthoefel et al.) [34]. This leap segmentation approach 

demonstrates high region assignment accuracy and, compared to other 

approaches, preserves a higher level of scene integrity (up to 30-40% higher) 

using a given storage resource. The approach is also computationally efficient, 

exhibiting execution time improvements of 10x - 15x over traditional approaches. 

 
 

Figure 5. Graphical summary of the third  dissertation contribution: embedded, 

multi -core leap segmentation. 
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ü The leap segmentation approach is comprehensively evaluated in a 3D scene 

reconstruction application (Forsthoefel et al.) [31]. Leap segmentation can be used 

in preprocessing to form perceptually significant regions of pixels that need not be 

spatially contiguous and can thus more accurately correspond to larger surfaces in 

the scene. In this way, leap segmentation provides more meaningful spatial 

support to scene layout analysis methods. 

ü A highly efficient multiple-frame segmentation approach for use on embedded 

and mobile platforms where processing speed is critical is presented (Forsthoefel 

et al.) [33]. This novel video leap segmentation method is demonstrated to 

successfully track segments across spatial and temporal bounds, generating fast, 

stable segmentations of images from captured moving-camera video sequences. 

ü Video leap segmentation is applied to the task of salient segment transformation 

detection for alerting potential drivers of critical scene changes that may affect 

steering decisions (Forsthoefel et al.) [33]. Trial results demonstrate that with 

little added computation, video leap segmentation enables course detection of 

salient region transformations in traffic scenes, correctly detecting 80% of pixels 

in salient segment transformations with less than 5% false positives. 

ü A publicly available dataset of moving-camera traffic sequences (GTTraffic) 

collected at Georgia Tech is developed and presented for use in vision evaluation 

experiments (Forsthoefel et al.) [32].  

ü A highly optimized serial implementation of single-frame leap segmentation is 

given in (Forsthoefel et al.) [35]. This serial implementation is demonstrated to 
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achieve frame rates of more than 80 fps on 640x360 images and more than 20 fps 

on high resolution (1280x720) images, far exceeding the state-of-the art in 

execution. 

ü A parallel implementation of the single-frame leap segmentation algorithm is 

developed for use on embedded, multi-core platforms (Forsthoefel et al.) [35]. On 

a multi-core, mobile processing system with 4 threads, this multi-core leap 

segmentation implementation achieves frame rates of over 114 fps on 640x360 

images and more than 31 fps on 1280x720 images, easily meeting real-time 

processing standards. 

1.3. Overview of Content 

This dissertation is organized as follows. Chapter 2 outlines the novel, leap 

segmentation approach and presents the results of experiments that test leap segmentation 

using both classical and newly developed accuracy metrics. This chapter also presents 

comparisons with other well-known segmentation approaches and evaluates the use of 

leap segmentation in the preprocessing of a high-level 3D reconstruction application. In 

Chapter 3, leap segmentation is extended into a real-time, video segmentation approach. 

Video leap segmentation is then applied in the application of salient segment 

transformation detection in a mobile, intelligent vehicle vision application. A detailed 

analysis of video leap segmentation performance in this context is given. Chapter 4 

outlines two highly efficient implementations of the leap segmentation approach for use 

on single-core and multi-core platforms and gives detailed performance analyses on both 

high-performance and resource-constrained hardware. Chapter 5 concludes this 

dissertation and discusses future work. 
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CHAPTER 2 

SINGLE-FRAME LEAP SEGMENTATION  

 

2.1.  Introduction  

Image segmentation is the process of separating an image into perceptually 

significant regions of pixels that can each be processed as a group. Segmentation 

algorithms have been widely researched and are used in many vision applications to 

preprocess pixel data prior to image analysis methods, such as edge detection, stereo 

matching, and object tracking. Separating an image into segments of pixels for processing 

can significantly reduce the amount of computational resources needed to analyze an 

image in a high-level vision system. This reduction of resource usage has the potential to 

increase algorithmic processing speed.  

This chapter presents a highly-efficient image segmentation approach, called leap 

segmentation (Forsthoefel et al.) [34], that focuses on the task of improving segmentation 

preprocessing both in efficiency and feature preservation to facilitate performance 

improvements in high-level vision systems. A primary objective for most existing 

segmentation approaches is to accurately detect object positions and boundaries in an 

image. Leap segmentation has a different emphasis: to efficiently transform raw pixel 

data into feature preserving, palletized, color-similar and illumination-similar regions for 

improved scene analysis. Rather than process each image pixel individually, vision 

applications can use leap segmentation to preprocess image pixels into groups that can be 

processed more rapidly. An example of leap segmentation output is shown in Figure 6. 
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Vision applications rely on preprocessing segmentations to accurately maintain 

important image features while reducing the data in the image. In addition, many 

applications require their segmentation preprocessing steps to perform quickly and 

efficiently. Leap segmentation is applicable to a broad range of segmentation tasks and is 

especially appropriate for embedded and mobile platforms where processing speed is 

critical. Traditional image segmentation approaches often blend or remove small image 

details when building contiguous regions, and processing time often exceeds the camera 

frame period. Leap segmentation better preserves salient features while achieving a 

significant improvement (> 10x the state of the art) in execution performance. 

In this chapter, leap segmentation is evaluated using images from the well-known 

Berkeley Segmentation Dataset. Its use in real-time applications, such as intelligent-

vehicle vision systems where detailed feature preservation is vital, is also evaluated. In 

experiments, leap segmentation demonstrates high region-assignment accuracy and, 

compared to other approaches, preserves a higher level of scene integrity using a given 

storage resource.  

  

                                     (a)                                                          (b) 

Figure 6. Leap segmentation output example (Polo). (a) Original image 481x321 

pixels. (b) Image segmented using leap segmentation (Forsthoefel et al.) [34] with 

180 segments. 

 

 



 

18 

 

To further demonstrate the benefits of leap segmentation, it is used to improve the 

performance of a high-level vision task for 3D scene reconstruction (Forsthoefel et al.) 

[31]. Surface-layout analysis applications for 3D scene reconstruction often evaluate 

complex geometric cues over large regions to determine the orientations of large surfaces 

within the scene. These regions can contain contiguous pixels, such as those in solid 

walls, or non-contiguous pixels such as those in tree leaves or shrubs. Traditional 

segmentation approaches partition homogeneous, non-contiguous pixels into many 

smaller segments that must then be further analyzed and grouped by the high-level layout 

application. Leap segmentation can form homogeneous regions of pixels that need not be 

spatially contiguous and can thus more accurately correspond to larger surfaces in the 

scene. In this way, leap segmentation provides more meaningful spatial support to scene 

layout analysis methods, significantly improving processing efficiency.  

This chapter is organized as follows. Related work in image segmentation is 

summarized in Section 2.2. Section 2.3 presents the novel, leap segmentation approach. 

Section 2.4 discusses the fast leap segmentation implementation. Section 2.5 shows a 

detailed parameter evaluation and sensitivity analysis. Section 2.6 compares the accuracy 

and efficiency of leap segmentation with other well-known segmentation approaches 

when applied to intelligent vehicle highway scenes and on diverse Berkeley 

Segmentation Dataset images. Section 2.7 evaluates leap segmentation using several 

well-known, classical accuracy metrics. Section 2.8 describes a popular high-level vision 

application for image labeling and reconstruction and demonstrates the benefits of 

applying leap segmentation to this task. Experiments show that leap segmentation 

correctly maintains an average of 20% more original scene pixels than traditional 
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approaches while using the same number of segments and significantly improving 

execution speed (>10x faster than existing approaches). Section 2.9 concludes this 

chapter and discusses future work. 

2.2. Related Work 

Image segmentation has been explored in many previous research efforts, 

resulting in several broad classes of algorithms, including region-based, feature-space 

clustering, and graph-based segmentation. Early image segmentation approaches 

typically use region-based segmentation. These region-growing [2], [19] and split-and-

merge [46] methods are conceptually simple. They typically rely heavily on input 

threshold parameters and they often have trouble processing regions of high variation 

[61]. The watershed approach [77] is a popular example of region-based segmentation. In 

general, watershed transformation-based algorithms [10], [61] are fast and efficient with 

time complexities linear in the number of pixels [67]. However, they are sensitive to 

noise and highly-textured regions and often require extra, costly preprocessing steps to 

produce useful gradient input [78]. 

Finally, the jump connection approach [68] is a region-grouping approach 

recently applied in color segmentation with mathematical morphology operators [5]. 

While it closely resembles leap segmentation in name, the two approaches are very 

different in operation. The jump connection approach assesses jumps in color space 

between neighboring image pixels and, unlike leap segmentation, the jump connection 

approach requires segments to be spatially contiguous.  

Segmentation methods that use feature-space clustering attempt to find modes 

(clusters) in a distribution by using each image pixel's features as sampled data from the 
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distribution's probability density function. The k-means clustering method [52], while 

simple and well-known, relies heavily on correct user input of cluster count and initial 

cluster center placements to produce a good segmentation [47]. Mixture of Gaussians 

(MoG) clustering with Expectation Maximization (EM) [26] has been used in 

preprocessing for recent applications [11], [18]. However, EM calculations are vulnerable 

to becoming stuck in local minima and can be slow to converge [85]. The MoG with EM 

approach also relies heavily on its input parameters, such as an accurate estimate of 

cluster count, to provide a useful solution. 

The mean-shift technique [21], [22] also uses feature-space clustering. According 

to Pantofaru and Hebert [63], output segmentations from mean-shift correspond well to 

human perception. A disadvantage is its sensitivity to parameter change and the necessity 

for input parameter tuning to obtain good segmentations [86]. In addition, mean-shift 

suffers from being computationally expensive making it too slow for real-time 

applications. This is due in part to the expensive sliding-window approach it applies to 

image pixels during processing. Several techniques for improving mean-shift have been 

proposed [17], [20], [37], [80]. For example, Christodias et al. [20] proposed combining 

mean-shift with edge detection to increase segmentation accuracy in EDISON. However, 

there is still room for improvement as these algorithms require on the order of minutes to 

process one second of video [65]. 

In graph-based segmentation an image is represented as a weighted, undirected 

graph. Graph-based segmentation based on minimum cuts was first introduced by Wu 

and Leahy [84]. Shi and Malik [71] then introduced the normalized cut (NC) criterion to 

avoid the bias for partitioning undersized segments that plagued Wu and Leahy's earlier 
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approach. The NC algorithm requires few input parameters from the user when compared 

to mean-shift [86]. However, NC is expensive to run and is too slow to be used in real-

time applications; finding the minimum NC based on Shi and Malik's proposed criterion 

is an NP-hard problem [30]. They present methods to approximate the calculation but 

these methods still prove computationally intensive. Several improvements to the NC 

approach have been proposed [53], [60] such as adding a boundary detector to reduce 

clutter and enhance segmentation performance. Cour et al. [24] focus on the 

parallelization of the existing normalized cuts approach for speed gain and propose an 

efficient multiscale variant of the normalized cuts approach that runs in linear time. 

However, these algorithms are still many times too slow for use in real-time applications, 

requiring at least several seconds to process a single frame [24].  

Segmentation by weighted aggregation (SWA) [69] is a recent multiscale 

approach that reduces the normalized cut minimization problem using algebraic 

multigrids [15]. SWA preserves image boundaries more accurately in output 

segmentations and is more efficient than the original NC approach, possessing linear time 

complexity in the number of input image pixels. Despite these improvements, the SWA 

approach and a recently proposed improvement known as the probabilistic aggregation 

approach (PA) [4] which eliminates user-defined parameter reliance, are still slow, 

requiring tens of seconds to process a single image frame [28].  

A popular graph-based segmentation technique, EGBIS [30], is considered to be 

state of the art in computational efficiency [28], [65]. It uses pair-wise component 

comparisons to segment an image in O(mlogm) time, where m is the number of graph 

edges. A drawback to this method is its sensitivity to its input parameter k and its 
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tendency to create small, unneeded regions at the borders of valid image segments. In 

addition, the graph cuts segmentation approach [13], [14] is a popular graph-based 

method that uses Markov random fields [40]. However, this technique is primarily 

applied to binary segmentation, which is outside the scope of this research. 

In the next section presents the novel leap segmentation technique. The leap 

segmentation algorithm is first defined and then evaluated for efficiency and accuracy 

performance using images from publicly available segmentation datasets. In this 

evaluation, leap segmentation performance and segmentation results are compared to two 

widely known segmentation approaches: a mean-shift segmentation approach (EDISON) 

and a graph-based segmentation approach (EGBIS). 

2.3. Leap Segmentation Algorithm 

 The leap segmentation approach (Forsthoefel et al.) [34] identifies pixels that are 

related by adjacency within a specified neighborhood constraint and by a given chroma-

luminance affinity metric. The reflexive, symmetric, transitive closure of these pixel 

relations provides equivalence groupings of adjacent, but not necessarily contiguous, 

pixels that are similar in chromaticity and luminance. The final segmentation includes 

each such grouping that satisfies a minimum size constraint requiring its area to be 

greater than a minimum-size threshold Ŭ. 

 In particular, the equivalence relation region-equivalent is defined to capture the 

relationship between all pixels in the same segment. It is the reflexive, symmetric, 

transitive closure of the binary relation adjacent-matches between pairs of pixels. Pixel 

P1 adjacent-matches P2 iff  
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a.) P1 and P2 are CL-similar (chroma-luminance affinity defined below) and 

b.) P1 and P2 are adjacent within a specified neighborhood (not necessarily 

nearest neighbors). 

2.3.1. Chroma-Luminance Affinity  

 Two pixels are CL-similar if their chroma-luminance difference is within a given 

threshold, Ů. The measure of difference depends on the image color model (e.g., YCrCb, 

HSI, etc.). While luminance and chromaticity participate in the relation, they need not be 

orthogonally represented in the color model. In the leap segmentation implementation, 

described in Section 2.4, a red-green-blue component (RGB) color model is used to 

eliminate translation time. The CL-similar relation is defined using the maximum 

component difference (MCD): P1 and P2 are CL-similar iff 

ÍÁØ
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2.3.2. Adjacency 

While existing segmentation algorithms require member pixels to be spatially 

contiguous, leap segmentation allows member pixels to be separated by a pixel adjacency 

parameter, Ȋ. For a given pixel P, the neighborhood of P, n(P), is defined as all pixels 

within a ɚxɚ square window centered around P. Figure 7 shows examples with Ȋ=1 and 

Ȋ=2. Two pixels P1 and P2 are adjacent iff )( 21 PnPÍ  equivalently )( 12 PnPÍ . P1 and 

P2 need not be nearest neighbors.  
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2.3.3.  Region Equivalence 

 Region equivalence, which relates all pixels grouped into the same segment, is 

the reflexive, symmetric, transitive closure of the adjacent-matches relation. Pixels that 

are region-equivalent (i.e., in the same segment) are not required to be directly connected 

with immediate neighbors or even to be reachable through a chain of contiguous pixels. 

For example, in Figure 8, multiple contiguous regions (on left) are within a ȊxȊ 

neighborhood and are grouped as a single segment B. A diagonal occlusion (on right) 

does not fragment segment A into two segments. This allows segments to span large 

regions of an image by connecting pixels through multiple ñleapsò over other segments in 

the image with the restriction that no leap can be greater than Ȋ. 

 Traditional image segmentation approaches could, potentially, be redesigned to 

allow the grouping of non-contiguous pixels into their segmentations. However, such 

adjustments to these algorithms cause dramatic increases in complexity. For example, the 

popular graph-based EGBIS approach [30] can be adjusted to include edges between non-

adjacent pixels. However, this would require an exponential increase in the number of 

edges of the manipulated graph, in turn causing a marked decrease in the approach's 

 

 

Figure 7. Definition of the neighborhood of P, n(P), for ɚ = {1, 2}. 
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execution performance. Conversely, the innovative leap segmentation approach is 

designed specifically to produce such non-contiguous segment output and thus is capable 

of doing so with reduced time and resources. 

2.4.  Leap Segmentation Implementation 

 This section presents a fast and resource-efficient implementation of the leap 

segmentation algorithm. The workflow is shown in Figure 9. 

2.4.1. Segmentation Constraints 

 To begin, the input image is discretized using the adjacency parameter, Ȋ, by 

dividing it into non-overlapping ȊxȊ square regions called tiles. Each tile is then scanned 

using the CL-similar constraint to locate candidate regions in each tile. If a pixel is CL-

similar to pixels within an existing region, it is added to that region. Otherwise, it forms a 

new candidate region. 

 Pixels within a region contribute their component values to a ratiometric mean via 

component sums and a pixel count, shown in Figure 10. Each scanned pixel in a region is 

 

 

Figure 8. The leap segmentation adjacency definition allows more flexibility, 

eliminating noise (left) and occlusion (right) problems. 

 

 



 

26 

 

compared to the mean component values (e.g. R, G, and B) of each candidate region. 

After identifying candidate regions within each tile, these regions are compared between 

neighboring, contiguous tiles. Regions whose mean component values satisfy the CL-

similar relation are merged into a mega-region. This process continues until a final set of 

candidate mega-regions are identified. At this point, all ratiometric component means are 

locked to fixed component averages that no longer depend on member pixels. 

 

 

Figure 9. Workflow of resource-efficient leap segmentation algorithm. 
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2.4.2. Region Adjustment and Size Analysis  

 When a pixel joins a candidate region, it adds its component values to the region's 

pixel component sums. Certain scene features such as large, slowly changing gradients 

can cause region component means to drift, occasionally leaving some member pixels 

outside of the CL-similar bounds.  

This is corrected in a post-process region-adjustment step. Pixels are scanned for 

incorrect assignments in region membership. If a large number of incorrectly assigned 

pixels are identified, a new mega-region is created. The effect of region adjustment is 

examined in Section 2.6.4. This step also applies the minimum-size constraint to mega-

regions, appropriately assimilating small regions to nearby mega-regions based on spatial 

and color similarities. The resulting mega-region list becomes the final segmentation. 

2.5. Parameter Variation and Analysis 

 Leap segmentation input parameters include an adjacency parameter Ȋ, an 

equivalence threshold Ů, and a minimum size threshold Ŭ. The optimal parameter choice 

is determined by evaluating accuracy and compression objective functions across a 

 

 

Figure 10. Efficient storage of region member-pixel information.  
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diverse collection of datasets. In this parameter assessment, both quantitative assessment 

and qualitative assessment are considered. While the optimization is performed primarily 

through the minimization of quantitative objective functions (e.g., number of segments), 

qualitative assessments (e.g., appropriate scene feature preservation), are also used to 

select the best parameters. In this section, evaluation metrics are defined, an optimal 

parameter set is presented, and parameter variation sensitivity analysis is explored.  

2.5.1. Objective Functions 

 In this evaluation, two quantitative objective functions are used to assess 

compression and accuracy performance. The first metric, number of segments assesses 

image compression. One goal of leap segmentation is to transform pixel data into a much 

smaller number of similar regions that are more easily processed. The number of 

segments produced by an algorithm is a measure of how well it meets this objective. 

However, used alone, pursuit of compression would result in an undesirable loss of 

salient image features. 

The second metric, nonmatching pixel percentage assesses segmentation 

accuracy. It measures the percentage of image pixels in the segmentation output that are 

not CL-similar to their original image color. Calculation of the nonmatching pixel 

percentage is shown in Equations 2-4. The equivalence function E applies the CL-similar 

relation (Equation 1) to assess pixel affinity. PNM is the number of pixels in the final 

segmentation which are not CL-similar within the matching threshold Ű to their original 

image (Ű = 30 was used in all experiments) and PTOTAL is the total number of pixels in the 

image. PORIG holds the original input image, and PSEG holds the pixels in the output 

segmentation. 
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(4) 

A high accuracy image segmentation result achieves a low nonmatching pixel 

percentage, indicating that a small number of pixels have been assigned to a region color 

that is significantly different from their original color. This metric is a good measure of 

the preservation of scene integrity during the segmentation process. 

Alternative quantitative metrics of image quality include mean squared error loss 

(MSE) and other cumulative pixel error measures. However, leap segmentation strives to 

preserve the maximum number of pixels in the original image, rather than assess the 

magnitude of distortion of disrupted pixels. Qualitative assessment is also used to adjust 

parameters near the quantitative optimum. Inspection of segmentation output reveals 

small adjustments of the parameters that improve the perseveration of important scene 

features. However these adjustments must benefit the process across a wide range of 

scene collections. 

This section assesses the sensitivity of the algorithm parameters to scene 

composition, chromaticity, and illumination, to evaluate its applicability to a wide range 

of different scenes. For each parameter variation experiment, both the cumulative 

nonmatching pixel percentage and the cumulative number of segments are evaluated and 

compared using eight different scene collections, each containing 300 images. These 

collections include the Berkeley Segmentation Dataset [55], [56] (see Figure 11 for 

sample images) and seven mobile camera sequence collections captured at Georgia Tech 
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as part of the GTTraffic dataset [32] (discussed in Section 3.4). When computing the 

cumulative nonmatching pixel percentage and cumulative number of segments, all eight 

datasets are evaluated separately, each generating an average objective function value 

over each frame in the collection. The cumulative nonmatching pixel percentage and 

cumulative number of segments are the sum of the average values in each of the eight 

collections. The dataset scene diversity tests the generality of parameter values. 

  

  

   

 

Figure 11. Sample images from the Berkeley segmentation dataset [55], [56] for use 

in segmentation evaluation experiments. 
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Each leap segmentation parameter is varied across a wide range of values, shown 

in Table 1, to generate approximately 720 parameter combinations for evaluation. This 

bracketing assures that the best parameters are captured. Both accuracy and compression 

objective functions contribute to overall segmentation quality. While the relative benefits 

of each function are dependent on the application, an aggregate objective function (AOF) 

is useful in optimizing segmentation parameters. The AOF is defined as the normalized 

sum of the accuracy and compression objective functions. This equality weighting 

preserves the convexity of the objective functions and simplifies optimization. 

To explore parameter sensitivity near the optimum, the best assessed parameters 

are defined (Ȋ = 8, Ů = 20, and Ŭ = 50) and each parameter is independently varied about 

this point. The following sections present the results. 

2.5.2. Adjacency 

 The adjacency parameter, Ȋ gives the maximum spatial extent that a pixel can be 

separated from an existing segment and still be eligible for membership. The value of Ȋ is 

varied between 2 and 32 pixels. The effect of adjacency on nonmatching pixel percentage 

is shown in Figure 12a. As Ȋ is reduced, more pixels match their original color following 

segmentation. For Ȋ between 2 and 8, the cumulative nonmatching percentage remains 

Table 1 

Leap Segmentation Parameter Variation 

 
 

 

 

 Adjacency Equivalence Size

Symbol  Ȋ  ʁ  

Range of Values 2 to 32 2 to 32 10 to 90

Optimal Value 8 20 50



 

32 

 

below 10% over all eight scenes. However, as Ȋ increases above 8 pixels the cumulative 

nonmatching pixel percentage increases linearly.  

An opposite trend occurs in the analysis of the cumulative number of segments 

produced, shown in Figure 12b. As Ȋ increases, the number of segments produced by leap 

segmentation dramatically decreases as pixels are more readily grouped into segments 

that span large areas in the image. For Ȋ values of 4 or less, the large cumulative segment 

 

   

 

 

Figure 12. Analysis over several mobile camera scene runs for the adjacency 

parameter (Ȋ) varying between 2 and 32 pixels. (a) The cumulative nonmatching 

pixel percentage increases as Ȋ increases. (b) The cumulative number of segments 

decreases as Ȋ increases. The aggregate objective function is overlaid in black. 

a) 

b) 
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counts diminish the compression effect, as shown in Figure 13a. The individual scene 

collection performances in Figure 12b show that the effect of Ȋ is similar across diverse 

scenes. 

Increased Ȋ has two effects. Locally, segments are less affected by noise and 

small occlusions that disrupt growth; regions are able to leap over non-similar obstacles. 

At a larger scale, increased Ȋ allows segments to extend across greater areas in the image, 

further reducing similar but spatially disjoint segments. 

Excessively large values of Ȋ adversely affect segmentation quality. As segments 

encompass a larger number of pixels, the mean color components of the region can drift, 

and no longer match member pixels. While this is corrected in a post-process region 

adjustment, it can distort segment boundaries, as shown in Figure 13b. 

 

 

 (a)                                         (b) 

 

Figure 13. Qualitative image comparison, adjacency parameter (Ȋ). Segmentation 

visual quality decreases as adjacency constraints are relaxed from a) Ȋ = 2 (1219 

regions) to (b) Ȋ = 32 (25 regions). 

 

 

 








































































































































































































