
LEAP SEGMENTATION IN MOBILE IMAGE AND VID EO

ANALYSIS

A Dissertation

Presented to

The Academic Faculty

by

Dana Forsthoefel

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2013

Copyright © Dana Forsthoefel 2013

LEAP SEGMENTATION IN MOBILE IMAGE AND VID EO

ANALYSIS

Approved by:

Dr. Linda M. Wills, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Aaron Lanterman

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. D. Scott Wills, Co-Advisor

(Posthumous)

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Doug Blough

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Jongman Kim

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Andrea Thomaz

College of Computing

Georgia Institute of Technology

 Date Approved: August 23, 2013

In memory of Dr. Scott Wills, an exceptional teacher, mentor, and friend.

iv

ACKNOWLEDGEMENTS

First, I wish to thank my advisor, Dr. Linda Wills, for taking me in as an

undergraduate researcher and working tirelessly to turn me into the PhD candidate I am

today. I would never have made it through this experience without her patience,

guidance, encouragement, and friendship. Working for the past eight years in her lab, she

has acted as mentor, advisor, and sometimes, surrogate mom. Thank you Linda, for

sticking with me this long and for making this a wonderful experience I will never forget.

I also wish to thank my late advisor Dr. Scott Wills for all of our research conversations.

I will especially remember those times when we disagreed, because I loved the challenge

of convincing you of my correctnessé though you invariably proved to be right in the

end. I like to think, had we had more time, I would have won one someday. Scott, I didnôt

know Iôd lose you so soon, but Iôm grateful for the time I had to learn from you.

I also appreciate Dr. Jongman Kim, Dr. Aaron Lanterman, Dr. Doug Blough, Dr.

Andrea Thomaz, and Dr. Anthony Yezzi for serving on my committee and providing

their helpful insights and feedback. Their input has helped to strengthen my research for

which I am grateful. I would like to thank Dr. Doug Blough and Dr. John Peatman for

their continued support and guidance during my career at Georgia Tech, ever since my

first classes with them as an undergraduate. I would also like to thank my MoVES lab

colleagues over the years, including Ryan Bales, Shoaib Azmat, Qianao Ju, Brian

Valentine, and Senyo Apewokin. Against all odds, they made those long hours in the lab

enjoyable and I thank them for all their helpful discussions and contributions to my

research.

v

I wish to thank my family, especially my Mom and Dad for all their unwavering

support during my academic career. Though in the beginning they had no idea what an

electrical and computer engineering degree entailed, they never hesitated to support me

through almost a decade in pursuit of one. Mom and Dad, I wouldnôt have made it here

without your encouragement and support. Thank you for being the best parents anyone

could ask for.

 Most of all, I wish to thank my fiancé Adam. Through all the sleepless nights, the

frantic revisions, the hours in the lab, and the frustration at the hands of this doctoral

program, he maintained absolute certainty that I would complete my dissertation before I

turned 80. Adam, without you, I would be lost. I could never have done this without you.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF SYMBOLS AND ABBREVIATIONS ... xiii

SUMMARY .. xiv

CHAPTER 1 INTRODUCTI ON ... 1

1.1. Problem Statement and Research Contributions .. 8

1.1.1. Contribution 1: Single-Frame Leap Segmentation 9

1.1.2. Contribution 2: Leap Segmentation in Video Analysis 11

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation 12

1.2. Summary of Results ... 13

1.3. Overview of Content .. 15

CHAPTER 2 SINGLE-FRAME LEAP SEGMENTATION 16

2.1. Introduction .. 16

2.2. Related Work.. 19

2.3. Leap Segmentation Algorithm ... 22

2.3.1. Chroma-Luminance Affinity .. 23

2.3.2. Adjacency ... 23

2.3.3. Region Equivalence .. 24

2.4. Leap Segmentation Implementation... 25

2.4.1. Segmentation Constraints ... 25

2.4.2. Region Adjustment and Size Analysis .. 27

2.5. Parameter Variation and Analysis .. 27

2.5.1. Objective Functions .. 28

2.5.2. Adjacency ... 31

2.5.3. Equivalence Threshold.. 34

2.5.4. Minimum Size Threshold ... 36

vii

2.6. Experimental Results: Intelligent Vehicle Traffic Scenes and the Berkeley

Segmentation Dataset.. 39

2.6.1. Segmentation Comparison ï Traffic Scene .. 41

2.6.2. Segmentation Comparison ï Animal Scene ... 43

2.6.3. Detail Preservation Experiment .. 45

2.6.4. Image Gradient Evaluation ... 46

2.6.5. Matching Accuracy and Run-Time Analysis .. 48

2.7. Classical Performance Metrics ... 49

2.7.1. Experimental Setup ... 50

2.7.2. Boundary Precision-Recall ... 52

2.7.3. Probabilistic Rand Index ... 53

2.8. Experimental Results: Image Labeling and 3D Reconstruction 55

2.8.1. Application Background ... 55

2.8.2. Representative Approach .. 57

2.8.3. Dataset and Evaluation Method .. 58

2.8.4. Results ... 59

2.9. Conclusion .. 62

CHAPTER 3 LEAP SEGMENTATION IN V IDEO ANALYSIS 64

3.1. Introduction and Related Work .. 64

3.2. Fast Video Leap Segmentation .. 67

3.3. Recognition of Salient Segment Transformations ... 72

3.4. Experimental Results.. 75

3.4.1. Video Leap Segmentation Stability .. 76

3.4.2. Salient Segment Transformation Detection .. 79

3.4.3. Run-Time Analysis ... 83

3.5. Conclusion .. 83

CHAPTER 4 EMBEDDED, MULTI -CORE LEAP SEGMENTATI ON 85

4.1. Introduction .. 85

4.2. Related Work.. 87

4.3. Leap Segmentation Implementation... 90

4.4. Implementation Analysis.. 92

4.4.1. Subtask 1: Region Building .. 92

viii

4.4.2. Subtask 2: Region Adjustment.. 96

4.4.3. Subtask 3: Size Analysis ... 100

4.4.4. Storage Implementation Considerations ... 102

4.5. Experimental Results.. 103

4.5.1. Serial vs. Parallel Implementation Accuracy .. 104

4.5.2. Overall Performance Analysis .. 106

4.5.3. Subtask Performance Analysis ... 112

4.6. Conclusion .. 115

CHAPTER 5 CONCLUSION AND SUMMARY OF RESUL TS 117

5.1. Future Work ... 120

APPENDIX ADDITIONAL LEAP SEGMENTATION RESULTS 122

REFERENCES .. 125

VITA ... 132

ix

LIST OF TABLES

Page

Table 1: Leap Segmentation Parameter Variation 31

Table 2: Video Leap Segmentation Stability 79

Table 3: Resource Constrained Hardware Execution Rates (FPS) 110

Table 4: Region Building Execution Performance 113

Table 5: Saliency Evaluation Execution Performance 114

Table 6: Density Analysis Execution Performance 114

Table 7: Size Analysis Execution Performance 115

x

LIST OF FIGURES

Page

Figure 1: Leap segmentation output example (Planes). 5

Figure 2: Leap segmentation groups together non-contiguous segments. 6

Figure 3: Graphical summary of the first dissertation contribution: single-frame

leap segmentation. 10

Figure 4: Graphical summary of the second dissertation contribution: video leap

segmentation with salient transformation detection. 12

Figure 5: Graphical summary of the third dissertation contribution: embedded,

multi-core leap segmentation. 13

Figure 6: Leap segmentation output example (Polo). 17

Figure 7: Definition of the neighborhood of P, n(P), for ɚ = {1, 2}. 24

Figure 8: The leap segmentation adjacency definition allows more flexibility,

eliminating noise and occlusion problems. 25

Figure 9: Workflow of resource-efficient leap segmentation algorithm. 26

Figure 10: Efficient storage of region member-pixel information. 27

Figure 11: Sample images from the Berkeley segmentation dataset. 30

Figure 12: Analysis over several mobile camera scene runs for the adjacency

parameter (ɚ) varying between 2 and 32 pixels. 32

Figure 13: Qualitative image comparison, adjacency parameter (ɚ). 33

Figure 14: Analysis over several mobile scene runs for equivalence thresholds (Ů)

varying between 2 and 32. 34

Figure 15: Qualitative image comparison, equivalence threshold (Ů). 35

Figure 16: Analysis over several mobile scene runs for minimum size thresholds

(Ŭ) varying between 10 and 90 percent. 37

Figure 17: Qualitative image comparison, minimum size threshold (Ŭ). 38

Figure 18: The segmentation output images for each approach for comparison. 40

Figure 19: Segmentation comparison images, traffic scene (1280x720 pixels). 42

xi

Figure 20: Segmentation comparison images, animal scene (481x321 pixels). 44

Figure 21: Lettering on street signs is processed using different segmentation

approaches for detail preservation comparison. 45

Figure 22: Image gradients evaluation, EDISON, EGBIS and Leap Segmentation. 47

Figure 23: Segmentation accuracy, compression, and run-time analysis. 48

Figure 24: Example of a human segmentation. 50

Figure 25: Boundary precision-recall curves with corresponding F-measure

results for each segmentation approach. 53

Figure 26: Average Probabilistic Rand Index (PRI) versus the average number of

regions in the output for each segmentation approach. 54

Figure 27: Example output of automatic 3D reconstruction using Hoiem et al.'s

approach. 55

Figure 28: More example outputs of automatic 3D reconstruction using Hoiem et

al.'s approach. 56

Figure 29: Performance results for both main class and vertical subclass labeling. 60

Figure 30: Scene labeling results for qualitative comparison of segmentation

performance. 61

Figure 31: The initial leap segmentation passes a global cell list and a list of tile

cell sets for each tile in the discretized image. 67

Figure 32: Workflow of the fast, resource-efficient video leap segmentation

algorithm. 71

Figure 33: Example of binary movement vector assignments at various pixel

locations. 74

Figure 34: Sample images from the GTTraffic dataset. 76

Figure 35: Video leap segmentation results for two consecutive image frames. 77

Figure 36: Salient segment transformation recognition results for two frames of

an input video sequence. 80

Figure 37: Salient segment transformation detection results for a video scene in

which a vehicle rapidly enters the driverôs lane. 82

Figure 38: Workflow of the leap segmentation algorithm broken down into three

subtasks for parallelization. 89

xii

Figure 39: A leap processing usage chart indicating percentages of processing

time dedicated to each of the three main subtasks. 90

Figure 40: The leap segmentation data structures are designed for optimal

resource usage. 91

Figure 41: Serial leap segmentation image traversal. 94

Figure 42: Leap segmentation diagonal dependencies. 95

Figure 43: Region adjustment workflow. 97

Figure 44: Serial vs. parallel leap segmentation accuracy comparison images

(481x321 pixels). 105

Figure 45: Plot of the effect of image size on frame rate for various thread counts

on a pair of Intel Xeon E5-2670 processors. 107

Figure 46: Plot of the percentage speed-up in frame rate as overall thread count

increases. 109

Figure 47: Percentage speed-up of parallel leap segmentation over serial leap

segmentation on an Intel Core I3-330M processor. 111

Figure 48: Segmentation comparison images, human face (321x481 pixels). 123

Figure 49: Segmentation comparison images, human striped shirt (321x481

pixels). 124

xiii

LIST OF SYMBOLS AND A BBREVIATIONS

Ȋ Leap Segmentation adjacency parameter

Ů Leap segmentation equivalence parameter

 Leap segmentation minimum size parameter

AOF Aggregate Objective Function

CL Chroma-Luminance

EDISON Edge Detection and Image Segmentation

EGBIS Efficient Graph-Based Image Segmentation

FPS Frames Per Second

HSI Hue, Saturation, Intensity

MCD Maximum Component Difference

PRI Probabilistic Rand Index

RGB Red, Green, Blue

SAD Sum of Absolute Differences

TDP Thermal Design Power

xiv

SUMMARY

As demand for real-time image processing increases, the need to improve the

efficiency of image processing systems is growing. The process of image segmentation is

often used in preprocessing stages of computer vision systems to reduce image data and

increase processing efficiency. This dissertation introduces a novel image segmentation

approach known as leap segmentation, which applies a flexible definition of adjacency to

allow groupings of pixels into segments which need not be spatially contiguous and thus

can more accurately correspond to large surfaces in the scene. Experiments show that

leap segmentation correctly preserves an average of 20% more original scene pixels than

traditional approaches, while using the same number of segments, and significantly

improves execution performance (executing 10x - 15x faster than leading approaches).

Further, leap segmentation is shown to improve the efficiency of a high-level vision

application for scene layout analysis within 3D scene reconstruction.

The benefits of applying image segmentation in preprocessing are not limited to

single-frame image processing. Segmentation is also often applied in the preprocessing

stages of video analysis applications. In the second contribution of this dissertation, the

fast, single-frame leap segmentation approach is extended into the temporal domain to

develop a highly-efficient method for multiple-frame segmentation, called video leap

segmentation. This approach is evaluated for use on mobile platforms where processing

speed is critical using moving-camera traffic sequences captured on busy, multi-lane

highways. Video leap segmentation accurately tracks segments across temporal bounds,

maintaining temporal coherence between the input sequence frames. It is shown that

xv

video leap segmentation can be applied with high accuracy to the task of salient segment

transformation detection for alerting drivers to important scene changes that may affect

future steering decisions.

Finally, while research efforts in the field of image segmentation have often

recognized the need for efficient implementations for real-time processing, many of

todayôs leading image segmentation approaches exhibit processing times which exceed

their camera frame periods, making them infeasible for use in real-time applications. The

third research contribution of this dissertation focuses on developing fast

implementations of the single-frame leap segmentation approach for use on both single-

core and multi-core platforms as well as on both high-performance and resource-

constrained systems. While the design of leap segmentation lends itself to efficient

implementations, the efficiency achieved by this algorithm, as in any algorithm, is can be

improved with careful implementation optimizations. The leap segmentation approach is

analyzed in detail and highly optimized implementations of the approach are presented

with in-depth studies, ranging from storage considerations to realizing parallel processing

potential. The final implementations of leap segmentation for both serial and parallel

platforms are shown to achieve real-time frame rates even when processing very high

resolution input images.

Leap segmentationôs accuracy and speed make it a highly competitive alternative

to todayôs leading segmentation approaches for modern, real-time computer vision

systems.

1

CHAPTER 1

INTRODUCTION

Over the past decade, the pervasiveness of cameras in almost all areas of modern

life has created a growing need for efficient image analysis and understanding

techniques. Camera use is ubiquitous:

ü in ñsmartò cell phones [73] for image capture and minor image editing,

ü in factories [87] for real-time monitoring and inspection of products,

ü on streets [16] for catching traffic violations and illegal parking,

ü in cars [38], [81] for improving highway safety,

ü in hospital rooms [82] for remote monitoring of patient vital signs.

One of the more prevalent uses of cameras today is in video surveillance to

monitor areas in combating crime. Surveillance cameras have become common in

airports, businesses, and homes to identify and track suspicious behavior. Self-guided

cameras have also been developed for use in combat environments for automated

reporting of combat situations [29]. Often, surveillance cameras operate on mobile,

resource-constrained systems, requiring image analysis methods to rapidly process

images for conclusive identification of significant activity in real-time (e.g. [6], [8], [9]).

Employing vision processing in intelligent vehicle systems has also grown

extensively over the past several years. Cameras have been placed in mobile vehicles for

use in driver aid and alert systems [38], [48], and, in some developing car designs, in

automatic steering systems [81]. Computer vision systems can be used to analyze traffic

2

scenes and alert drivers of potentially dangerous events as they occur in real time, thus

increasing the safety of road ways. Prototype intelligent vehicle systems have already

been demonstrated on highways across the country [54]. Due to their operating

environment, intelligent vehicle systems are inherently mobile, requiring vision

applications to be both accurate and efficient in their implementation for successful

operation in this resource-constrained, real-time environment.

All these applications are driving ground-breaking research in embedded image

processing to develop novel methods for image analysis and understanding. An important

early step in most of these vision applications is image segmentation, which is critical in

reducing image data and enabling efficient execution. Image segmentation separates an

image into homogeneous, perceptually significant regions of pixels that can each be

processed as a group. Segmentation is often used in vision applications to preprocess

pixel data prior to image analysis methods, such as edge detection, stereo matching, and

object tracking. For many segmentation approaches the primary objective is to accurately

detect whole object positions and boundaries in an image, a process referred to as under-

segmentation. However, under-segmentation often causes enormous loss of image detail

as pixels are grouped to form overly-large segments. While these identified primitives are

often useful for high-level visual processing tasks, there exists a separate class of high-

level vision applications which instead require an over-segmentation of the input image.

In over-segmentation, segments correspond not with whole image objects, but with

homogeneous regions of pixels within image objects that can be similarly processed

because of their affinity. High-level vision applications incorporate image over-

segmentation techniques into their preprocessing stages primarily to reduce the image

3

data which must be processed by the vision system, thus improving overall execution

efficiency. However, in many such applications, the resulting image blurring and loss of

detail can be detrimental to the accuracy of the functioning system. For example, if one

were to segment a photograph before performing facial recognition, the human facial

features must remain discernible or the recognition accuracy would suffer. For a highway

surveillance system to identify specific vehicles, the vehicle license plates must remain

legible after segmentation. An intelligent vehicle vision system may require street sign

and road marking information to autonomously make steering decisions. While small,

these details cannot be blurred during segmentation without reducing the accuracy of the

high-level steering system, which would have life-threatening ramifications.

Developing a New Segmentation Approach

The goal of this research is to develop a novel over-segmentation approach for the

preprocessing stages of real-time vision applications that require salient-feature

preservation to achieve accuracy. This specific class of vision applications is one for

which traditional approaches, both under-segmentation and even over-segmentation, have

proven inadequate due to loss of detail and blurring. In particular, this application class

requires the following:

1. Efficiency. Demand is steadily growing for image processing on portable, low

power devices. Efficient implementations of computer-vision techniques are

needed for computing on mobile systems such as cell phones and digital cameras.

To meet this demand, an embedded-computing trend is emerging in the field of

computer vision [50]. Recently, many traditional image-processing techniques

have been revisited to develop faster, more efficient implementations that can

4

function in an embedded environment. Real-time, high-level vision applications

apply image over-segmentation during preprocessing to improve their overall

execution efficiency. The over-segmentation technique must therefore be efficient

in its own execution to avoid counteracting any system performance

improvement. Meeting performance requirements in this area has proven

challenging. Existing segmentation approaches often fail to meet real-time

processing standards, particularly when applied to high-resolution images.

Research in novel over-segmentation approaches is needed that focuses on highly-

efficient preprocessing of input image data for real-time applications.

2. Salient-Feature Preservation. The question of how much detail should be

preserved during segmentation depends on the target application. Many current

high-level applications that apply image-segmentation techniques in

preprocessing expect a certain degree of image blurring and detail loss when

applying existing segmentation algorithms in their preprocessing stages. This

detail loss is expected and useful in those applications which favor treating whole

image objects as single entities, rather than several pieces forming a whole

(segments). However, scene-interpretation applications (such as those for natural

scene reconstruction, human facial recognition, and highway scene

understanding) require a higher degree of salient-feature preservation during

segmentation preprocessing for reliable performance. Excessive blurring of input

images or loss of salient detail (e.g. street sign lettering, lane markings, or facial

features) during segment formation is detrimental. A lack of detail preservation in

preprocessing would greatly reduce the utility of these vision applications. The

5

specific class of applications of interest in this research requires a segmentation

approach that balances salient-detail preservation with the reduction of image

data.

In this dissertation, a novel approach, called leap segmentation, is developed that

focuses on this task of improving segmentation preprocessing both in efficiency and

feature preservation (Forsthoefel et al.) [34]. This approach efficiently transforms raw

pixel data into feature preserving, palletized, color-similar and illumination-similar

regions for use in preprocessing to facilitate performance improvements in high-level

vision systems.

Leap segmentation is so named because the approach allows grouping of adjacent

but non-neighboring pixel values. Pixels can ñleapò across segmentation boundaries to

join nearby chromatic and luminance-similar segments. This technique preserves salient

scene details during segmentation as shown in Figure 1. The leap-segmented image on

the right strongly resembles the original image on the left with little loss in detail.

However, 154,401 pixels in the original image are now replaced by 132 regions, which

 (a) (b)

Figure 1. Leap segmentation output example (Planes). (a) Original image 481x321

pixels. (b) Image segmented using leap segmentation with 132 segments.

6

can be more efficiently processed.

Segmentation algorithms typically partition an image into regions, often referred

to as ñsuperpixelsò [66], which can be processed together because of their affinity (based

on color, texture, intensity, etc.). Leap segmentation removes unimportant image features

and minute pixel variations (such as texture and minor chromatic variations), while better

preserving fine detail (such as vehicle license plate lettering or highway scene markings),

than existing segmentation approaches. By relaxing strict adjacency constraints, leap

segmentation produces larger groupings of similar pixels. In practice, this novel approach

is able to produce perceptually correct groupings of non-contiguous regions such as

stripes, as shown in Figure 2. Traditional segmentation approaches often needlessly

segment each stripe into a separate segment, an inefficient use of resources.

Similarly, traditional segmentation approaches often have difficulty processing

high-variation or porous regions, such as trees and grass. A traditional segmentation

approach which builds only contiguous segments will attempt to segment each tree leaf

 (a) (b)

Figure 2. Leap segmentation groups together non-contiguous segments such as

stripes. (a) Original image. (b) Colorized representation of the image segmented

using leap segmentation.

7

as a separate segment, a tremendous waste of resources. This method of processing also

burdens high-level applications with the need to perform additional steps to group these

leaf segments into a ñtreeò object. The leap segmentation approach groups pixels in high-

variation regions such as sparse vegetation together within a specified adjacency

neighborhood into a small number of segments representing the color information in

these regions, thus eliminating the need for additional steps in high-level vision

applications and reducing the resources required to represent the segmented image scene.

Admittedly, existing segmentation approaches could be redesigned to allow the

grouping of non-contiguous pixels into their segmentations. However, such adjustments

to these algorithms would dramatically increase their complexity, making them

computationally infeasible for real-time applications. Leap segmentation is designed

specifically to produce such output and thus is capable of doing so with reduced time and

storage resources.

Multiple-Frame (Video) Segmentation

In addition to the challenges of single-frame image segmentation (efficiency and

salient-feature preservation), this dissertation explores ways of meeting segmentation

challenges in multiple-frame (video) applications. Video segmentation has been applied

in many vision applications including video compression and video indexing and

retrieval [39]. Many video segmentation techniques are designed to operate off-line,

requiring all frames in the input video sequence as input [41]. Since future frames must

be known, these approaches are not feasible for real-time applications where only current

and past frames are available. A few on-line approaches exist in the literature, but they

are limited in accuracy. Meeting both high accuracy and high efficiency requirements in

8

video segmentation is a challenging task, and further research in this field is needed to

meet real-time processing standards.

Parallelizing Leap Segmentation

Finally, this dissertation explores the potential for parallelizing leap segmentation

on multi-core hardware platforms. Modern demand for real-time image processing

algorithms has inspired several research efforts in fast, multi-core image segmentation.

However, contemporary approaches often require specialized hardware and achieve only

moderate frame rates on low-resolution images and exhibit extremely slow frame rates

when applied to high resolution images [1], [43], [58]. Real-time, multi-core

implementations have not been fully realized. There remains much room for

improvement to achieve real-time (>25 fps) image segmentation executions on

commercially-available CPUs with multiple processing cores that do not require special

hardware.

1.1. Problem Statement and Research Contributions

The goal of this research is to provide vision applications with a faster, more

accurate image segmentation approach that is robust enough to be used in both single and

multiple-frame scene analysis and efficient enough for embedded and mobile platforms.

This goal will be achieved through the following contributions:

1. A novel, single-frame segmentation approach, called leap segmentation, is

presented that efficiently reduces and restructures image data into regions while

preserving the salient features in the image that are needed in scene analysis

applications (Forsthoefel et al.) [31], (Forsthoefel et al.) [34].

9

2. The single-frame leap segmentation algorithm is extended to efficiently process

videoðmultiple, consecutive frames in timeðwhile maintaining region boundary

continuity between image frames. Temporal analysis of the multiple-frame leap

segmentation algorithm is performed to evaluate segmentation stability over time

in video sequences from moving camera traffic scenes (Forsthoefel et al.) [32],

(Forsthoefel et al.) [33].

3. Single-frame leap segmentation is parallelized in a multi-core implementation of

the approach that achieves real-time frame rates when segmenting high-resolution

input images on embedded, mobile platforms (Forsthoefel et al.) [35].

These three contributions to the image segmentation field are evaluated further in

the following subsections.

1.1.1. Contribution 1: Single-Frame Leap Segmentation

The first contribution of this dissertation introduces leap segmentation, a highly-

efficient, non-contiguous segmentation approach designed to reduce and restructure

image information while accurately preserving salient details in the scene. Leap

segmentation builds a new image representation, replacing individual pixel data with a

map-indexed palette of chroma-luminance-similar regions that are adjacent but not

necessarily contiguous. High-level algorithms can process this compact image

representation for efficient execution. Leap segmentation is evaluated using both the

Berkeley Segmentation Dataset and new, publicly available datasets that target real-time

vision applications, such as those used in intelligent vehicle systems. In experiments, leap

segmentation demonstrates high region-assignment accuracy and, compared to other

10

approaches, preserves a higher level of scene integrity (up to 30-40% higher) using a

given storage resource (Forsthoefel et al.) [34].

In addition, it is demonstrated that this novel segmentation technique can

significantly improve scene layout analysis within 3D scene reconstruction (Forsthoefel

et al.) [31]. Leap segmentation can be used in preprocessing to form homogeneous

regions of pixels that need not be spatially contiguous and can thus more accurately

correspond to larger surfaces in the scene. In this way, leap segmentation provides more

meaningful spatial support to scene layout analysis methods. A detailed evaluation of the

leap segmentation approach and comparisons with related, existing segmentation

methods are provided. The presented implementation is computationally efficient,

exhibiting execution time improvements of 10x - 15x over traditional approaches. The

diagram in Figure 3 provides a full, graphical summary of this contribution.

Figure 3. Graphical summary of the first dissertation contribution: single-frame

leap segmentation.

11

1.1.2. Contribution 2: Leap Segmentation in Video Analysis

Multiple-frame (video) segmentation is an important step in many video analysis

applications for identifying and tracking specific features as they move through a scene.

In a mobile, resource-constrained environment, such as an intelligent vehicle system,

video segmentation can be used to reduce image information and increase processing

efficiency for high-level scene understanding applications. The second contribution of

this dissertation introduces video leap segmentation, a highly efficient multiple-frame

segmentation approach for use on embedded and mobile platforms where processing

speed is critical. This novel video segmentation method is demonstrated to successfully

track segments across spatial and temporal bounds, generating fast, stable segmentations

of images from moving-camera video sequences (Forsthoefel et al.) [33]. Video leap

segmentation is applied to the task of salient segment transformation detection for

alerting potential drivers of critical scene changes that may affect steering decisions. Trial

results demonstrate that video leap segmentation enables coarse detection of salient

region transformations in traffic scenes, correctly detecting 80% of salient segment

transformations in trial scenes with less than 5% false positives. Reducing high-level

processing to salient areas using this approach can significantly improve the processing

efficiency of scene interpretation applications in intelligent vehicle systems. The diagram

in Figure 4 provides a graphical summary of this contribution.

A supplementary contribution of this research is the development of a publicly

available image dataset called the GTTraffic Dataset (Forsthoefel et al.) [32]. GTTraffic

is a collection of moving-camera traffic sequences captured at Georgia Tech for use in

vision evaluation experiments. The sequences contain fast-moving traffic events, such as

12

vehicles quickly swerving into the driverôs lane. These sequences are made publicly

available as part of this research to motivate and evaluate vision-based approaches to

improving highway safety.

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation

Existing segmentation approaches often fail to meet real-time processing

standards and exhibit extremely slow frame rates when applied to high resolution images.

The third contribution of this dissertation first presents a highly optimized serial

implementation of the leap segmentation approach. This serial implementation is

demonstrated to achieve frame rates exceeding that of the state-of-the art (it segments

more than 80 fps on 640x360 images and more than 20 fps on high resolution (1280x720)

images). Leap segmentation is then analyzed further for its inherent parallelism and

restructured for use on a multi-core system to achieve additional speed-up (Forsthoefel et

al.) [35]. On a multi-core, mobile processing system with four threads, multi-core leap

Figure 4. Graphical summary of the second dissertation contribution: video leap

segmentation with salient transformation detection identifies salient foreground

objects when everything is moving, including the camera. Color indicates segment

direction relative to the camera.

13

segmentation achieves frame rates of over 114 fps on 640x360 images and more than 31

fps on 1280x720 images, thus easily exceeding real-time processing standards. The

diagram in Figure 5 graphically summarizes this contribution.

1.2. Summary of Results

The key results of this dissertation are as follows:

ü An efficient, non-contiguous segmentation approach designed to reduce and

restructure image information while accurately preserving salient details in the

scene is presented (Forsthoefel et al.) [34]. This leap segmentation approach

demonstrates high region assignment accuracy and, compared to other

approaches, preserves a higher level of scene integrity (up to 30-40% higher)

using a given storage resource. The approach is also computationally efficient,

exhibiting execution time improvements of 10x - 15x over traditional approaches.

Figure 5. Graphical summary of the third dissertation contribution: embedded,

multi -core leap segmentation.

14

ü The leap segmentation approach is comprehensively evaluated in a 3D scene

reconstruction application (Forsthoefel et al.) [31]. Leap segmentation can be used

in preprocessing to form perceptually significant regions of pixels that need not be

spatially contiguous and can thus more accurately correspond to larger surfaces in

the scene. In this way, leap segmentation provides more meaningful spatial

support to scene layout analysis methods.

ü A highly efficient multiple-frame segmentation approach for use on embedded

and mobile platforms where processing speed is critical is presented (Forsthoefel

et al.) [33]. This novel video leap segmentation method is demonstrated to

successfully track segments across spatial and temporal bounds, generating fast,

stable segmentations of images from captured moving-camera video sequences.

ü Video leap segmentation is applied to the task of salient segment transformation

detection for alerting potential drivers of critical scene changes that may affect

steering decisions (Forsthoefel et al.) [33]. Trial results demonstrate that with

little added computation, video leap segmentation enables course detection of

salient region transformations in traffic scenes, correctly detecting 80% of pixels

in salient segment transformations with less than 5% false positives.

ü A publicly available dataset of moving-camera traffic sequences (GTTraffic)

collected at Georgia Tech is developed and presented for use in vision evaluation

experiments (Forsthoefel et al.) [32].

ü A highly optimized serial implementation of single-frame leap segmentation is

given in (Forsthoefel et al.) [35]. This serial implementation is demonstrated to

15

achieve frame rates of more than 80 fps on 640x360 images and more than 20 fps

on high resolution (1280x720) images, far exceeding the state-of-the art in

execution.

ü A parallel implementation of the single-frame leap segmentation algorithm is

developed for use on embedded, multi-core platforms (Forsthoefel et al.) [35]. On

a multi-core, mobile processing system with 4 threads, this multi-core leap

segmentation implementation achieves frame rates of over 114 fps on 640x360

images and more than 31 fps on 1280x720 images, easily meeting real-time

processing standards.

1.3. Overview of Content

This dissertation is organized as follows. Chapter 2 outlines the novel, leap

segmentation approach and presents the results of experiments that test leap segmentation

using both classical and newly developed accuracy metrics. This chapter also presents

comparisons with other well-known segmentation approaches and evaluates the use of

leap segmentation in the preprocessing of a high-level 3D reconstruction application. In

Chapter 3, leap segmentation is extended into a real-time, video segmentation approach.

Video leap segmentation is then applied in the application of salient segment

transformation detection in a mobile, intelligent vehicle vision application. A detailed

analysis of video leap segmentation performance in this context is given. Chapter 4

outlines two highly efficient implementations of the leap segmentation approach for use

on single-core and multi-core platforms and gives detailed performance analyses on both

high-performance and resource-constrained hardware. Chapter 5 concludes this

dissertation and discusses future work.

16

CHAPTER 2

SINGLE-FRAME LEAP SEGMENTATION

2.1. Introduction

Image segmentation is the process of separating an image into perceptually

significant regions of pixels that can each be processed as a group. Segmentation

algorithms have been widely researched and are used in many vision applications to

preprocess pixel data prior to image analysis methods, such as edge detection, stereo

matching, and object tracking. Separating an image into segments of pixels for processing

can significantly reduce the amount of computational resources needed to analyze an

image in a high-level vision system. This reduction of resource usage has the potential to

increase algorithmic processing speed.

This chapter presents a highly-efficient image segmentation approach, called leap

segmentation (Forsthoefel et al.) [34], that focuses on the task of improving segmentation

preprocessing both in efficiency and feature preservation to facilitate performance

improvements in high-level vision systems. A primary objective for most existing

segmentation approaches is to accurately detect object positions and boundaries in an

image. Leap segmentation has a different emphasis: to efficiently transform raw pixel

data into feature preserving, palletized, color-similar and illumination-similar regions for

improved scene analysis. Rather than process each image pixel individually, vision

applications can use leap segmentation to preprocess image pixels into groups that can be

processed more rapidly. An example of leap segmentation output is shown in Figure 6.

17

Vision applications rely on preprocessing segmentations to accurately maintain

important image features while reducing the data in the image. In addition, many

applications require their segmentation preprocessing steps to perform quickly and

efficiently. Leap segmentation is applicable to a broad range of segmentation tasks and is

especially appropriate for embedded and mobile platforms where processing speed is

critical. Traditional image segmentation approaches often blend or remove small image

details when building contiguous regions, and processing time often exceeds the camera

frame period. Leap segmentation better preserves salient features while achieving a

significant improvement (> 10x the state of the art) in execution performance.

In this chapter, leap segmentation is evaluated using images from the well-known

Berkeley Segmentation Dataset. Its use in real-time applications, such as intelligent-

vehicle vision systems where detailed feature preservation is vital, is also evaluated. In

experiments, leap segmentation demonstrates high region-assignment accuracy and,

compared to other approaches, preserves a higher level of scene integrity using a given

storage resource.

 (a) (b)

Figure 6. Leap segmentation output example (Polo). (a) Original image 481x321

pixels. (b) Image segmented using leap segmentation (Forsthoefel et al.) [34] with

180 segments.

18

To further demonstrate the benefits of leap segmentation, it is used to improve the

performance of a high-level vision task for 3D scene reconstruction (Forsthoefel et al.)

[31]. Surface-layout analysis applications for 3D scene reconstruction often evaluate

complex geometric cues over large regions to determine the orientations of large surfaces

within the scene. These regions can contain contiguous pixels, such as those in solid

walls, or non-contiguous pixels such as those in tree leaves or shrubs. Traditional

segmentation approaches partition homogeneous, non-contiguous pixels into many

smaller segments that must then be further analyzed and grouped by the high-level layout

application. Leap segmentation can form homogeneous regions of pixels that need not be

spatially contiguous and can thus more accurately correspond to larger surfaces in the

scene. In this way, leap segmentation provides more meaningful spatial support to scene

layout analysis methods, significantly improving processing efficiency.

This chapter is organized as follows. Related work in image segmentation is

summarized in Section 2.2. Section 2.3 presents the novel, leap segmentation approach.

Section 2.4 discusses the fast leap segmentation implementation. Section 2.5 shows a

detailed parameter evaluation and sensitivity analysis. Section 2.6 compares the accuracy

and efficiency of leap segmentation with other well-known segmentation approaches

when applied to intelligent vehicle highway scenes and on diverse Berkeley

Segmentation Dataset images. Section 2.7 evaluates leap segmentation using several

well-known, classical accuracy metrics. Section 2.8 describes a popular high-level vision

application for image labeling and reconstruction and demonstrates the benefits of

applying leap segmentation to this task. Experiments show that leap segmentation

correctly maintains an average of 20% more original scene pixels than traditional

19

approaches while using the same number of segments and significantly improving

execution speed (>10x faster than existing approaches). Section 2.9 concludes this

chapter and discusses future work.

2.2. Related Work

Image segmentation has been explored in many previous research efforts,

resulting in several broad classes of algorithms, including region-based, feature-space

clustering, and graph-based segmentation. Early image segmentation approaches

typically use region-based segmentation. These region-growing [2], [19] and split-and-

merge [46] methods are conceptually simple. They typically rely heavily on input

threshold parameters and they often have trouble processing regions of high variation

[61]. The watershed approach [77] is a popular example of region-based segmentation. In

general, watershed transformation-based algorithms [10], [61] are fast and efficient with

time complexities linear in the number of pixels [67]. However, they are sensitive to

noise and highly-textured regions and often require extra, costly preprocessing steps to

produce useful gradient input [78].

Finally, the jump connection approach [68] is a region-grouping approach

recently applied in color segmentation with mathematical morphology operators [5].

While it closely resembles leap segmentation in name, the two approaches are very

different in operation. The jump connection approach assesses jumps in color space

between neighboring image pixels and, unlike leap segmentation, the jump connection

approach requires segments to be spatially contiguous.

Segmentation methods that use feature-space clustering attempt to find modes

(clusters) in a distribution by using each image pixel's features as sampled data from the

20

distribution's probability density function. The k-means clustering method [52], while

simple and well-known, relies heavily on correct user input of cluster count and initial

cluster center placements to produce a good segmentation [47]. Mixture of Gaussians

(MoG) clustering with Expectation Maximization (EM) [26] has been used in

preprocessing for recent applications [11], [18]. However, EM calculations are vulnerable

to becoming stuck in local minima and can be slow to converge [85]. The MoG with EM

approach also relies heavily on its input parameters, such as an accurate estimate of

cluster count, to provide a useful solution.

The mean-shift technique [21], [22] also uses feature-space clustering. According

to Pantofaru and Hebert [63], output segmentations from mean-shift correspond well to

human perception. A disadvantage is its sensitivity to parameter change and the necessity

for input parameter tuning to obtain good segmentations [86]. In addition, mean-shift

suffers from being computationally expensive making it too slow for real-time

applications. This is due in part to the expensive sliding-window approach it applies to

image pixels during processing. Several techniques for improving mean-shift have been

proposed [17], [20], [37], [80]. For example, Christodias et al. [20] proposed combining

mean-shift with edge detection to increase segmentation accuracy in EDISON. However,

there is still room for improvement as these algorithms require on the order of minutes to

process one second of video [65].

In graph-based segmentation an image is represented as a weighted, undirected

graph. Graph-based segmentation based on minimum cuts was first introduced by Wu

and Leahy [84]. Shi and Malik [71] then introduced the normalized cut (NC) criterion to

avoid the bias for partitioning undersized segments that plagued Wu and Leahy's earlier

21

approach. The NC algorithm requires few input parameters from the user when compared

to mean-shift [86]. However, NC is expensive to run and is too slow to be used in real-

time applications; finding the minimum NC based on Shi and Malik's proposed criterion

is an NP-hard problem [30]. They present methods to approximate the calculation but

these methods still prove computationally intensive. Several improvements to the NC

approach have been proposed [53], [60] such as adding a boundary detector to reduce

clutter and enhance segmentation performance. Cour et al. [24] focus on the

parallelization of the existing normalized cuts approach for speed gain and propose an

efficient multiscale variant of the normalized cuts approach that runs in linear time.

However, these algorithms are still many times too slow for use in real-time applications,

requiring at least several seconds to process a single frame [24].

Segmentation by weighted aggregation (SWA) [69] is a recent multiscale

approach that reduces the normalized cut minimization problem using algebraic

multigrids [15]. SWA preserves image boundaries more accurately in output

segmentations and is more efficient than the original NC approach, possessing linear time

complexity in the number of input image pixels. Despite these improvements, the SWA

approach and a recently proposed improvement known as the probabilistic aggregation

approach (PA) [4] which eliminates user-defined parameter reliance, are still slow,

requiring tens of seconds to process a single image frame [28].

A popular graph-based segmentation technique, EGBIS [30], is considered to be

state of the art in computational efficiency [28], [65]. It uses pair-wise component

comparisons to segment an image in O(mlogm) time, where m is the number of graph

edges. A drawback to this method is its sensitivity to its input parameter k and its

22

tendency to create small, unneeded regions at the borders of valid image segments. In

addition, the graph cuts segmentation approach [13], [14] is a popular graph-based

method that uses Markov random fields [40]. However, this technique is primarily

applied to binary segmentation, which is outside the scope of this research.

In the next section presents the novel leap segmentation technique. The leap

segmentation algorithm is first defined and then evaluated for efficiency and accuracy

performance using images from publicly available segmentation datasets. In this

evaluation, leap segmentation performance and segmentation results are compared to two

widely known segmentation approaches: a mean-shift segmentation approach (EDISON)

and a graph-based segmentation approach (EGBIS).

2.3. Leap Segmentation Algorithm

 The leap segmentation approach (Forsthoefel et al.) [34] identifies pixels that are

related by adjacency within a specified neighborhood constraint and by a given chroma-

luminance affinity metric. The reflexive, symmetric, transitive closure of these pixel

relations provides equivalence groupings of adjacent, but not necessarily contiguous,

pixels that are similar in chromaticity and luminance. The final segmentation includes

each such grouping that satisfies a minimum size constraint requiring its area to be

greater than a minimum-size threshold Ŭ.

 In particular, the equivalence relation region-equivalent is defined to capture the

relationship between all pixels in the same segment. It is the reflexive, symmetric,

transitive closure of the binary relation adjacent-matches between pairs of pixels. Pixel

P1 adjacent-matches P2 iff

23

a.) P1 and P2 are CL-similar (chroma-luminance affinity defined below) and

b.) P1 and P2 are adjacent within a specified neighborhood (not necessarily

nearest neighbors).

2.3.1. Chroma-Luminance Affinity

 Two pixels are CL-similar if their chroma-luminance difference is within a given

threshold, Ů. The measure of difference depends on the image color model (e.g., YCrCb,

HSI, etc.). While luminance and chromaticity participate in the relation, they need not be

orthogonally represented in the color model. In the leap segmentation implementation,

described in Section 2.4, a red-green-blue component (RGB) color model is used to

eliminate translation time. The CL-similar relation is defined using the maximum

component difference (MCD): P1 and P2 are CL-similar iff

ÍÁØ

ȿὙ Ὑȿ

ȿὋ Ὃȿ

ȿὄ ὄȿ
‐ Ȣ (1)

2.3.2. Adjacency

While existing segmentation algorithms require member pixels to be spatially

contiguous, leap segmentation allows member pixels to be separated by a pixel adjacency

parameter, Ȋ. For a given pixel P, the neighborhood of P, n(P), is defined as all pixels

within a ɚxɚ square window centered around P. Figure 7 shows examples with Ȋ=1 and

Ȋ=2. Two pixels P1 and P2 are adjacent iff)(21 PnPÍ equivalently)(12 PnPÍ . P1 and

P2 need not be nearest neighbors.

24

2.3.3. Region Equivalence

 Region equivalence, which relates all pixels grouped into the same segment, is

the reflexive, symmetric, transitive closure of the adjacent-matches relation. Pixels that

are region-equivalent (i.e., in the same segment) are not required to be directly connected

with immediate neighbors or even to be reachable through a chain of contiguous pixels.

For example, in Figure 8, multiple contiguous regions (on left) are within a ȊxȊ

neighborhood and are grouped as a single segment B. A diagonal occlusion (on right)

does not fragment segment A into two segments. This allows segments to span large

regions of an image by connecting pixels through multiple ñleapsò over other segments in

the image with the restriction that no leap can be greater than Ȋ.

 Traditional image segmentation approaches could, potentially, be redesigned to

allow the grouping of non-contiguous pixels into their segmentations. However, such

adjustments to these algorithms cause dramatic increases in complexity. For example, the

popular graph-based EGBIS approach [30] can be adjusted to include edges between non-

adjacent pixels. However, this would require an exponential increase in the number of

edges of the manipulated graph, in turn causing a marked decrease in the approach's

Figure 7. Definition of the neighborhood of P, n(P), for ɚ = {1, 2}.

25

execution performance. Conversely, the innovative leap segmentation approach is

designed specifically to produce such non-contiguous segment output and thus is capable

of doing so with reduced time and resources.

2.4. Leap Segmentation Implementation

 This section presents a fast and resource-efficient implementation of the leap

segmentation algorithm. The workflow is shown in Figure 9.

2.4.1. Segmentation Constraints

 To begin, the input image is discretized using the adjacency parameter, Ȋ, by

dividing it into non-overlapping ȊxȊ square regions called tiles. Each tile is then scanned

using the CL-similar constraint to locate candidate regions in each tile. If a pixel is CL-

similar to pixels within an existing region, it is added to that region. Otherwise, it forms a

new candidate region.

 Pixels within a region contribute their component values to a ratiometric mean via

component sums and a pixel count, shown in Figure 10. Each scanned pixel in a region is

Figure 8. The leap segmentation adjacency definition allows more flexibility,

eliminating noise (left) and occlusion (right) problems.

26

compared to the mean component values (e.g. R, G, and B) of each candidate region.

After identifying candidate regions within each tile, these regions are compared between

neighboring, contiguous tiles. Regions whose mean component values satisfy the CL-

similar relation are merged into a mega-region. This process continues until a final set of

candidate mega-regions are identified. At this point, all ratiometric component means are

locked to fixed component averages that no longer depend on member pixels.

Figure 9. Workflow of resource-efficient leap segmentation algorithm.

Discretize ImageAdjacency

Constraint

Scan for

CL-Similar Pixels

Within Each Tile

Equivalence

Constraint

Scan for

CL-Similar Regions

Between Tiles

Tile

Adjacency

Equivalence

Constraint

Merge

Candidate

Regions

Image Frame

Image Tiles

Sets of

Candidate

Regions

List of Candidate

Regions for

Each Tile

Mega-Regions

Region

Adjustment

Size Analysis

Equivalence

Constraint

Refined

Mega-Regions

Final

Segmentation
Size

Constraint

27

2.4.2. Region Adjustment and Size Analysis

 When a pixel joins a candidate region, it adds its component values to the region's

pixel component sums. Certain scene features such as large, slowly changing gradients

can cause region component means to drift, occasionally leaving some member pixels

outside of the CL-similar bounds.

This is corrected in a post-process region-adjustment step. Pixels are scanned for

incorrect assignments in region membership. If a large number of incorrectly assigned

pixels are identified, a new mega-region is created. The effect of region adjustment is

examined in Section 2.6.4. This step also applies the minimum-size constraint to mega-

regions, appropriately assimilating small regions to nearby mega-regions based on spatial

and color similarities. The resulting mega-region list becomes the final segmentation.

2.5. Parameter Variation and Analysis

 Leap segmentation input parameters include an adjacency parameter Ȋ, an

equivalence threshold Ů, and a minimum size threshold Ŭ. The optimal parameter choice

is determined by evaluating accuracy and compression objective functions across a

Figure 10. Efficient storage of region member-pixel information.

28

diverse collection of datasets. In this parameter assessment, both quantitative assessment

and qualitative assessment are considered. While the optimization is performed primarily

through the minimization of quantitative objective functions (e.g., number of segments),

qualitative assessments (e.g., appropriate scene feature preservation), are also used to

select the best parameters. In this section, evaluation metrics are defined, an optimal

parameter set is presented, and parameter variation sensitivity analysis is explored.

2.5.1. Objective Functions

 In this evaluation, two quantitative objective functions are used to assess

compression and accuracy performance. The first metric, number of segments assesses

image compression. One goal of leap segmentation is to transform pixel data into a much

smaller number of similar regions that are more easily processed. The number of

segments produced by an algorithm is a measure of how well it meets this objective.

However, used alone, pursuit of compression would result in an undesirable loss of

salient image features.

The second metric, nonmatching pixel percentage assesses segmentation

accuracy. It measures the percentage of image pixels in the segmentation output that are

not CL-similar to their original image color. Calculation of the nonmatching pixel

percentage is shown in Equations 2-4. The equivalence function E applies the CL-similar

relation (Equation 1) to assess pixel affinity. PNM is the number of pixels in the final

segmentation which are not CL-similar within the matching threshold Ű to their original

image (Ű = 30 was used in all experiments) and PTOTAL is the total number of pixels in the

image. PORIG holds the original input image, and PSEG holds the pixels in the output

segmentation.

29

Ὁὖȟὖȟ†
ρȟ ÉÆ ὖȟὖ ÁÒÅ #,Ȥ3ÉÍÉÌÁÒ
πȟ ÏÔÈÅÒ×ÉÓÅ

ȟ

ὖ ὖ Ὁὖ Ὥȟὖ Ὥȟ† ȟ

ὔέὲάὥὸὧὬὭὲὫ Ϸ ρππ
ὖ

ὖ
Ȣ

(2)

(3)

(4)

A high accuracy image segmentation result achieves a low nonmatching pixel

percentage, indicating that a small number of pixels have been assigned to a region color

that is significantly different from their original color. This metric is a good measure of

the preservation of scene integrity during the segmentation process.

Alternative quantitative metrics of image quality include mean squared error loss

(MSE) and other cumulative pixel error measures. However, leap segmentation strives to

preserve the maximum number of pixels in the original image, rather than assess the

magnitude of distortion of disrupted pixels. Qualitative assessment is also used to adjust

parameters near the quantitative optimum. Inspection of segmentation output reveals

small adjustments of the parameters that improve the perseveration of important scene

features. However these adjustments must benefit the process across a wide range of

scene collections.

This section assesses the sensitivity of the algorithm parameters to scene

composition, chromaticity, and illumination, to evaluate its applicability to a wide range

of different scenes. For each parameter variation experiment, both the cumulative

nonmatching pixel percentage and the cumulative number of segments are evaluated and

compared using eight different scene collections, each containing 300 images. These

collections include the Berkeley Segmentation Dataset [55], [56] (see Figure 11 for

sample images) and seven mobile camera sequence collections captured at Georgia Tech

30

as part of the GTTraffic dataset [32] (discussed in Section 3.4). When computing the

cumulative nonmatching pixel percentage and cumulative number of segments, all eight

datasets are evaluated separately, each generating an average objective function value

over each frame in the collection. The cumulative nonmatching pixel percentage and

cumulative number of segments are the sum of the average values in each of the eight

collections. The dataset scene diversity tests the generality of parameter values.

Figure 11. Sample images from the Berkeley segmentation dataset [55], [56] for use

in segmentation evaluation experiments.

31

Each leap segmentation parameter is varied across a wide range of values, shown

in Table 1, to generate approximately 720 parameter combinations for evaluation. This

bracketing assures that the best parameters are captured. Both accuracy and compression

objective functions contribute to overall segmentation quality. While the relative benefits

of each function are dependent on the application, an aggregate objective function (AOF)

is useful in optimizing segmentation parameters. The AOF is defined as the normalized

sum of the accuracy and compression objective functions. This equality weighting

preserves the convexity of the objective functions and simplifies optimization.

To explore parameter sensitivity near the optimum, the best assessed parameters

are defined (Ȋ = 8, Ů = 20, and Ŭ = 50) and each parameter is independently varied about

this point. The following sections present the results.

2.5.2. Adjacency

 The adjacency parameter, Ȋ gives the maximum spatial extent that a pixel can be

separated from an existing segment and still be eligible for membership. The value of Ȋ is

varied between 2 and 32 pixels. The effect of adjacency on nonmatching pixel percentage

is shown in Figure 12a. As Ȋ is reduced, more pixels match their original color following

segmentation. For Ȋ between 2 and 8, the cumulative nonmatching percentage remains

Table 1

Leap Segmentation Parameter Variation

 Adjacency Equivalence Size

Symbol Ȋ ʁ

Range of Values 2 to 32 2 to 32 10 to 90

Optimal Value 8 20 50

32

below 10% over all eight scenes. However, as Ȋ increases above 8 pixels the cumulative

nonmatching pixel percentage increases linearly.

An opposite trend occurs in the analysis of the cumulative number of segments

produced, shown in Figure 12b. As Ȋ increases, the number of segments produced by leap

segmentation dramatically decreases as pixels are more readily grouped into segments

that span large areas in the image. For Ȋ values of 4 or less, the large cumulative segment

Figure 12. Analysis over several mobile camera scene runs for the adjacency

parameter (Ȋ) varying between 2 and 32 pixels. (a) The cumulative nonmatching

pixel percentage increases as Ȋ increases. (b) The cumulative number of segments

decreases as Ȋ increases. The aggregate objective function is overlaid in black.

a)

b)

33

counts diminish the compression effect, as shown in Figure 13a. The individual scene

collection performances in Figure 12b show that the effect of Ȋ is similar across diverse

scenes.

Increased Ȋ has two effects. Locally, segments are less affected by noise and

small occlusions that disrupt growth; regions are able to leap over non-similar obstacles.

At a larger scale, increased Ȋ allows segments to extend across greater areas in the image,

further reducing similar but spatially disjoint segments.

Excessively large values of Ȋ adversely affect segmentation quality. As segments

encompass a larger number of pixels, the mean color components of the region can drift,

and no longer match member pixels. While this is corrected in a post-process region

adjustment, it can distort segment boundaries, as shown in Figure 13b.

 (a) (b)

Figure 13. Qualitative image comparison, adjacency parameter (Ȋ). Segmentation

visual quality decreases as adjacency constraints are relaxed from a) Ȋ = 2 (1219

regions) to (b) Ȋ = 32 (25 regions).

