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SUMMARY

As demandfor realtime image processing increas¢he need tamprove the
efficiency of image processing systermgrowing The procesf image segmentation is
often usedin preprocessing stages cbmputer vision sysms to reduce imaggataand
increase processing efficiencyhis dissertation introduces a nowglage segmentation
approach known deap segmentatiqrwhich applies a flexibléefinition of adjacencyo
allow groupings of pixels into segments which need not be spatially contiguoukuend
can more accurately correspond to large surfaces in the scene. Experiments show that
leap segmentation correctyeservesn average of 20% more original scene pixels than
traditional approacheswvhile using the same number of segmerisd significantly
improves executiorperformancgexecutinglOx - 15x faster than leading approaches).
Further, leap segmentatiors shown toimprove the efficiency of aigh-level vision
apgication for scene layout analysis witi3D scene reconstruction.

The benefits of applying image segmentation in preprocessing are not limited to
singleframe image processing. Segmentation is also often applied in the preprocessing
stages of video anais applications. In the second contributafrthis dissertation, the
fast, singleframe leap segmentation approach is extended into the temporal domain to
develop a highhefficient method for multipldrame segmentation, calleddeo leap
segmentationThis approach is evaluated for use on mobile platforms where processing
speed is critical using moviagamera traffic sequences captured barsy, multi-lane
highways. Video leap segmentation accurately saggments across temporal bounds,

maintaining tenporal coherence between the input sequence frames slkioisn that

Xiv



video leap segmentation can be appleth high accuracyo the task of salient segment
transformation detection for alerting drivassimportant scene changes that may affect
future seeringdecisions.

Finally, while research efforts in the field of image segmentation have often
recognized the need for efficient implementations for-tiea processing, many of
todayodos | eading image segmentati bexceadppr oac
their camera frame periods, mag them infeasible for use in ret@ine applicationsThe
third research contribution of this dissertation focuses on developing fast
implementations of the singleame leap segmentation approdoh use on botlsingle
core and multi-core platforms as welas on both high-performanceand resource
constrained systems. While the design daplesegmentation lends itself &fficient
implementatios, the efficiency achieved by this algorithm, as in any algorithrcarnisbe
improved with carefulmplementatioroptimizatiors. The leap segmentation approach is
analyzed in detail and highly optimized implementations of the approagbresented
with in-depthstudies ranging from storage considerationgéalizingparalkl processing
potential The final implementations of leap segmentation for both serial and parallel
platformsare shown taachieve reatime frame rateseven when processing very high
resolutioninputimages.

Leap s e g nmeequracy and spaed makeaihighly competitive alternative
to todayods | eadi ng f@ engdere, redhante icomputera ydspm o a c h e

systems.

XV



CHAPTER 1

INTRODUCTION

Over the past decadthe pervasiveessof cameras in almost adlreasof modern
life has created a growing need for efficient image analysis and understanding

techniquesCamerause is ubiquitous

U infA s meaelltphioneg73] for image capture and minanageediting,

U in factorieg87] for reattime monitoring and inspectioof products
U on street416] for catchingtraffic violationsand illegal parking

0 in carg38], [81] for improvinghighway safety

U in hospital room$82] for remotemonitoringof patient vital signs.

One of the more prevalent uses of cameaaay is in video surveillanceo
monitor areasin combding crime. Surveillance camerashave become commom
airports businesses, anldomesto identify and track suspicious behavi®@elf-guided
cameras havealso been developed for use in combat environments for automated
reporting of combat situationg29]. Often, surveillancecameras operate omobile,
resourceconstrained systems, requiring image analysis methodeapumlly process
images forconclusiveidentification ofsignificantactivity in reattime (e.g.[6], [8], [9]).

Employing vision processingn intelligent vehicle systems hasso grown
extensivelyover the passeveral year€Cameras have been placed in mobile vehicles for
use in driver aid and atesystemgq38], [48], and,in some developing car designs, in

automatt steering system81]. Computer vision systems can be used to analyze traffic



scenes and alert drivers of potentially dangerous events as they occur in re#husne
increasing the safety of road wayrototypeintelligent vehicle systems have already
been demonstrated on highways across the coyb#y Due to their operating
environment, ntelligent vehicle systems arenherently mobile, requiring vision
applications to be both accurate and efficient in their implementation for successful
operation in this resourgsnstrained, regime environment.

All these applications are driving groubdeaking research in embedded image
processing to develop novel methods for image analysis and understanding. An important
early step in most of thesésion applications ismage segmentationvhich iscritical in
reducing image data arghabling efficient executioimage segmentatioseparatesn
image into homogeneouperceptually significantegions of pixels that can each be
processed as a groufegmentations oftenused in vision applications to preprocess
pixel data prior to image analysis methgsisch as edge detection, stereo matching, and
object trackingFor manysegmentation approachée primary objective is to accurately
detect whole bject positions and boundaries in amaige, a process referred towssler
segmentationHowever, undesegmentation often causes enormous loss of image detail
as pixels are grouped to form oveldyge segments. While these identified primitives are
often useful for highlevel visual processing tasks, there exists a separate class of high
level vision applications which instead requireasersegmentatiorof the input image
In oversegmentationsegments correspond not with whole image objects, but with
homogeneous regions of pixelgthin image objects that can be similarly processed
because of their affinity.High-level vision applications incorporate image over

segmentation techniques into their preprocessing stages primarily to reduce the image



data which must be processed by the vision system, thus improving overall execution
efficiency. However, n many such applicationthe resultingmage blurring and loss of
detail can be detrimental to the accuracy of the functioning system. For example, if one
were to segment a photograph before performing facial recognition, the human facial
features must remain discernibletloe recognitionacairacy would sufferFor a highway
surveillance system to identify specific vehicles, the vehicle license plates must remain
legible aftersegmentation. An intelligentehicle vision systemmay require street sign

and road marking information to autonously make steering decisiongvhile small,

these details cannot be bledrduring segmentation withorgducing the accuracy of the

high-level seering system, which would halrfe-threateningamifications.

Developing aNew SegmentatiomApproach

Thegoalof this researcls to develom noveloversegmeration approachor the
preprocessing stages of réimhe vision aplications that require saliefeature
preservation to achieve accurachhis specific class of vision applications is one for
which traditional approachesothundersegmentation and even oxsgmentatiorhave
proven inadequate due to loss of detail and bluridimgarticular, this application class

requires the following:

1. Efficiency. Demand is steadily growing for image processing ortapte, low
power devices. Efficient implementations of compwision techniques are
needed for computing on mobile systems such as cell phones and digital cameras.
To meet this demand, an embedaedputing trend is emerging in the field of
computer vigon [50]. Recently, many traditional imageocessing techniques
have been revisited to develop faster, more efficient implementations that can

3



function in an embetkd environment. Rediime, highlevel vision applications
apply image ovesegmentation during preprocessing to improve their overall
execution efficiency. The owsegmentation technique must thereforeefiieient

in its own execution to avoidcounteraghg any system performance
improvement. Meeting performance requirements irs threa has proven
challenging. Existing segmentation approaches often fail to meetimeal
processing standardgarticularly when applied to higlesolution images
Research in novel owsegmentation approaches is neettedfocuses on highly

efficient preprocessing of input image data forteéak applications.

. SalientFeature Preservation The question of how much detail should be
preserved during segmentatidepends on the target applicatidviany current
high-level applications that apply imagesegmentation techniques in
preprocessing expect a certain daegrof image blurring and detdibss when
applying existing segmentation algorithms in theiegsocessig stages. This
detailloss is expected and useful in those applications which favor treating whole
image objects as single entities, rather than several pieces forming a whole
(segments). Howevesceneinterpretation applications (such as those for mhtur
scene reconstruction, human facial recognition, and highway scene
understanding) require a higher degree of safiemtiure preservation during
segmentation preprocessing for reliable performaBgeessive blurring of input
images or loss of salient @ (e.g. street sign lettering, lane markings, or facial
features)uring segment formatiois detrimental. A lack of detail preservation in

preprocessing would greatly reduce the utility of these vision applicafitmes.



specificclass of applicationsf interestin this researchiequires a segmentation
approach that balances salieletail preservation with the reduction of image

data

In this dissertationa novel @proach, calledeap segmentatigns developedhat
focuses on this task of improvinggmentation preprocessing both in efficiency and
feature preservation (Forsthoefel et §B3]. This approachefficiently transforns raw
pixel data into feature preserving, palletized, caionilar and illuminatiorsimilar
regions for use in preprocessing to facilitate performanceowements in highevel
vision systems.

Leap segmentation is so named because the approach allows grouping of adjacent
but nonrneighto r i ng pi x el v a | wmerass segmentatoh boundaaies tofi | e a |
join nearby chromatic and luminansamilar segnents. This technique preserves salient
scene details during segmentation as showhigare 1. The leapsegmented image on
the right strongly resembles the original image on the left with little loss in detail.

However, 154,401 pixels in the original image are now replaced by 132 regions, which

(@) (b)

Figure 1. Leap segmentation output examplgPlanes) (a) Original image 481x32
pixels. (b) Image segmentedsing leap segmentation with 132 segments

5



can be more efficiently processed.

Segmentation algorithms typically partition an image m&gions, often referred
t o as f s[66) ehich car leelpmaessed together becafiskeeir affinity (based
on color, texture, intensity, etc)eap segmentation removes unimportant image features
and minute pixel variations (such as texture and minor chromatic variations), while better
preserving fine detail (such as vehicle licensgelettering or highway scenearkingg,
than existing segmentation approachBg. relaxing strict adjacency constraints, leap
segmentation produces larger groupings of similar pixels. In practice, this novel approach
is able to produce perceptually catregroupings of noitontiguous regions such as
stripes, as shown ifrigure 2. Traditional segmentation approaches often needlessly
segment each stripe into a separate segment, an inefficient use of resources.

Similarly, traditional segmentation approaches often haffeeuty processing
high-variation or porous regionsuch as trees and grass. A traditional segmentation

approach which builds only contiguous segments will attempt to segment each tree leaf

Figure 2. Leap segmentation groups together nowgontiguous segments such
stripes. (a) Original image. (b) Colorized representation of the image gmentec
using leapsegmentation.



as a separate segment, a tremendous waste of resources. THoid afgirocessing also
burdens higHevel applications with the need to perform additional stepsdopgthese
| eaf s e g me n obgect.Theleap segmeritation emor@ach groups pixels in-high
variation regions such as sparse vegetation togeth#ninwa specified adjacency
neighborhood into a small number of segments representing the color information in
these regions, thus eliminating the need for additional steps inldvgh vision
applications and reducing the resources required to reprbsesggmented image scene.
Admittedly, eisting segmentation approachesuld be redesigned to allow the
grouping of norcontiguous pixels into their segmentations. However, such adjustments
to these algorithms would dramatily increase their complexity, making them
computationally infeasible for reéime applications Leap segmentation is designed
specifically to produce such output and thus is capable of doing so with reduced time and

storageresourcs.

Multiple-Frame (Video) Segmentation

In addition b the challenges of singfeameimagesegmentation (efficiency and
salientfeature preservation), this dissertation explores ways of meeting segmentation
challenges in multipkérame (video) applicationd/ideo segmentation has beapplied
in many vision applications including video compression and video indexing and
retrieval [39]. Many video segmentation techniques are designed to operaiaeoff
requiring allframes in the input video sequence as ifgd}. Since future frames must
be known, these approacha® not feasible fareattime applications where only cunie
and past frames are availabfefew on-line approaches exist in the literature, they

are limited in accuracyMeetingboth high accuracy and high efficienmgquirementsn



video segmentatiors a challengingtask andfurther research in this field is needéal

meetreaktime processingtandards

Parallelizing Leap Segmentation

Finally, this dissertation explores the potential for parallelizing leap segmentation
on multicore hardware platformsModern demand for redime image processing
algorithms has inspired several research efforts in fast,-ourki image segmentation.
However,contemporaryapproaches often require specialized hardware and achieve only
moderate frame rates on lesolution imagesand exhibit extremelglow frame rates
when applied to high resolution imagd4], [43], [58]. Realtime, multicore
implementations have not been fully realizetihere remains much room for
improvement to achieve redime (>25 fps) image segmentatioexecutios on
commerciallyavailable CPWd with multiple processing cores that dot require special

hardware.

1.1.Problem Statement and Research Contributions
The goal of this research te provide vision applications with a faster, more
accurate image segmentation approach that is robust enoughgedie both single and
multiple-frame scene analysis and efficient enofmhembedded and mobile platforms.

This goal will be achieved thrgh the following contributions

1. A novel, singleframe segmentation apmch, calledleap segmentation is
presentedhat efficiently reduces and restructures image data into regions while
preserving the salient features in the imdlgat are needeth scere analysis

applicationgForsthoefel et al[31], (Forsthoefel et al[34].



2. The singleframe leap segmentation algorithmnextendedo efficiently process
videad multiple, consecutive frames in tidevhile maintaining region boundary
continuity between image frameBemporal analysis of the multipfeame leap
segmentatiormlgorithmis performedo evaluate segmentation stability over time
in video sequences fromoving camerdraffic sceneqForsthoefel et al.)32],

(Forsthoefel eal.) [33].

3. Single-frame leap segmentatios parallelized in anulti-core implementation of
the approaclhhatachieves redaime frame ratesvhen segmenting higresolution

inputimageson embeddednobile platforms(Forsthoefel et al [35].

These three contributions to the image segmentdiedt areevaluatedurtherin

the following subsections.

1.1.1. Contribution 1: Single-Frame Leap Segmentation

The first contributionof this dissertationntroduces leap segmentatigra highly
efficient, noncontiguous segmentation approach designed to reduce and restructure
image infornation while accurately preservingalient details in the scene. Leap
segmentation builds a new image representatigplacingindividual pixel data with a
mapindexed palette of chroraminancesimilar regions that are adjacent but not
necessarily contigous. Highlevel algorithms can process this compact image
representation for efficient execution. Leap segmentation is evaluated using both the
Berkeley Segmeation Dataset and new, publichyailable datasets that target rgale
vision applications,&ch as those used in intelligent vehicle systems. In experiments, leap

segmetation demonstrates high regiassignment accuracy and, compared to other
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Figure 3. Graphical summary of the first dissertation contribution: single-frame
leap segmentation.
approaches, preserves a higher level of scene integrity (up-46%Chigher) using a
given gorage resorce(Forsthoefel et al[34].

In addition, it is demonstratedthat this novel segmentation technique can
significantly improve scene layout analysis within 3D scene reconstru¢tmsthoefel
et al.) [31]. Leap ggmentation can besedin preprocessing to form homogeneous
regions of pixels that need not be spatially contiguous and can thus more accurately
correspond to larger surfaces in the scene. In this way, leap segmentation provides more
meaningful spatial gaport to scene layout analysis methodisletailed evaluation of the
leap segmentation approach and comparisons with related, existing segmentation
methods are provided The presented implementation is computationally efficient,
exhibiting execution timemprovements of 10x 15x over traditional approachebhe

diagram inFigure3 providesafull, graphical summary dhis contribution.
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1.1.2. Contribution 2: Leap Segmentationin Video Analysis

Multiple-frame (video) segmentatiornis an important step in many video analysis
applications for identifying and tracking specific features as they move through a scene.
In a mobile, resoureeonstrainedenvironment such as an intelligent vehicle system,
video segmentation can hesedto reduce image information and increase processing
efficiency for highlevel scee understanding applicahs. The second contribution of
this dissertationntroduces video leap segmentatigna highly efficient multiplerame
segmentation approach for use on embedded and mobile platforms wbeessprg
speed is critical. This novel video segmentatioethod is demonstrated to successfully
track segments across spatial amchporal bounds, generating fast, stable segmentations
of images from movingamera video sequencésorsthoefel et al.]33]. Video leap
segmentation is applied tthe task of salient segment transformataetection for
alerting potential drivers of critical scene changes that may affect steering decisions. Trial
results demonstrate that video leap segmentatimablescoase detection ofalient
region transformationsin traffic scenes, correctly detecting 80% of salient segment
transformations in trial scenes with less than 5% false positives. ReducintgVvegh
processing to salient areas usthg approachcansignificantly improve the processing
efficiency of scene interpretation applications in intelligent vehicle syst€hesdiagram
in Figure4 provides a graphical summary of thentribution.

A supplementaryontribution ofthis researchs the developmendf a publicly
availableimage dataset called tl&T Traffic Datase(Forsthoefel et al.}32]. GTTraffic
is acollection of movingcamera traffic sequerscapturedat Georgia Tech for use in

vision evaluation experiments. The sequences contaimfasing traffic eventssuch as
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Figure 4. Graphical summary of the seconddissertation contribution: video leap
segmentation with salienttransformation detection identifies salient foregrounc

objects when everything is moving, including the camera. Color indicates segm

direction relative to the camera.

vehicles quickly swerving tes are madé mubliagyr i ver

available as part of this research to motivate and evaluate ~bag®d approaches to

improving highway safety.

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation

Existing segmentation approaches often fail to meet-tme@& processing
standards and exhibit extremely sltame ratesvhen applied to high resolution images.
The third contribution ofthis dissertationfirst presents a highly optimized serial
implementdon of the leap segmentatiorapproach This serial implementation is
demonstrated to achiefeame ratesexceeding that of the statd-the art(it segments
more than 80 fps on 640x360 images and more than 20 fps on high resolution (1280x720)
image$. Legp segmentation is then analyzédther for its inherent parallelismand
restructured for use onraulti-coresystem to achievadditionalspeedup (Forsthoefel et

al.) [35]. On a multicore mobile processing system witbur threads, multcore leap
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Figure 5. Graphical summary of the third dissertation contribution: embedded

multi -core leap segmentation

segmatation achieveframe rate ofover 114 fps on 640x360 images andre than 31
fps on 1280x720 images, thessily exceedingreattime processing standard$he

diagram inFigure5 graphically summarizes theontribution.

1.2. Summary of Results

The key results of this dissertatiareas follows:

0 An efficient, noncontiguous segmentation approach designed to reduce and
restructure image information while accurately presengalientdetailsin the
scene is presented (Forsthoefel et E84]. This leap segmentatiompproach
demonstrates high region assignment accuracy and, compared to other
approaches, preserves a higher level of scene integrity (up-40%0higher)
using a given terage resource. The approashalsocomputationally efficient,

exhibiting execution time improvements of 1.:0k5x over traditional appaches.
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The leap segmentatioapproachis comprehensively evaluated in a 3D scene
reconstruction applicatiofiForsthoefel et al [31]. Leap segmentation can bsed

in preprocessing to forperceptually significantegions of pixels that need not be
spatially contiguous and can thus more accurately corrdspdarger surfaces in

the scene. In this way, leap segmentation provides more meaningful spatial

support to scene layout analysis methods

A highly efficient multipleframe segmentation approach for use on embedded
and mobile platforms where guessing speed is critical is presented (Forsthoefel
et al.) [33]. This novel video leap segmentationmethod is demonstrated to

successfully track segments acrggatial and temporal bounds, generating fast,

stable segmentations of images from captured mesamgera video sequences.

Video leap segmentation is applied to the task of salient segment transformation
detection for alerting potential drivers of criticetene changes that may affect
steering decisiongForsthoefel et al.]33]. Trial results demonstrate that with
little added computation, video leap segmentagoables courseletection of
salient regiortransformationsn traffic scenes, correctly detecting 80%putels

in salient segment transformations with less than 5% false positives.

A publicly available datset of movingcamera traffic sequers (GTTraffic)
collected at Georgia Tech is develo@et presentetbr use in visiorevaluation

experimentgForsthoefekt al.)[32].

A highly optimized serial implementatioof singleframe leap segmentatioris
givenin (Forsthoefel et al.)35]. This serial implementation is demonstrated to

14



achieveframe rate®f more than 80 fps on 640x360 images and more than 20 fps
on high resolution (1280x720) imagelr exceedingthe stateof-the artin

execution

U A parallel implementation of thesingleframe leap segmentation algorithm is
developed for use ocembeddedmulti-core platformgForsthoefel et al.[35]. On
a multicore mobile processing system with 4 threadlsis multi-core leap
segmentation implementation achieemme ratesof over 114 fps on 640x360
images andmore than 31 fps on 1280x720 images, easily meetingtineal

processing stadards

1.3. Overview of Content

This dissertation iorganized as follows. Chapter 2 outlines thavel, leap
segmentation approach and presents the results of experimemn¢stleaip segmentation
using both classical and newly developed accuracy mefrids chapter als@resents
comparisons with other welinown segmentation approaches awdluates the use of
leap segmentation in the preprocessing of a-leghl 3D reconstruction application. In
Chapter 3, leap segmentation is extended antealtime, video segmentatioapproach
Video leap segmentation ishen applied in the application of salient segment
transformation detection in a mobile, intelligent vehigision application A detailed
analysis of video leap segmentation performance in dbwgext is given Chapter 4
outlinestwo highly efficient implementatiosof the leap segmentatioapproachfor use
on singlecore and multcore platformsand gives detailed performance analyses on both
high-performance and resourcenstrained hardwareChapter 5 concludes this

dissertation and discusses future work.
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CHAPTER 2

SINGLE-FRAME LEAP SEGMENTATION

2.1. Introduction

Image segmentation is the process of separating an image into perceptually
significant regions of pixels that can each be processed as a group. Segmentation
algorithms have been widely researched and are used in many vision applications to
preprocess pixel datarior to image analysis methqdsuch as edge detection, stereo
matching, and object trackin§eparating an image into segments of pikaigprocessing
can significantly reduce the amount of computational resources needed to amalyze
imagein a highlevel vision systemThis reduction of resource usage has the potential to
increase algorithmic processing speed.

This chapter presents a highdfficient image segmentation approach, calésp
segmentatioifForsthoefel et al.[34], that focuses othetask of improving segmentation
preprocessing both in efficiency arfdature preservationo facilitate performance
improvements in higtevel vision systemsA primary objective for most existing
segmentation approaches is to accurately detect object positions and boundaries in an
image. Leap segmentatiohas a different emphasis: to efficiently transform raw pixel
data into feature preserving, palletized, cedonilar and illuminatiorsimilar regions for
improved scene analysifkather than process each image pixel individually, vision
applications can use leap segmentation to preprocess image pixels into groups that can be

processed more rapidly. An exampldezp segmentatioautputis shown inFigure®6.
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(b)

Figure 6. Leap segmentation output example (Polo)(a) Original image 481x32
pixels. (b) Image segmentedsing leap segmentation (Forsthoefel et al[B4] with
180segments

Vision applications rely on preprocessing segmentations to accurately maintain
important image features whileeducing thedata in the image. In addition, many
applications require their segmentation preprocessing steps to perform quickly and
efficiently. Leap segmentation is applicable to a broad range of segmentation tasks and is
especially appropriate foombedded and mobile platforms where processing speed is
critical. Traditional image segmentation approaches often blend or remove small image
details when building contiguous regions, and processing time often exceeds the camera
frame period. Leap segmetiten better preserves salient features while achieving a
significant improvement (> 10x the state of the art) in execution performance.

In this chapter leap segmentatios evaluatedising images from the weknown
Berkeley Segmentation Dataséts use in reatime applications such as intelligent
vehicle vision systems where detailed feature preservation is igitalso evaluatedn
experiments leap segmeation demonstrates high regiassignment accuracy and,
compared to other approaches, preserves a higher level of scene integrity using a given

storage resource.
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To further demonstrate the benefits of leap segmentatisrusedto improve the
performance of a higlevel vision task for 3D scene reconstructi@iorsthoefel et al.)
[31]. Surfacelayout analysis applications for 3D scemeconstruction often evaluate
complex geometric cues over large regions to determine the orientations of large surfaces
within the scene. These regions can contain contiguous pixels, such as those in solid
walls, or nomrcontiguous pixels such as those meet leaves or shrubs. Traditional
segmentation approaches partition homogeneous;commiguous pixels into many
smaller segments that must then be further analyzed and grouped by the&idayout
application. Leap segmentation can form homogeneaisn® of pixels that need not be
spatially contiguous and can thus more accurately correspond to larger surfaces in the
scene. In this way, leap segmentation provides more meaningful spatial support to scene
layout analysis methods, significantly improvipigpcessing efficiency.

This chapteris organized as follows. Related work in image segmemtas
summarized in SectioB.2 Section2.3 presentghe novel, leap segmentatioapproach
Secton 2.4 discussedhe fast leap segmentaticimplementation. Seicin 2.5 shows a
detailed parameter evaluation and sensitivity anal§ggstion2.6 compares the accuracy
and efficiency of leap segmentation with other vkelbwn segmentation approaches
when applied to intelligent vehicle highway scenes and on diverse Berkeley
Segmentation Dataset image3ection 2.7 evaluates leap segmentation using several
well-known, classical accuracy metri&ection2.8 describes a popular higavel vision
application for image labeling and reconstruction and demonstrates the benefits of
applying leap segmentation to this tadgkxperiments show that leap gseentation

correctly maintains an average of 20% more original scene pixels than traditional
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approaches while using the same number of segments and significantly improving
execution speed (>10x faster than existing approacl@&=jton 2.9 concludes this

chapterand discusses future work.

2.2.Related Work

Image segmentation has beemplored in many previous research efforts,
resulting in several broad classes of algns, including regiofased, featurspace
clustering and graptbased segmentationEarly image segmentation approaches
typically useregionbased segmentatiodhese regiogrowing [2], [19] and splitand
merge [46] methods are conceptually simple. They typically rely heavily on input
threshold parameters and they often have trouble processing regions of high variation
[61]. The watershed approaft/] is a popular example of regidrased segmentation. In
general, watershed transformatioased algorithm§gLO], [61] are fast and efficient with
time complexities linear in the number of pix¢6¥]. However, they a sensitive to
noise and highhtextured regions and often require extra, costly preprocessing steps to
produce useful gradient inppi8].

Finally, the jump conné¢mn approach[68] is a regiorgrouping approach
recently applied in color segmentation with mathematical morphology opefafors
While it closely resembles leap segmentation in name, the two approaches are very
different in operation. The jump connection approach assesses jumps in color space
between neighboring image piseand, unlike leap segmentation, the jump connection
approach requires segments to be spatialhfiguous.

Segmentation methods that usaturespace clusteringattempt to find modes

(clusters) in a distribution by using each image pixel's featuresnaglesd data from the
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distribution's probability density function. Thenkeans clustering methd&2], while
simple and welknown, relies heavily on correct user input of cluster count and initial
cluster center placements to produce a good segmenfdit@nMixture of Gaussians
(MoG) clustering with Expectation Maximization (EM)26] has been used in
preprocssing for recent applicatiofil], [18]. However, EM calculations ar@imerable
to becoming stuck in local minima and can be slow to con\&&je The MoGwith EM
approach also relies heavily on its input parameters, such as an accurate estimate of
cluster countto provide a useful solution.

The mearshift techniqug21], [22] also uses featugpace clustering. According
to Pantofaru and Hebel$3], output segmentations from mesinift correspond well to
human perception. A disadvantage is its sensitivity to parameter change and the necessity
for input parameter tuning to obtain good segmentat|j86§ In addition, meaishift
suffers from being computationally expensive making it too slow for-tiaal
applications. This is due in part to the expensive sliimglow approach it applies to
image pixels during processing. Several techniques for improving -stetirhave been
proposed17], [20], [37], [80]. For example, Christodias et 0] proposed combining
meanshift with edge detection to increase segmentation accuracy in EDISON. However,
there is still rom for improvement as these algorithms require on the order of minutes to
process one second of vidg®].

In graph-based segmentaticem image is represented as a weighted, undirected
graph. Grapfbased segmentation based on minimum cuts was first introduced by Wu
and Leahy[84]. Shi and Malik[71] then introduced the normalized cut (NC) criterion to

avoid the bias for partitioning undersized segments that plagued Wu and Leahy's earlier
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approach. The NClgorithm requires few input parameters from the user when compared
to meanshift [86]. However, NC is expensive to run and is too slow to be used i real
time appications; finding the minimum NC based on Shi and Malik's proposed criterion
is an NRhard problem[30]. They present methods to approximate the calculation but
these methods still prove computationally intensive. Several improvements to the NC
approach have been propodéd], [60] such as adding a boundary detector to reduce
clutter and enhance segmentation performance. Cour ef24]. focus on the
parallelization of the existing normalized cuts approach for speed gain and propose an
efficient multiscale variant of the normalized cuts approach that runs in linear time.
However, these algorithms are still many times too slow for use irtirealapplications,
requiring at least several seconds to process a single f2dine

Segmentadbn by weighted aggregation (SWAP9] is a recent multiscale
approach that reduces the normalized cut minimization problem using algebraic
multigrids [15]. SWA preserves image boundaries more accurately in output
segmentations and is more efficient than the original NC approach, possessing linear time
complexity in the numlyeof input image pixels. Despite these improvements, the SWA
approach and a recently proposed improvement known as the probabilistic aggregation
approach (PA)[4] which eliminates usedefined parameter reliance, are still slow,
requiring tens of seconds to process a single image {28he

A popular grapkbased segmentation technique, EGES], is considered to be
state of the art in computational efficien{38], [65]. It uses paHwise component
compari®ns to segment an image @(mlogm)time, wherem is the numbeiof graph

edges. A drawback to this method is its sensjtivo its input parametek and its
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tendency to create small, unneeded regions at the borders of valid image segments.

addition, the graph cuts segmentation approddj, [14] is a popular grapbased
method that uses Markov random fielf#)]. However, this technique iprimarily
applied tobinary segmentation, which is oias the scope of this research.

In the next section presents the noledp segmentation technigu&he leap
segmentatioralgorithm is first definedand then evaluatkfor efficiency and accuracy
performance using images fronpublicly available segmentation datasetin this
evaluation, éap segmentatigmerformance and segmentation resates comparetb two
widely known segmentation approachesn@anshift segmentatiompproach(EDISON)

andagraphbasdsegmentation approaceGBIS).

2.3.Leap Segmentation Algorithm

The leap segmentation approd€torsthoefel et al.)34] identifiespixels that are

related by adjacency within a specified neighborhood constraint and by a given -chroma

luminance affinity metric. The reflexive, symmetric, transitive closure o$ethaixel

relations provides equivalence groupings of adjacent, but not necessarily contiguous,

pixels that are similar in chromaticity and luminance. The final segmentation includes

each such grouping that satisfies a minimum size constraint requirirggedsto be
greater than a minimwsize threshold

In particular, the equivatee relatiorregionequialentis defined to capture the

relationship between all pixels in the same segment. It is the reflexive, symmetric,

transitive closte of the binary elation adjacentmatchesbetween pairs of pixels. Pixel

P, adjacenimatched; iff
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a) P, andP; areCL-similar (chromaluminance affinity defined below) and
b.) P, and P, are adjacentwithin a specifie neighborhood (not necessarily

nearest neighbors).

2.3.1. Chroma-Luminance Affinity

Two pixels areCL-similar if their chromaluminance difference is within a given
threshold,l) The measure of difference depends on the image color model (e.g., YCrCb,
HSI, etc.). While luminance and chromaticity participatehim itelation, they need not be
orthogonally represented in the color model. In the leap segmentation implementation
described inSection2.4, a redgreenblue component (RGB) color model is used to
eliminate translation time. The &imilar relation is defined using the maximum

component differenc@MCD): P; andP, are CLsimilar iff

Y Ys
i AgsO "Os -8 (1)
Y 0s

2.3.2. Adjacency

While existing segmentation algorithms require member pixels to be spatially
contiguous, leap segmentation allows member pixels to be separated by a pixel adjacency
parameter] . For a given pixeP, the neighborhood d®, n(P), is defined as all pixels
within aaxa-square window centered arouRdFigure7 shows examples with=1 and
1=2. Two pixelsP; andP, are adjacent iffP. I n(P,) equivalentlyP,i n(P).P;and

P, need not be nearest neighbors.
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Figure 7. Definition of the neighborhood ofP, n(P), for &= {1, 2}.

2.3.3. Region Equivalence

Region equivalence, which relates all pixels grouped into the same segment, is
the reflexive, symmetric, transitive closure of the adjaceaiiches relation. Pixels that
are regiorequivalent (i.e., in the same segment) are not required to be diremtigated
with immediate neighbors or even to be reachable through a chain of contiguous pixels.
For example, inFigure 8, multiple contiguous regions (on left) are withinal
neighborhood and are grouped as a single segBieAtdiagonal occlusion (on right)
does not fragment segmeAtinto two segments. This allows segments to span large
regions of an image by connectipixels through muit p | e  éverethep segments in
the image with the restriction that no leap can be greatei than

Traditional image segmentation approaches could, potentially, be redesigned to
allow the grouping of nowontiguous pixels into their segmentations. However, such
adjustments to these algorithms cause dramatic increases in complexity. For example, the
popdar graphbased EGBIS approa¢B0] can be adjusted to include edges between non
adjacent pixels. However, this would require an exponential increase in the number of

edges of the manipulated graph, in turn causing a markeeéadecin the approach's
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Figure 8. The leap segmentationadjacency definition allows more flexibility,
eliminating noise (left) and occlusion (right) problems.

execution performance. Conversely, the innovative leap segmentation approach is
designed specifically to produce such feamtiguous segment output and thus is capable

of doing sowith reduced time and resources

2.4. Leap Segmentationmplementation
This section preents a fast and resoueHicient implementation of the leap

segmentation algorithm. The workflow is showrFigure9.

2.4.1. Segmentation Constraints

To begin, the input image idiscretized using th adjacency parametdr, by
dividing it into nonoverlappingl xI square regions called tiles. Each tile is then scanned
using the CEsimilar constraint to locate candidate regions in each tile. If a pixelis CL
similar to pixels withinan existing region, it is added to that region. Otherwise, it forms a
new candidate region.

Pixels within a region contribute their component values to a ratiometric mean via

component sums and a pixel count, showRigurel10. Each scanned pixel in a region is
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Figure 9. Workflow of resource-efficient leap segmentation algorithm.

compared to the mean component values (e.g. Rn& Ba of each candidate region.

After identifying candidate regions within each titeese regions are compared between

neighboring, contiguous tiles. Regions whose mean component values satisfy-the CL

similar relation are merged into a memgaion. This process continues until a final set of

candidate megeegions are identified. At thipoint, all ratiometric component means are

locked to fixed component averages that no longer depend on member pixels.
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Figure 10. Efficient storage of region membeipixel information.

2.4.2. Region Adjustment and Size Analysis

When a pixel joins aandidate region, it adds its component values to the region's
pixel component sums. Certain scene features such as large, slowly changing gradients
can cause region component means to drift, occasionally leaving some member pixels
outside of the CLsimilar bounds.

This is corected in a pogprocess regioadjustment step. Pixels are scanned for
incorrect assignments in region membership. If a large number of incorrectly assigned
pixels are identified, a new megegion is created. The effect of region adjustment is
examined inSecton 2.6.4 This step also applies the minimgize constraint to mega
regions, appropriately assimilating small regions to nearby #reggjans based on spatial

and color similarities. Theesulting megaegion list becomes the final segmentation.

2.5. Parameter Variation and Analysis
Leap segmentation input parameters include an adjacency parameter
equivalence threshold and a minimum size thresholtl The optimal parameter choice

is ddermined by evaluating accuracy and compression objective functions across a

27



diverse collection of datasets. In this parameter assessment, both quantitative assessment
and qualitative assessment are considered. While the optimization is performed primarily
through the minimization of quantitative objective functions (e.g., number of segments),
gualitative assessments (e.g., appropriate scene feature preservation), are also used to
select the best parametets this section, evaluation metrics are defined, optimal

parameter set is presented, and parameter variation sensitivity analysis is explored.

2.5.1. Objective Functions

In this evaluation, two quantitative objective functions are used to assess
compression and accurapgrformance. The first metricjumbe of segmentassesses
image compression. One goal of leap segmentation is to transform pixel data into a much
smaller number of similar regions that are more easily processed. The number of
segmentproduced by aralgorithm is a measuref how well it meés this objective.
However, used alone, pursuit of compression would result in an undesirable loss of
salientimage features

The second metric,honmatching pixel percentagassesss segmentation
accuracy. It measurdke percentage of image pixels in the segmentation output that are
not CL-similar to their original image color. Calculation of the nonmatching pixel
percentage is shown Equatiors 2-4. The equivalence functio applies the Cisimilar
relation (Equationl) to assess pixel affinityPyy is the number of pixels in the final
segmentation which are not &iimilar within the matching thresholdlto their original
image(U= 30 was used in all experiment)dProraLis the total number of pixels in the
image. Poric holds the original input image, arfkeg holds the pixels in the output

segmentation.
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A high accuracy image segmentation result achieves a low nonmatching pixel
percentage, indicating that a small number of pixels have been assigned to a region color
that is significantlydifferent from their original color. This metric is a good measure of
the preservation of scene integrity during the segmentation process.

Alternative quantitative metrics of image quality include mean squared error loss
(MSE) and other cumulative pixelrer measures. However, leap segmentation strives to
preserve the maximum number of pixels in the original image, rather than assess the
magnitude of distortion of disrupted pixef3ualitativeassessment is also used to adjust
parameters near the quaniitat optimum. Inspection of segmentation output reveals
small adjustments of the parameters that improve the perseveration of important scene
features. However these adjustments must benefit the process acrads @mnge of
scene collections.

This section assesss the sensitivity of the algorithm parameters to scene
composition, chromaticity, and illumination, to evaluate its applicability to a wide range
of different scenesFor each parameter variation experiment, both the cumulative
nonmatching pixel peentage and the cumulative number of segments are evaluated and
compared using eight different scene collections, each containing 300 images. These
collections include the Berkeley Segmentation Dat§s8}, [56] (see Figure 11 for

sample imagesand seven mobile camera sequence collections captured at Georgia Tech
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as part of the GTTraffic dtaset[32] (discussed irSection3.4). When computing the
cumulative nonmatching pixel percentage and cunwdatumber of segments, all eight
datasetsare evaluated separately, each generating an average objective function value
over each frame in the collection. The cumulative nonmatching pixel percentage and
cumulative number of segments are the sum of theageevalues in each of the eight

collections. The dataset scene diversity testgémerality of parameter values.

>
>
N
[

Figure 11. Sample images from the Berkelegegmentationdataset[55], [56] for use

in segmentation evaluation experiments.
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Table 1

Leap Segmentation Parameter Variation

Adjacency Equivalence Size
Symbol i 6 a
Range of Values 210 32 210 32 10 to 90
Optimal Value 8 20 50

Each leap segmentation paster is varied across a wide range of valséewn
in Table 1, to generate approximately 720 parameter combinations for evaluation. This
bracketilg assures that the best parameters are captured. Both accuracy and compression
objective functions contribute to overall segmentation quality. While the relative benefits
of each function are dependent on the application, an aggregate objective fun€en (A
is useful in optimizing segmentation parameters. The AOF is defined as the normalized
sum of the accuracy and compression objective functions. This equality weighting
preserveshe convexity of the objectivieinctions and simjfies optimization

To explore parameter sensitivity near the optimum, the best assessed parameters
are definedi( = 8, U= 20, andJ= 50) and each parameter is independently varied about

this point.The following sections present the results

2.5.2. Adjacency

The adjacency parametérgives the maximum spatial extent that a pixel can be
separated from an existing segment and still be eligible for membership. The viaise of
varied between 2 and 32 pixels. The effect of adjacency on nonmatching pixel percentage
is shown inFigure12a. AsT is reduced, more pixels match their original color following

segmentation. For between 2 and 8, the cumulative nonmatching percentagénssma
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below 1@ over all eight scenes. However,lamcreases above 8 pixdlse cumulative
nonmatching pixel percentage increases linearly.

An opposite trend occurs ie analysis of the cumulative number of segments
produced, shown ifigure12b. Asi increases, the number of segments produced by leap
segnenfation dramatically decreases pigels are more readily grouped into segments

thatspan large areas in the imag@ri values of 4 or less, the large cumulative segment
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Figure 12. Analysis over several mobile canra scene runs for the adjacenc
parameter (1) varying between 2 and 32 pixels. (a) The cumulative nonmatchi
pixel percentage increases ak increases. (b) The cumulative number of segmer
decreases ab increases. The aggregate objectiienction is overlaid in black.
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(a) (b)
Figure 13. Qualitative image comparison, adjacency paramete(l ). Segnentation

visual quality decreasesas adjacency constraints are relaxed froma) 1 = 2 (121¢
regions) to (b)lI = 32 (25 regions).

countsdiminish the compression effect, as showrFigure 13a. The individual scene
collection performances iRigure 12b show that theeffect of1 is similar across diverse
scenes.

Increased has two effects. Locally, segments are less affected by noise and
small occlusions that disruptath; regions are able teap over nonsimilar obstacles.
At a larger scale, increasédillows segments to extend across greater areas in the image,
further reducing similar but spatially disjoint segments.

Excessively large values bfadversely affect segmentation quality. As segments
encompass a larger number of pixels, the mean color components of the region can drift,
and no longer match member pixels. While this is corrected in appostss region

adjustment, it can distort segntdoundaries, as shownkigure13b.
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